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Preface

This book is designed to develop the fundamental concepts of general topology
which are the basic tools of working mathematicians in a variety of fields. The
material here is sufficient for a variety of one- or two-semester courses, and pre-
supposes a student who has successfully mastered the material of a rigorous
course in advanced calculus or real analysis. Thus it is addressed primarily to
the beginning graduate student and the good undergraduate.

A principal goal here has been to seek some sort of balance, in the treatment,

between two broad areas into which general topology might (rather arbitrarily
and, of course, iraccuratel\) he divided The firet which canld be called ‘‘con-

tinuous topology’ metrization which
are the indispensg
“what every your
convergence, cof
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preparation for later courses in geometry and algebraic topology. This core is
formed here by a series of nine sections on connectivity properties, topological
characterization theorems and homotopy theory. By suitable surgical interven-
tion, mixed audiences can be taught a mixture of the two approaches, using
whatever recipe the instructor likes best. To aid in the concoction of such recipes
this preface is followed by a table of some of the important topics in the book
together with a list of the material which is prerequisite for each.

While trying to maintain the balance just described, I have also tried to keep in
mind the potential uses of such a book both as a text and as a reference source.
Thus, in a concession to pedagogy, I have paced the book rather more slowly at
the beginning than at the end and have concentrated motivational comments at
the beginning. I have also attempted to keep the pedagogical lines of force
transparent by paring the material of each section down to what I believe is
fundamental. At the same time, I have included a large selection of exercises (over
340, each containing several parts), which provide drill in the techniques developed
in the text, develop limiting counterexamples and provide extensions of, and

v



vi Preface

parallels to, the theory presented in the text. Some of the “‘theoretical” exercises
are suitable for extended development and discussion in the classroom, and all
should enhance the value of the book as a reference source. Worth particular
mention are the exercises on normed linear spaces and topological groups, and
many of the exercises in the sections on compactness, compactification, metrization
and the Stone-Weierstrass theorem. To facilitate its use as a reference source, |
have included at the end of the book a collection of background notes for each
section, a large (but certainly not exhaustive) bibliography and an index as
comprehensive ag
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and theorems are
as the third item
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tion to this rule i n“n.llwww s“““iliw com s somewhat con-

densed and the numroers I.T, I.Z, .. . SCIVC U UCSIBIalc suoscetions rather than
specific results. One note of caution seems advisable. A reference to a theorem
number only, omitting the word “theorem”, should serve as a warning that the
relevant observation may be made in the remarks following the proof of the
theorem, rather than in the statement of the theorem itself. (This happens
infrequently, however, and most references, even of this type, are to the numbered
theorem itself.) Each section ends with a set of exercises, lettered consecutively;
most exercises consist of several parts. A reference to 3E is a reference to the
fifth exercise in Section 3; where more precision is needed, 3E.3 is used to designate
the third part of this exercise.

A few notational and terminological conventions deserve special mention.
Following the lead of Halmos and Kelley, we replace the cumbersome “‘if and
only if” by “iff” and denote the end of a proof by . When discussing statements
of the form “P iff Q”, we occasionally use “necessity” to mean “if P then Q”
and “sufficiency” to mean ““P if Q. Square brackets are used nonmathematically
in two contexts in this book. At the end of an exercise, they enclose hints to the
solution of that exercise, and placed at the end of an item in the bibliography,




Preface vii

they enclose a reference to the review of that item in the Mathematical Reviews
or (for items written between 1930 and 1940) the Zentralblatt.

Anyone who writes a book of this sort accumulates a sea of outstanding
debts. My own personil sea has been fed by more rivers of kindness than I can
count; many have no doubt achieved the status of underground streams and been
forgotten. The one I cannot forget created the sea long before this project was
conceived, and I here acknowledge my greatest debt to A. H. Stone. Jen suis pas

digne.

The presentq _ nversations with
friends and collg Converted with ere speaking for
posterity. I apolq STn“ c felvin Henriksen,
W. W. Comfort, 0““3"3' hony Hager and
Phillip Nanzetta. - : stoically suffering
through earlier v trial IIBTSIIII! ) own at Lehigh,
Case Western Ret httn:/ /viww stdutilityv.com hose of Professor

Johnson at New VIexico State Umiversity and Proressor comfort at Wesleyan
University. Especially, parts of the manuscript were assiduously edited by Robert
Shurtleff, and critically reviewed by the students in Professor Comfort’s class.
They will, T think, recognize their influence in the ultimate presentation.

If I mention the students who have suffered through one or another of the
early versions of this manuscript, I cannot neglect my wife, Mary, who has
suffered through every version, both as wife and as proof reader.

The typing was done by Elizabeth Roach and Rosemary Pappano. Virtually
every mistake that survived their typing was my own and I am shaken to report
that they caught several of my best and most subtle errors, mathematical and
otherwise.

Case Western Reserve University deserves my thanks for making it possible
for me to avoid dividing my time and myself between the classroom and prepara-
tion of this manuscript in the fall of 1968. Parts of the manuscript were prepared
during my tenures on several grants from the National Science Foundation.

Edmonton, Alberta S.W.
April 1970
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Chapter 1

Set Theory and Metric Spaces

1 Set theory

The material of this section is introduced primarily to serve as a review for those
with some background in set theory and as an introduction to our notational
conventions and terminology. The reader entirely unfamiliar with any aspect
of set theory should not be content with the intuitive discussion given here, but
should consult one of the standard references on the subject (see the notes).

Most of the material in this book is accessible to anyone who understands 1.1
through 1.8 below. Itis recommended that the remainder of this section be skipped
on first reading and referred to later as needed.

1.1 Sets. A set, family or collection is an aggregate of things (for example, numbers
or functions or deske ar neanle) called the slomonte ar nainte af the set. If g is an

element Of the set Converted with ¢ A.

If Aisaseta he elements of A4,
the set of element STn“ c 4 | S(a)}. Thus if
N is the set of posi ) 0n“erter et {aeN|ab =6
for some b e N}. trial version easy to describe
the set by listing it - theset {1, 2, 3, 6}.

This discussi___IMUR//wWww stdutilitveom  |io; rhosic p i

the set of all sets, we can apparently form the set Q = {4 € P| A ¢ A}, leading to
the contradictory Q € Q iff Q ¢ Q. This is Russell’s paradox (see Exercise 1A)
and can be avoided (in our naive discussion) by agreeing that no aggregate shall
be a set which would be an element of itself.

1.2 Elementary set calculus. If 4 and B are sets and every element of A4 is an element
of B, we write A — Bor B o A4 and say A is a subset of B or B contains A. The
collection P(A) of all subsets of a given set A is itself a set, called the power set of A.

We say sets 4 and B are equal, A = B, when both A < B and B < A.
Evidently, 4 and B are equal iff they have the same elements.

We write A — B to denote the set {a € A | a ¢ B} and (unlike some writers)
use this notation even when B is not a subset of A4, i.., even when B ¢ A. When
we do have B < A, A — B s called the complement of B in A.

The empty set, @, is the set having no elements. By the criterion for equality
of sets, there is only one empty set and, by the criterion for containment, it is a
subset of every other set.



2 Set theory and metric spaces [1

Note that element and subset are different ideas. Thus, for example, x € A
iff {x} = A.

A few sets will keep recurring and we will establish now a conventional
notation for them.

R: the set of real numbers,
R": Euclidean n-space,

N: the set of positive integers,

I: the closed interval [0, 1] in R,

Q: the set of rational numbers in R,
P: the set of irrational numbers in R,
S": the n-sphere, {x e R"*! | |x|] = 1}.

Eventually, each of these sets will be assumed to carry some “usual” structure (a
metric, topology, uniformity or proximity) unless the contrary is noted. Additional
less often used conventional notations will be introduced in the text. All can be

found in the inde; j
Converted with

1.3 Union and inter: 1 set, the union of
the sets A, is the STn“ con“erter at least one 4;.
When no confusi the union of the
sets A as simply trial version en A, or simply

A,, of all elen . =n= is the collection
@& (e A}, the | IR/ /W stdutility.com stimes denoted

\J o and () «, respectively.

When only finitely many sets A4, . . ., 4, areinvolved, the alternative notations
Ay U U A4, or UZ=1 A, are sometimes used for the union of the A,, while
A0 n A, or (r=y A, sometimes denotes their intersection. When de-

numerably many sets A4;, A,, ... are involved, their union will sometimes be
denoted by 4, U A, U or ()i, A4, their intersection by 4, N A, N -
or (& q Ay

We say A meets Biff A n B # . Otherwise, A and B are disjoint. In general,
a family o/ of sets is pairwise disjoint iff whenever 4, Be &/, A n B = 0.

For those who wish to test themselves on the concepts just introduced, here
are a few easily proved facts:

a) A c Biff A u B = B,

b) A= Biff An B = 4,

c) If o/ is the empty collection of subsets of 4, then | ) o = gand () o = A.

d) AuB = Au (B — A).

e An(BuC)=(AnBuUCIff C c A



1] Set theory 3

1.4 Theorem. If A is aset, B, = A foreach A€ A and B < A, then

a) A — (U;.e/\ B;) = mlsl\ (4 - Bz)’} De Morgan’s laws
b) A — (ﬂAeA Bz) = U).EA (A - B;),

¢) BN (Usen By) = Usea (B 0 By), } distributive laws
d) Bu (ﬂ}.eA B;) = mAEA (B L B;).

Proof. a) If xe A — (| ) B;), then x€ A and x¢ B, for any 4, so xe 4 — B,
for each A; hence x € [} (4 — B,). Conversely if x € () (A — B,), then for each
A, xeA and x¢B,; hence xeAd — (|)B;). Thus xed — (| By iff
x€ () (4 — B,), so that

A—(UBA)=H(A"BA)'

b) Similar to (a). See Exercise 1B.

c) If xe BN (| B,), then x € B and x e (] B,; thus x € B and x € B, for
some Ao. Hence x € (] (B n B,). Conversely, if x € ( J (B N B,),then x € B n B,,
for some i,€ A; thus xe B and x € B,,, so that xe B and x e U B,. Hence
x€ B (| B;). We have shown xe B (] B)) iff xe (] (B n B;); it follows

that B n B _
.(U ) Converted with
d) Similar to

1.5 Small Cartesian STn“ con“erter pme set, the two-

element sets {x,, - - juality, the same.
It is useful to hay trial version embership in this
case, and it is pr h“n I Iwwws“““iliwcnm ). By definition,
ordered pairs (xl, XZ) ana \y1, y3J alc cquar Or Xy — yp ala X; = Yj. For a
somewhat more formal approach to ordered pairs, see Exercise 1C.

Now if X; and X, are sets, the Cartesian product X, x X, of X, and X, is
defined to be the set of all ordered pairs (x;, x,) such that x; € X, and x, € X,.
This definition, for example, gives the plane as the set of all ordered pairs of real
numbers. Other examples: S' x I is a cylinder, S* x S' is a torus,
R x R" = R"*1,

Once defined for two sets, Cartesian products of any finite number of sets
can be defined by induction; thus, the last example in the previous paragraph
could be taken as the definition of R"* !,

For more about finite Cartesian products, and for a bridge between the
definition given here and the definition provided in Section 8 for products of
infinitely many sets, see Exercise 1D.

N

1.6 Functions. A function (or map) f from a set 4 to a set B, written f: A — B, is
a subset of A x B with the properties:

a) For each a € A4, there is some b € B such that (a, b) € f.
b) If (a, b) e f and (a, ¢) € f, then b = c.



4 Set theory and metric spaces [1

More informally, we are requiring that each a € A be paired with exactly
one b € B. The relationship (a, b) € f is customarily written b = f(a) and functions
are usually described by giving a rule for finding f(a) if a is known (rather than,
for example, by giving some geometric or other description of the subset f of
A x B). This reflects the common point of view, which is prone to regard a
function not so much as a static subset of A x B as a “black box” which takes in
elements of A and spits out elements of B.

When regarded as a set in its own right, the collection of functions from A4 to
B is denoted B“.

If f: A > Band C < A, we define f(C) = {be B| b = f(a) for some a € A}.
If D = B, we define f (D) = {ae A4 | f(a) € D}. Hence every function f: A - B
induces functions f: P(A) —» P(B) and f~!: P(B) » P(4) (and here we are
following the unfortunate, but common, practice of denoting the elevation of f
from A to P(A) by f also). The properties of these induced functions are investigated
in Exercise 1H, which should be mandatory for anyone who cannot provide easily
the answers to the questions it poses.

Note thatif f: A — B, then f ~}(B) = A but it need not be true that f(4) = B.
We call f(A) the image of f (or the image of A under f), calling B the range of f

and A the domai
beB, f7((b) [y
one point; in ex
proscribed, f is ci
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If f: A > Bandg: B — C, then j and g determine together a natural function,
their composition g o f: A — C, defined by
@) =glf(@], for aeA

More formally, (a,c)ego f iff for some be B, (a, b)e f and (b,c)eg. Less
formally, put two black boxes end to end.

tinct elements of

1.7 Special functions. A function f: N — A is called a sequence in A. It can be
described by giving an indexed list x,, x,, ... of its values at 1,2, ... and this is
often abbreviated (x,),n Or even simply (x,). Thus f(n) = 1/n, (1/n),.~ and
1,1/2,..., 1/n, ... describe the same sequence in R.

A real-valued function on A is a function on A whose range is R. The collection
R# of all real-valued functions on A4 inherits an algebraic structure from R since
we can define addition, multiplication and scalar multiplication in R# as follows:

givenae Aand re R,
(f + 9)a) = f(a) + gla),

(f9)a) = f(a)g(a),
(rf)a) = r[f(a)].
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For this and other reasons, the real-valued functions merit special attention in
any branch of mathematics, and topology is no exception.

The identity function on any set A is the function i: A — A4 defined by i(a) = a
for each a € A. More generally, if B < A, the inclusion j: B — A is the function
j(b) = b for each b € B.

1.8 Relations. A relation R on a set A is any subset of A x A. (Thus every function
from A4 to A is a relation on A, but not all relations on 4 have the properties
required of functions.) If R is a relation on A4, we usually denote the relationship
(a, b) € R by aRb. For example, {(n,, n,)eN x N|n; < n,} is a relation on N
and it would be typical to denote this relation by <, so that (ny, n,) € < iff n; < n,.

A relation R on A is called reflexive iff aRa for each a € A, symmetric iff aRb
implies bRa for all a, b € A, antisymmetric iff aRb and bRa implies a = b for all
a, b € A and transitive iff aRb and bRc implies aRc for all a, b, c € A. For example,
< is a transitive relation on R, < is a reflexive, antisymmetric, transitive relation
on R, # is a symmetric relation on R.

An equivalence relation on A is a reflexive, symmetric and transitive relation
on A. As an example, let f be any function from 4 to B and define a relation R

on A by xRy iff f| _ 5.

If R is an eq Converted with or R-equivalence
class where conf STn“ c a'€ A|aRa}. If
a, b e A, note thg 0““3"3' ly when aRb) or
else [a] N [b] ={ trial version racA, ev1dently
form a partition . For example, if
R is the equivales  http://wWww.Stdutilitv.com  raph, the equiva-

lence class of a e ATSThe set j [J(@J]. Other examples can be found in 1E.

1.9 Order relations. A relation R on A is a partial order provided R is reflexive,
antisymmetric and transitive. Thus < is a partial order on R. It is the model
partial order and thus it is customary to denote any partial order on any set by
<. In this context, > is defined by a > b iff b < a.

Associated with any partial order < on A is a relation < defined by a < b iff
a < band a # b. Note that < is not reflexive or symmetric, but it is transitive
and has the property that for any a and b in 4, if a < b, then b <« a. A transitive
relation with this property will be called a strict order. Thus every partial order
determines a strict order. Conversely, any strict order < determines a partial
order < defined by a < b iff a < b or a = b. Moreover the passage from a
partial order < to its associated strict order < to the partial order determined
by < returns us to <, and the assertion remains true with “strict order” and
“partial order” interchanged. Thus, in dealing with a partially ordered set, the
symbol “<” has a well-defined meaning.

A set A is linearly ordered by a partial order < provided that for any a, be 4
exactly one ofa < b, b < aor a = b holds. Then < is called a linear order.



6 Set theory and metric spaces [

If < is a partial order on A, the smallest element of A, if it exists, is the element
a, such that a, < a for each a € A, and the largest element of A, if it exists, is the
element a, such that a < a, for each a € A. Smallest (largest) elements are unique,
when they exist, by antisymmetry. They may not exist: R with the order < has
no smallest or largest element.

A set A is well-ordered if it has a linear order < such that every subset of 4
has a smallest element (in the linear order induced on that subset by the linear
order on A). The set N of positive integers is well-ordered by its usual order, the
real line R is not.

1.10 Minimal and maximal elements. If A is partially ordered by <, an element b,
of A is a minimal element of A provided b < b, implies b = b, for each b € 4, and
b, is a maximal element of A provided b, < b implies b, = b for each be A. If
a smallest (largest) element exists in A, then it is the unique minimal (maximal)
element of 4. In Fig. 1.1, where x < y is represented by a rising line connecting
x to y, we find an example of a set with a unique maximal element b which is
not a largest element, so the converse fails.
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a;

a, Figure 1.1

The reader is invited to draw a diagram illustrating that maximal elements
need not be unique.

The least upper bound (lub) of a subset B of a partially ordered set A is the
smallest element of the set {a€ A|b < a for each be B}. It may or may not
exist and, when it does, it may or may not belong to B. When it exists, it is unique.
The greatest lower bound (glb) of B is similarly defined.

1.11 Lattices. A partially ordered set L is a lattice iff each two-element set {a, b}
in L has a least upper bound a v b and a greatest lower bound a A b. If every
nonempty subset of L has a least upper bound and a greatest lower bound, L is
a complete lattice. Lattices having a least element 0 and a greatest element 1
are called complemented iff for each a € L, thereis some a’ € L suchthata v a' = 1,
a A a = 0. A lattice is distributive iff for all a, b, ce L,

avbarc=(@vbar@veo
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and
anbve=(@nanb)vianeco.

These rules are redundant since either can be deduced from the other.

A Boolean lattice is a lattice with 0 and 1 which is complemented and
distributive.

The model lattice for most purposes is the set P(4) of all subsets of a fixed
set A. This becomes a complete Boolean lattice when partially ordered by the
relation B < Ciff B < C. (See Exercise 1K.)

1.12 Cardinality. If A and B are sets, we say A is equipotent with B iff there is a
one—one function f from A onto B. Intuitively, equipotent sets have the same
number of elements. We now postulate the existence of sets, called cardinal
numbers, so chosen that every set 4 is equipotent with precisely one cardinal
number, called the cardinal number of A and denoted |A].

If C and D are cardinal numbers, we say C < D iff there is a one—one function
f: C — D. The result is a partial order on any family of cardinal numbers. Let
us see what this says:

a) < is refle ne—one function
f:C—> C. Thei GConverted with

b) < is antis) STn“ c ne—one functions
f:C—>Dandg: 0““3"3' Cantor—Bernstein
theorem, which i trial version Ictions f: A - B
and g: B - A cal wirrying A onto B.
(Existence of a hitn://www stdutility.com  mbers C and D

ensures that C = D. Why7) A proof of the Cantor—Bernstemn theorem is given
in Exercise 1J.

c) < is transitive: given cardinal numbers C, D and E and one-—one
functions f: C —» D and g: D — E, there is a one—one function h: C - E. Here,
the composition g o f: C - E will serve.

In fact, any set of cardinal numbers is well-ordered by the relation <, although
we will not prove this, deferring to any of the standard references on set theory
(see the notes).

Recalling that |A| denotes the cardinal number of A4, evidently

i) |A] = |B| iff A and B are equipotent,
i1) |A] < |BJ iff A is equipotent with some subset of B.

1.13 Special cardinals. We will distinguish notation for certain cardinal numbers.
The empty set is the cardinal 0, and the cardinal number n is the set {0, ..., n — 1}.
A set A is denumerable iff A is equipotent with N and, in this case, we write
Al = X, A set A is said to have the cardinal of the continuum, iff A is equipotent
with R, and then we write |4] = ¢. A set A is countable iff it is denumerable or
has cardinal number n for some n = 0, 1,2, ...; otherwise, A is uncountable.
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The elements of a countable set A can be listed in a (finite or infinite) sequence
a,, a,, . . . and such a listing is called an enumeration of the elements of 4.
1.14 Facts about countability. a) n < N, < ¢,

b) The union of countably many countable sets is countable,

¢) The product of two countable sets is countable,

d) The set Q of rational numbers is countable.
Proof. a) It is clear that n < ¥, and, since N is equipotent with the subset
{I/n|n=12..}of R that X, < c. Toshow X, # ¢, it is enough to show that
there is no one—one function from N onto I. If such a function f: N — I exists,
let the decimal expansion of f(n) be a, a,,a,, - . Define b,b, - - - by taking b, to
be 5if a,, # 5, b, to be 7 if ay, = 5. Then .b;b, - - - is an element of I which can
appear nowhere among the values of f, since it differs from f(n) in the nth place,

for each n = 1,2,... . This contradicts the assumption that f is onto, showing
no such function can exist, and completes the proof of (a).

b) Let {4,, A, ...} be a countable collection of countable sets. Set B; = A4,
and, forn > 1, B, = A, — | )<, A,. Then each B, is countable and

Converted with

Enumerate the el ST n “ c 0““3"3'

trial version
httn://www stdutility.com
{b41, bso bses baas . . .}
{b41, baa bas bass - -}

5
I

and define f: N — { J;2; B, by f(1) = by, f(2) = byy, f(3) = byy f(4) = by,
f(5) = by, f(6) = bsy, ... and so on, following the scheme indicated by the

arrows. The result is a one—one function f from N onto ;2 B, = |Ji1 4,
and the proof is complete.
c) If A and B are countable, enumerate the elements of B as by, b,, ... and

let A, = A x {b,} = {(a b,)|ae A}. Then 4, is countable foreachn = 1,2, ...
and 4 x B ={ )2, A,; thus A x B is countable by part (b).

d) Write each element of Q in the form m/n, where m and n are integers in
lowest terms. Then the function defined by f(m/n) = (m, n) maps Q in one—one
fashion onto a subset of N x N. Since N x N is countable by part ¢), Q is
countable. l

1.15 Cardinality and the power set. It is possible to develop an arithmetic of cardinal
numbers. We limit ourselves here to the definition of exponentiation. If 4 and
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B are sets, |A|'® is defined to be |A®| (recall A® denotes the set of all functions
f: B > A). The reader will verify in Exercise 1I that this definition gives the
right answer if | 4] = »n and |B| = m, where n and m are integers.

Let us pay particular attention to the cardinal number 24! where A4 is a set.
Now 2 = {0, 1} and hence 24! = |24] = |{0, 1}] is the cardinal number of the
set of functions f: 4 — {0, 1}. Such a function f determines and is completely
determined by the subset B = {a e 4 ]f(a) = 1} of A (f is called the characteristic
function of B) and hence 24! = | P(A4)|.

By writing elements of I in binary form, it is not difficult to show that 2% = ¢
(Exercise 1I). Hence, from 1.14(a), N, < 2% < 2% It is generally true for any
cardinal number « that o < 2%; put another way, for any set A4, |A4] < |P(4).
This is Cantor s theorem (Exercise 11).

1.16 The continuum hypothesis. The continuum hypothesis states that there are no
sets A for which X, < |A4| < 2%, It has been proved independent of the other
axioms needed to develop set theory (see notes); that is, either it or its negation
can consistently be added to the other axioms. At present, intuition has provided
us with little basis for preferring one assumption over the other (although in
most contexts in which it aricec it rather than ite necatian ic ssumed) and it 1s
definitely in ordern Converted with of the continuum
hypothesis. It foll ration is assumed,

this should be ex] STn“ cnn“erler

1.17 The axiom of ¢ . R
when they need it trial version

forms: hitn://www stdutility.com

Axiom of choice

t mathematicians
in two equivalent

a) If {4,]| A€ A} is a family of nonempty pairwise-disjoint sets, there is a
set B = | ) A, such that B n A, has exactly one element, for each A € A.

b) If {4, | A€ A} is an indexed family of nonempty pairwise-disjoint sets,
there is a function f: A — U A, such that f(1)e 4,, for each 1e A
(f is called a choice function).

It is left to the reader to decide that these two statements both say the same thing.
What they say is: given any collection of sets, however large, we can pick one
element from each set in the collection. It bothers some people because it asserts
the existence of a set (i.e., B in part (a)) without giving enough information to
determine that set uniquely (by applying a finite number of rules), and it is the
only formal set-theoretic axiom which does this. For this reason it is customary
to mention the axiom of choice whenever it is used. It need not be used if the
number of sets is finite. In particular, if 4 is a nonempty set, the statement “choose
a € A” need not be supported by an appeal to the axiom of choice.

The status of the axiom of choice bears some resemblance to that of the
continuum hypothesis, with some differences. It, too, is known to be independent
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of the other axioms of set theory (that is, it or its negation can be consistently
assumed), but it enjoys the status of an accepted part of the theory of sets in the
minds of most modern mathematicians; that is, the intuition of almost all mathe-
maticians now is that the axiom of choice should be assumed where needed without
hesitation. Moreover, it is usually much clearer that, where it is used, it is needed,
so that its presence does not usually provoke the same frenzy of attempt to eliminate
it.

1.18 Alternative forms of the axiom of choice. We now provide some alternative, often-
used forms of the axiom of choice. We say a family of sets is of finite character
iff each finite subset of a member of the family is also a member, and each set
belongs if each of its finite subsets belong.

Theorem. The following statements are all equivalent.:

a) (Axiom of choice): If {A; | 2 € A} is an indexed family of nonempty pairwise
disjoint sets, there is a set B < | ) A; such that B n A, is exactly one element
for each 1 € A.

b) (ZOVFZ’S Lemma\- If pach chain (linpaviv nvdeved <of) in an nempty par[ially

c) (Zermelo’y
d) (Tukey’s 1 STn“ cnn“erter e character has a

maximal elem - -
trial version
As with the axion of these wherever

it is used. The pr hitn://www stdutility.com h be found in any

standard reference.

1.19 Ordinals. For our purposes, it will be sufficient to postulate the existence
of an uncountable well-ordered set £ with a largest element w,, having the property
that if o € @ with « < w, then { € Q| B < «} is countable. Such a set Q exists
if there exists any uncountable well-ordered set; see Exercise 1L. The elements
of Q are ordinals with w, being the first uncountable ordinal and Q, = — {w,}
being the set of countable ordinals.

If « and B are ordinals with & < f, we say o is a predecessor of f and f is a
successor of a. We call a an immediate predecessor of B, and B an immediate
successor of , if B is the smallest ordinal larger than «. Every ordinal o has an
immediate successor, often denoted a« + 1; some ordinals, called the limit
ordinals have predecessors without having an immediate predecessor (w,, for
example). The others are nonlimit ordinals.

To build a picture of €, observe that it has a least element, which we denote
1 for now. The immediate successor of 1 will be denoted 2, the immediate suc-
cessor of 2 will be denoted 3, and so on, so that we can regard the first few elements
of © as being the positive integers 1, 2, 3,... . Since Q, is well-ordered, there is
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a smallest ordinal larger than all of 1, 2, 3, ... . It is called the first infinite ordinal
w,. It is still only a countable ordinal; it and its first few successors w, + 1,
Wy + 2, ... evidently form another “copy” of N tacked on behind the first. The
smallest ordinal larger than these is denoted 2w,, and we can apparently continue
in this fashion through 3w,, 4w,, ... by adding denumerably many copies of
N one after the other.

1,2,3,..., 00 wo + LLwg + 2,...,2wq 2wy + 1,200 + 2,...,....

The smallest ordinal larger than these is denoted w3 and it is still only countable.
Repeating the process obtained to reach w3 denumerably many times leads us
to w} and, repeating this over and over, we pass w§, @3, . .. . The smallest ordinal
larger than all these is still countable however, so the process continues. In fact,
), is unreachable by countable operations such as this, by the next theorem.

1.20 Theorem. If Aisa countable subset of Q not containing w, thenlub 4 < w.

Proof. For each o€ 4, {f Q| p < o} is countable. Since 4 is countable, the
union of these sets, namely B = {f € Q| p < « for some a € A}, is also countable.
Let y be the smallest element of £ not contained in B. Then e Biff § < y, so

y has a countablg _ But y is an upper
bound for A, 5o | Converted with
1.21 Induction. THh STn“ cnn“erter inciple of mathe-
matical induction. ) B} that the positive
integers N form a trial version

Theorem. Let DD/ /www.stdutilitycom | =12.... 1/

a) S(1) is true,
b) S(n) is true implies S(n + 1) is true, forn = 1,2,...,

then S(n) is true for all n.

Proof. If the set F of all integers n for which S(n) is false is nonempty, then it has
a least element n, and n # 1 by (a). Sincen > 1, n — 1eN,and n — 1 ¢ F, so
S(n — 1) is true. But then S(n) is true, by (b); this contradiction establishes that
F=90m1

As an example, we prove that 1 + 2 + - -+ + n = n(n + 1)/2 for any positive
integer n. The formula certainly works for n = 1. Suppose it works for n. Then

l+24+ - +m+)=(1+2+-4+n+m+1

=n(n;—1)+(n+1)=n(n+1)42-2(n+1)=(n+1)2(n+2)’

which is the form the formula should take for n + 1. The “inductive step” is now
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established, so by the principle of mathematical induction, the formula applies
to any n.

It is also instructive to point out an often used incorrect form of application
of the principle of mathematical induction. A typical (wrong) argument would
sound like this: “{1} is a finite set, and, if {1,...,n} is a finite set, so is
{1,...,n + 1}. Therefore the positive integers form a finite set.” This argument
looks as absurd as it is, but uses of the principle of mathematical induction just
as ridiculous logically are often submitted by those new to it.

1.22 Transfinite induction. A second method of induction, the principle of transfinite
induction, can be applied to statements indexed by a well-ordered set of any sort.
We will not need it in any form other than as stated here, however:

Theorem. For each ordinal a € Q, let S(o) be a statement which is true or

false. If
a) S(1) is true,
b) S(B) is true for all B < « implies S(o) is true,

then S() is true for each o € Q..

The proof is Converted with f the principle of
mathematical ind dering.
Both inducti STn“ cnn“erler ning things. For
example . -
trial version
hitn://www stdutility.com

is an inductive definition of the factorial function on N. For an example of
definition by transfinite induction, see 31.

1.23 Remarks. The process which topology evolves from, outlined in the next
section and the notes, is basic to any pure mathematical discipline. We wish to
study a particular property enjoyed by some objects of interest (in this case,
continuity of functions on some space) and the efficient way to proceed is to first
clean the structure on the space down to the bare bones needed for introducing
and developing the property we want. The passage to such abstraction has several
well-documented advantages. Among them:

1. Since we have only what is essential, our proofs use only what is essential
and thus clarify the nature of the object of study, and the logical dependence of
the theorem in question.

2. Proofs become easier. Actually, this is a popular professional myth, with
an element of truth. Occasionally, a proof really does get easier as a theorem gets
more abstract, but this is offset by the need for more and more interpretive skill
on the part of those who would use the theorem. What people really mean when
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they say “proofs become easier” is something like this: “by establishing some
notation and introducing the right definitions and conventions, we can draw
together all the theorems about this subject and find common characteristics and
even repetitions in their proofs, then prove lemmas which enable us to write large
numbers of proofs more succinctly.” If the subject matter is carefully chosen, the
work done in abstracting the properties needed, establishing notation and proving
those lemmas will be more than paid for by the gain in succinctness and clarity
of the proofs later on, and by the acquisition of powerful methods for continued
investigation of the original objects of study.

Such is the case with topology.

Problems

JA. Russell’s Paradox

The phenomenon to be presented here was first exhibited by Russell in 1901, and consequently
is known as Russell’s Paradox.

Suppose we allow as sets things 4 for which 4 € A. Let P be the set of all sets. Then P
can be divided into , = {AeP|AeA}.
Show that this resul Converted with r (naive) restriction

on sets given in 1.1 ¢
STDU Gonverter

1B. De Morgan ) )
1A = (Vaen B trial version

2BuenB it/ /woww . stdutility.com

3. IfA,,isasubsetorATorn = I, Z,...and m = I, Z, ... 1S It necessarily true that
0 @ e} @
U|:m Anm] = m|:UAmrI]?
n=1| m=1 m=1| n=1
1C. Ordered pairs

Show that, if (x;, x,) is defined to be {{x}, {x, y}}, then (x, x,) = (¥, ¥) iff x; = x, and
Y1 = Y2

ID. Cartesian products

1. Provide an inductive definition of “the ordered n-tuple (xi,..., x,) of elements
Xy, ..., X, of a set” so that (x,..., x,) and (yy, ..., y,) are equal iff their coordinates are
equal in order, ie, iff x; = yy, ..., X, = Y,
2. Given sets Xy, ..., X, define the Cartesian product X; x -+ x X,
a) by using the definition of ordered n-tuple you gave in part 1,
b) inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.
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3. Givensets X,..., X, let X = X, x -+ x X, and let X* be the set of all functions
f from {1,...,n} into (J§., X, having the property that f(k)e X, for each k = 1,...,n.
Show that X* is the “same” set as X, in the sense that there is a natural one—one mapping
F of X* onto X. [F will take some value F(f) in X for each f € X*. What must such a value
look like? Find a natural one.]

4. Use what you learned in part three to define the Cartesian product X; x X, x ---of
denumerably many sets as a collection of certain functions with domain N.

If you have completed part 4 successfully, the definition of Cartesian product given in
Section 8 for infinitely many sets will give you little trouble.

1E. Examples on equivalence relations

Which of the following are equivalence relations on R? For each that is, describe the
equivalence class [x] of x € R.

1. aRb iff a — b is rational.
2. aRbiff a — b is irrational.
3. aRbiff a — b is an integer.
4. aRbiffla — b] < L.

1F. Cardinalit) _
LIP =c Converled with
2.1 =c
:m=< §TOU Gonverter
ee also 11. ) ]
1G. Well-order trial version
Assuming the axion  INER://WWW.STHUUIIY.COM fered. Try to think

of a well-ordering for each (you may not be able to use the usual order).
1. N,
2. the rationals,
3. R
When you have trouble, ask somebody who should know. Then think about the axiom of
choice.
1H. Inverses of functions are nice

Let f: A - B. Prove each of the following. For some, you will need to assume that f is
one—one; for others, that it is onto; some need neither. Precede your proof of each by a
correct statement of what you are proving.

L f(UleA A;) = UleA f(4,),

. f(nlez\ Al) = ﬂze/\ f(Az),

- f(A — Ao) = B — f(Ao)

ST Uzea B) = Usea S 71(By),
. f_l(mle/\ B;) = mxe,\ f71(By),
. ST (B = By) = A — f7!(By).

A L AW N
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11. Cardinality revisited

1. |4l < |2(4). [This is proved by contradiction, in essentially the same way that
Russell’s paradox is established. First show |4| < |2(4)]. Now if |4] = |2(A)|, then there
is a one—one mapping f of A onto 2(4). For each x € X, let A, be the image of x under f.
Then #(4) = {A,|xe X}. Let A = {xe X | x¢ A,}. Then A = A, for some y € X. Show
that this leads to the contradiction: ye A, < y ¢ A,.] This is Cantor’s theorem.

2. If|A] = nand |B| = m, where n and m are integers, then |45 = n™

3. 2% =,

1J. The Cantor—Bernstein theorem
Let A, B be sets.

1. Suppose that with each subset C of A there is associated a subset C’ of A4 in such a way
that C < Dimplies C' = D'. ThenE = E'forsome E = A. [LetE = | J {Ce P(4) | C = C'}.]

2. Iff: A > Band g: B— A are one—one functions, there is a one—one function h of A
onto B. [For C < A, define C' = A — g(B — f(C)). Show that part 1 applies and, if E is
the resulting set, define h to be f on E and g ' on A — E. Show that h is one—one and onto
from A to B.]

1K. Lattices

1. Show that tk
B < C, becomes a
P(A), the least upp

Converted with

STDU Gonverter

dered by B < C iff
mallest elements of
P(4) and the lattice

complement of B e trial version
2. Exhibit a co =p= stinct complements
band c. httn://www stdutility.com

3. Show that in a complemented distributive lattice, complements are unique.

1L. The ordinals

We postulated the existence of the set  (1.15). Show that such a set exists if there exists an
uncountable well-ordered set. [There are two cases. ]

2 Metric spaces

The concept of continuous function is central to the study of analysis and, as the
functions in question are defined on more and more complicated spaces, the
need for a notion of continuity which is as generally applicable as possible becomes
acute. There were two steps in the development of general machinery for the
definition of continuity for functions other than those defined on Euclidean
spaces. Both came with (what was then) lightning speed on the heels of the develop-
ment of a general theory of sets by Cantor, in the 1880’s. The first step was taken
by Frechet, in 1906, with the introduction of metric spaces, the second and con-
clusive step by Hausdorff, in 1914, with the introduction of topological spaces.
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It is impossible now to give a faithful historical development of topology, but
we can properly begin a book on topology with a brief motivational introduction
to metric spaces. Thus, here we will define metric spaces, show that the abstract
distance they provide is sufficient to define continuity, then conduct a brief and
successful search for a way to define continuity for functions between metric
spaces without mentioning the metrics. This will lead us naturally to the definition
of topology in the next section.

2.1 Definition. A metric space is an ordered pair (M, p) consisting of a set M
together with a function p: M x M — R satisfying, for x, y, ze M :

M-a) p(x, y) > 0,

M-b) p(x,x) = 0;  p(x, y) = 0 implies x = y,

M-c) p(x, y) = p(y, x),

M-d) p(x, y) + p(y, z) = p(x, z) (triangle inequality).
The function p is called the metric on M. If all axioms but the second part of M-b

are satisfied, we call (M, p) a pseudometric space and p is then a pseudometric.
Functions p: M x M — R (which are potentially metrics or pseudometrics but

which have not - If a metric p is
fixed for a particu Converted with tation and simply
speak of “the met STn“ c

Although all 0n“erter or metric spaces,
the basic results | trial version In particular, the
definitions of ope — below for metric
spaces can be ap h“nll www.std““"w.cﬂm and then we will

act as though they had).

2.2 Examples. a) The real line R with the distance function p(x, y) = |x — )|
is a metric space. More generally, R" is a metric space when provided with the
distance function

o015 G5 0) =2 (5 = 0%,

called the usual metric on R". The reader will verify that it is a metric in Exercise 2A.
b) The plane R? with the distance function

pi(X, y) =[xy — yi| + |x2 — pal
is a metric space; p, is called the taxi-cab metric.

¢) The plane R? with the distance function

pa(x, y) = max {|x; — y,l, [xz — yal}
is a metric space.

d) If (M, p) is a metric space and A is a subset of M, then A inherits a metric
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structure from M in an obvious way, making A a metric space. For example,
I, N and Q all have “usual metrics,” obtained by viewing them as subsets of R
with its usual metric.

e) Let X be any set and define p on X x X by p(x, x) = 0 and p(x, y) = 1
if x # y. Then p is a metric on X, called the discrete metric.

f) Let X be any set and define p on X x X by p(x, y) = 0 for all x and y in
X. This is a pseudometric on X, called the trivial pseudometric. When is it a
metric?

The distance functions available in metric spaces are precisely what we need
to develop the notion of continuity in a more abstract setting, by mimicking the
familiar definition for real-valued functions of a real variable. In fact, the following
definition should look quite familiar when stated for R with its usual metric.

2.3 Definition. If (M, p) and (N, g) are metric spaces, a function f: M — N is
continuous at x in M iff for each € > 0, there is some 6 > O such that

o(f(x), f(y)) < € whenever p(x, y) < 6.

We turn now to the question: can we eliminate the dependence, in the

previous definitiq _ answer is affirma-

tive and depends Converted with n set in a metric

space. STn“ c

2.4 Definition. Lef ) 0n“erter € > 0, we define
trial version

called the e-disk 4 IWERD://WWW.STHUGIIITY.COM | will abbreviate

U,(x, €) to U(x, ).
If E and F are subsets of M, we define the distance between E and F to be
p(E, F) = inf {p(x, y)| x € E, y € F}.

If E has only one point, we usually write p(x, F) rather than p({x}, F). Now we
can extend the notation for e-disks to sets:

UJE &) ={yeM|p(E, y) < €.

Using e-disks, we can reformulate the definition of continuity as follows:
f: (M, p) > (N, o) is continuous at x in M iff for each ¢ > 0, there is some § > 0
such that f(U,(x, 6)) = U,(f(x), ¢) This observation, together with the next
definition, will make it possible to define continuity without mentioning the
metrics involved at all.

2.5 Definition. A set E in a metric space (M, p) is open iff for each x € E, there is
an e-disk U(x, €) about x contained in E. A set is closed iff it is the complement
of an open set. Evidently, a set F is closed iff whenever every disk about x meets
F, then x e F.
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2.6 Theorem. The open sets in a metric space (M, p) have the following
properties:

a) Any union of open sets is open.
b) Any finite intersection of open sets is open.
c) @ and M are both open.

Proof. a) If A, is an open set for each 1 in A, and if x is a point in ] 4,, then
X € A, for some 1, s0 A, contains some e-disk about x. Then | ) 4, will contain
this same e-disk about x. It follows that | ) 4, is open. Arguments this simple
will rarely be written out in such detail hereafter.

b) If Ay, ..., A, are open sets and x € [} 4;, then for each i, x € 4;, so there
is some disk U(x, ¢;) contained in A4;. Clearly, if € is the minimum of ¢, . . ., €,,
then the e-disk U(x, €) is contained in () 4;.

c) @ contains a disk about each of its points since there are no points to
worry about and M contains a disk about each of its points because all disks
are contained in M. Hence, @ and M are open. B

2.7 Examples. a) Converted with e e-disk about a
point c¢ is just th STn“ c .I that each “open
interval” in R, of 0““3' er untable union of
disjoint open int - - erse now; Le.

) ben 1 trial version pverse nows, 1L,
every open set in ] 5. If 4 is an open
set in R, the it hitp://www.stdutilitvcom  rval (o b) with

{x, y} = (a, b) « A TS A equUIValence re@uon on A and e resulting equivalence
classes are disjoint open intervals whose union is 4. The fact that there can be
only countably many follows since each must contain a distinct rational.

b) Infinite intersections of open sets need not be open. In fact, the sets

A, = (—1/n,1/n) for n=1,2,..., are open in R with the usual metric, but
= 1 4, = {0} is not an open subset of R.

c) Disks are open. That is, in a metric space X, if x € X and é > 0, then
U(x, 6) is an open set. This is left as a useful exercise on the triangle inequality,
see Exercise 2D.

d) If X is given the discrete metric, then for any point x € X, the disk U(x, 1)
about x is just the set {x}. Thus each one-point set in X is open. But then, since
any set is the union of its points, every set in X is open.

e) One-point sets are always closed.

We can now rephrase the notion of a continuous function between metric
spaces in terms of the open sets in these spaces, thus avoiding explicit mention of
the metrics involved.
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2.8 Theorem. If (M, p) and (N, o) are metric spaces, a function f: M — N
is continuous at xy, € M iff for each open set V in N containing f(x,), there is
an open set U in M containing x, such that f(U) < V.

Proof. If f is continuous at x, and V is an open set in N containing f(x), then
U,(f(x), ) = V for some ¢ > 0, by the definition of open set. But, by continuity
of f, there is a 6 > 0 such that f(U,(x, 6)) = U,f(x), €). Then U = U (x, d) is
an open set containing x and f(U) < V.

Conversely, suppose for each open V containing f(x) there is an open U
containing x such that f(U) = V. If € > 0 is given, then U,(f(x), ¢) = V is an
open set containing f(x). Hence, there is an open U containing x such that
f(U) = V. But since x e U and U is open, U,(x, 6) = U for some 6 > 0. Then
f(U,(x, 8)) = U,(f(x), €), so f is continuous at x. W

Having Theorem 2.8, it is apparent that we can carry the notion of continuous
function anywhere we can carry a reasonable notion of open set. “Reasonable”
will simply be taken to mean “satisfying the properties (a), (b), and (c) of 2.6,” and
this, then, will be the basis of the definition of topological space, given in the next

section.

Having givel Converted with vill qbandon the
motivational app pmatically. Thus,
although topolog STn“ con“erler ous func}tlions are
not defined on g ) i wever, the astute
reader will see, in trial version 2.8 (used there as
the definition). =n=
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Problems
2A. Metrics on R"
Verify that each of the following is a metric on R":

L plx, y) = Z?=1 (x; — }’i)z
2. pi(x, y) = Z?=1 [x; — wil
3. pa(x, y) = max {Ix; — il .., 1%, — yal}
[For the first, make use of Minkowski’s inequality: \/Z (a, + b,)* < \/Z a + \/ﬁ

for real numbers a,, b, and ¢,. The inequality is good for both finite and infinite sums.]

2B. Metrics on C(I)
Let C(I) denote the set of all continuous real-valued functions on the unit interval I and let
X, be a fixed point of I

1. p(f, 9) = sup,q |f(x) — g(x)| is a metric on C(I).
2. a(f, 9) = [§1f(x) — g(x)| dx is a metric on C(I).
3. 19(f, 9) = |f(xo) — g(xo) is a pseudometric on C(I).
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These examples indicate that interesting and useful metrics can be defined on spaces other
than the classical Euclidean spaces.

2C. Pseudometrics

1. Let (M, p) be a pseudometric space. Define a relation ~ on M by x ~ yiff p(x, y) = 0.
Then ~ is an equivalence relation.

2. If M* is the set of equivalence classes in M under the equivalence relation ~ and if
p* is defined on M* by p*([x], [y]) = p(x, y), then p* is a well-defined metric on M*. The
metric space (M*, p*) is called the metric identification of (M, p).

3. If h: M — M* is the mapping h(x) = [x], then a set 4 in M is closed (open) iff h(A4)
is closed (open) in M*.
4. If f is any real-valued function on a set M, then the distance function
Py(x, y) = 1f(x) — fO
is a pseudometric on M.
5. If (M, p) is any pseudometric space, then a function f: M — R is continuous iff each

set open in (M, p,) is open in (M, p).
2D. Disks are open
For any subset A of Converted with pen. (In particular,

U(x, €) is open for ez

2E. Bounded m¢ ST n “ c 0““3"3'

A metric p on M is trial version and y in M.
1. If p is any n =p= x, y), 1} is a metric
puavt htpe//www.stdutilitveom

also and is bounded

2. A function f is continuous on (M, p) iff it is continuous on (M, p*). [It suffices to show
that both p and p* generate the same collection of open sets in M.]

2F. The Hausdorff metric
Let p be a bounded metric on M ; that is, for some constant 4, p(x, y) < A for all x and y
in M.

1. Show that the elevation of p to the power set P(M) as defined in 2.4 is not necessarily
a pseudometric on P(M). (Take M to be the unit disk {(x;, x,) | x? + x3 < 1} in the plane
with the usual metric.)

2. Let #(M) be all nonempty closed subsets of M and for A, B € # (M) define
d4(B) = sup {p(4, x) | x € B}
d(A, B) = max {d(B), dg(A)}.

Then d is a metric on (M) with the property that d({x}, {y}) = p(x, y). It is called the
Hausdorff metric on #(M).

3. Prove that closed sets 4 and B are “close” in the Hausdorff metric iff they are “uniformly
close”; thatis, d(4, B) < €iff A = U,(4, ¢)and B < U (4, ¢).
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The restriction in this problem to bounded metrics is, to a topologist, no problem at all,
see 2E and 22.2. It is there so that d ,(B), and hence d(4, B), can never take the value co.
The Hausdorff metric is related to uniformities on the power set in Exercise 36E.

2G. Isometry

Metric spaces (M, p) and (N, o) are isometric iff there is a one—one function f from M onto N
such that p(x, y) = o(f(x), f(»)) for all x and y in M ; f is called an isometry.

1. If f is an isometry from M to N, then both f and f ! are continuous functions.

2. Ris not isometric to R? (each with its usual metric).

3. Iis isometric to any other closed interval in R of the same length.

4. Consider the pseudometric # defined on C(I) in 2B.3. What familiar space is the
metric identification (2C.2) isometric to?

Isometric spaces are “metrically identical”; that is, there is nothing about their respective
metrics which will serve to distinguish them.

2H. Sequence spaces
Let m denote the set of all bounded sequences (x,),.n Of real numbers, ¢ the set of all convergent

sequences from m, ¢ j

1. The distance Converted with
is a metric on m (an trial version 1 of the three spaces
is it bounded?

2. The distance] M/ /W STt utility.com

U((x"), (yn)) = 'Illng) 'xn - ynl
is a pseudometric on ¢. The metric identification (2C) of (c, o) is isometric to the real line.
21. [IP-space
For each p > 0, we denote by I? the set of all real sequences (x,) for which Y 2, |x,|? < oo.

1. For p > 1, define a distance function p on I’ by

PG5, (1) = (z I — ynl")”p

n

This is a metric on IP. [Use the generalized Minkowski inequality :
Qla, + bP)? < (3 la,?)''® + (3 1ba?)"7,

for real sequences (a,), (b,) and (c,) and for p > 1.]
2. For 0 < p < 1, define a distance function p on I as follows:

p((x), (9) = le — P
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Verify that this is a metric, using the inequality: |a + b|? < |a|? + |b|?, for real numbers a
and band for0 < p < 1.

For p = 2, [? consists of all square-summable sequences, and as such, will be given its
usual name and notation, (real) Hilbert space H.

2J. Normed linear spaces
A normed linear space is a real linear space X such that a number | x||, the norm of x, is as-
sociated with each x € X, satisfying:
NL-a) |x]| > Oand ||x|| = 0iff x = 0.
NL-b) Jlax| = |a| - [x], for « € R,
NL-c) [x + yll < lix[l + lIyll.
If (NL-a) is replaced by the weaker condition
NL-a) x|l > Oand |0] =0,
then X is a pseudonormed linear space.

1. If X is a pseudonormed linear space, the distance function p(x, y) = [[x — y| is a
pseudometric on X. It is a metric iff |- || is @ norm. We will call p the norm metric, in case

Il ]l is a norm.

2. If |||, and they give the same
open sets (i.e., are e Gonverted with x|, < C-|x|,and
Ixll, < € lxly, fo

3IE(X, 000 s STn“ con“erter ification procedure
(2C) is applied to X . . space (X*, p*), then
X* is a normed sp trial version = [«x] and norm
I = 12 e/ fwww stdutility.com

4. Let X be any-ropurogrcarspave, oy toser vramr vowmoeawonnrl 0Us functions from
X to R. Then C*(X) is a normed linear space with the norm | f|| = sup {|f(x)| [ x e X} and
pointwise addition and scalar multiplication. This is the sup norm on C*(X). The associated
metric was first introduced in 2B.1.

5. The collection # of all Riemann- (or, if you want, Lebesgue- ) integrable functions f
on I is a pseudonormed linear space with the pseudonorm || f| = [} |f(x) dx and pointwise
addition and scalar multiplication. But |- || is not a norm. (In fact, the set of all functions f
on I such that |f|” is Lebesgue integrable is a pseudonormed space, with || f] = [[31f17]'/,
for any p with 1 < p < oo. It is called #?(I) and the normed space resulting from part 3
above is I7(I). Verification of the axiom NL-c for the cases p > 1 requires the Holder and
Minkowski inequalities; see any reference on real analysis, e.g., Royden.)

6. On R", with coordinatewise addition and scalar multiplication, each of the following
is a norm:

a) [l(xg, ..o, Xl = Q=g x)M?

) s, ooy Xy = Y=y I

) N(xps .oy x )l = max {|x, ..., [xul}.

d) The norms |-, ||, and | ‘|, have for their norm metrics the metrics p, p, and p,

of 2A, respectively.



Chapter 2

Topological Spaces

3 Fundamental concepts

As we pointed out in the previous section, open sets in metric spaces provide us
with a way of phrasing the definition of continuous function without mentioning
distance. Thus wherever we can carry a reasonable abstract notion of “open
set,” we can define continuous functions. The problem of what properties one
should postulate as reasonable for our abstract open sets is, of course, a difficult
one and any solution must ultimately live or die on the merits of the theory it
produces. The “reasonableness” of the following definition, which is based on
the observations made in Theorem 2.6, can thus be justified only by reading the
forty-two sections which follow it.

3.1 Definition. A { Gonverted with 5 of X, called the
open sets, satisfyir

o1 amei S 1DU GONVErtEr

G-2) any fini trial version
G-3) oand X hiwp-//www.stdutility.com

We say (X, 1) is a topological space, sometimes abbreviated “X is a topological
space” when no confusion can result about 7.

Given two topologies 7, and 7, on the same set X, we say t, is weaker (smaller,
coarser) than 1,, or 1, is stronger (larger, finer) than 7, iff 1, < 1,.

3.2 Examples. a) Let (M, p) be a metric space. Then, by Theorem 2.6, the open
sets in M defined by 2.5 form a topology on M, called the metric topology t,.
Whenever (X, 1) is a topological space whose topology 7 is the metric topology
7, for some metric p on X, we call (X, 1) a metrizable topological space. Note
the distinction: a “metrizable space” is a space with a topology which happens
to have come from some metric, a “metric space” is a space with a metric. Every
metric space (X, p) determines a metrizable space (X, 7,) and given a metrizable
space (X, 7), one can always find many metrics p on X such thatt, = 7 (for example,
if 1, = 7 then 1,, = 7 also). The obvious modifications to the discussion above
will define pseudometrizable topologies.

b) The metric topology generated by the usual metric on any subset of R"

23
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will be called the usual topology. Hereafter, when a topology is used on a subset
of R" without mention it is assumed to be the usual topology.

¢) Let X be any set and let © be the collection of all subsets of X. Then 1
is clearly a topology for X ; it is called the discrete topology. Moreover, it is
metrizable, being the topology produced by the discrete metric on X, by part (d)
of Example 2.7. It is finer than any other topology on X.

d) Let X be any set and let © = {@, X}. Then t is a topology for X, called the
trivial (indiscrete) topology for X. It is pseudometrizable since it is the topology
generated by the trivial pseudometric on X, by part (e) of Example 2.7. It is
coarser than any other topology on X.

e) Let X = {a, b} and let t = {g, {a}, X}. Then t is a topology for X, and
it is not even pseudometrizable. For suppose p is a pseudometric on X which
produces 1. Since {a} is an open set, and a € {a}, there must be an ¢ > 0 such that
U(a, €) = {a}; that is, p(a, y) < ¢ implies y = a. Hence, evidently p(a, b) > €.
But then U(b, €) = {b}, so {b} is an open set, contrary to the definition of 7. Hence,
no pseudometric p can produce this topology on X. With this topology, X is
sometimes called the Sierpinski space.

The remalqd Converted with bping descrlptlve
terminology whic ace. The notions

fa closed set and S'I'n“c ill be introduced
et onverter .\

and it will be obse
(the frontier oper trial version

3.3 Definition. If } h“n I Iwwws“lulili“cnm closed iff X — E

is open.

The proof of the following theorem is an obvious application of De Morgan’s
laws in conjunction with the definition of a topology on X, and can be omitted.

3.4 Theorem. If & is the collection of closed sets in a topological space X,
then

F-a) Any intersection of members of & belongs to F,

F-b) Any finite union of members of F belongs to &,

F-c) X and @ both belong to & .

Conversely, given a set X and any family F of subsets of X satisfying F-a,

F-b and F-c, the collection of complements of members of % is a topology on
X in which the family of closed sets is just & .

This theorem is a result of, and illustrates, the obvious duality between the
notions of open set and closed set. More formally, any result about the open sets
in a topological space becomes a result about the closed sets upon replacing “open”
by “closed” and irlzterchanging U and ﬂ
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3.5 Definition. If X is a topological space and E < X, the closure of E in X is
the set
E =CI(E) =) {K = X|Kisclosed and E = K}.

Where confusion is possible as to what space the closure is to be taken in, we will
write Cly (E). By property F-a for closed sets, E is closed. It is the smallest closed
set containing E, in the sense that it is contained in every closed set containing
E (this is the precise meaning of “smallest” in 1.9 if the closed sets containing E
are ordered by K, < K, iff K, = K,).

3.6 Lemma. If A = B then A c B.

Proof. Since B < B, if A is contained in B, we have A — B; since B is closed, we
must then have 4 < B. R

3.7 Theorem. The operation A — A in a topological space X has the following

properties.
K-a) E c E,
K-b) (E) = :
K<) AUB Converted with
xas-0  §TDU Gonverter
K-e) E is clo _ -
trial version
Moreover, gi = 0 P(X) satisfying
K-a through | hitp://www stdutilitv.com esult is a topology

on X whose closure operation is just the operation A — A we began with.

Proof. First suppose X is a topological space. We will show K-c holds, leaving
the rest of K-a through K-e as an easy exercise. Since 4 U Bis closed and contains
A v B, it contains A U B. On the other hand, since A €« Au Band B< Au B
wehave A =« Au Band B < A U B, by Lemma 3.6, and thus 4 U B < 4 U B.
This establishes K-c.

We proceed to the second part of the theorem. Let X be any set and 4 — A
a mapping of 2(X) into 2(X) satisfying K-a through K-d. Let # be the collection
of all sets 4 such that A = 4. The assertion is that & satisfies F-a through F-c
of Theorem 3.4.

First note that if 4 = B, then by K-c, B=A4 U (B — A) so that A c B
(why couldn’t we just refer to Lemma 3.6?).

Now suppose F, € # for each 1€ A. Then since () F ; is contained in F,
() F, is contained in F,, for each 4, and hence () F, = () F, = () F,. But the

reverse inclusion is given by K-a, so ﬂ F, = ﬂ F,, that is, ﬂ F,e %. Thus
F-a of Theorem 3.4 holds.
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Next suppose F, ..., F,€ %. Then by K-c and induction,
F,u---UF,=F,u---UF,=F,u--UF, so Fiu---uUF,e#.

This establishes F-b of Theorem 3.4.

By K-d and K-a, it is clear that @ and X, respectively, belong to &, so F-c
of Theorem 3.4 is established.

Thus & is a collection of closed sets for X. It remains to show the resulting
closure operation in X is just the operation 4 —» A we began with; that is, that

A is the smallest element of # containing A4, for each 4 = X. Since (4) = 4
by K-c, we know that 4 € #, and from K-a, we know that 4 = 4. If K is any
element of & containing 4, then A < K = K. Thus A4 is indeed the smallest
element of # containing 4. B

An operation 4 — 4 in a set X which satisfies K-a through K-d is called a
Kuratowski closure operation (which, incidentally, is the reason for the letter K
in the numeration). Thus every Kuratowski closure operation determines and is
determined by some topology.

3.8 Examples. a) _ X, define 4 as
follows : Converted with

. trial version . .
The properties A . ulting operation
A 4, sowehay  htp://wWwWw.Stdutility.com  psulting topology

on X, the cofinite topology, has for closed sets those sets A for which 4 = A.
Apparently, then, the only closed sets are X, @ and all finite sets in X.

b) We always have 4 U B = 4 U B. The corresponding statement for
intersections is not true. Let X be R, 4 the rationals in R, B the irrationals in R, and
give X the usual topology. Check that 4 = Rand B=R. But4A n B =g, s0
AN B=g9. Thus, An B # AN B. Itisalwaystruethat An B < A n B.

c) As an exercise, you are asked to verify that if (M, p) is a (pseudo)metric
space, and A < M, then in the resulting (pseudo)metric topology on M,

A = {yeM]|p(y, A) = 0}.

This provides a clue to the way the closure of a set is regarded in general. A4 is
the set of points either in A or sitting right next to A. (Further elucidation of this
point of view will be found in Theorem 4.3.)

d) The closed disk U(x, &) = {y € M | p(x, y) < €} in a metric space (M, p)
is a closed set in the metric topology but it need not be the closure of the disk
U(x, €). In Exercise 3E, you will verify that a counterexample exists. In R" with
the usual metric, the closure of U(x, €) is U(x, €).
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e) The closure of a subset 4 of a discrete space X is A itself.

f) The closure of any nonempty subset of a set X with the trivial topology
is X (and, of course, the closure of @ is @).

3.9 Definition. If X is a topological space and E < X, the interior of E in X is
the set

E° =Int(E) =) {G = X|Gisopenand G < E}.
Where confusion might otherwise result, we will write Inty (E). Evidently, by
property G-1 of open sets, E° is open. It is the largest open set contained in E,
in the sense that it contains any other open set contained in E.

The notions of interior and closure are dual to each other, in much the same
way that “open” and “closed” are. The strictly formal nature of this duality can
be brought out in observing that

X —-E=X-—-E

X - E=(X - Ey.
Thus any theorem about closures in a topological space can be translated to a
theorem about interiors. The next two results are, for example, the dual results
to 3.6 and 3.7 abgutolecn=a

3.10 Lemma. Converted with

Proof. 1t is clear STn“ con“erler lus A° is an open

set contained in B

trial version
3.11 Theorem. space X has the
following prop  InitI:/ /W . Stdutility.com
I-a) A° = A.

I-b) (4°)° = A°.

I-c) (A n B)® = A° n B°.

Id) X° = X.

I-e) G isopeniff G° = G.

Conversely, given any map A — A° of P(X) into P(X) in a set X, satisfying
I-a through I-d, if open sets are defined in X using I-e, the result is a topology
on X in which the interior of a set A = X is just A°.

Proof. The proof can be done directly or by using the translation process on 3.7.
Either way, it is easy and we will omit it. B

3.12 Examples. a) In R, with the usual topology, the interior of a closed interval
[a, b] is (a, b). In R? with the usual topology, the interior of the disk

{(xb xz)‘x% + x% < 1}

is the disk {(x,, x,) | x} + x} < 1}.
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b) In R, with the usual topology, if 4 is the set of rationals, B the set of
irrationals, then 4° = B° = @. But (4 U B)° = R° = R. Hence,
(Au B)Y # A° L B°.
It is always true that 4° U B° < (4 U B)°.

3.13 Definition. If X is a topological space and E < X, the frontier of E is the set

Fry (E) = En (X — E),

usually written Fr (E). Evidently, the frontier of E is a closed set.

It is possible, but unrewarding, to characterize a topology completely by
its frontier operation. We will be content to give the relationship between the
frontier, closure and interior operations.

3.14 Theorem. For any subset E of a topological space X :
a) E = Eu Fr(E)

b) E° = E — Fr (E)

¢) X = E° UFr(E\u (X — EY

Proof. Converled with
» ceoree §TDU Gonverter
trial version
b) E — Freg U/ /www stdutility.com

=(E-EUE-X —E)

=E — (X — E) = E°.
c) Since Fr (E) U (X — E) = X — E (as is easily verified) and since

X — E°=X — E,
we have
X=EUX—-E=EUFr(Eju(X —E°. R

3.15 Examples. a) The frontier of the closed interval [a, b] in R is {a, b}, as is the
frontier of any interval with the same endpoints. If A denotes the set of rationals
inR, Frg (4) = R.

b) For any space X, Fry (X) = o.

¢) If D is the closed unit disk in the plane, and X = R? Fry (D) = S!, while
Frp (D) = @. In combinatorial topology, the word “boundary” would be used
in such a way that the boundary of D would always be S!. This prompts our use
of the word “frontier.”
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Problems

3A. Examples of topologies

1. If # is the collection of all closed, bounded subsets of R (in its usual topology), to-
gether with R itself, then & is the family of closed sets for a topology on R strictly weaker than
the usual topology.

2. If A = X, show that the family of all subsets of X which contain A, together with the
empty set g, is a topology on X. Describe the closure and interior operations. What topology
results when 4 = ¢? when 4 = X?

3. Let B be a fixed subset of X and for each nonempty 4 = X, let A = A U B, with
@ = o. Verify that A — A4 is a closure operation. Describe the open sets in the resulting
topology. What topology results when B = ¢? when B = X?

4. Call a subset of R? radially open iff it contains an open line segment in each direction
about each of its points. Show that the collection of radially open sets is a topology for R?.
Compare this topology with the usual topology on R? (ie, is it weaker, stronger, the same
or none of these?). The plane with this topology will be called the radial plane.

5.1f A = X and t is any topology for X, then {U u (V' n A)| U, V et} is a topology
for X. It is called the simnle oxtoncion of r aver 4

o Converted with
3B. Frontiers in
Any closed subset o STn“ cnn“erler
3C. Complemen trial version
If A is any subset of httn://www Stdutilitv.Com trent sets in the two

sequences

A A A A, ...
A A7 A7, A7, ...

(where ' denotes complementation and ~ denotes closure) is 14. There is a subset of R which
gives 14. [For any open set G, Cl (Int (C1 G)) = Cl G.]

3D. Regularly open and regularly closed sets
An open subset G in a topological space is regularly open iff G is the interior of its closure. A
closed subset is regularly closed iff it is the closure of its interior.
1. The complement of a regularly open set is regularly closed and vice versa.
2. There are open sets in R which are not regularly open.
3. If A is any subset of a topological space, then Int (Cl (4)) is regularly open.

4. The intersection, but not necessarily the union, of two regularly open sets is regularly
open. (Thus the same proposition, with “union” and “intersection” interchanged, holds for
regularly closed sets.)
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3E. Metrizable spaces

Let X be a metrizable space whose topology is generated by a metric p.

1. The metric 2p defined by 2p(x, y) = 2 - p(x, y) generates the same topology on X.

2. Theclosure of aset E = X is given by E = {y € X | p(E, y) = 0}.

3. The closed disk U(x, €) = {y | p(x, y) < €} is closed in X, but may not be the closure
of the open disk U(x, ¢). [Consider ¢ = 1 and the usual metric on

{, eR*|x* + y* =1} U {(x0eR*|0 < x < 1}.]

3F. Unions of closed sets
1. Give an example of a sequence B,, B,, . .. of closed sets in a topological space X whose
union is not closed.

2. If p generates the topology on a metrizable space X and, for each A € A, C, is a closed
set in X such that p(C,, C,,) > efor all A; and 4,, where ¢ is some fixed positive number, then
(J C, is closed.

3G. The lattice of topologies

1. The intersection of any family of topologies on X is a topology on X. [Note: intersect

the topologies, not t j
2. The union of| Converted with But for any family

woreens - STY GoNverier

Thus, the topolo bn, form a complete
lattice. The questio trial version only recently been

answered (see notes) h II [I _I_
tp://www . stautiiity.com
3H. G‘; andE, Sets n w

A subset of a topological space X is a G; iff it is a countable intersection of open sets and an
F, iff it is a countable union of closed sets.

1. The complement of a G is an F,, and vice versa.

2. An F, can be written as the union of an increasing sequence F; < F, < - - of closed
sets. (Hence, a G; can be written as a decreasing intersection.)

3. A closed set in a metric space is a G, (hence, an open set is an F,). [If 4 is closed,
let 4, = {y| p(4, y) < 1/n} and see 2D.]

4. The rationals are an F, in R. (Much later, see 24.12 and 25A 4, it will be apparent that
they cannot be a G;.)

31. Borel sets
The family of Borel sets in a topological space X is the smallest family of sets ¢ with the
following properties :
a) ¥ contains the open sets,
b) countable intersections of elements of ¢ belong to ¥.

c) complements of elements of 4 belong to 4.
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1. In (a), “open” can be replaced by “closed”; in (b), “intersection” can be replaced by
“union.”

In any space, define the class ¢4,, 0 < a < w,, by transfinite induction, as follows: the
class 4, consists of the open sets, and for « > 0, the class ¥, consists of the sets which are
countable unions or countable intersections of sets of lower class. (Thus, for example, the
class &, will consist precisely of the G; sets (see 3H).)

2. In a metric space, | ) {4, |0 < « < w,} is the family of Borel sets. [Show that | ] %,
satisfies (a), (b) and (c). For (c), you will have to use transfinite induction and 3H.3.]

3. In a metric space, the family of Borel sets is the smallest family of sets satisfying:

a)’ ¢ contains the open sets,
b)" countable intersections of elements of ¢ belong to %.
c)’ countable unions of elements of ¢ belong to .

“Open” can be replaced by “closed.”

4 Neighborhoods

The means we have at hand so far for describing topologies (open sets, the closure
operation, etc.) are not the most convenient, and for this reason are rarely used.
In this and the n| * ‘—ways to describe

topo\llogles-f ) Converted with ) )
e ten t " in the sense that
the opernys(éts cont STn“ con“erter n sets containing
her (this is n such cases, one
2:31/ gzszrril()e the trial version bund” one point,
a fi ints, a tion that around
g{here:éiict)s it i’s the h“n I{W.,s 1““!,'!'!"9“!!“ ~-=lt, and topologies

will often be presented this way here, so we will present now a detailed discussion
of the “local” description of topologies and topological concepts.

4.1 Definition. If X is a topological space and x € X, a neighborhood (hereafter
abbreviated nhood) of x is a set U which contains an open set V containing x.
Thus, evidently, U is a nhood of x iff x e U°. The collection %, of all nhoods
of x is the nhood system at x.

The next theorem is similar to Theorems 3.7 and 3.11 about closure and
interior: it lists properties of the nhood system %, at x in a topological space,
and provides a converse which says whenever nhoods have been assigned to each
point of a set, satisfying these properties, one has a topology.

4.2 Theorem. The nhood system %, at x in a topological space X has the
following properties.
-a) IfUe,, thenx e U,
N-b) IfU, Ve, thenUnNVeU,,
N-c) If U e U,, then thereisaV € U,, such that U € U, for each y € V,
N-d) If Ue%U,and U < V, then V e U,,
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and furthermore,
N-e) G < X is open iff G contains a nhood of each of its points.

Conversely, if in a set X a collection U, of subsets of X is assigned to each
x € X so as to satisfy N-a through N-d, and if N-e is used to define “open,”
the result is a topology on X, in which the nhood system at each x € X is precisely
U,.

Proof. N-a is obvious. For N-b: if U, Ve%,, then xe U° and xe V°, so
xeU°NnV°=(UnYV) and hence Un Ve, For N-c: let Ue %, and
pick V = U°. Then for each ye V, ye U°, so Ue#,. For N-d: if Ue%,,
then xe U°. If U < V, then U° = V°, so xe V°. Hence Ve %,. Finally, to
prove N-e, if G is open, then G = G° and G is a nhood of each of its points. On
the other hand, if each x € G has a nhood V, = G, then G = (¢ V3 is a union
of open sets and thus open.
The converse assertion is left to Exercise 4E. B

Neighborhoods provide us with an interesting description of what has hap-
pened in the passage from metric spaces to topological spaces. The linearly

ordered “distanc _ ordered “nhoods
of x” (partially Gonverted with bing closeness to
x of points nearby otion of closeness,
we havg lost the STn“ con“erter hther(; xfis cl?l§? to
y; but it can hay - - ood of x while x
is in no nhood of trial version en in useful topo-
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nhoods of x to describe the nhood system there. We can be content with a nhood
base.

4.3 Definition. A nhood base at x in the topological space X is a subcollection
%, taken from the nhood system %,, having the property that each U e %,
contains some V € #,. That is, %, must be determined by 4, as follows:

U, ={U c X|V < Uforsome Ve,
Once a nhood base at x has been chosen (there are many to choose from, all
producing the same nhood system at x) its elements are called basic nhoods.
Obviously, the nhood system at x is itself always a nhood base at x. There
are more interesting examples.

4.4 Examples. a) In any topological space, the open nhoods of x form a nhood
base at x, since for any nhood U of x, U° is also a nhood of x. For this reason, it
is the custom of a great many writers to use “nhood of x” to mean “open nhood
of x” and to use the term “nhood” (without reference to a point x) to mean “non-
empty open set.” For us, nhoods will not necessarily be open, however, unless
so described.
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b) In any metrizable space, generated by a metric p say, each open set con-
taining x contains some disk U(x, ) about x; thus the disks U(x, §) about x
form a nhood base at x. In fact, we need consider only the disks of rational radius
to obtain a nhood base at x, so each point in a metric space has a countable nhood
base. In particular, these comments apply to the usual topologies (and the usual
metrics which generate them) on the spaces R*, n = 1,2,... . A topological
space in which every point has a countable nhood base is said to satisfy the first
axiom of countability or to be first countable. Thus every metric space is first
countable. We will meet the second axiom of countability in Exercise 5F; both
axioms will be studied in greater detail in Section 16.

c¢) In R?, with the usual topology (and the usual metric), the set of all squares
with sides parallel to the axes and centered at x € R? is a nhood base at x. Notice
that this base at x has no set in common with the nhood base described in (b),
although they both describe the same topology. Thus, before one uses the term
“basic nhood at x,” one must fix for the discussion what nhood base at x is being
used. Sometimes context or general usage make this clear. It is customary, for

example, to mear] c - hood at x” in R?,
onverted with
or for that matter
dIfXisa STn“ con“erler able nhood base
consisting of a sin . -
e) If X isa ti trial version e collection con-
sisting of the sing] bt/ /www.stdutilitv.com

We turn now to the problem of specifying a topology by giving a collection
of basic nhoods at each point of the space. Each of the properties V-a, V-b and
V-c corresponds to the respective property U-a, U-b, U-c in Theorem 4.2. Note
that U-d is dropped altogether.

The following theorem is used much more often than the corresponding
Theorem 4.2 about nhood systems.

4.5 Theorem. Let X be a topological space and for each x € X, let B, be a
nhood base at x. Then

V-a) if Ve RB,, thenxeV,
V-b) if Vi, V, € B,, then there is some V; € B, such that V; < V; N V,,

V-c) if Ve AB,, there is some Vye€ B, such that if y e V,, then there is some
WeRB,with W <V,

and furthermore,

V-d) G < X is open iff G contains a basic nhood of each of its points.
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Conversely, in a set X, if a collection B, of subsets of X is assigned to each
x € X so as to satisfy V-a, V-b and V-c and if we define “open” using V-d, the
result is a topology on X in which %, is a nhood base at x, for each x € X.

Proof. The properties V-a, V-b and V-c are easily verified for basic nhoods, by
referring to the corresponding properties U-a, U-b, and U-c for nhoods. Similarly,
V-d follows from U-e. We will proceed to the converse.

Suppose a collection %, satisfying V-a, V-b and V-c has been prescribed at
each x € X and define

U, ={U c X|Bc U forsome Be %, }

for each x € X. The assertion is that %, has the properties N-a through N-d of
a nhood system at x.

Certainly each U € %, contains x, since each B € 4, does, so N-a is clear.
If U,, U, e%,, then for some B,, B,, B; € #, we have B, < U, B, c U, and
(by V-b)B; €« Byn B, « U, n U, ThusU, n U, € %,, establishing N-b. For
N-c, let Ue%,. Pick Be %, such that B < U By V-c, there is some B, € 8,
such that each y~2—- D2 - p—Tl-q Be %, for each

y € By,. Hence U Converted with ally, the superset
property N-d is ¢

Thus %, is a STn“ cnn“erter it is clear that, at
each x, 4, is a nl L

trial version .
4.6 Example. The on the real line

which is best des httn:/ /viww stdutilityv.com rey line, E, is the
real line with the topology in which basic nhoods of x are the sets [ x, z) for z > x.
Some of its basic properties will be studied in Exercise 4A, and we will find frequent
occasion in later work to refer to it. It is named after the man who first produced
it, in 1947.

Since nhood bases are important descriptive devices in dealing with topologies,
it will be useful to have nhood characterizations of all the concepts so far introduced
for topological spaces.

4.7 Theorem. Let X be a topological space and suppose a nhood base has been
fixed at each x € X. Then

a) G < X is open iff G contains a basic nhood of each of its points,

b) F < X is closed iff each point x ¢ F has a basic nhood disjoint from F,

¢) E = {x e X | each basic nhood of x meets E},

d) E° = {x € X | some basic nhood of x is contained in E},

e) Fr (E) = {x € X | each basic nhood of x meets both E and X — E}.

Proof. a) This is part of Theorem 4.5 and is recorded here for reference.
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b) This follows directly from (a) together with the definition of a closed set
as the complement of an open set.

c) Recall that E = () {K = X | K is closed and E = K}. If some nhood
U of x does not meet E, then xe U°and E <« X — U°. Since X — U° is closed,
E = X — U°. Hence x ¢ E. Conversely, if x ¢ E, then X — E is an open set
containing x, and hence containing a basic nhood of x, which does not meet E.

d) This follows from (c) by an application of De Morgan’s laws.

e) Follows directly from (c) and the definition of Fr (E) as E n (X — E). &

4.8 Theorem. (Hausdorff criterion) For each x € X, let B be a nhood base
at x for a topology t, on X, and let B2 be a nhood base at x for a topology 1,
on X. Then 1, < 1, iff at each x € X, given B' € B, there is some B* € B2
such that B> < B'.

Proof. Suppose 1; = t,. Let B! € #L. Then, since B! is a nhood of x in (X, t,),
x is contained in some element B of 7, which is contained in B'. But if Bet,,
then Be 1, so B is a nhood of x in (X, t,). It follows that B> = B for some
B? € #2,so B> = B'.

Conversely, i — : ml—ale ch x € B; hence
B contains a corr| Gonverted with usBet, W

The theoren ods make large
topologies.” Thig STn“ con“erter ds in a space are,
the easier it is for trial version € more open sets
there will be.

We close this hitn://www stdutility.com s for its definition

on the use of nhoods.

4.9 Definition. An accumulation point (cluster point) of a set A in a topological
space X is a point x € X such that each nhood (basic nhood, if you prefer) of x
contains some point of A, other than x. The set A’ of all cluster points of A is
called the derived set of A.

4.10 Theorem. A = AU A'.

Proof. From4.7, A’ = A, and since A = A, we have A U A’ = A. On the other
hand, if every nhood of x meets 4 (i.e., if x € A4), then either x € A or every nhood
of x meets A4 in a point different from x,soxe Au A" 1

Problems
4A. The Sorgenfrey line
The following material concerns the Sorgenfrey line, E, introduced in 4.6.

1. Verify that the sets [x, z), for z > x, do form a nhood base at x for a topology on the
real line.
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2. Which intervals on the real line are open sets in the Sorgenfrey topology?

3. Describe the closure of each of the following subsets of the Sorgenfrey line: the
rationals, the set {1/n|n = 1,2,.. .}, theset {—1/n|n < 1,2,...}, the integers.

4B. The Moore plane

Let I denote the closed upper half plane {(x, y) | y > 0} in R For each point in the open
upper half plane, basic nhoods will be the usual open disks (with the restriction, of course,
that they be taken small enough to lie in I'). At the points z on the x-axis, the basic nhoods will
be the sets {z} U A, where A is an open disk in the upper half plane, tangent to the x-axis at z.

1. Verify that this gives a topology on I

2. Compare the topology thus obtained with the usual topology on the closed upper half
plane as a subspace of R2.

3. Describe the closure and interior operations in the space I

Hereafter, the symbol I" will be reserved for the closed upper half plane with the topology
described here. This space is often called the Moore plane. We will find consistent use for
it as a counterexample.

4C. The slotted nlane

At each point z in tH Converted with 4, where A is a disk
about z with a finite

1. Verify that th STn“ con“erter

2. Compare thi trial version
3. Can we re-re table?”

hitn://www stdutility.com

This space will be Careatreororren prorme;

4D. The looped line

At each point x of the real line other than the origin, the basic nhoods of x will be the usual
open intervals centered at x. Basic nhoods of the origin will be the sets

(=€ €U (=00, —n) U (n, ),
for all possible choices of ¢ > 0 and n e N.

1. Verify that this gives a topology on the line.

2. Describe the closure operation in the resulting space.

This space is the looped line, L.

4E. Topologies from nhoods
1. Show that if each point x in a set X has assigned a collection %, of subsets of X
satisfying N-a through N-d of 4.2, then the collection

1= {G c X|foreachxin G, xe U = G for some U € %, }

is a topology for X, in which the nhood system at each x is just %,.
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2. Show that, if 4, is a nhood basc at x for each x in a topological space X, then V-a,
V-b, V-c and V-d of 4.5 hold for elements of 4, .

4F. Spaces of functions

Consider the set R! of all real-valued functions on the unit interval.

1. For each f € R, each finite subset F of I and each positive §, let
U(f, F, 8) = {ge R"||g(x) — f(x)] < 6, for each x € F}.

Show that the sets U(f, F, §) form a nhood base at f, making R" a topological space.

2. For each f e R, the closure of the one-point set {f} is just {f}. (This is not unusual.
In fact, it is a situation to be desired; spaces without this property are difficult to deal with.
See the discussion in Sections 13-15.)

3. For feR'"and ¢ > 0, let
V(f,e) = {geR'||g(x) — f(x)| < ¢ for each x e I}.

Verify that the sets V(f, €) form a nhood base at f, making R" a topological space.

4. Compare the _
S. If the definit Converted with bnly, show that the
resulting topology ¢ STn“ con“erter L.
We will return . . tction 8 on product
spaces. Both thetop trial version r on function spaces.
4G. Nowhere e IR/ /v stdutility.com

A set A in a topological space X is nowhere dense in X iff Cly, A contains no nonempty open
set. A point p is isolated iff the set { p} is open and a set D is discrete in X (or, relatively discrete)
iff each d € D has a nhood U in X such that U n D = {d}.

1. In a metric space X without isolated points, the closure of a discrete set in X is nowhere
dense in X.

2. In any space X, the frontier of an open set is closed and nowhere dense.

3. Conversely, every closed nowhere dense set is the frontier of an open set.

4. In a metric space X, the frontier of an open set is the set of accumulation points of a
discrete set. [This requires the axiom of choice and is difficult.]

5 Bases and subbases

As we observed in the last section, we can specify the nhood system at a point x
of a topological space X by giving a somewhat smaller collection of sets, a nhood
base at x. In much the same way, the topology on all of X can be specified, without
describing each and every open set, by giving a base for the topology.
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5.1 Definition. If (X, 7) is a topological space, a base for t (sometimes we call it
a base for X when no confusion can result) is a collection # < t such that

Be®
That is, T can be recovered from 4 by taking all possible unions of subcollections
from 4. Evidently, 4 is a base for X iff whenever G is an open set in X and p € G,
there is some B € 4 such that pe B < G.

5.2 Examples. a) In R, the collection £ of all open intervals is a base for the usual
topology. More generally, in any metric space M, the collection of all open disks
about points of M is a base for M.

b) The collection {{x} | x € X} is a base for the discrete topology on X.

The following theorem is similar to 3.7, 3.11, 4.2 and 4.5. That is, it lists a
few properties that bases enjoy and provides the converse assertion: any structure
on a set X with these properties provides a topology on X. Note that no mention
is made in this theorem of the topology. If you have a given topology t and want
to know whether a particular collection & of sets is a base for 1, 5.3 can be used

to show % is a ba - he Definition 5.1
to show the topol Converted with e definition given
in the last sentend STn“ con“erter
5.3 Theorem. . .
trial version
a) X = UBsé .
b) whenever 1IN/ /W Stdutilitycom |5 .0

pe By < B, n B,.

Proof. 1f # is a base for a topology on X, the two properties are clear. Suppose,
on the other hand, X is a set and 4 a collection of subsets of X with these properties.
Let t be all unions of subcollections from Z. Then any union of members of t
certainly belongs to 7, so 7 satisfies G-1 of 3.1. Moreover,if %4, ¢ #and %, < %,
so that | ) g4, B and | Jc.g, C are elements of 7, then

(UB)m(UC)=U UBno)

Be®, CeARBr Be®, CeR,

But by property (b), the intersection of two elements of 4 is a union of elements

of 4, so
(2~ (o)

is a union of elements of %, and hence belongs to t. Thus t satisfies G-2 of 3.1.
Finally, X € 1 by (a) and @ € 7 since @ is the union of the empty subcollection from
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%. Hence t satisfies G-3 of 3.1. This completes the proof that 7 is a topology
on X. N

The reader might well suspect, especially after studying the examples given
in 5.2, that more than a casual similarity exists between the idea of a nhood base
at each point of X on the one hand and the notion of a base for the topology of
X on the other. Indeed, as the next theorem makes clear, the only real difference
between the two notions is that nhood bases need not consist of open sets.

5.4 Theorem. If % is a collection of open sets in X, & is a base for X iff for each
x € X, the collection B, = {B € % | x € B} is a nhood base at x.

Proof. Suppose first that 4 is a base for X, xe X, and #, = {Be # | x e B}.
The elements of 4, are clearly nhoods of x. Moreover, if U is any nhood of x,
then x € U° and, since U° is a union of elements of #, x € B < U° for some
Be . Thus Be #,and B < U, so 4, is a nhood base at x.

Conversely, if 4, is an open nhood base at x, foreach x € X,and # = UxeX B,
then for any open set U in X, and each element p of U, there is an element B,
of 8 such that pe B, = U. Then U = () {B,|pe U} is a union of elements of
B, so % 1s a base fe=—M

We can go g Converted with llection we must
specify to descril STn“ c to base was ac-
complished esser| 0““3"3' ies. The further
reduction to subl trial version
5.5 Definition. If } =n= a subbase for X)
is a collection ¥ h“nl I www's""l“"w'c“m tions of elements

from % forms a base for 7.

5.6 Theorem. Any collection of subsets of a set X is a subbase for some topology
on X.

Proof. Exercise 5D. R

Problems
5A. Examples of subbases

1. The family of sets of the form (— o0, a) together with those of the form (b, 0) is a
subbase for the usual topology on the real line.

2. Describe the topology on the plane for which the family of all straight lines is a subbase.
3. Describe the topology on the line for which the sets (a, ), a€ R, are a subbase.

Describe the closure and interior operations in this topology.
SB. Examples of bases

1. The collection of all open rectangles is a base for a topology on the plane. Describe
the topology in more familiar terms.
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2. For each positive integer n, let S, = {n,n + 1,...}. The collection of all subsets of
N which contain some S, is a base for a topology on N. Describe the closure operation in
this space.

3. The collection of all open intervals (a, b) together with the one-point sets {n} for all
positive and negative integers n is a base for a topology on the real line. Describe the interior
operation in the resulting space.

5C. The scattered line

We introduce a new topology on the line as follows: a set is open iff it is of the form U u V
where U is an open subset of the real line with its usual topology and V is any subset of the
irrationals. Call the resulting space S, the scattered line.

1. With the definition of “open set” given, S is a topological space.
2. Describe an efficient nhood base at

a) the rational points
b) the irrational points

in S. Put these together to describe a base for S.
5D. No axioms for subbase

Any family of subset—= e - “ ! *—— the topology which

results is the smalle Comnverted with

SE. Bases for th STn“ cﬂn“e"er

A base for the closed
every closed set is a trial version

1. & is a base f| htlll:”WWW.Sl[lllliliW.Bllm of members of & is

a base for the open

sets in X such that

2. & is a base for the closed sets for some topology on X iff (a) whenever F, and F,
belong to &, F, U F, is an intersection of elements of &, and (b) (\res F = 2.

5F. Second countable and separable spaces

A space X is second countable iff X has a countable base. X is separable iff a countable subset
D of X exists with Cly D = X. (Such a set D is said to be dense in X.)

1. A separable metric space is second countable. [The disks of rational radius about the
points of a countable dense set form a countable base. ]

2. Bvery second countable space is separable and first countable. [For separability,
obtain a countable dense set by choosing one element from each member of a countable base.
Note that this requires the axiom of choice.]

3. The Sorgenfrey line E (4.6) is first countable and separable; we will see later that it
cannot be second countable.

Material on separable and second countable spaces will be developed in the text in
Section 16.



Chapter 3

New Spaces from Old

6 Subspaces

A subset of a topological space inherits a topology of its own, in an obvious way.
This topology and some of its easily developed properties will be presented here.

6.1 Definition. If (X, 1) is a topological space and A < X, the collection
" = {Gn A| Ger}is a topology for 4, called the relative topology for A. The
fact that a subset of X is being given this topology is signified by referring to it
as a subspace of X.

Any time a topology is used on a subset of a topological space without ex-
plicitly being despeibad it ie acesimaad ta bha tha salatina tanalagy  This natural

and convenient ¢ Converted with th can be applied
to topological sy ed automatically

to subsets of a toy STn“ cnn“erter e has a particular
property, then ev ) B} ty; see 6B.
trial version

6.2 Examples. a) — inherits its usual
topology from R? htln:llwww.slllllllllt!l.cllm liscrete topology.
Each of these examples is a special case of the general rule: if X is metrizable
and A < X, then the relative topology on A is generated by the restriction of any
metric which generates the topology on X. The proof of this will be made easy by
the next theorem, so it is left to Exercise 6C.

b) By relativizing the usual topology on R", we have a usual topology on
any subset of R". By part (a), the usual topology on A is generated by the usual
metric on A.

c) Any subspace of a discrete space is discrete and any subspace of a trivial
space is trivial.

d) A subspace of a subspace is a subspace. That is, if A, < A, < X, then
the relative topology induced on A, by the relative topology of A, in X is just
the relative topology of 4, in X. The proof is easy.

The open sets in a subspace A of X are the intersections with A of the open
sets in X. Most, but not all, of the related topological notions are introduced

a
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into A in the same way, by intersection, as the following theorem and example
show.

6.3 Theorem. If A is a subspace of a topological space X, then:

a) H< Aisopenin Aiff H = G n A, where G is open in X,

b) F < Aisclosedin Aiff F = K n A where K is closed in X,

c) ifEc A, thenCly E = A n Cly E,

d) if x€ A, then V is a nhood of x in A iff V.= U n A, where U is a nhood
of x in X,

e) if xe A, and if B, is a nhood base at x in X, then (BN A|Be A, } is a
nhood base at x in A,

f) if  is a base for X, then {B n A | Be %} is a base for A.

Proof. a) is just the definition of the subspace topology on A, recorded here
for reference.

b) follows directly from (a).

c¢) follows fr Converted with s the intersection
of all closed sets ¢

d) follows fr STn“ con“erler set containing an

open set containi . .
e) Each B n trial version f V is any nhooa

of xin 4, then VI hitp://www.stdutilitycom | U > B for some

Be %, soV=UraoprvA I10us ue sets by A 1o a nhood base at
x in A.

f) follows from (e) and the theorem (5.4) on translation between bases and
nhood bases. B

The reader will notice that two concepts are missing from the list above; no
mention is made of the interior operator or the frontier operator in subspaces.
The following examples indicate why this is so.

6.4 Examples. a) Let X be the plane with the usual topology while A = E = the
x-axis. Then Int, E = A while Inty E = g, so that the former cannot be obtained
by intersecting the latter with A. It is always true, however, that

Int, E > A nInty E.

b) Using the same example, we have Fr, E = ¢ while Fry E = A4, so that,
again, the former cannot be obtained by intersecting the latter with A. It is
always true, however, that Fr, E < A n Fry E.
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Problems

6A. Examples of subspaces

1. Recall that A denotes the slotted plane (4C). Any straight line in the plane has the
discrete topology as a subspace of A. The topology on any circle in the plane as a subspace
of A coincides with its usual topology.

2. We will let B denote the radial plane (3A). The relative topology induced on any
straight line as a subspace of B is its usual topology. The relative topology on any circle in
the plane as a subspace of B is the discrete topology.

3. Discuss the subspaces of the scattered line S (5C).
4. The rationals, as a subspace of R, do not have the discrete topology.

5. The topology on the nonnegative reals, regarded as the subspace {(0, y) [ y = 0} of
the Moore plane I' (4B) is the usual topology. The x-axis in the Moore plane inherits the
discrete topology.

6. An open set in an open subspace of X is open in X. This need not be true if the sub-
space is not open. A similar result holds for closed sets in closed subspaces.

7. If 7 is the simple extension over 4 (3A.5) of a topology 7’ on X, then 4 is open in (X, 1)
and the topology A inherits from (X 1) is the same tonologv it inherits from (X, 7').

6B. Subspaces ¢ Converted with
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6C. Subspaces of metrizable spaces

If M is metrizable and N = M, then the subspace N is metrizable with the topology generated
by the restriction of any metric which generates the topology on M.

discrete topology.

6D. Ordered spaces

Let X be linearly ordered by a relation <. Take as a subbase for a topology on X all sets of
the form {x | x < a} and {x|x > a}, for ae X. The resulting topology on X is the order
topology on X and whenever we use the phrase ordered space we mean a linearly ordered set
with its order topology. An interval in a linearly ordered space is any subset which contains
all points between x and y whenever it contains x and y.

1. Ifa < b in X, the interval {x € X | a < x < b} is an open set in the order topology;
but intervals of the form {x € X | a < x < b} may also be open.
2. The usual topology on the real line is the order topology given by the usual order.

3. In I x I, with the lexicographic order: (x,, x,) < (1, y,) iff either x; < x, or else
X; = x5 and y; < y,, describe the nhoods of each of the following:

a) the points (x, 0), with particular attention to (0, 0),

b) the points (x, 1), with particular attention to (1, 1),

c) the points (x, ),0 < x < 1,0 <y < 1.
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4. A subset of an ordered space has a topology induced by the restricted order and a
topology inherited from the order topology on the larger space. Show by an example that
these two topologies on a subset need not be the same. [An example exists using for the large
space the real line with its usual topology and order.] Find conditions on the subspace which
will ensure that the two induced topologies agree.

7 Continuous functions

It is the purpose of this section to define continuous functions on a topological
space and establish their elementary properties. The basis for our definition is
Theorem 2.8, in which it was-demonstrated that the notion of distance could be
effectively suppressed in defining continuity of functions between metric spaces,
by introduction of the use of open sets. In fact, the reader who restudies Theorem
2.8 at this point will see in the following definition just a rewording of that theorem,
with the slight modification that here we use “nhood of x,” instead of “open set
containing x,”.

7.1 Definition. Let X and Y be topological spaces and let f: X — Y. Then f is
continuous at x, € X iff for each nhood V of f(x.) in Y. there is a nhood U of

Xo In X such tha - is continuous at
0 GConverted with

each x, € X.

It is left to th STn“ con“erler on is not altered
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continuity than the alternative, that is, checking continuity at each point of X
individually. The fourth characterization, although not often used as a test for
continuity, is interesting. It provides us with a description of the continuous
functions f: X — Y as precisely those functions which take the points close to
a set E in X close to its image in Y.

7.2 Theorem. If X and Y aretopological spacesand f: X — Y, thenthe following
are all equivalent:

a) f is continuous,

b) for each open set H in Y, f ~}(H) is open in X,

c) for each closed set K in Y, f ~1(K) is closed in X,

d) for each E < X, f(CI4E) = Cly f(E).

Proof. a)=b): If H is open in Y, then for each x € f ~!(H), H is a nhood of
f(x). Hence, by continuity of f, there is a nhood V of x such that f(V) < H; that
is, V. = f~Y(H). Thus f ~!(H)contains a nhood of each of its points and is therefore
open.
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b) = ¢): IfKisclosedin Y, then f~'(Y — K)isopen in X, by part (b). Hence,
since fTY(K) = X — f~}Y — K), f~}K) is closed in X.

c)=d): Let K be any closed set in Y containing f(E). By part (c), f~ }(K)

is a closed set in X containing E. Hence, Cly E = f~}(K), and it follows that

f(Cly E) < K. Since this is true for any closed set K containing E, we have

f(Cly E) < Cly f(E).

d) = a): Let x € X and let V be an open nhood of f(x). SetE = X — f~}(V)
and let U = X — Cly E. It is easy to verify that, since f(Cly E) = Cly f(E), we
have x € U. It is even clearer that f(U) = V. Hence, f is continuous at x. l

The following theorem is intuitive, easily proved and surpassingly important.

7.3 Theorem. If X, Y and Z are topological spacesandf: X — Yandg: Y — Z
are continuous, then g o f: X — Z is continuous.

Proof. If H is open in Z, then g ~}(H) is open in Y, by continuity of g. Hence,
by continuity of f, f~'[g (H)] = (g f) *(H) is open in X. Thus gof is
continuous. W
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The theorem above has a sort of converse: if f is continuous on each of a few
properly fitting pieces of X, it is continuous on X. This is stated more precisely
by the following theorem, and its generalizations in Exercise 7D.

7.6 Theorem. If X = A U B, where A and B are both open (or both closed)
inX,andif f: X — Y is a function such that both f | A and f | B are continuous,
then f is continuous.

Proof. Suppose A and B are open. If H is open in Y, then f~!(H) is open in X,
since f~'(H) = (f | A~ '(H) v (f | B)” '(H) and each of the latter is open in an
open subspace of X and so open in X. The proofis similar if A and B are closed. B

If we write f: X — Y, we have specified the domain of f'(as X), but the image
of f is not determined, except that it must be a subset of Y. The next thecorem
says, essentially, that it is not necessary to modify this procedure when dealing
with continuous functions. The proof is left as Exercise 7E.

7.7 Theorem. Suppose Y < Z and f: X — Y. Then f is continuous as a map
from X to Y iff it is continuous as a map from X to Z.
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In the passage from X to the image Y of X under a continuous map f, we lose
information in two ways. The first is set-theoretical: Y will have fewer (or, at
least, no more) points than X. The second is topological: Y will have fewer (or,
at least, no more) open sets than X in the sense that each open set H in Y is the
image of an open set (for example, f ~'(H)) in X, but there may well be open sets
U in X such that f(U) is not open in Y.

The maps which preserve X set-theoretically and topologically are called
homeomorphisms.

7.8 Definition. If X and Y are topological spaces, a function f from X to Y is a
homeomorphism iff f is one—one, onto and continuous and f ~! is also continuous.
In this case, we say X and Y are homeomorphic. If f is everything but onto, we
call it an embedding of X into Y, and say that X is embedded in Y by f. Thus, X
is embedded in Y by f iff f is a homeomorphism between X and some subspace
of Y.

Evidently, a continuous map f: X — Y is a homeomorphism iff there is a
continuous map g: Y — X such that the compositions g - f and f o g are the
identity maps on X and Y respectively. Various algebraic isomorphisms may be

defined in the sam . atize such notions
has led to the dey Converted with
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a) f is a homeomorphism,

b) if G = X, then f(G)is openin Y iff G is open in X,
c) if F < X, then f(F) is closed in Y iff F is closed in X,
d) if E = X, then f(Cly E) = Cly f(E).

Homeomorphic topological spaces are, for the purposes of a topologist,
the same. That is, there is nothing about homeomorphic spaces X and Y having
to do only with their respective topologies which we can use to distinguish them.
Thus, for example, a “topological characterization” of the real line R would
consist of a list of properties possessed by the real line which, if possessed by any
other space X, ensure that X is homeomorphic with R.

If we denote “X is homeomorphic with Y” by X ~ Y, then the relationship
~ has the following properties:

a) X ~ X,
b) if X ~ Y, then Y ~ X,
c)if X ~Yand Y ~ Z, then X ~ Z.
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Thus, the relation “is homeomorphic to” is an equivalence relation on any set
of topological spaces. The reader might profit from thinking, at this point, about
the question: is there a set of all topological spaces?

To prove two spaces are homeomorphic, one constructs a homeomorphism.
To establish that two spaces are not homeomorphic, one must find a topological
property possessed by one and not the other. The definition of “topological
property” makes it clear why this works. A topological property is a property
of topological spaces which, if possessed by X, is possessed by all spaces homeo-
morphic to X. First countability, second countability and separability are
examples of topological properties which have already been introduced. We will
introduce many more in sections to come.

7.10 Examples. a) The open interval (a, b) in R is homeomorphic to (0, 1), one
homeomorphism being f(x) = (x — a)/(b — a). Moreover, all intervals of the
form (a, c0) are obviously homeomorphic by translation, and (1, o) is homeo-
morphic to (0, 1) under the map f(x) = 1/x. Also, the interval (—oo, —a) is

homeomorphic to (a, o) under the map f(x) = —x. Finally, (—o0, o) is
homeomorphic to (— n/2 77:/2) under the map f(x) = arctan x. The relations
above can be su + idnite afela L hism relation, as
follows: allopen Comnverted with re homeomorphic.
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Problems

TA. Characterization of spaces using functions

The characteristic function of a subset 4 of a set X is the function from X to R which is 1
at points of 4 and 0 at other points of X.

1. The characteristic function of A4 is continuous iff 4 is both open and closed in X.

2. X has the discrete topology iff whenever Y is a topological space and f: X — Y,
then f is continuous.

3. X has the trivial topology iff whenever Y is a topological space and f: Y — X, then
f is continuous.

7B. No Cantor—Bernstein theorem for topological spaces

Recall that the Cantor—Bernstein theorem states that if 4 and B are sets and if one—one
functions f: 4 — B and g: B — A exist, then a one-one function of 4 onto B exists. The
analog for topological spaces would be: whenever X can be embedded in Y and Y can be
embedded in X, then X and Y are homeomorphic. Find a counterexample. [See 7G.3].
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7C. Functions agreeing on a dense subset

If f and g are continuous functions from X to R, the set of points x for which f(x) = g(x) is
a closed subset of X. Thus two continuous maps on X to R which agree on a dense subset
(one whose closure is X) must agree on all of X. Rephrased: a real-valued continuous
function is determined by its values on a dense set. [See also 13.14.]

TD. Sufficient conditions for continuity

There are useful extensions of Theorem 7.6. A family of subsets of a topological space is
called locally finite iff each point of the space has a nhood meeting only finitely many elements
of the family.

1. The union of any subfamily from a locally finite family of closed sets is closed.

2. 1f {4, | 2 € A} is a locally finite collection of closed subsets of X whose union is X,
a function on X is continuous iff its restriction to each A, is continuous.

3. If {B, | € A} is any collection of open subsets of X whose union is X, a function on
X is continuous iff its restriction to each B, is continuous.

7E. Range immaterial

fYcZandf: X Converted with f is continuous as a

map from X to Z.
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If f is a function on any space X to the plane, associated with f we have the coordinate
functions f; and f,, each mapping X to R. For each x € X, fi(x) and f,(x) are the first and
second coordinates, respectively, of f(x).

On the other hand, if g is a function from the plane to any space Y, for each fixed x, € R
we can define a function g, from R to Y by g, (y) = g(x,, y). Similarly, if y, € R is fixed,
hy(x) = g(x, yo) defines a function h, from R to Y. We say g is continuous in x iff h,_ is con-
tinuous for each y, € R and g is continuous in y iff g, is continuous for each x, € R.

1. A function f: X — R? is continuous iff both coordinate functions f; and f, are
continuous.
2. If g: R? - Y is continuous, then it is continuous in both x and y.

3. The converse to part 2 fails. [Let g(x, y) = xy/(x? + y?), with g(0, 0) = 0.]

7G. Homeomorphisms within the line

1. Show that all open intervals in R are homeomorphic (see 7.10).
2. All bounded closed intervals in R are homeomorphic.

3. The property that every real-valued continuous function on X assumes its maximum
is a topological property. Thus I is not homeomorphic to R.
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TH. Disjoint homeomorphisms
Suppose X and Y are topological spaces such that X = () X, and Y = | Y,, where (X,)

and (Y,) are sequences of disjoint open sets in X and Y respectively. If X, and Y, are homeo-
morphic for each n, then X and Y are homeomorphic.

71. Topological properties
Each of the following expresses a topological property of X :

X has cardinal number X,
the topology on X has cardinal number X,

1.
2.
3. the topology on X has a base whose cardinal number is N,
4. there is in X a set of cardinal N whose closure is X,

5.

X is metrizable.
Each of the following expresses a property of X which is not a topological property:

6. the topology on X is generated by the metric p,
7. X is a subset of R.

7]. Retracts Converted with
A continuous funct bd a retraction of X
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trial version
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3. If A is a retract of B and B is a retract of C, then A is a retract of C.

7K. Semicontinuous functions

A function f: X — R is lower semicontinuous iff for each ae R, f~!(a, o) is open in X. We
call f upper semicontinuous iff for each a € R, f ~}(— o0, a) is open in X. Note that lower and
upper semicontinuity bear no relation to continuity from the left or right for functions of a
real variable; we are using the ordering of the range of our functions, not the domain. Most
of the results below are stated for lower semicontinuous functions; they have obvious analogs
for upper semicontinuous functions.

1. If f, is a lower semicontinuous real-valued function on X for each « € 4, and if
sup, f,(x) exists at each x € X, then the function f(x) = sup, f,(x) is lower semicontinuous
on X.

2. Every continuous function from X to R is lower semicontinuous. Thus the supremum
of a family of continuous functions, if it exists, is lower semicontinuous. Show by an example
that “lower semicontinuous” cannot be replaced by “continuous” in the previous sentence.

3. The characteristic function (7A) of a set 4 in X is lower semicontinuous iff A is open,
upper semicontinuous iff 4 is closed.
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4. If X is metrizable and f is a lower semicontinuous function from X to I, then f is the
supremum of an increasing sequence of continuous functions on X to I. This provides a
partial converse to part 2. [Given f, first find a sequence h, with 0 < f(x) — h,(x) < 1/n,
where h, is a finite linear combination of characteristic functions of open sets. Then show that
every characteristic function, hence each h,, is the supremum of an increasing sequence of
continuous functions. Finally, combine these two operations to obtain an increasing sequence
of continuous functions whose supremum is f.]

5. Let CY(I) be the family of continuously differentiable real-valued functions on I. For

each f e C!(I), define
1 2
L(f) =j 1+ (@) dx.
o dx

Prove that L is lower semicontinuous from C!(I) to R, if C(I) is given the topology of 4F.3.

TL. Linear operators and linear functionals
If X and Y are normed linear spaces (2J), a linear operator from X to Yisa functionI': X - Y
satisfying
a) Flx; + x;) = T'(xy) + I'(x,),
b) I'(ax) = al’(

for all a in R and x,
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2. For a linear operator I" from X to Y, the following are equivalent:

a) I' is continuous at some x, € X,
b) I' is uniformly continuous on X,
c) I' is bounded.

3. Given normed linear spaces X and Y, the collection L(X, Y) of all bounded linear
operators from X to Y is a linear space under pointwise addition and scalar multiplication
Ty + T)x) = Ty(x) + T'y(x), (@)(x) = a- I'(x). It becomes a normed linear space if we
define ||| = sup {|ITx)|| | lIx]| = 1} (see part 1).

4. If Y = R, the space L(X, Y) given in part 3, consisting of all bounded linear functionals
on X, is called the dual space of X, denoted X*. Show that, in a natural way, X < (X*)*.
[For each x € X, define F, on X* by F (I') = I'(x). Show that the mapping x — F, isa norm-
preserving one—one map of X into (X*)*.]

The spaces X for which (X*)* = X (that is, for which the mapping x — F, given in part 4
is onto (X*)*) are called reflexive. In problem 24J, we will see that the norm metric on any
dual space is complete, so that dual spaces are examples of “Banach spaces.” Thus, only
Banach spaces can be reflexive.

See Royden (Real Analysis) for a discussion of the representation of dual spaces of some
familiar spaces; for example, the dual of I?(I) is I4I), where 1/p + 1/q = 1.
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™. C(X)and C*(X)
For topological spaces X and Y, let C(X, Y) denote the collection of all continuous functions
from X to Y. We will distinguish two special collections: C(X) will be used to denote C(X, R)
and C*(X) will denote the set of all bounded functions from C(X). We can define addition,
multiplication and scalar multiplication of functions in C(X) pointwise :

(f + 9)x) = fx) + g(x),
(f 9)x) = f(x) - g(x),
(@ f)x) =a- f(x), for aeR.
1. If f and g belong to C(X), then sodo f + g, f-g and a - f, for ae R. If, in addition,
fand g are bounded, thenso are f + g, f-gand a- f.
2. C(X) and C*(X) are algebras over the real numbers. (Consult any book on abstract
algebra for the definition of an algebra.)
3. C¥X) is a normed linear space (2J) with the operations of addition and scalar
multiplication given above and the norm | f|| = sup,.x |f(x)l.
4. C(X) and C*(X) are lattices when given the partial order f < g iff f(x) < g(x) for
each x € X. [If £, g belong to C(X), so do

m(x) e d with )}.]

Study of the int onverted wit of C(X) and C*(X)
and the topological STn“ c 'I Some questions of
importance in this d 0““3' er

i) for what class trial version ff C*(X) and CX(Y)
[or C(X) and C(Y)] —

ii) how are topL___ hFI'!'I I WWW.SI[lIIIIlIWLBIlm attice properties of

C*(X) and C(X)?
iii) what properties of a ring R (usually with a lattice structure) will ensure that R is
isomorphic with C(X) for some topological space X?

An excellent introduction to the study of questions of this sort can be found in the book
on rings of functions by Gillman and Jerison.

TN. The group of homeomorphisms
For any topological space X, let H(X) denote the group of homeomorphisms of X onto itself,
with composition as the group operation. A central and obvious question is: if ¢ is an iso-
morphism of H(X) onto H(Y), is there a homeomorphism T of X onto Y such that
@h) = Toho T}, for each he H(X)?

1. H(X) is a group, with composition as the operation.

2. Let X =Iand Y = (0, 1) and define ¢(h) = h[ Y for each he H(X). Then ¢ is an
isomorphism of H(X) with H(Y), but there is no homeomorphism of X onto Y. [7G].

Part 2 effectively disposes of the question asked in the introduction for general spaces
X and Y. Affirmative answers are available, however, for suitably restricted classes of spaces.
See the notes.
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8 Product spaces, weak topologies

Our objective now is to define a topology on the Cartesian product of topological
spaces, in some natural and useful way. First we extend the notion of Cartesian
product to infinite collections of sets. The key to understanding the definition
we are about to give is a careful study of Exercise 1D. There we show that the
product of a finite collection of sets is, in a natural way, a collection of functions
each defined on the indexing set.

8.1 Definition. Let X, be a set, for each « € A. The Cartesian product of the sets
X, is the set

]_[X,={x:A—>UXa

acA acA

x(a) € X,, foreach a € A},

which we denote simply by || X, if no confusion can result about the indexing
set. Thus [ ] X, is a set of functions defined on the indexing set. In practice, the
value of x € [ | X, at o is usually denoted x,, rather than x(x), and x, is referred
to as the ath coordinate of x. The space X, is the ath factor space.

The map n;: [T X — X. defined bv m.x) = x. is called the projection

map of [| X, on | .
We need the Converied with tesian product of
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to prescribe the function x in [ [§—, X, by listing its values as an ordered n-tuple,
x=(xp...,%,) Thus [Jicy X = {(xp .., X)) | X € Xpo k= 1,...,n}.

b) The notation in (a) is carried over to the case where 4 = N. Thus
[T X = {(xy, X5 - ) | X € X k= 1,2,.. .}

¢) If X, = X for each a € 4, then [[,.4 X, is just the set X# of all functions
from A to X. (Finally, the reason for the notation X4 is clear.) For example, R®
is the set of all real-valued functions of a real variable.

d) If X, c Y, foreacha € 4, then [| X, = [] Y.

Now suppose X, is a topological space, for each « € 4. We want to define
a topology on [ [,.4 X, which is at the same time natural enough that, for example,
the product topology on R x R will be the usual topology on R? and tame enough
that a number of theorems of the form “if each X, has property P, then so does
[T X, will remain true.

If naturality were the only requirement, the job would be easy. In fact, after
recalling that the open squares in R? form a base for the usual topology in R
an obvious candidate for a topology on || X, arises. Simply take as a base for
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such a topology all sets of the form [ | U,, where U, is an open set in X, for each
o € A. In fact, this procedure gives a valid topology, called the box topology, on
[T X.. It satisfies our craving for naturality, but is not much used because it is
not tame enough, having an over-abundance of open sets. The definition, given
next, of the usual topology used on the product space rectifies this by sharply
reducing the number of basis elements.

8.3 Definition. The Tychonoff topology (or product topology) on || X, is obtained
by taking as a base for the open sets, sets of the form [ | U,, where

P-a) U, is open in X, for each a € A4,

P-b) For all but finitely many coordinates, U, = X,.
The reader will easily verify that P-a could have been replaced by

P-a)y U, e %,, where for each a, 8, is a (fixed) base for the topology of X,.

Also, notice that the set [ [ U,, where U, = X, except for « = oy, ..., a,, can be

written
MU =z-%U )~ - nzx-YU_)

as for a subbase

Thus the produc
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Hereafter, [] X, is always assumed to be endowed with the product
(Tychonoff) topology if each X, is a topological space.

8.4 Examples. a) Let X = R®. Recall that X is the set of all real-valued functions
of a real variable. A basic nhood of f € X in the product topology is obtained by
picking a finite subset {x,, ..., x,} of the index set R and a corresponding set
{€y, ..., &} of positive numbers, and letting

Ulfs Xg5 oo Xp3 €5 -5 €) = {g€R® | |g(x,) — fxi)l < €, fork =1,...,n}.

We can obtain a somewhat simpler description of a base in R® by letting

F ={xy...,x,},€=min {€, ..., ¢,} and noting that the nhood
U(f, F,e) = {ge R*||g(x) — f(x) < efor x e F}
is contained in U(f; xq, - . ., X,,; €15 - - -, €,), SO that the sets U(f, F, ¢), as F ranges

through all finite subsets of R and ¢ ranges through all positive numbers, form a
nhood base at f (see Fig. 8.1).
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c) If S! is the unit circle in R?, then S! x Iis a cylinder and S* x S'is a
torus (Fig. 8.2).

d) If ¥, = X, for each a € A4, then the product topology on || ¥, coincides
with its topology as a subspace of [ | X,.

8.5 Definition. If X and Y are topological spaces and f: X — Y, we call f an open
(closed) map iff for each open (closed) set 4 in X, f(A) is an open (closed) set in Y.
If f is one—one and onto, then f is open iff f is closed iff f ! is continuous.
Thus a one—one onto map f is a homeomorphism iff it is continuous and open
iff it is continuous and closed.
In general, an open map need not be closed and vice versa; see 8A, 9C.

8.6 Theorem. The Pth projection map ny: || X, - X, is continuous and open,
but need not be closed.

Proof. Left as Exercise 8A. B

8.7 Theorem. The Tychonoff topology is the weakest topology on [| X, for
which each projection m, is continuous.
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(b) S' x S!

Figure 8.2

Proof. If 7 is any topology on the product in which each projection is continuous,
then for each B, if U is open in X, nﬂ*l(Uﬂ) € 7. Consequently, the members of
a subbase for the Tychonoff topology all belong to 7, and hence the Tychonoff

topology is conta Converted with
8.8 Theorem. is continuous for
ahoca §TDU GONUerter
Proof. Necessit - - mposition of
/. y trial version e composi
continuous maps 5 continuous for
eacha e 4. Thes httn:/ /viww stdutilityv.com ., form a subbase

for the topology onm [T X, BUty (7, (U,)J] = (T, o JJ (U,J. Thus the inverse
images by f of these subbasic open sets are open in X, by continuity of =, o f.
This suffices to show f is continuous. l

The previous two theorems form the penultimate justification for our choice
of the Tychonoff topology on | | X, over the box topology. Directly or indirectly,
these results lie at the heart of most useful investigations into the properties of
product spaces. As is often the case, a theorem (in this case, 8.7) with a desirable
conclusion becomes the basis for a definition.

8.9 Definition. Let X be a set and X, a topological space with f,: X — X,, for
each a € A. The weak topology induced on X by the collection {f, | o€ A} of
functions is the smallest topology on X making each f, continuous. It evidently
is that topology on X for which the sets f,"*(U,), for xe A and U, open in X,,
form a subbase.

By Theorem 8.7 the product topology on [[,.s X, is the weak topology
induced by the collection {m, | € A} of projections. Moreover, Theorem 8.8
carries over to any weak topology, without essential change in the mechanics of
the proof.
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8.10 Theorem. If X has the weak topology induced by a collection {f, | o € A}
of functions f: X —» X,, then f: Y — X is continuous iff f, o f is continuous
for each o € A.

Proof. Mimic the proof of 8.8. B

It is one of the remarkable and fruitful results in topology that, with a simple
extra condition on the generating collection of maps, any space with a weak
topology can be embedded as a subspace of the product of the range spaces.

8.11 Definition. If foreachae A, f,: X — X, then the evaluationmape: X — ]_[ X,
induced by the collection {f,|ae A} is defined as follows: for each x € X,
[e(x)], = f(x). Thatis, for x € X, e(x) is the point in [ | X, whose ath coordinate
is f,(x) for each o € A.

A collection {f, |« € A} of functions on X will be said to separate points in
X iff whenever x # y in X, then for some a € A4, f,(x) # f(y).

8.12 Theorem. For each o€ A, let f,: X - X,. Then the evaluation map
e: X - [ X, is an embedding iff X has the weak topology given by the functions
f, and the collection {f, | o € A} separates points in X.

Proof. The heart Converted with ervation that, for
eachae A, m,0e

Now supposq STn“ cnn“erter X) has the weak
topology induced ]. Hence, since e
is a homeomorpl} trial version y induced by the
functions 7, o e = . =y= t e(y) and hence
[0l # [y, I/ /www.stdutilitveom [ " oiiection
{f. | « € A} separates points.

Now suppose the topology on X is the weak topology induced by the functions
f, and that the collection {f, |« e A} separates points in X. For each x€ 4,
m, o € = f, is continuous. Thus, by Theorem 8.8, e is continuous. If x # y in
X, then for some o € 4, f(x) # f(y), ie, [e(x)], # [e(y)]., and thus e(x) # e(y).
Hence e is one—one. Finally, we will show e is an open map; i.e., if U is open in
X, then e(U) is open in e(X). Since e is one—one, it suffices to show e(U) is open
whenever U is a subbasic open set. Hence we assume U is of the form f, (V)
for some « € 4 and some open set V in X,. But then

U = [(n | e(X)) o ] (V) = e [(m, | e(X))"*(V)]
and hence e(U) = [n, | e(X)] (V) = n,'(V) n e(X) which is an open set in
e(X), since 7, '(V) is open in [| X,. (The last argument looks a lot nicer if you
just carry the fact that =, should be restricted to e(X) in your head instead of
writing it out.) I

The following problem is, in various forms and with occasional modifications,
one of the most important and often investigated questions in topology and related
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areas: given a space X and a property 2 of spaces, can X be embedded in a larger
space Y having property 2? The theorem just proved forms the essential core of
a great many constructions intended to deal with such questions. The best known
example, the Stone—Cech compactification X of a Tychonoff space X (see
Section 19) is typical of the use of 8.12 in this way.

In case X already has a topology and we wish to know whether or not this
topology is the weak topology given by a certain collection {f, |« € A} of con-
tinuous functions on X, there is often a pleasant alternative to verifying that the
sets f,7}(V), for « € A and V open in X,, form a subbase for the existing topology.

8.13 Definition. A collection {f, | « € A} of functions on a space X (to spaces X,)
is said to separate points from closed sets iff whenever B is closed in X and x ¢ B,
then for some o € A, f,(x) ¢ f(B).

8.14 Theorem. A collection {f, | o € A} of continuous functions on a topological
space X separates points from closed sets in X iff the sets f7}(V), for a. € A
and V open in X ,, form a base for the topology on X.

Proof. Exercise §B. B

8.15 Corollary - nctions on a topo-
logical space Converted with n the topology on
X is the weak STn“ c .I
Whenever on ) 0““3' er functions which
separates points trial version ice is a T;-space
(see Section 13) if] -
hitp://www.stiutility.com

8.16 Theorem. Ij X 15 a I -space and {J, | ® € Aj IS a collection of functions
on X (to spaces X,) which separates points from closed sets, then the evaluation
e: X - || X, is an embedding.

Proof. This is a direct consequence of 8.15, the remark preceding this theorem
and 8.12. W

Problems

8A. Projection maps

1. The pth projection map =, is continuous and open. The projection 7;: R*? —» R is
not closed.

2. Show that the projection of I x R onto R is a closed map.

8B. Separating points from closed sets

1. If f, is a map of X to X, for each a € 4, then {f, | « € A} separates points from closed
sets in X iff {f;*(V) |« € 4, V open in X, } is a base for the topology on X.

2. If X has the weak topology induced by a collection of maps which separates points,
this collection of maps need not separate points from closed sets.
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8C. Products are associative and commutative
1. If {4, | A€ A} is a partition of the set A (into disjoint subsets whose union is 4), and
X, is a topological space for each a € 4, then [ [;ca (] [uea, Xo) is homeomorphic to [ Jpes X,

2. If ¢ is a one—one map of 4 onto B and for each a € 4, X, is homeomorphic to Y,
then [ [ e X, is homeomorphic to [ [ pep Y.

8D. Closure and interior in products
Let X and Y be topological spaces containing subsets A and B, respectively. In the product
space X x Y:
1. (A x B® = 4° x B°.
2.(Ax B =4 x B
3. Part 2 can be extended to infinite products, while part 1 can be extended only to finite
products.

4. Fr(A x B) = [4 x Fr(B)] u [Fr(4) x B].
5. If X, is a nonempty topological space and A4, = X,, for each a € 4, then ] 4, is
dense (see 7C) in [] X, iff A, is dense in X,, for each a.

8E. Miscellane Gonverled with
Let X, be a nonemf STn“ cnn“erter -
1. If V is a nong . . tly many a € A4.
2. If b, is a fix trial version | x, = b, whenever
is homeom . =h=
@ # %) ish http://www.stdutilitv.com |
3. If ba is a fixe PONITOI A, TOT TACT X E A, UICIT A — (X € A [ Xg — Uy except for ﬁmte]y

many a € A} is a dense set in X ; ie,Cly A = X.

8F. Products and the axiom of choice
1. Show that the axiom of choice is equivalent to the assertion that the product of a
nonempty collection of nonempty sets is nonempty.

2. Assuming the axiom of choice, show that each projection map is onto if each factor
space is nonempty.

8G. The box topology

Let X, be a topological space for each a € 4.

1. In[] X,, the sets of the form [ | U,, where U, is open in X, for each « € 4, form a base
for a topology.

2. What do nhoods of f € R® look like in the box topology? [see 8.4(1)]. Compare with
4F3.

3. Work out formulas for the closure and interior of sets in a box product, similar to those
given in 8D.



9] Quotient spaces 59

8H. Weak topologies on subspaces
Let X have the weak topology induced by a collection of maps f,: X — X, fora e A4.

1. If each X, has the weak topology given by a collection of maps g,,: X, = Y,,, for
A€ A,, then X has the weak topology given by the maps g,; 0 f,: X — Y,,, for x€ A and
A€ A,.

2. Any B c X has the weak topology induced by the maps f, | B. [Any B = X has the
weak topology induced by the inclusion map j: B —» X.]

81. Weak topologies and the lattice of topologies

Let {t, | « € A} be a family of topologies on a fixed set X and denote by X, the space consisting
of the set X with the topology t,. The identity function from the set X to the space X, will
be denoted i,.

1. The weak topology induced on X by the maps i, is the supremum 7 of the topologies
7, (see 3G).

2. (X, 7) is homeomorphic to the diagonal A in the product space [] X,. (Note:
A={xe[]X,|x, = xzforalle B})

The corresponding theorems for the infimum of the topologies z, are given in Exercise 91.

8J. Homeomory Converted with
Exhibit spaces X, x Z, but Y is not
homeomorphic to Z STn“ c I
It is also true tk . 0“_“er er h that X x X and
Y x Y are homeom trial version
See also 30F. —
http://www.stdutilitv.com

9 AQuotient spaces

Dual to the notion of the weak topology induced on X by a collection of maps
f.: X - X,, which is the weakest topology making all these maps continuous,
we have the notion of the strong topology induced on Y by a collection of maps
d.: Y, = Y, which is the strongest topology on Y making all these maps continuous.
In the particular case when there is only one map g: X — Y, the resulting strong
topology on Y is called the quotient topology induced on Y by g. We will be solely
concerned in this section with investigating three distinct but equivalent ways of
viewing quotient spaces, leaving discussion of strong topologies to Exercise 9H
(where we show that quotient spaces play a role for strong topologies similar
to that played by product spaces relative to weak topologies).

9.1 Definition. If X is a topological space, Y is a set and g: X — Y is an onto
mapping, then the collection 7, of subsets of Y defined by

1, = {G = Y| g~!(G)is open in X}

is a topology on Y, called the quotient topology induced on Y by g. When Y is
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given some such quotient topology, it is called a quotient space of X, and the in-
ducing map f is called a quotient map.

It is clear that the quotient topology induced on Y by g is the largest topology
on Y making g continuous. We should also note that the quotient topology can
be completely described as follows: F < Y is closed in the quotient topology
induced by g iff g 7}(F) is closed in X.

The first and obvious question we must deal with is: under what conditions
on g will a preassigned topology 7 on Y be identical to the quotient topology T,
induced by g? It is obvious that continuity of g is necessary, to make t < 1,.
Thus we search for additional conditions to force T o 7,. In fact, the conditions
we need were given in Definition 8.5.

9.2 Theorem. If X and Y are topological spaces and f: X — Y is continuous
and either open or closed, then the topology t on Y is the quotient topology t .

Proof. Suppose f is continuous and open. Since 7, is the largest topology
making f continuous, T < t,. But if U €1, then by definition of 7,, f~!(U)
is open in X. Now f is open as a map to (Y, 1), so f[f~!(U)] = U belongs to t.

Thus Tf 1 and thic actahlichac anniality
The reader c4 Converted with sed. l
9.3 Example. Let STn“ cnn“erter
with its usual to] Irial version x, sin x). Then f
is continuous ang httn:/ /viww stdutilityv.com ogy is a quotient

space of [0, 27].

Just as 8.10 was the central useful fact about weak topologies, the following
theorem states the fundamental result about quotient topologies.

9.4 Theorem. Let Y have the quotient topology induced by a map f of X onto
Y. Then an arbitrary map g: Y — Z is continuous iff gof: X — Z is

continuous.
x L5y
DN,
A

Proof. Necessity is trivial, since the composition of continuous maps is
continuous.

To prove sufficiency, suppose g - f is continuous, and let U be open in Z.
Then (g o f)"'(U) = f~'[g~!(U)] is open in X, so by definition of the quotient
topology on Y, g ~}(U) is open in Y. Hence g is continuous. ll

There is another approach to quotient spaces which yields a great deal of
insight. Essentially, we can regard any quotient space of X as a certain collection
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of subsets of X with a naturally defined topology. The best approach is to view
the necessary construction abstractly, then show it can be used to describe quotient
spaces.

9.5 Definition. Let X be a topological space. A decomposition & of X is a collection
of disjoint subsets of X whose union is X. If a decomposition 2 is endowed with
the topology in which # < 2 is open iff () {F | Fe &} is open in X, then &
is referred to as a decomposition space of X. You are asked to show that this does
give a topology on & in 9B.

Define a map P of X onto & by letting P(x), for x € X, be the element of 9
containing x. P is called the natural map (or decomposition map) of X onto 2.

The next theorem says that every decomposition space is a quotient space;
the theorem following that says that every quotient space is (homeomorphic to)
a decomposition space.

9.6 Theorem. The topology on a decomposition space 9 of X is the quotient
topology induced by the natural map P: X — 9.

Proof. See Exercise 9B. B

9.7 Theorem. Converted with XY, then Y
is homeomory ents are the sets
~over. STDU CONUEHer |-/ i the natwral
map P of X o ) i saying f: X - Y
is “isomorphi trial version
httn://www.stdutility.com
7\
Y —— 2

Proof. With the hint that h is defined in the obvious way, that is, (y) = f (),
we leave the details of this proof to Exercise 9B. B

The natural map P: X — 2 associated with a particular decomposition space
9 is, as noted in 9.6, a quotient map. It is often of interest, in investigations re-
volving around decomposition spaces, to know that P is, in fact, closed. To state
the basic result giving conditions on 2 which will make P closed, we introduce
the following definition.

9.8 Definition. An open set V' in a topological space X is saturated relative to a
given decomposition & of X iff V is a union of elements of Z (i.e., if V = P~Y(W)
for some open set W in &). A decomposition & is upper semicontinuous iff for
each F € 9 and each open set U in X containing F, there is some saturated open
set Vin X with F =« V < U.

9.9 Theorem. The natural map P associated with a decomposition space 2
of X is closed iff @ is upper semicontinuous.
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Proof. Suppose P is closed. Let F € 9 and let U be an open set in X containing
F. Then P(X — U)is a closed set in 9, so P~![P(X — U)] is a closed set in X
which is a union of elements of 9. Then clearly V = X — P7![P(X — U)]
is a saturated open set in X and, without much effort, F =« V < U.

Conversely, suppose & is upper semicontinuous, and let K be a closed subset
of X. To show P(K)is closed, let F e 2 — P(K). Then F « X — K, so there is
a saturated open set V with F < V < X — K, by upper semicontinuity. But
then P(V) is an open set and Fe P(V) =« 9 — P(K), which establishes that
P(K)isclosedin 2. &

9.10 Corollary. A quotient map f: X — Y is closed iff {f ~'(y)|ye Y} is an
upper semicontinuous decomposition of X.

Before moving on to some of the examples which typify the importance of
quotient constructions in topology, it is convenient to introduce one last way
of regarding quotient spaces. It requires nothing but a definition, but represents
probably the most popular way of presenting quotient spaces.

9.11 Definition. If ~ is an equivalence relation on the topological space X, then

the ident!ﬁcation enare Y/ ic dofined tn he the r‘pﬁnmnr\citin—l space 9 whose

elements are the ¢

9.12 Examples. a)
Viewed as a deco
are the one poin
As an identificati

STDU Gonverter

Converted with

trial version

space of [0, 2x].
e decomposition
h the set {0, 2n}.
e relation 0 ~ 27

and otherwise x h“n[ [wwws“lu[ili“cnm the neatest. We

can (and do) simply say e UMt CIIcle Is ootalned Irom [0, 2z ] by identifying
endpoints.”

b) Consider the square [0, 2] x [0, 2z]. If we identify each point (0, x)
with the point (27, x), the resulting identification space is homeomorphic to the
cylinder S x [0, 2x] (Fig. 9.1).

0,2m) 2r,2n)

©, 0) 2mn,0)

Figure 9.1
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Figure 9.2

The corresponding quotient map of [0, 2xn] x [0, 2z] which gives the
cylinder S x [0, 2%] as a quotient space is f(x, y) = ((cos x, sin x), y).

c) Again consider the square [0, 27] x [0, 2n]. This time, identify each

point (0, y) with t

e noint Q7 W) and alsan identifv each naint (x

0) with the point

(x, 2m). Intuitivel
obtains by first ro
ing the ends of the
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pace is what one
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ally, the quotient
S! as a quotient

roduce a cylinder
rs of sides identi-

fied, as above. The reason we chose [0, 2r] x [0, 27] is obvious.

d) If we again consider [0, 27] x [0, 2], but now identify points (x, 0) with
points (2 — x, 27) the result is a twisted strip, called the Moebius strip (Fig. 9.3).
It has several interesting properties most of which require combinatorial or
algebraic methods to elucidate.

©, 21) @n, 21)
(0, 0) @2n, 0)

Figure 9.3
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0, 2m)

(0, 0)

2n, 0)

2mn,2m)

[9

Figure 9.4

e) Once more we consider [0, 2n] x [0, 2n]. Again the points (0, y) are
identified with the points (2%, y); now, however, we identify each point (x, 0)
with the point (2n — x, 2n). This can be conveniently represented by arrows, as
in Fig. 9.4(a). The result, shown in Fig. 9.4(c), cannot be faithfully represented in

3-dimensional sp
It is a higher-dim
f) Given an)
obtain the cone,
single point (Fig|
the points (x, 1) i
another point (Fi

Converted with

STDU Gonverter

trial version
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led Klein bottle.

pnstructions. We
in X x I'witha
by identifying all
points (x, —1) to

We conclude this section by providing two more methods for generating new
spaces from old. The first is an obvious construction, based on the idea of “pulling
apart” a collection of spaces to provide a topology on their union.

2 D

AX

Figure 9.5
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9.13 Definition. Lc Converled with i let
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morphic to X,. trial version the collection of
spaces X,, then, @ -/ IWWW ST
Now define &—op ht!!"!’ ok fa!e[,!l‘lEIEW'cnmu < X is open iff

U n X¥ is open for each o« € A. The resulting space X is called the disjoint union
(or free union) of the spaces X, and is denoted Y ,.4 X,, or just ). X,. If only two
spaces X and Y are involved, we write X + Y for the disjoint union of X and Y.

In practice, we almost always drop the distinction between X, and X¥, and
treat X, itself as a subset of the disjoint union. This will never cause any trouble;
often, in fact, the spaces X, will be disjoint to begin with.

We can now employ the construction just accomplished to provide one of
the important and interesting ways of generating new spaces.

9.14 Definition. Let X and Y be disjoint topological spaces, with f a continuous
map of a closed subset A of X into Y. For each pe f(A), consider the set
A, = {p} U f7'(p) and form the quotient of X + Y obtained by identifying the
points of 4, for each p € f(A4). The resulting space is denoted by X + , Y and we
say X has been attached to Y by f. The decomposition map of X + Y onto
X +, Y will be denoted q. For examples of attachings, see Exercise 9L.

9.15 Theorem. a) q | Y is a homeomorphism and q(Y) is closed in X + Y,
b) q | (X — A)is a homeomorphism and (X — A)isopenin X + Y.
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Proof. a) q|Y is certainly one—one and continuous. Let F be a closed subset
of Y. Then Fis aclosed subset of X + Yand F = g ~![¢(F)]. Since g is a quotient
map, q(F) must thus be closed in X + , Y and hence in g(Y). Hence g | Yisa
homeomorphism. Also, letting F = Y, this argument shows that g(Y) is closed
inX +,7Y.

b) g | (X — A)is certainly one—one and continuous. Let G be an open subset
of X — A. Then q~'[¢(G)] = G. Since q is a quotient map, q(G) must then be
open in X + Y and hence in g(X — A), so q \ (X — A) is a homeomorphism.
The argument also shows that g(X — A)isopenin X +,Y. B

Problems

9A. Examples of quotient spaces
1. Let ~ be the equivalence relation (x;, x,) ~ (y;, ;) iff x, = y,, on R% Then R?/~
is homeomorphic to R.

2. Let 9 be the decomposition of the plane into concentric circles about the origin. Prove
that 2 is homeomorphic to {x e R | x > 0}; show directly that 2 is upper semicontinuous.

3. Let ~ be the equivalence relation x ~ y iff x and y are diametrically opposite, on

S!. Then S!/~ is h , S2? true?
Converled with
9B. Quotients
1. The process STn“ cnn“erler bosition space does
define a topology. trial version
2. The topolog bpology induced by

the natural map P: httn://www stdutilitv.com
9C. Open and closed maps

1. An open continuous map need not be closed, even if it is onto. [Consider the map 7,
of R? onto R defined by n(x;, x,) = x;.]

2. A closed continuous map need not be open, even if it is onto. [Consider the map of
[0, 2] onto the unit circle given in 9.3.]

3. State and prove an analog to 9.9 for open maps, by appropriately defining “lower
semicontinuous decomposition”.

9D. Quotients of subspaces and subspaces of quotients

If 2 is a decomposition of X, then 2 induces an obvious decomposition 2, on any subset
Aof X.

1. It is not, in general, true that 2, is homeomorphic to
D|A={yeP|Any+#einX}.

[Let 2 be the set of vertical lines in R2. For A take the negative x-axis together with the point
(0, 1). Then 92, has an isolated point (4G), while 2 | A does not.]

2. If A is a union of elements of &, then 2, and 2 | A are homeomorphic.
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9E. Finite decompositions
A decomposition 2 of a space X will be called finite iff only finitely many elements of 2 have
more than one point. (Typically, 2 will contain only one element with more than one point.)
Prove that a finite decomposition with closed elements is upper semicontinuous. Show that
the restriction that the elements of 2 be closed is necessary.

9F. Interpolation of quotient maps

Let f: X — Y be continuous. Then there is a quotient map g of X onto a space Z and a one—
one continuous map h of Z into Y such that f = ho q.

9G. Quotient maps and product spaces

The following conjecture is rather attractive : if 9 is a decomposition of X into homeomorphic
sets, say all homeomorphic to Y, then X is homeomorphicto 2 x Y. Find a counterexample.

9H. Strong topologies

Here we develop the theory for strong topologies analogous to the theory for weak topologies
given in 8.9 through 8.16.
Suppose X, is gtomelaaiaal en wd £ oo monal ¥V taasate V for each o € 4. The

strong topology coir] Converted with Y such that £,}(U)

is open in X, for ea
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2. If Y has the s - - enamapg: Y - Z
is continuous iff g o trial version ind 9.4.)

The family of n h“n:l I WWW.SI[lIIIiliW.BIlm ¥ is in the image of

some f,. For families which cover points, the strong topology is just a quotient topology,
according to what follows.

Let X be the disjoint union of the spaces X,. If x and y are points of X, then (somewhat
informally) x € X, and y e X, for some choice of indices & and . We define x ~ y iff
Sx) = f5(y). This defines an equivalence relation on X, and we denote the resulting quotient
space by Z.

3. If the maps f, cover points of Y, then Y has the strong topology coinduced by them
iff X is homeomorphic to the quotient space Z constructed above, under the map h which is
defined as follows: for x € X, we have x € X, for some a € A4, and we define

hx) = {ye X | f(y) = f0)}.

91. Strong topologies and the lattice of topologies

Let {7, | « € A} be a family of topologies on a fixed set X and denote by X, the space consisting
of the set X with the topology 7,. The identity function from the space X, to the set X will be
denoted j,.

1. The strong topology coinduced on X by the maps j, is the intersection (infimum) ¢
of the topologies t,.
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2. (X, 1) is homeomorphic to the quotient space obtained by identifying points x and y
in the disjoint union )’ X, iff j(x) = jy(y), where xe X, and y € X,.

These results compare with the results in 81 on weak topologies and suprema in the
lattice of topologies.

9]. Disjoint unions and products

If X, is homeomorphic to X, for each « € 4, then the disjoint union ), X, is homeomorphic
to X x A, where A is given the discrete topology.

9K. Covering spaces

Let p be a continuous map of a space X onto a space X. Ifeach x in X has a nhood U such that
p~!(U) is a disjoint union of open sets ¥ each of which is homeomorphic to U under the map
p | V, then p is called a covering projection. X is called the base space and X is the covering
space.

A local homeomorphism from a space X to a space Y is a continuous map f from X to Y
such that each point x in X has an open nhood which is mapped homeomorphically by f
onto an open subset of Y.

1. The map p(x j h.

2. Every coveri Converted with se fails.

3. A local homeg STn“ c 'I projection, the base
space is a quotient s 0““3' er

41.) inc lclzonditi( trial version he usual projection
map being the cover e

s ip%ox  Dm//wawstdutilitveom |, ., defined

by (p x g)(x, y) = (p(x), q(»)) is a covering projection from X x ¥to X x Y.

9L. Attachings
1. If X is any space, A4 is a closed subset of X, and p ¢ X, the space X + , {p} resulting
from the function f which takes 4 to {p} is homeomorphic to the quotient space of X obtained
by identifying A4 to a single point.
2. LetX =LY =[23],a={0,1},and let f: A — Y be defined by f(0) = 2, f(1) = 3.
Then X +, Y is homeomorphic to S*.

9IM. Coherent topologies

Let &/ be a collection of subsets of a topological space X. The topology on X is said to be
coherent with o/ provided a set G is open in X iff G N A is open in 4, for each A € .

1. The topology on X is coherent with ./ iff it is the strong topology (9H) coinduced by
the inclusion maps i, : A - X, for A e .

2. The topology on X is coherent with &/ provided a set F is closed in X iff F n A4 is
closed in A, for each 4 € «.

3. If & is a collection of open sets whose union is X, then the topology on X is coherent
with .
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4. If o is a locally finite collection (7D) of closed sets whose union is X, then the topology
on X is coherent with /.

There is only one topology on X coherent with any given collection &/ of subsets of X,
of course. It is sometimes called the weak topology generated by the sets in ., a term which
we have already used to mean something quite different.

Coherent topologies are useful in the study of k-spaces; see Section 43.
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Chapter 4

Convergence

10 Inadequacy of sequences

The reader should be familiar with the fact that a function f: R — R is continuous
at x, in R iff whenever (x,) is a sequence converging to x, in R, then the sequence
(f(x,)) converges to f(x,). Since we introduced topologies for the purpose of
providing a general setting for the study of continuous functions, this raises two
obvious questions:

a) can we define sequential convergence in a general topological space?

b) if so, does the resulting notion describe the topology (as do the closure and
interior operations, for example) and hence the continuous functions?

The answers (reg _ 5 of spaces”) are
provided in this GConverted with successful search
s o+ STDU Conuerter

10.1 Definition. A d to converge to
x€ X, and we w trial version is some positive
integer n, such th . (x,) is eventually
inU. hitp://www stdutility.com

It is clear that we can replace “nhood” with “basic nhood” in this definition
without altering its impact.

10.2 Examples. a) Let p be a pseudometric on X. Then x, — x in the topology
generated by p iff p(x,, x) = 0. This is clear, since x, — x iff (x,) is eventually
in each e-disk about x.

b) In the product space R® a sequence f, converges to f iff f,(x) — f(x) for
each x € R. This is clear once it is remembered that basic nhoods of fe R®
have the form

U(f,F, ) = {geR*||g(x) — f(x)| < € for each x € F},
for F a finite subset of R and ¢ > 0. Thus f, — fiff f, approaches f on each finite
set, which happens iff f,(x) — f(x) for each x € R.

Sequential convergence will be able to describe only those topologies in
which the number of (basic) nhoods around each point is no greater than the
number of terms in the sequences.

70
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10.3 Definition. A topological space X is first countable (or satisfies the first axiom
of countability) iff each x € X has a countable nhood base.

Since the disks about x of rational radius form a nhood base at x in any
pseudometric space, the pseudometrizable spaces are all first countable. They
form the most important single class of first-countable spaces.

The first axiom of countability has been defined before, in 4.4(b), but you
may have missed it. The second axiom was introduced in SF. Both will be studied
in detail in Section 16.

10.4 Theorem. If X is a first-countable space and E = X, then x € E iff there is
a sequence (x,) contained in E which converges to x.

Proof. If x € E, pick a countable nhood base {U,|n =1,2,...} at x in X.
Replacing U, by ()=, U, where necessary, we may assume that
U, oU,>: -

Now U, n E # o for each n, so we can pick x, € U, n E. The result is a sequence
(x,) contained in E which obviously converges to x.
Conversely, suppose (x,) is a sequence contained in E and x, — x. Then

each nhood of x ¢ Converted with cts E,soxc E. W
10.5 Corollar) STn“ c
a) Uc Xis ) 0“_“erter ually in U,
b) F < X is trial version e F,
of:X-1% hup//wwwstdutiliveom )-/)inY.

Proof. This is left as Exercise 10C. B

Thus sequential convergence describes the topology of any first countable
space. A somewhat wider class of spaces can be described using sequences, in
fact (see the notes), but the following examples show that the basic Theorem 10.4
fails in the general setting.

10.6 Examples. a) Consider X = R® with the product topology. Let
E = {feR*|f(x) = 0or1and f(x) = 0 only finitely often},

and let g € R® be the function which is 0 everywhere. Then if U(g) is a basic
nhood of g, we have

U(g) = {heR*||h(y) — g(y)l < €if ye F}

for some finite set F < R and some ¢ > 0. But such a nhood U(g) meets E in the
function 4 which is 0 on elements of F and 1 elsewhere. Hence, g€ Cly E. On
the other hand, if (f,) is a sequence in E, with each f, being O on the finite set 4,,
then any function which is a limit of the sequence (f,) can be zero at most on the
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countable set | ), 4,. Since g does not meet this requirement, no sequence
in E can converge to g.

Since sequences cannot describe the topology of R®, the criterion for con-
tinuity given in Theorem 10.5 for first-countable spaces probably fails here. In
Exercise 10B, you are asked to find a noncontinuous function F: R® —» R with

the property that whenever f, — f in R®, then F(f,) —» F(f).

b) Recall that  denotes the set of ordinals < w,, the first uncountable
ordinal, and Q, = Q@ — {w,}. Put the order topology (6D) on £, for which a
subbase consists of all sets [1,0) = {y|1 <y < a}, for a € , together with all
sets (B, w,] = {y| B <y < w,}, for Be Q. Note that if « is a nonlimit ordinal,
{a} is a nhood of « in this topology, while if « is a limit ordinal, the nhoods
(B, a], B < «, form a nhood base at a. Whenever Q is used as a topological space
hereafter, this topology is assumed.

Now note that w, € Q, in this topology. But if (a,) were a sequence in £,
with limit w;, we would have w, = sup (a,), contradicting Theorem 1.20. Thus
sequences fail to describe the topology on L.

Problems Converted with
10A. Sequential ¢ STn“ cnn“erter
For each of the folld trial version

a) Whichseque  hitp://www.stdutility.com

b) Is X first countable?
c) Does the result of Theorem 10.4 hold true for X?

(One of your answers should show that first countability is not necessary in Theorem 10.4.)
1. X any uncountable set with the cofinite topology (in which the closed sets are X and

all finite subsets of X).

2. X any uncountable set with the cocountable topology, in which the closed sets are X
and all countable subsets of X.

3. X the real line with the topology in which the open sets are the sets of the form (a, c0),
aeR.

4. X the Sorgenfrey line E (4.6).
5. X any discrete space.
6. X any trivial space.

10B. Sequential convergence and continuity

Find a function F: R® —» R which is not continuous but which has the property that
F(f,) —» F(f) whenever f, — f in RR,
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10C. Topology of first-countable spaces
Let X and Y be first-countable spaces.

1. U < X is open iff whenever x,, — x € U, then (x,) is eventually in U.

2. F = X is closed iff whenever (x,) is contained in F and x,, — X, then x € F.

3. f: X — Y is continuous iff whenever x, — x in X, then f(x,) —» f(x)in Y.

4. Which of the properties above hold for an uncountable set Z with the cofinite topology?

11 Nets

Formally, a sequence in X is a mapping of N into X ; in more informal terms, we
are using the integers to order a collection of points in X. The key to successful
generalization of the notion of sequence, for use in topological spaces, lies in
retaining the idea of ordering a collection of points of X by mapping some ordered
set into X, while significantly relaxing the conditions on the ordered sets we will
allow.

The linearity of the order on the integers can be dispensed with, provided we
supply some other way of giving a definite “positive orientation” to our ordered
sets. The following definition has stood the test of time.

11.1 Definition. A i n A satisfying:
Gonverted with
A-a) A < A
wi - STDU Gonverter
A-c) if Ay, A, trial version < 13
The relation < is h“n[ Iwwws“lulili“cnm 5 said to direct A.

The first two properues, 7v=a anua 7v-v, are ranmrar requirements for an order
relation . (Note, however, the lack of antisymmetry; a direction need not be a
partial order.) A-c provides the positive orientation we were seeking for A. In
fact, it models a property possessed by the set %, of all nhoods of a point x in a
space X, when ordered by “reverse inclusion”: U, < U, iff U, < U,. Although
directed sets were not first introduced (either historically or here) with this in
mind, it is precisely this which makes them useful in describing convergence in
general topological spaces.

The concept of a net, which generalizes the notion of a sequence, can now be
introduced, using an arbitrary directed set to replace the integers.

11.2 Definition. A net in a set X is a function P: A — X, where A is some directed
set. The point P(4) is usually denoted x,, and we often speak of “the net (x;);.5”
or “the net (x,)” if this can cause no confusion.

A subnet of a net P: A — X is the composition P o ¢, where ¢ : M — A is an
increasing cofinal function from a directed set M to A. That is,

a) o(u,) < @(u,) whenever u, < u, (¢ is increasing),
b) for each A € A, there is some u € M such that 1 < ¢(u) (¢ is cofinal in A).
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For ue M, the point P o ¢(u) is often written x,,, and we usually speak of “the
subnet (x,,) of (x,)”.

If (x,) is a net in X, a set of the form {x, | A > 4.}, for Ao € A, is called a tail
of (x;,).

The definition of net convergence is modeled after the definition of sequential
convergence introduced in 10.1 and should provide no problems.

11.3 Definition. Let (x,) be a net in a space X. Then (x,) converges to xe€ X
(written x, — x) provided for each nhood U of x, there is some 4, € A such that
A > Ao implies x, € U. Thus x, — x iff each nhood of x contains a tail of (x,).
This is sometimes said: (x,) converges to x provided it is residually (or eventually)
in every nhood of x.

We say (x,) has x as a cluster point iff for each nhood U of x and for each
Ao € A there is some A > A, such that x, € U. This is sometimes said (x;) has x
as a cluster point iff (x,) is cofinally (or frequently) in each nhood of x.

Note that in both definitions above it is sufficient if we restrict attention to
the nhoods in some fixed nhood base at x.

11.4 Examples. a) Let X be a tonological snace. x e X and A any fixed nhood

base at x in X. T
if we pick xy € U
For given any nh
implies U < U,,
it is the model for
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Thus every sequence (x,) is a net. It is clear that the two definitions of convergence
of (x,) (as a sequence in 10.1 and as a net in 11.3) coincide.

Note that every subsequence of a sequence (x,,) is a subnet of (x,). The converse
is not true; there is no guarantee that a subnet of (x,) is a subsequence, because
there is no way of being sure that it is a sequence! This illustrates the (at first,
strange) fact that a subnet can have a much richer index set than the original
net.

c) The collection 2 of all finite partitions of the closed interval [a, b] into
closed subintervals is a directed set, when ordered by the relation A4; < 4,
iff 4, refines A,. Thus, if f is any real-valued function on [a, b], we can define
a net P, : ? — R by letting P;(A) be the lower Riemann sum of f over the
partition A; likewise, we can define Py: 2 — R by letting Py(A) be the upper
Riemann sum of f over A. Convergence of both of these nets to the number ¢
simply means [? f(x) dx = c¢. This example is historically important; it is what
first led Moore and Smith to the concept of a net. See the notes.

d) Let (M, p) be a metric space, with x, € M. Then M — {x,} becomes a
directed set when ordered by the relation x < y iff p(y, xo) < p(x, xo). Hence
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if f: M — N, where N is a metric space, the restriction of f to M — {x,} defines
a net in N. The reader can check that this net converges to z, in N iff
lim, ., f(x) = z, in the elementary calculus sense.

e) If (x,) converges to x, every subnet of (x,) converges to x.
f) If x, = x, for each 1 € A, then x, — x.

11.5 Theorem. A net has y as a cluster point iff it has a subnet which converges
to y.

Proof. Let y be a cluster point of (x,). Define M = {(4, U) ] A€ A, U anhood
of y such that x, € U}, and order M as follows: (1, Uy) < (4, Uy) iff 4; < 4,
and U, < U,. This is easily verified to be a direction on M. Define ¢: M — A
by @(4, U) = A. Then ¢ is increasing and cofinal in A, so ¢ defines a subnet of
(x;). Let U, be any nhood of y and find 4,€ A such that x; € U, Then
(Ao Up) € M, and moreover, (4. U) = (4o, Uy) implies U = U,, so that x; €
U < U,. It follows that the subnet defined by ¢ converges to y.

Suppose ¢: M — A defines a subnet of (x;) which converges to y. Then for
each nhood U of y, there is some uy in M such that u > u, implies x,,, € U.
Suppose a nhood-T—=frand o maint ] tu A asaaivan Cia (M) is cofinal in

A, there is some Converted with Iso some uy e M
such that u > y at u* > u, and
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Proof. A subnet of a subnet of (x,) is a subnet of (x,). R

We turn now to the problem of showing that nets do indeed represent the
correct way of approaching convergence questions in topological spaces.

11.7 Theorem. IfE < X, then x € E iff there is a net (x,) in E with x; — x.

Proof. If x € E, then each nhood U of x meets E in at least one point x,. Then
(xy) is a net contained in E which converges to y. (See Example 11.4(a).)

Conversely, if (x;) is a net contained in E which converges to y, then each
nhood of y meets E (in a tail of (x,)) and hence y e E. B

11.8 Theorem. Let f: X — Y. Then f is continuous at x, € X iff whenever
X, — Xo in X, then f(x,) = f(xq) in Y.

Proof. Suppose f is continuous at x, and x; — Xx,. Given a nhood V of f(x,),
f7X(V) is a nhood of x,, so for some A, A > A, implies x, € f “}(V). Thus
A > Ay implies f(x,;) € V, showing that f(x,) - f(x,).

On the other hand, if f is not continuous at x,, then for some nhood V of
f(xo), f(U) & V for any nhood U of x, Thus for each nhood U of x,, we can
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pick x; € U such that f(xy) ¢ V. But then (xy) is a net in X and x; — x,, while
Sxy) # f(x0) W
11.9 Theorem. A net (x,) in a product X = [[,c4 X, converges to x iff for
each a € A, m,(x;) = n(x)in X,,.

Proof. If x; —» x in [] X,, then since r, is continuous, m,(x;) — 7,(x), by the
previous theorem, for each a.
Suppose on the other hand that n,(x,) — n,(x) for each « € A. Let

1, (U)o N(U,,)

be a basic nhood of x in the product space. Then for each i = 1, ..., n there is
a 4; such that whenever A > 4;, m,.(x,) € Um. Thus if A, is picked greater than all
of A,..., 4, we have T (x) € U,, i=1,...,n forall 1 > 4, It follows that

for 2 > 2, x;, € () n;'(U,,), and hence that > x, — x in the product. H

In case all factor spaces are homeomorphic to X, the last theorem has a
a pleasant re-interpretation. In the product topology on the set X of all functions
from 4 to X, a net f, converges to f iff for each e A, fi(a) - f(a). That is,

convergence of fymaticna in VA suith this tamalacs lo buat salatwise CONVErgence.
For sequences of| Converted with if functions on a
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structures on X4 and the interactions between them are studied.

11.10 Definition. A net (x;) in a set X is an ultranet (universal net) iff for each
subset E of X, (x,) is either residually in E or residually in X — E.

It follows from this definition that if an ultranet is frequently in E then it is
residually in E. In particular, an ultranet in a topological space must converge
to each of its cluster points.

For any directed set A, the map P: A — X, defined by P(1) = x for all
A€ A, gives an ultranet on X, called the trivial ultranet. Nontrivial ultranets
can be proved to exist (relying on the axiom of choice; see 12D.5) but none has
ever been explicitly constructed. Most facts about ultranets are best developed
using filters and ultrafilters as a vehicle. We will do this in the next section.

11.11 Theorem. If (x,) is an ultranet in X and f: X — Y, then (f(x,)) is an
ultranet in Y.

Proof. If A = Y, then f~}(4) = X — f~}(Y — A), so (x,) is eventually in either
f~1(A) or f71(Y — A), from which it follows that (f(x;) is eventually in either A
or Y — A. Thus, (f(x,)) is an ultranet. B
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Problems

11A. Examples of net convergence

1.In R® let E = {feR®| f(x) =0 or 1, and f(x) = O only finitely often} and let g
be the function in R® which is identically 0. Then, in the product topology on R® ge E
(refer to Example 10.6). Find a net (f;) in E which converges to g.

2. In the ordinal space, recall that w, e Q, (see Example 10.6). Find a net (x,) in Q,
which converges to w, in Q.

3. Let M be any metric space. A mapping P(x) = x, of Q, into M will be a net. Show
that x, —» x in M iff x, is eventually equal to x.

4. Let xe R" and define < onR"by y > ziff |y — x| < |z — x|. Then, with this order,
A = R" — {x} is adirected set. Thus any function f: R" — R defines a net in R (by restricting
ftoR" — {x}). Show that this net converges to L iff lim_,, f(y) = L.

11B. Subnets and cluster points
1. Every subnet of an ultranet is an ultranet.
2. Every net has a subnet which is an ultranet.

3. Exhibit a sequence (x,) on a set X and a subnet of (x,) which is not a sequence.

‘ 4. If (xx). isa n_ Converted with then y is a cluster
point of (x,) iff y €

5. If an ultranet STn“ cnn“erter
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11D. Nets describe topologies

1. Nets have the following four properties (some have already been mentioned in the
text):

a

X1))zea has my(x) for

if x, = x for each 4 € A, then x; — x,

if x; — x, then every subnet of (x;) converges to x,

if every subnet of (x,) has a subnet converging to x, then (x,) converges to x,
[diagonal principal] if x; — x and, for each A€ A. a net (x}),.,,, converges to x;,
then there is a diagonal net converging to x,; ie., the net (xﬁ)k,\,ﬂsm, ordered
lexicographically by A, then by M, has a subnet which converges to x.

— — — —

b
c
d

2. Conversely, suppose in a set X a notion of net convergence has been specified (telling
what nets converge to what points) satisfying a), b), c) and d) of part 1. If the closure of a
subset E of X is defined by E = {x € X | x, - x for some net (x;) contained in E}, the result
is a topological space in which the notion of net convergence is as originally specified.

12 Filters

We have just seen that a good (i.e., topologically descriptive) notion of convergence
can be obtained by simply using the nhoods of a single point as the model for
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an indexing set to replace the integers used for sequences. We now introduce a
second way of describing convergence in a topological space in which we say,
in effect, why not just treat the nhoods themselves as converging to the point?
The result is the theory of filter convergence.

12.1 Definition. A filter # on a set S is a nonempty collection of nonempty subsets
of S with the properties:

a)if F,F,e #then F, n F,e #,
b) f FE% and F c F, then F' € &.

A subcollection & , of # is a filter base for & iff each element of # contains some
element of &, that is, iff

F = {F c S| F, c Fforsome Foe #}.

Evidently, a nonempty collection ¢ of nonempty subsets of S is a filter base for
some filter on S iff

a) if Cy, C, e € then C; = C; n C, for some C; € &,

in which case the j of elements of %.
GConverted with .

If #, and & 'I or & , is coarser
than #,) iff #, S'"]“ c £ o and free iff
o 7 Converter
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set A.

b) Let X be any topological space, A = X. Then {U c X |A < U°} is
a filter on X. In particular, the set % of all nhoods of x € X is a filter on X, and
any nhood base at x is a filter base for %,. This filter will sometimes be called
the nhood filter at x.

¢) Let ¢ = {(a, ) |aeR}. Then % is a filter base for a free filter on R,
which we will call the Frechet filter on R.

12.3 Definition. A filter % on a topological space X is said to converge to x
(written # — x) iff %, < &, that is, iff # is finer than the nhood filter at x. We
say & has x as a cluster point (or, &# clusters at x) iff each F € # meets each
Ue,. Hence # has x as a cluster pointiff xe () {F | F e #}. Also, it is clear
that if # — x, then & clusters at x.

It will be convenient to have the notions of convergence and clustering
available for filter bases; they generalize easily and obviously. A filter base ¥
converges to x iff each U € %, contains some C € € (iff the filter generated by ¥
converges to x); ¥ clusters at x iff each U € %, meets each C e ¥ (iff the filter
generated by € clusters at x).
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12.4 Examples. a) Let X be a topological space, 4 < X. The cluster points of
the filter # = {U « X | A = U} include each point of 4. Under what con-
ditions (on A4 or on the topology) will # converge to some point?

b) The Frechet filter on R has no cluster points.

¢) Let # be the filter on R generated by the filter base ¥ = {(0, ¢) | ¢ > 0}.
Then % — 0 (although 0 does not belong to every element of #).

12.5 Theorem. & has x as a cluster point iff there is a filter 4 finer than &
which converges to x.

Proof. If # has x as a cluster point, the collection¥ = {UNF|Ue%,, Fe ¥}
is a filter base for a filter ¢ which is finer than & and converges to x.

Conversely, if # < ¥ — x, then each F € & and each nhood U of x belong
to ¢ and hence meet, so % clusters at x.

According to the next three theorems, filter convergence is adequate to the
task of describing topological concepts.

12.6 Theorem. If E = X, then x € E iff there is a filter & such that E€ &

and F — x.
Proof. If yeE, t Converted with he resulting filter
Contél(l)lr?viraslgl(;,ci STn“ con“erter d hence yc E.
12.7 Definition. If trial version is the filter on Y
having fora base  hp://www.stdutility.com

12.8 Theorem. Let f: X — Y. Then f is continuous at x, € X iff whenever
F = xqin X then f(F) - f(x,)in Y.

Proof. Suppose f is continuous at x, and & — x,. Let V be any nhood of
f(x,) in Y. Then for some nhood U of x, in X, f(U) < V. Then since U € &
Vef(&)

Conversely, suppose whenever & — x, in X then f(¥) — f(x,) in Y. Let
Z be the filter of all nhoods of x, in X. Then each nhood V of f(x,) belongs to
f(F), so for some nhood U of x,, f(U) = V. Thus f is continuous at x,. I

12.9 Theorem. A filter F converges to xq in [| X, iff n(F) — m,(x,) in X,,
for each «.

Proof. If # — x,in [] X,, then n(F) — m,(x,) in X, because =, is continuous.
Conversely, suppose m(F) — m,(xo), for each a. Let (i, n, '(U,) be a

basic nhood of x, in [] X,. Then U, is a nhood of =,(x,), for each k. So

U,en,(#), for each k, and hence =, (F,) < U, for some F,e%. Then

ﬂ,, 1 FieF and (Vioi Fo © (Viey 1 (U, so (Viey 7' (U) € #. Thus
- xo. 1



80 Convergence [12

Many of the applications of filter convergence can be neatly done using only
the ultrafilters.

12.10 Definition. A filter & is an ultrafilter iff there is no strictly finer filter 4
than #. Thus the ultrafilters are the maximal filters.

The next theorem makes clear the analogy between ultrafilters and ultranets
(11.10). In particular, it can be used to show that an ultrafilter must converge to
each of its cluster points.

12. 11 Theorem. A filter & on X is an ultrafilter iff for each E < X, either
EeForX —Eec%

Proof. Suppose & is an ultrafilter and E ¢ X. Every element F of &% meets
either E or X — E and hence (since no two elements of & have empty intersection)
they must all meet one or the other, say F N E # @ for all Fe . Then

{(FNE|FeZ}
is a filter base for a filter ¢ finer than % which contains E. Since ¢ cannot be
strictly finer than &, we have 4 = % and hence E € #

Conversely, s _ [. If % is a strictly
finer filter than Gonverted with A e #, from the
condition, and si STn“ c that both 4 and
X — A belong to 0““3"3'

12.12 Theorem trial version
Proof. Let # be  http://woww.stdutilitv.com fially ordered by

F,< &, iff #, =, Inenacham {F,|0€ Aj ifom & has || #, for an
upper bound (that () #, is indeed a filter follows easily from the fact that if F;
and F, belong to U F . then they both belong to some one &, by linearity of the
inclusion order on {&, | @ € A}). Thus, by Zorn’s lemma, & has an upper bound
% and, obviously, ¢ is an ultrafilter containing . i

The proof of the last theorem, it should be noted, depends on the axiom of
choice. Thus the following examples of free ultrafilters depend for the proof of
their existence on the (nonconstructive) choice axiom. Explicit constructions of
free ultrafilters have never been accomplished, although there are more free
ultrafilters than fixed ultrafilters (that is, for a discrete space X, |[BX — X| > |X]|;
see 19J and 19.13(d).

12.13 Examples. a) A filter # on X is a fixed ultrafilter iff # = {F < X | xe F}
for some x € F. By the criterion given in Theorem 12.11, each filter of this form
is an ultrafilter. On the other hand, if & is a fixed ultrafilter, say ﬂ F =A # o,
then # must be the filter of all sets containing A (since this is a filter containing
&) and A must be a single point (since the filter of all sets containing x € A4 is
finer than &#).
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b) The Frechet filter # on R is, by Theorem 12.12, contained in some ultra-
filter 4. Since & is free, ¢ must be also be free.

c) The ultrafilter containing a given filter # need not be unique. For if
Z is the filter of all sets containing 4 = X, then for each x € A, the filter of all
sets containing x is an ultrafilter containing #. In fact, if a filter is contained in
a unique ultrafilter, it is itself an ultrafilter; see Exercise 12C.

The following theorem is easily proved (using, for example, the criterion
given in Theorem 12.11) and will be useful later.

12.14 Theorem. If f maps X onto Y and & is an ultrafilter on X, then f(F)
is an ultrafilter on Y.

The similarities between net and filter convergence are manifest. Each
describes the topology on a topological space with equal facility, “finer filters”
provide a filter analog to “subnets” (by Theorem 12.5). In addition, there is more
than a casual relationship between the ideas behind the two approaches. Thus
the fact that a formal bridge can be built between the two notions should come
as no surprise.

12.15 Definition. [ Converted with filter base € con-
sisting of the set lter generated by

(x2) STDU Gonverter

12.16 Definition. I : : € #}. Then A,
is directed by the Irial version map P: Ag - X
defined by P(x, F,  http://www. stdutilityvcom (-

12.17 Theorem. a) A filter & converges to x in X iff the net based on & con-
verges to x.

b) A net (x;) converges to x in X iff the filter generated by (x;) converges
to x.

Proof. a) Suppose & — x. If U is a nhood of x, then U € &. Pick pe U. Then
(p, Uye Ag and if (g, F) = (p, U), then pe F < U. Thus the net based on &
converges to x.

Conversely, suppose the net based on & converges to x. Let U be a nhood
of x. Then for some (p,, Fy) € Ag, we have (p, F) > (po, F,) implies pe U. But
then F, = U; otherwise, there is some g € F, — U, and then (q, Fy) = (po, Fo),
but g¢ U. Hence U e #,s0 F — x.

b) The net (x;) converges to x iff each nhood of x contains a tail of (x,).
Since the tails of (x,) are a base for the filter generated by (x,), the result follows. I

Similar results are true of cluster points, the relationship between subnets
and finer filters and the relationship between ultranets and ultrafilters. We will
leave all these to Exercise 12D.
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Filters are preferred to nets in dealing with convergence questions in topo-
logical spaces. The reason for this involves the difference that nets are, and must
remain, essentially set-theoretic (or order-theoretic) in nature, and hence passive,
while filters can, with the addition of topological restrictions on their sets, become
intimately involved with the structure of the space itself. Examples of uses of
filters which could hardly be duplicated with nets can be found in Exercises 17K,
17M, 19J, 19K and 19L. See also Exercise 12E in this section.

Problems

12A. Examples of filter convergence

1. If the real line is given its topology as the looped line (4D), then the Frechet filter #
converges to 0.

2. Which filters # will converge to x in a discrete space X? In a trivial space X?

3. Let X be an infinite set, & the filter on X generated by the filter base consisting of all
complements of finite sets. To which points does & converge if X is given the cofinite
topology?

4. Show that if a filter in a metric space converges, it must converge to a unique point.

12B. Ultrafilters Converted with
1. The intersect the set of all filters
on X, ordered by # STn“ cnn“erler fand ¢ are different

ultrafilters on X, the _ -
trial version

2. The collectio 5 a complete lattice

with 0 and 1. Conv h“n:] IWWW.SI[lIIIiliW.Bﬂm filters of the family

are all contained in somrc SIITZIC UIIallIcr,
3. Under what condition is a filter the intersection of the ultrafilters containing it?

12C. Ultrafilters. uniqueness
If a filter & is contained in a unique ultrafilter &', then & = .

12D. Nets and filters. the translation process

1. A net (x;) has x as a cluster point iff the filter generated by (x;) has x as a cluster point.

2. Afilter # has x as a cluster point iff the net based on & has x as a cluster point.

3. If(x,,)is a subnet of (x,), then the filter generated by (x;,) is finer than the filter generated
by (x,).

4. The net based on an ultrafilter is an ultranet and the filter generated by an ultranet
is an ultrafilter.

5. The net based on a free ultrafilter is a nontrivial ultranet. Hence, assuming the axiom
of choice, there are nontrivial ultranets.

12E. P-filters
Let 2 be a class of subsets of a topological space such that if P, and P, are sets from 2,
then P, n P, and P, U P, belong to #. A P-filter on X is a collection & of nonempty
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elements of 2 with the properties :

a) P, P,e &% implies P, " P, e &,

b) P,e #,P, < P,e P implies P, &.
A P-ultrafilter is a maximal 2-filter.

A Pilter F converges to p € X iff each nhood of p contains an element of &, and this
definition is applied even when the 2-filter is defined on a dense subset of X rather than on X
itself. A 2-filter & has p as a cluster point iff p belongs to the closure of each P e &#. Then

if 2 consists of closed sets, a ?-filter # has a cluster point iff (| {P | Pe F} # o.
The most important examples of 2-filters are obtained as follows:

a) # = all subsets of X ; then the P-filters are the filters in X, as defined in 12.1, and the
theory we are about to outline reduces to the material of this section.

b) 2 = all open subsets of X ; then the 2-filters are called open filters.

c) 2 = all closed subsets of X ; then the 2-filters are called closed filters.

d) 2 = all zero sets in X = all sets of the form f ~1(0) for f: X — Icontinuous; then the
P-filters are called z-filters.

Each of these collections 2, except the last, is known to satisfy the requirement set out at the

beginning of this pr
1. If Z, is a zerd Converted with Z, = £,71(0). Prove
femeds  STDU GOnUErter [
2. Every 2-filte trial version
point then tcomel DU/ /Www.stdutilitveom |t

4. For a 2-filter &, the following are equivalent :

a) & is a P-ultrafilter,
b) whenever Pe 2 and P n F # o foreach Fe &#,then Pe &.

5. Every P-ultrafilter is prime; ie., if P, and P, belong to £ and P, U P, € &, then
P,eForP,es.

6. Every prime 2-filter is contained in a unique 2-ultrafilter (compare with 12C). Every
prime filter is an ultrafilter, but there are prime z-filters which are not z-ultrafilters. [In R,
let J = {1/n|n=1,2,...}. Thesets J,, = {I/n|n=mm+ 1,...} form a filter base for
a filter on J, and this filter is contained in some ultrafilter % on J. Define & to be the collec-
tion of all zero-sets Z in R such that Z n J e #. Then & is a prime z-filter, but & has 0 for
a cluster point while # + 0, so & is not a z-ultrafilter.]

12F. Mappings of P-filters
For each topological space X, let 2, be a collection of subsets of X such that if f: X - Y
is continuous and Q € 2, then f~'(Q) € Z5. (For example, each of the collections 2 des-

cribed in the previous problem has this property.)
Let f: X — Y be continuous, & a Py-filter (12E) on X.

L fA(F)={QePy| fMQ) eF}isaPyfilteron Y.
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2. If # is a prime Py-filter on X, f*(F) is a prime P,filter on Y. In particular, if #
is a Py-ultrafilter on X, f#(#) is contained in a unique 2y-ultrafilter on Y.

This material is important for the following reason. Many times we start with a topological
space X and, desiring certain convergence properties, we create a larger space oX by adding
to X certain 2-ultrafilters as points. Then part 2 above provides us with a way of extending
amap f: X - Ytoamap F: aX — aY, namely, by defining

F(p) = unique 2-ultrafilter containing f*(p)
forpeaX — X.
Concrete examples of this procedure are given in 19J.6 and 19K.6.
12G. Open ultrafilters

An open filter in a space X is a ?-filter (12E) where 2 is the collection of open subsets of X.
An open ultrafilter is a maximal open filter; by 12E.2, every open filter is contained in an open
ultrafilter.

Show that the following are equivalent, for an open filter & on a topological space X :

a) & is an open ultrafilter,
b) if G is any open set in X and G N H # ¢ for each H € &, then Ge &,
c)ifGisopenand G ¢ .%. then X — Ge F

[If you did 12, the Gonverted with

STDU Gonverter

trial version
http://www .stdutility.com




Chapter 5

Separation and Countability

13 The separation axioms

Our definition of a topology admits structures which are, for most purposes,
useless. The trivial topology on X, for example, makes X look not much different
from a single point, topologically. It would be much nicer if some of the set-
theoretic structure of X were reflected in its topology. What is needed, apparently,
is a requirement that the topology on X contain enough open sets to distinguish
between the points of X, in some way. Increasing amounts of the sort of point
separation needed can be introduced by requiring that X satisfy one of the separa-
tion axioms (or, in German, Trennungsaxiome) Ty, T, or T,.

13.1 Definition. A _ blogy on X is Tp)
iff whenever x an Converted with *t containing one

and not the other
STDU Gonverter

13.2 Examples. . .
T xamples. - 2) trial version
b) The differ h“nl I www-s“l““"w-c“m irely topological.

In fact, a pseudometric p on X is a metric iff the topology it generates is T,. For if
the topology generated by p is T;, then whenever x # y in X, there is some open
set, and hence some e¢-disk, about one not containing the other. Then
p(x, y) = € > 0, showing p is a metric. Conversely, if p is a metric then any
two distinct points x and y are at some positive distance ¢ and hence the e-disk
about x is an open set containing x and not y.

¢) Let X be any topological space and define ~ on X by x ~ yiff {x} = {y].
Then ~ is an equivalence relation on X and the resulting quotient space X/~
is a Ty-space (the latter following easily from the observation that a space is T,
iff whenever x # y then {x] # {y}.) This procedure, and the space it produces,
are referred to as the Ty-identification of X. You will prove the statements made
here in Exercise 13C, as well as the additional fact that the Tj-identification and
the metric identification are the same for any pseudometric space.

d) Subspaces and products of T; spaces are T,; quotients need not be. See
Exercise 13B.

one point is not

85
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13.3 Definition. A topological space X is a T;-space iff whenever x and y are distinct
points in X, there is a nhood of each not containing the other.

Evidently, every Ti-space is T,. But the set X = {a, b} with the topology
consisting of the open sets @, {a} and X is a Ty-space which is not T;.

We can leave the proofs that subspaces and products of T;-spaces are Ty,
and the result on quotients of T;-spaces, to Exercise 13B. The following theorem
makes that exercise easy.

13.4 Theorem. The following are equivalent, for a topological space X :

a) Xis T,

b) each one-point set in X is closed,

c) each subset of X is the intersection of the open sets containing it.
Proof. a)=b): If X is T, and x € X, then each y # x has a nhood disjoint from
{x}, so X — {x} is an open set and thus {x} is closed.

b) = c): If 4 = X, then A is the intersection of all sets of the form X — {x},
for x ¢ A, and each of these is open, since one-point sets are closed.

c) = a): If (C halde thon f+vlic tha intarcantian ~f itc anan hoods and hence
for any y # x, thy Converted with

The real imp STn“ c bve: they are the
spaces in which 0““3"3' brff spaces about
to be introduced - - have in addition
an all-important rial version aration property
is the most impor  hitp://www.stdutility.com

13.5 Definition. A space X is a T,-space (Hausdorff space) iff whenever x and y
are distinct points of X, there are disjoint open sets U and V in X with xe U
and ye V.

Evidently, every T,-space is T;.

13.6 Examples. a) Let X be any infinite set with the cofinite topology (in which
the closed sets are the finite sets and X). Since one-point sets are closed, X is a
T;-space. But no two nonempty open sets are disjoint, so X cannot be Hausdorff.

b) Every metric space is Hausdorff. If x and y are distinct points, then
p(x, y) = € > 0, so the disks U(x, ¢/2) and U(y, ¢/2) are disjoint open sets con-
taining x and y respectively.

13.7 Theorem. The following are equivalent for a topological space X :

a) X is Hausdorff,

b) limits in X are unique (i.e., no net or filter in X converges to more than one
point),
¢) the diagonal A = {(x, x) | x € X} is closed in X x X.
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Proof. First note that by the translation process between nets and filters, unique
net limits imply unique filter limits and vice versa.

a) = b): We will use filters. Suppose X is Hausdorff and & is a filter on X
with & — xand & — y. Then each nhood U of x and each nhood V of y belongs
to#,so0U NV # @. But X is T,, so we must then have x = y.

b) = c): We will use nets. If A is not closed, then for some x # y, a net
((x;, x;)) in A converges to (x, y). But then (x;) is a net in X converging to both
x and y, which is impossible.

c) = a): Suppose A is closed. If x # yin X, then (x, y) ¢ A, and hence there
is a basic nhood U x V of (x, y) in X x X which does not meet A. But then
U and V are disjoint nhoods of x and y, respectively. Thus X is Hausdorff. B

Most of the literature in topology, including the monograph in which
Hausdorft first introduced topological spaces, deals exclusively with Hausdorff
spaces. The underlying reason for this is the existence of unique limits in
Hausdorff spaces, which has pleasant consequences (for example, continuous
functions with Hausdorff range are determined by their values on a dense set ; see
Theorem 13.14).

We will devg Converted with questions about
products, subspa aces, following a

pattern we will re ST n “ c 0n“erler we introduce.

13.8 Theorem. l.rial "ersm“
b) A nonempi e
hitp:/ /www stdutility.com

Proof. a) If X is T, and A is a subspace of X, distinct points a and b in A have
disjoint nhoods U and V in X and then U n 4 and V n A are disjoint nhoods
of aand b in A.

b) If X, is a T,-space, for each a € 4, and x # y in [| X,, then for some
coordinate «, x, # y,, so disjoint nhoods U, of x, and V, of y, can be found in
X,. Now =, '(U,) and =, !(V,) are disjoint nhoods of x and y, respectively, in

¢) Quotients

Conversely, if [| X, is a nonempty T,-space, pick a fixed point b, € X,,
for each o € A. Then the subspace B, = {xe[] X, | x; = b; unless g = o} is
T,, by part (a), and is homeomorphic to X, under the restriction to B, of the
projection map. Thus X, is T, for each o.

c¢) See the following examples. W

13.9 Examples. a) The continuous closed image of a Hausdorff space need not
be Hausdorff. Let X be the real line, with nhoods as usual except that basic
nhoods of 0 have the form (—¢ ¢) — A, for € > 0, where A = {1/n|ne N}.
Then X is a Hausdorff space and A is a closed subset of X so the space X/A



88 Separation and countability [13

obtained by identifying A with a single point is a closed continuous image of X
(the decomposition is clearly upper semicontinuous). But X/A4 is not Hausdorff,
for if p is the projection of X onto X/A then p(0) and p(A4) are distinct points of
X/A which cannot be separated by open sets.

b) The continuous open image of a Hausdorff space need not be Hausdorff.
Let X be the union of the lines y = 0 and y = 1 in R? and let Y be the quotient
of X obtained by identifying each point (x, 0), for x # 0, with the corresponding
point (x, 1). The resulting projection map p: X — Y is continuous and open,
but p(0, 0) and p(0, 1) are distinct points of Y which do not have disjoint nhoods.

The situation outlined in the examples above is quite unpleasant. Not only
do continuous images of Hausdorff spaces fail, in general, to be Hausdorff, but
even the best sorts of quotient maps may not preserve the T,-axiom. This provokes
the following series of results, giving various necessary conditions and sufficient
conditions for image spaces to be Hausdorff, culminating with a characterization
of the continuous open maps on any space X which have Hausdorff range (13.12).
The best available result on continuous closed images of Hausdorff spaces requires
the prior development of compactness and is given in Exercise 17N.

13.10 Theorem| GI]IWBHBII with f; then
seanasa OTDU GONUErtEr
Proof. Let A = trial version f(x,) and f(x,)
are distinct and h h“n I Iwwwsllllllilitllcllm en since f is con-

tinuous, f ! (U)-wma—y—1r—arv—mmrooas—or—w—ama—g- respectively, so
7Y (U) x f~4(V) is a nhood of (x;, x,). Obviously this nhood cannot meet A,
so A is closed. W

13.11 Theorem. If f is an open map of X onto Y and the set

{(xb X3) l f(xl) = f(xz)}
is closed in X x X, then Y is Hausdorff.
Proof. Suppose f(x;) and f(x,) are distinct points of Y. Then

(x, x2)¢A = {(xp X,) | flxy) = f(xz)},

so there are open nhoods U of x, and V of x, such that (U x V) n A = @. Then,
since f is open, f(U) and f(V) are nhoods of f(x,) and f(x,), respectively, and
SWU) N f(V) = o (otherwise (U x V)N 4 # o). B

13.12 Theorem. If f is a continuous open map of X onto Y, then Y is Hausdorff
iff {(x1,x,) | f(xy) = f(x,)} is a closed subset of X x X.

Proof. Simply combine 13.10 and 13.11. ®
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We close this section with a result which implies that a continuous function
which takes values in a Hausdorff space is determined once its values on a dense
set are known. This result will have important ramifications later when we spend
a great deal of time extending functions on subsets of X to X itself, since it implies
that extensions of functions on dense subsets of X, when they exist, are unique.

13.13 Theorem. If f,g: X — Y are continuous and Y is Hausdorff, then
{x| f(x) = g(x)} is closed in X.

Proof. Let A = {x| f(x) = g(x)}. If (x;) is a net in A and x; — x, then by
continuity we have both f(x;) — f(x) and g(x;) — g(x) in Y. Since f(x;) = g(x;)
for each A and limits are unique in Y, we must have f(x) = g(x). Thus x € 4 and
Ais closed. B

13.14 Corollary. If f, g: X — Y are continuous, Y is Hausdorff, and f and g
agree on a dense set D in X, then f = g.

Problems

13A. Examples
1. Let B be a fiy Gonverted with define 4 = AU B.

This defines a topolg bn B is the resulting
ez §TDU GOnverter

2. If 7 is a Hau . . hsdorff. The radial
plane (3A.4), the Sor trial version ¢ (4C), the scattered

line S (5C), and any thus all Hausdorff.

3 The looped I...... U/ /v stidutility.com

4. Recall that the sets V(f, ¢) defined for f € R' by
V(f, ) = {geR"||g(x) — f(x)| < ¢, for each x e I}

form a nhood base at f, making R' a topological space (see 4F.3). Discuss the separation
axioms for this space. (Note that the subspace of continuous functions on I is metrizable,
by 4F.5, and thus has all the separation properties we could ask for.)

13B. Ty- and T-spaces
1. Any subspace of a Tj,- or T;-space is, respectively, T;, or T;.
2. Any nonempty product space is Ty or T; iff each factor space is, respectively, T, or T;.
3. Quotients of T;-spaces need not be Ty, but the closed image of a T;-space is T;.

4. A quotient space of X is T; iff each element of the corresponding decomposition is
closed in X.

13C. The Ty-identification
For any topological space X, define ~ by x ~ yiff {x} = {y}.

1. ~ is an equivalence relation on X.

2. The resulting quotient space X/~ = X is T,
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3. The procedure above, when applied to a pseudometric space (S, p) yields the metric
identification S* of S described in 2C.

13D. The Zariski topology

For a polynomial P in n real variables, let Z(P) = {(x, ..., x,)eR"| P(xy, ..., x,) = 0}.
Let 2 be the collection of all such polynomials.
1. {Z(P)| Pe &} is a base for the closed sets of a topology (the Zariski topology) on R".
2. The Zariski topology on R" is T, but not T,.

3. On R, the Zariski topology coincides with the cofinite topology; in R”, n > 1, they
are different.

13E. Accumulation points and condensation points

Recall that a is an accumulation point of a set 4 in a space X iff each nhood of a meets
A in some point other than a. We say a is a condensation point of A iff each nhood of a
meets A in uncountably many points. Let A" denote the set of accumulation points of 4,
A° the set of condensation points of A.

1. In a Ty-space— Lol it af 4if aooch nhaad afameets 4 in an infinite

set. Converted with

2. For any set

sovnew,  STDU CONVErtEr |o-.- -

4. For any posi A"~!are nonempty,

and A" = o. (The trial version f (A5 if o s
nonlimit ordinal, 4 h“n: I IWWW.SI[IIIIiIiW.BIIm t for any « < w,, a
o -

set A can be found $eerrcrrae crrrer

5. Can the results 3 and 4 be proved for condensation points?

13F. Hausdorffness and the lattice of topologies
Let 7, and 7, be Hausdorff topologies on the same set X.

1. If (X, T, » t,) is Hausdorff, then the diagonal is closed in (X, t,) X (X, t,).

2. There are Hausdorff topologies 7, and 7, on a set X such that the diagonal is closed
in (X, 7,) x (X, t,), but (X, 7 N t,) is not Hausdorff. Thus the condition in 1 is necessary
but not sufficient.

3. If disjoint 7,-open sets can be separated by disjoint 7,-open sets and vice versa, then
(X, 7, N 71,) is Hausdorff.

4. The condition of 3 is not necessary.

The situation with suprema in the lattice of topologies is a bit more satisfactory. In fact,
if {1, | @ € A} is any family of topologies on the same set X, then (X, sup (r,)) is embedded in
[1(X, <), by 81.2, so that any property preserved by products and subspaces will be preserved
in passing to suprema. The T,-axiom (as well as any other separation axiom from T, up
through complete regularity) is thus inherited by suprema (by 13.8, 13B, 14.4 and 14.10).
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13G. Topological groups
A topological group G is a group with a Hausdorff topology satisfying the conditions:

a) multiplication is continuous; that is, the map m: G x G — G defined by m(x, y) = xy
is continuous.
-1

b) inversion is continuous; that is, the map O: G —» G defined by O(x) = x~ is

continuous.

The identity in G is denoted e.

If A= G, Bc G and x € G, the set {y-z|yeA,zeB} is denoted AB, and the sets
A%, xA, Ax are similarly defined. The set 4> = AA4, in particular, is the set {a - a' | a, a'€ A},
not the set of all squares a? for a € A.

1. The continuity conditions (a) and (b) can be expressed as follows:

a’) for each nhood W of xy there are nhoods U of x and V of y such that UV < W,
b’) for each nhood W of x ~! there is a nhood U of x such that U ! = W.

2. The conditions (a) and (b) can be replaced by the single condition that the map
c: G x G — G defined by c(x, y) = x - y~! be continuous.

3. R, with the usual topology and addition, is a topological group. Any group with the

discrete topology is i
4 Leta beG. Converted with
trial version
is a homeomorphist____ MEUM://wiww. stdutility.com

5. If {U| U e} is a nhood base at e, then for any x € G, {xU | U € %} is a nhood base
at x, and so is {Ux | U € %}.
6. Let % be a nhood base of open sets at e in G. Then
a) for each U € %, there exists V € % with V2 < U,
b) for each U € %, there exists V e % with V=! < U,
¢) for each U € % and x € %, there exists V € % with xV < U,
d) for each U € % and x € G, there exists V € % with xVx ! < U,
e) for each U, V € %, there exists We % with W <« U NV,
D {e} = N {U| U},

Conversely, given any collection of sets satisfying (a)—(f) and using 5 to obtain a nhood base
at each x € G, the result is a topology on G making G a topological group.

7. The open symmetric nhoods of e form a base. [If U is open and a nhood of e, so is U ~*
and thus sois U n U ']
13H. Open images of Hausdorff spaces

1. Given any set X, there is a Hausdorff space Y which is the union of a collection
{Y, | x € X} of disjoint subsets, each dense in Y.
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2. If X is any topological space and Y is the space formed in part 1, let
Z={(xyeX x Y|yeY}

Then the restriction to Z of the projection map from X x Y to X is a continuous open map
of Z onto X. Thus every topological space is the continuous open image of a Hausdorff space.

14 Regularity and complete regularity

The separation axioms introduced in the previous section are rather weak and
are added to the hypotheses of a theorem, if needed, without too much regret.
Some theorems are simply not true for the trivial topology!

The properties to be introduced in this and the next section are rather more
restrictive, although they are also defined in terms of separation. For one thing,
we pass from a simple relationship in which the topology separates points to a
more complex one in which the topology separates points from closed sets or
closed sets from each other. Some pretty decent topologies are eliminated in the
transition, so the concepts to be introduced now are not used in theorems without
some attempt to justify their presence.

14.1 Definition. A never A is closed

in Xand x¢ A4, t
We have slip

in the sense that

theoretic charactg

Converted with

STDU Gonverter

eUand 4 c V.
o regular spaces,
ger reflect the set
regular and thus

a regular space n trial version
To remedy ¢ http://www.Stdutility.gom  |ints from closed

sets would imply separatron or pomts T pomrts were crosed. Thus we define a
T;-space to be a regular T;-space.
Clearly, then, every Ty-space is T.

14.2 Example. Not every T,-space is T;. Let X be the real line with nhoods of
any nonzero point being as in the usual topology, while nhoods of O will have the
form U — A, where U is a nhood of 0 in the usual topology and

A={ln|n=1,2..}

Then X is Hausdorff since this topology on the line is finer than the usual topology
which is Hausdorff. But A4 is closed in X and cannot be separated from 0 by
disjoint open sets, so X is not Tj.

14.3 Theorem. The following are equivalent for a topological space X :
a) X is regular

b) if U is open in x and x € U, then there is an open set V containing x such
that V < U.

¢) each x € X has a nhood base consisting of closed sets.
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Proof. a) = b): Suppose X is regular, U is open in X and x € U. Then X — U
is a closed set in X not containing x, so disjoint open sets ¥ and W can be found
with xe Vand X — U < W. Then X — W is a closed set contained in U and
containing ¥, so V < U.

b) = c¢): If (b) applies, then every open set U containing x contains a closed
nhood (namely V) of x, so the closed nhoods of x form a nhood base.

¢) = a): Suppose (c) applies and A4 is a closed set in X not containing x.

Then X — A is a nhood of x, so there is a closed nhood B of x with B < X — A.
Then B° and X — B are disjoint open sets containing x and A, respectively.
Thus X is regular. &

14.4 Theorem. a) Every subspace of a regular space (Ty-space) is regular (T3).
b) A nonempty product space is regular (Ty) iff each factor space is regular (T5).
¢) Quotients of Ty-spaces need not be regular.

Proof. 1t suffices to prove parts (a) and (b) for regular spaces; the assertions for
Ts-spaces will then follow by combination with the corresponding results for
T,-spaces (13B).

a) If X is reg Gonverted with = B N Y where
B is closed in X. so there are dis-
joint open sets U STn“ cnn“erter JnYand VY
are disjoint open trial -

b) If [T X, is ralversion s homeomorphic
to a subspace of httn:/ /viww stdutilityv.com ich X, is regular.
Pick x e ][ X, and consider a basic nhood 7, (U, ) nx,, (U,) of x in
[T X,. Now U, is a nhood of x,, in X,, fori = 1, ..., n,and hence U, contains a
closed nhood C; of x,,. But then n,;'(C;) n - n n,(C,) is a closed nhood of
x contained in 7, '(U;) n - n n.'(U,). Thus the closed nhoods of x form a
nhood base at x, showing that [ | X, is regular.

¢) See the following examples. B

14.5 Examples. a) A closed continuous image of a Ty-space need not be T,; if
it is T,, it need not be regular. Let I' denote the closed upper half plane
{(x,y)| y = 0} in R? with the topology specified as follows: nhoods of points
(x, y) with y > 0 will be as in the usual topology while basic nhoods of points z
on the x-axis in I will be sets of the form {z} U A, where A4 is the interior of a
circle in the upper half plane tangent to the x-axis at z. This space is the Moore
plane. It was the object of study in Exercise 4B.

I' is certainly Hausdorff. Since a base of closed nhoods can easily be con-
structed at each point of I, it follows from 14.3 that I' is T;. Now let D and E
be the sets of points on the x-axis in I' whose first coordinates are rational and
irrational, respectively. Then D and E are closed sets in I' and we will see later



94 Separation and countability [14

(25F) that D and E cannot be contained in disjoint open sets in I'. If Y is the
decomposition space of I' whose elements are D, E and the one-point sets in
I' — (D U E), then Y is the image of I" by a closed continuous map (9E), but Y
is not T, since D and E cannot be separated by disjoint open sets in Y. If Z is
obtained from I'' by identifying only the points of D, then Z is a closed continuous
image of I' which is T, but not regular. (Z is T, by 14.7 below, not regular because
the point D and the closed set E cannot be separated by disjoint open sets.)

b) The open continuous image of a Ty-space need not be regular. In fact,
in 13.9(b) we provided a space X which is Ty and a non-Hausdorff T;-space Y
which is the image of X. under an open continuous map.

The following two theorems constitute a partial apology for the examples
just given.

14.6 Theorem. If X is Ty and f is a continuous, open and closed map of X
onto Y, then Y is T,.

Proof. By 13.11, it is sufficient to show that the set

A ffe \ A% v £ £ N

is closed in X X Converted with that, since X is

regular, there are STn“ c ' f(x,)] = V.
Since f is closed, 0n“erter ining f [ f(x,)]
and contained in trialversion pme open set W
in Y. Then U x bt meet A, since

Unf-‘w) =g  hiti//wwwstdutilityv.com

14.7 Theorem. If X is Ty and Y is obtained from X by identifying a single

closed set A in X with a point, then Y is T,.
Proof. If y, and y, are distinct points of Y, then f ~!(y,) and f ~*(y,) are a point
and a disjoint closed set (not necessarily in that order) in X and hence there are
disjoint open sets U and V in X containing f ~*(y,) and f~!(y,). Now U and V
can be taken as saturated since f is closed (9.8, 9.10). Then U = f~(S) and
V = f~XT), where S and T are open sets in Y which must contain y, and y,,
respectively. Since U and V are disjoint, so are S and T.

The next axiom of separation which would seem natural would involve
separating disjoint closed sets by disjoint open sets. We will set aside the study
of this property, normality, until the next section, however, and take up a separa-
tion property intermediate between regularity and normality which has assumed
a dominant role in the study of topology, primarily by virtue of Theorems 14.12
and 14.13.

14.8 Definition. A topological space X is completely regular iff whenever A4 is a
closed set in X and x ¢ A, there is a continuous function f: X — I such that
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f(x) =0 and f(4) = 1. It is clearly enough to find a continuous function
f: X - R such that f(x) = b and f(4) = a, where b # a. Any such function f
will be said to separate A and x. A completely regular T;-space is called a
Tychonoff space.

Completely regular spaces are regular. For suppose 4 is closed, x ¢ A4, and
f: X -1 is a continuous function with f(x) =0 and f(A) = 1. Then
£7H[0, $) and f~((%, 1]) are disjoint open sets in X containing x and A, respec-
tively. But completely regular spaces need not be Hausdorff, as any trivial
space of more than one point illustrates, and this is the reason Tychonoff spaces
enjoy a separate identity. An early joke has somehow become semistandard,
with some writers referring to Tychonoff spaces as T;,-spaces.

A counterexample exists showing that not every regular space is completely
regular. It is formidable and we have relegated it to Exercise 18G, where most
people won’t be bothered by it. There is an even more complicated example,
also noted in 18G, of a Ty-space on which every continuous real-valued function
is constant!

14.9 Example. Every metric space is Tychonoff. In fact, every pseudometrizable
space is completelv reeular Far if o ic a neendametric which ojves the topology

. ) j . .
on Xj A is a clog Converted with 1S a continuous
function on X to

We turn now STn“ con“erter cts and quotients
of Tychonoff spag trial version

14.10 Theorem [

space is comp,___ NN/ /i Stadutility.com

b) A nonempty product space is completely regular (or Tychonoff) iff each
factor space is completely regular (respectively, Tychonoff).

r (or Tychonoff)

c) Quotients of Tychonoff spaces need not be completely regular or T,.

Proof. a) Suppose X is completely regular and Y < X. If 4 is closed in Y,
then A = B n Y where B is closed in X. Given any xe€ Y — A4, x ¢ B so there is
a continuous f: X — R such that f(x) = 1, f(B) = 0. Then f|Y separates x
and 4 in Y, so Y is completely regular. The result for Tychonoff spaces now follows
from this together with the corresponding (easy) result for T;-spaces.

b) If [] X, is nonempty, each X, is homeomorphic to a subspace of [] X,
and thus is completely regular if [ | X, is.

Conversely, suppose X, is completely regular, for each «. Let xe[] X,
and let A be a closed set in [] X, not containing x. Then some basic nhood
T, "(Uy) 0 t(U,) of x does not meet A, where U, is an open set in X,,.

For k = 1,..., n there is a continuous f;: X, — I such that fi(x, ) = 1 and
fiX,, — Uy) = 0. Define g: [[ X, > I by

g9(y) = min {fi(y,,) [k = L, ..., n}.
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Then g is continuous (it is the infimum of the functions fyom,, k = 1,...,n
and the infimum of finitely many continuous functions is continuous, by 7M.4)
and g(x) = 1,g(X — A) = 0. Thus [ X, is completely regular.

Again, the result for Tychonoff spaces is easily derived from the result just
given and the corresponding result for 7T;-spaces.

¢) See the following examples. B

14.11 Examples. a) The closed continuous image of a Tychonoff space need not be
T,; ifitis T,, it need not be Tychonoff. It is enough to show the Moore plane I'
is Tychonoff; the required closed continuous images are those constructed in
14.5(a). To show I' is Tychonoff, let p € I and let V be a basic nhood of p (so that
V is either a disk centered at x or else x together with a disk tangent to x, depending
on the placement of x). Define f: I’ — I by setting f(p) = 0, setting f(x) = 1
for each x ¢ V, and defining f linearly along the straight-line segments between
x and the points on the boundary of V. Then f is a continuous function on I
such that f(p) = O and f(X — V) = 1. Since any closed set in I' which does not
contain p is contained in X — V for some basic nhood V of p, it follows that
I' is Tychonoff.

b) In 13.9(b), , a non-Hausdorff
Tl-sp;)ice Y wh(ic)h GConverted with

We close thi STn“ cnn“erler bdy much of the

importance of co1 ) B}
The complet trial version having enough
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14.12 Theorem. A topological space X is completely regular iff it has the weak
topology induced by its family C*(X) of bounded real-valued continuous
functions.

Proof. If X is completely regular, then the functions in C*(X) separate points
from closed sets so, by 8.15, X has the weak topology induced by C*(X).

Conversely, suppose X has the weak topology induced by C*(X). Suppose
U is open in X and x € U. There are functions fj, . . ., f, in C*(X) and subbasic
open sets V;, ..., V, in R such that

xefT'V) - n fi7'(V,) = U
Each V; is of the form (g;, ) or (— o0, @;). But if V; = (— o0, g;), then
V) = (=) H~a; )

so that apparently, by occasionally replacing an f; by —f;, we can assume each
V; above has the form (g;, 00). If we denote by g, the function defined by

9i(x) = sup {fi(x) — a;, O},
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then evidently g; is nonnegative and g,7'(0, 00) = f;"!(a;, o). Hence, at this
point, we have
xegi'(0,0)n - ng, 0, 0) = U.

Finally, let g =g,-g, - *** * g, Then g(x) = g,(x) - - - g,(x) is positive,
so x € g 10, ). Moreover, if g(y) > 0, then each g,y) # 0, so each g/(y) > 0,
and hence y e g0, 0) n - N g, 10, o0) = U. Thus

xeg 10, 0) = U.
It follows that g(x) # 0 while g(X — U) = 0, so X is completely regular. B

Any product of closed bounded intervals will be called a cube. Thus a cube
is (homeomorphic to) a product of copies of the unit interval I. We now can give
the following elegant and all-important corollary to the previous theorem.
(This result will be extended in the section on compactness; see 17.11.)

14.13 Theorem. A topological space X is a Tychonoff space iff it is homeo-
morphic to some subspace of some cube.

Proof. Every cube is a product of metric spaces and thus Tvchonoff, and hence
everézl:lsselisecl? OE Converted with by the previous
theorem, has the STn“ c inuous functions
f: X — R. Each 0n“erler e closed bounded
interval I and th trial version 24 the evaluation
map e: X-[[1 ] . hism, by 8.16, so
X is homeomorp| M/ /Wi Strlutility.com

Problems

14A. Examples on regularity and complete regularity

1. The family of all subsets of X containing a fixed subset A4, together with the empty
set, is a topology for X according to 3A.2. Under what conditions is it regular? completely
regular?

2. Recall that if 7 is a topology on X and A is a fixed subset of X, then the simple ex-
tension of T over A is the topology 1, = {Uu (V n 4)| U, Vet} on X. Show that if 7 is
regular or completely regular, and A is closed in X, then 7, has the same property. Find
counterexamples if 4 is not closed.

3. The slotted plane (4C) is T, but not T5.
4. The looped line (4D) is Tychonoff.

14B. The double of a topological space

Let X be any topological space and set X; = X x {1}, X, = X x {2}, D(X) = X, U X,.
Foreach A = X, let A; = A x {1} and 4, = 4 x {2} be the corresponding subsets of X
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and X, in D(X) and, for each x € X, let x;, and x, be the corresponding points (x, 1) and
(x,2)in D(X). Set B = {U, u (U, — {x,})| U openin X} U {{x,} | xe X}.

1. 4 is a base for a topology on D(X). With this topology, D(X) will be called the double
of X.

2. X is homeomorphic to the closed subset X ; of D(X).

3. If X is Ty, Ty, T, regular or completely regular, then so is D(X).

14C. Zero sets in completely regular spaces
A zero-set in a topological space X is a set of the form f~!(0) for some continuous f: X — R.
1. If f is a real-valued continuous function on X, then {x | f(x) > a} and {x | f(x) < a}
are zero sets, for each a € R. [g(x) = max {f(x) — a, 0} is continuous.]
2. X is completely regular iff the zero-set nhoods of each point form a nhood base.
3. X is completely regular iff the zero sets form a base for the closed sets in X (ie., iff
every closed set in X is an intersection of zero sets).

The last two assertions provide handy ways of deciding whether or not a given space is
completely regular.

14D. Subsets of 1 _
If X is regular Converied with U,, U,, ... of open

subsets of X such tH STn“ cnn“erler n. [Use induction.]

14E. Semiregul. i i
emiregula trial version

A space is semiregul, topology.

I. Every regula hitp:/ /www stdutility.com

2. A semiregular, T;-space need not be Hausdorff.

3. Every space X can be embedded in a semiregular space. [In the set X x I, define a
topology as follows: nhoods of (x, y) for y # 0 will be usual interval nhoods

{x2)]y—e<z<y+e in I,={x}x],

for small positive ¢; nhoods of (x, 0), x € X, will have the form {(x, z) | X' € U,0 < z < ¢}
where U is a nhood of x in X and for each x’ € U, ¢,. is picked small and positive. The re-
sulting space Z is semiregular and X is embedded in Z as the closed, nowhere-dense subspace
{(x,0)| xe X}.]

Thus subspaces of semiregular spaces need not be semiregular.

14F. Urysohn spaces

A space X is a Urysohn space iff whenever x # y in X, there are nhoods of U of x and V
ofywithUnV = g.
1. Every regular, Ty-space is Urysohn and every Urysohn space is Hausdorff.

2. Not every Urysohn space is semiregular (14E). Thus not every Urysohn space is
regular.
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3. Not every semiregular, Hausdorff space is Urysohn. [Give the real line the discrete
topology and add the following points:

a) + o whose nhoods have the form {+ o0} U (a, ) forae R,
b) —o0 whose nhoods have the form { —c0} U (— 0, a) for ae R,
) Py, Py, - - - Where the nhoods of p, have the form {p,} U all but finitely many points

of(—n— 1, —myumn+ 1)
Verify that the resulting space X has the required properties. ]

14G. Completely Hausdorff spaces
A space X is completely Hausdorff (functionally Hausdorff) iff whenever x # y in X, there is
a continuous f: X — I'with f(x) =0, f(y) = 1.

1. Every completely Hausdorff space is Hausdorff. (The famous example of E. Hewitt
of a regular T;-space in which every continuous real-valued function is constant (see Exercise
18G) shows that not every regular T;-space is completely Hausdorff.)

2. Discuss products and subspaces of completely Hausdorff spaces.

14H. C*(X) for non-Tychonoff spaces

Given any topological snace (X 1) there is a Tvchonoff snace Y such that the rings C*(X)
e opology on X ¢ Converled with T tomctions. Then
s STDU Gonverter

trial version
15 Normal spaq  hitt://www.stdutilitv.com

Regularity and complete regularity, as we have seen, constitute nontrivial re-
strictions on a topological space. Nonetheless, spaces with these properties
behave decently with respect to the formation of products and subspaces. In the
next (and obvious) step to normal spaces, we find ourselves confronted with the
real bad boy among the separation axioms. So odd is the behavior of subspaces
and products of normal spaces that their study is a separate subject. This is
unfortunate, since as theorems late in this section will show, normal spaces possess
many properties of paramount interest to topologists.

15.1 Definition. A topological space X is normal iff whenever A and B are disjoint
closed sets in X, there are disjoint open sets U and V with 4 < U and B < V.
A normal T;-space will be called a T,-space.

Now is the time to introduce a note of caution. The terminology in the
literature with respect to the separation axioms beyond Hausdorff is more than
a little confused. Some writers interchange our usage, using Ts, Tychonoff and
T, for those spaces which need not be T, (and regular, completely regular and
normal for those that are). Others use T; and regular to mean the same thing,
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which sometimes means it includes T, and sometimes not (and likewise for
Tychonoff and completely regular, and T, and normal). Look before you leap.

The construction of examples of nonnormal spaces will be facilitated by the
following lemma, due to F. B. Jones.

15.2 Lemma. If X contains a dense set D and a closed, relatively discrete
subspace S with |S| > 2!\, then X is not normal.

Proof. If X were normal then for each T < S, the sets T and S — T would be
disjoint and closed in X and hence would be contained in disjoint open sets
U(T) and V(T). Now if T; — T, # e, then clearly U(T;) n V(T,) is a nonempty
open set in X, so U(T;) n V(T,) n D is nonempty. But then U(T;) n V(T,) n D
is a subset of U(T;) n D and not a subset of U(T,) n D. Thus if T; and T, are
different subsets of S, then U(T;) »n D and U(T,) n D are different subsets of D,
so |P(S)| < |P(D)|. This is impossible if || > 2'°|. W

15.3 Examples. a) A normal space need not be regular. If X is the real line with
the topology in which open sets are the sets (a, oo0) for a € X, then X is normal
since no two nonempty closed sets are disjoint, but X is not regular since the point

1 cannot be sepg=ated feam tha oclacad cat [ 01 ba: disinint open sets. Of
course,hc?very T, Converted with lemma (15.6) to
prove this.

b) A Tychon STn“ con“erter the Moore plane
I' is Tychonoff. , . r the x-axis T in
I' is closed and 1¢ trial version d y are rational}
sdenseinT,and — hyp://www.stdutilitvcom |- ©)

c) Every metrizable space is 1,. In Iact, every pseudometrizable space is
normal. For suppose p is a pseudometric which gives the topology on X and let 4
and B be disjoint closed sets in X. For each x € 4, pick §, > 0 such that U(x, d,)
does not meet B and for each y € B, pick ¢, > 0 such that U(y, ¢,) does not meet

A. Let
O, €
U= Ulx =], v=UUly2)
xeA 3 yeB 3

Then U and V are open sets in X containing 4 and B respectively. Suppose
ze U V. Then p(x, z) < 6,/3 and p(z, y) < €,/3 50 p(x, y) < 6,/3 + €,/3 < I,,
assuming J, = max {d,, €,}. But then ye U(x, é,), which is impossible. Thus
U and V must be disjoint, showing that X is normal.

15.4 Theorem. a) Closed subspaces of normal (or T,) spaces are normal
(respectively, T,).
b) Products of normal spaces need not be normal.

c) The closed continuous image of a normal (or Ty) space is normal (respectively,
T,).
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Proof. a) If Y is closed in X and 4 and B are disjoint closed sets in Y, then 4
and B are disjoint closed sets in X, and hence are contained in disjoint open sets
Uand Vin X. Then U n Y and V n Y are disjoint open subsets of Y containing
A and B. Thus Y is normal. The assertion for T,-spaces follows now from the
fact that every subspace of a T;-space is T;.

b) See Example 15.5(b).

¢) Suppose X is normal and f is a closed continuous map of X onto Y. If
A and B are disjoint closed sets in Y, then f ~!(4) and f ~!(B) are disjoint closed
sets in X and hence we can find disjoint open sets U, and U, in X containing
f7'(A) and f~!(B). Since f is closed, the sets V; = Y — f(X — U,) and
V,=Y — f(X — U,) are open in Y. It is easily checked that ¥; and V, are dis-
joint and contain A and B, respectively. Thus Y is normal. The assertion for
T,-spaces follows, since the image of a T;-space under a closed continuous map
is7T,.m

15.5 Examples. a) Arbitrary subspaces of T,-spaces need not be T,. In fact,
the nonnormal Tychonoff space I' (15.3(b)) can be embedded in some cube, by

14.13. But in 17| _ ry subspace of a
space X is norma Converted with se 15B.
sontnes, STDUGONVErTEr oo v v
is not normal. (T| trial version Lemma 15.2; see
15A.2.) Normalit h“n'llwww sllllllilit!l com Section 21.

c) Arbitrary quotients ol I -spaces need not be 1. See 13.9(b), which provides
an open continuous map from a T,-space X onto a non-Hausdorff T;-space Y.

The remainder of this section will be devoted to giving some useful properties
of normal spaces. The theorems which follow deal, in order, with separation of
sets by continuous functions, with existence of extensions of continuous functions
and with existence of certain kinds of open coverings. Each of the properties thus
exhibited for normal spaces is, in fact, characteristic of normal spaces. Since
separation, extension and covering are among the most important topics in
topology, any one of them would be enough to overcome the stigma we originally
attach to normal spaces because of the trouble we get into when forming subspaces
and (especially) products. That all three should be true for the same kind of space
certainly ranks with other wonders of the world (e.g., the embedding of Tychonoff
spaces in cubes).

The first of these results has as an immediate consequence that every T,-space
is Tychonoff. Intrinsically, it ranks among the greatest theorems in topology,
since it provides, starting from scratch, a bare-hands construction of a continuous
function where none was assumed to exist.
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15.6 Urysohn’s Lemma. A space X is normal iff whenever A and B are disjoint
closed sets in X, there is a continuous function f: X — [0, 1] with f(4) =0
and f(B) = 1.
Proof. Suppose X is normal and A4, B are disjoint closed sets in X. By normality,
there is an open set U, such that 4 < U,,, and U,;,, n B = 0. But now 4
and X — U,,, are disjoint and closed and so are U,,, and B. Hence open sets
U,,s and Uj,,, exist such that

Ac Uy Uya Uy, Uyyy © Uspy, Uz n B = 0.

Now suppose sets Uyjom, kK = 1,...,2" — 1 have been defined in such a way
that
Ac U1/2"9 ceey Uk—l/z" < Uk/z"’ ceey U(Z"—l)/Z" NB= g,

then the process can, by normality, be continued so as to provide sets Uy pn+1,
k=1,...,2"*"1 — 1 with the same properties. By induction, then, we have for
each “dyadic rational” r (i.e.,, each rational of the form r = k/2" for some n > 0
andk = 1,...,2" — 1) an open set U, subject to the conditions:

a) Ac U, apdIL D o £nee anol dsindia
r

b) U, = U,y Gonverted with

Now define f| STn“ cnn“erter

trial version
http://www .stdutility.com

It is apparent that f(A) = 0 and f(B) = 1, so we have the function we want pro-
vided f is continuous. But continuity of f follows easily from facts like these:

a) if x ¢ U,, then f(x) > r (continuity at points x where f(x) = 1),

b) if x € U,, then f(x) < r (continuity at points where f(x) = 0),

) if xe U, — U,, where s < r, then s < f(x) < r (continuity at all other
points).
This proves necessity in the theorem.

Conversely, suppose A and B are disjoint closed sets in X and f: X — [0, 1]
is a continuous function such that f(4) = 0, f(B) = 1. Then apparently 1 ~'[0, 3)
and f~'(4, 1] will be disjoint open sets in X containing A and B, respectively,
so the condition of the theorem is sufficient for normality. B

15.7 Corollary. Every T,-space is Tychonoff.

As a convenience for later use, we point out that 0 and 1 in the statement of
Urysohn’s Lemma can obviously be replaced by any pair of real numbers a and
b with a # b.
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If A and B are disjoint closed sets in a normal space, a function of the type
whose existence is guaranteed by Urysohn’s Lemma is called a Urysohn function
for A and B.

It is not in general true that, given disjoint closed sets 4 and B in a normal
space, there will be a Urysohn function such that A = f~1(0), B = f~(1). The
spaces with this property are called perfectly normal; see Exercise 15C.

Now we turn to the next in our series of three characterizations of normal
spaces. Its importance cannot be overstated. It provides for the existence of
extensions of continuous functions and some of the best and hardest work being
done today in topology (in particular, by algebraic topologists) deals with varia-
tions on the extension question; if 4 = X, when can a continuous function
f: A — Y be extended to a continuous function F: X — Y?

15.8 Tietze’s extension theorem. X is normal iff whenever A is a closed subset
of X and f: A — R is continuous, there is an extension of f to all of X, i.e.,
there is a continuous map F: X — R such that F| A = f.

Proof. = First suppose f: 4 > [—1,1]. Let

Al_r Al £ 1 D { Al £ __%}
Now A4, and B, a Converted with so by Urysohn’s
Lemma, there is a STn“ c - 1, f1(B)) = —1.
Evidently, for ead 0““3"3' a mapping of 4
into [ -3, §]. : :
trial version . ,

Now we repe ide [ -3, %] into

thirds (at —3and  hittp://www.stdutilitycom  |[4]g.(x) < -3},

Then there is a Urysohn function j,: X — [ —3, 5] Such that j,(4,) = %, f5(B,) =
—3%. Evidently, [(f — f1) — fal < ($* on A.
Continuing the process, we obtain a sequence f;, f5, . . . of continuous functions
on A such that
f- Z RS

Define F(x) = )2, fi(x), for each x € X. Certainly F(x) = f(x) for each x & 4,
so it remains only to show F continuous.

Let xe X and € > 0 be given. Pick N > 0so that Y 2y, (3)" < ¢/2. Since
each f; is continuous fori = 1,..., N, pick open U, containing x such that

yeU;=|fi(x) — fily)l < ¢/2N.
Then U = U; n -+ n Uy is open in X, and

2

3

yeU=|F(x) — F(y Z — o+ X l(%)"

i=N+
€ €
N 2

A
Z
o
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so that F is continuous at x. This completes the proof in the case where f maps
Ainto [ -1, 1].

Since (—1, 1) is homeomorphic to R, we can prove the general case by con-
sideringa map f: A - (—1, 1). Since we can regard f as mapping A4 into [ —1, 1],
we can find an extension F': X —» [—1,1]. Let 4y = {x e X | |F'(x)] = 1}. Then
A and A, are disjoint closed sets in X, so there is a Urysohn functiong: X — [0, 1]
such that g(4,) = 0 and g(4) = 1. Define F: X — (—1, 1) by F(x) = g(x) - F'(x).
Then F is continuous, and if xe A, F(x) = g(x) - F'(x) = 1 - f(x) = f(x), so F
is the desired extension of f.

<: Suppose the condition holds. If A and B are disjoint closed sets in X,
then A U B is closed in X and the function f: A U B — [0, 1] defined by
f(A4) = 0 and f(B) = 1 is continuous on A U B. The extension of f to all of X
will be a Urysohn function for 4 and B. Thus, by 15.6, X is normal. B

It is worth mentioning that implicit in the proof of the Tietze theorem is the
proof that if the function f carries A to [a, b], then the extension F can be made
to have the same property.

The last property characteristic of normal spaces w1ll play an important role

in later work both
associated with th

Converted with

The terminology

159 Deﬁnitioq. A STn“ cnn“erter h o/ pf subsets of

X whose union i llection /' of &/
which is a cover. trial version en sets, and other
adjectives applyir =n=
" an open cov___ D/ [www stdutilitv.com | e cover
= {V, | « € A} exists with the property that V, = U, for each « € A. Of course,
”1/ is called a shrinking of %.
A covering % 1is point finite provided each x € X belongs to only finitely
many elements of %.

15.10 Theorem. X is normal iff every point-finite open cover is shrinkable.

Proof. Suppose X is normal and % = {U, |« € A} is a point-finite open cover
of X. Well-order the set 4; for convenience, then, suppose 4 = {1,2, ..., ...}.
Now construct {V, | « € A} by transfinite induction as follows: let
F,=X - U,
a>1

Then F, < U, so there is an open set V; such that F;, = V; and V, < U, by
normality. Suppose V; has been defined for each f < « now, and let
F,=X — [(Up<a V3) U (Uy>« U,)]. Then F, is closed and F, = U,, so we
let ¥, be any open set such that F, = ¥V, and V, « U,. Now ¥" = {V, | a € A} is
a shrinking of % provided it is a cover. But if x € X, then x belongs to only finitely
many elements of %, say U,,,..., U, . Let « = max («,...,,). Now x ¢ U,
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for any y > « and hence, if x ¢ V} for any f < o, then x € F, = V,. Hence, in
any case, x € Vj; for some f < a. This completes the proof that 7~ is a shrinking
of %.

For the converse, let A and B be disjoint closed subsets of X. Then
{X — A, X — B} is a point-finite open cover of X. But any shrinking {U, V}
of {X — A, X — B} induces a separation X — U, X — Vof A and B. R

Problems

15A. Examples on normality

1. Let A4 be a fixed subset of X, t the topology for X consisting of ¢ and all supersets of
A. Discuss normality of (X, 7).

2. Recall that E denotes the Sorgenfrey line (4.6). Show that E x E is not normal.

3. The radial plane (3A.4) is not normal.

4. The scattered line (5C) is T,.

S. Suppose (X, 7) is normal and 4 is closed in X. Show that (X, t,)is normal iff X — 4
is a normal subspace of (X, t), where 7, denotes the simple extension (3A.5) of 7 over A.

15B. Completely Converted with
A space X is comple STn“ c

1. X iscompletg 0““3"3' AB=A4AnB =g,
then there are disjoi z x nsider the subspace
X — (4 n B), whic trial version e disjoint closures.
Sufficiency iseasy.] ttpe//wiww . stdutility.com

2. Why can’t the method used to show every subspace of a regular space is regular be
carried over to give a proof that every subspace of a normal space is normal?

3. Every metric space is completely normal.

15C. Perfectly normal spaces

A T,-space X is called perfectly normal iff for each pair of disjoint closed sets 4 and B in X,
there is a continuous function f: X — I such that 4 = f~*(0) and B = f~!(1). Recall that
a G;-set in a topological space is a countable intersection of open sets.

1. A space X is perfectly normal iff it is T, and each closed set in X is a G-set. [For
sufficiency, if A is a closed set and A = ﬂ G, where each G, is open, then a Urysohn function
f, exists such that f,(4) = 0 and f(X — G,) = 1, for each n. Set f,(x) = Y (f,(x)/2"). If
A and B are now disjoint closed sets, set

Sax)
Jx) = ————F—.
Salx) + f5(x)
Then f is continuous and f~*(0) = 4, f~!(1) = B.]
2. Every metric space is perfectly normal.

3. It is not sufficient for perfect normality that X be T, and every point in X be a G;-set.
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15D. Retraction and extension
A continuous function r from X onto a subspace 4 of X is a retraction iff r | A is the identity
on A. The subspace 4 of X is then called a retract of X. Questions about existence of ex-
tensions can be phrased in terms of existence of retractions, according to part 2 below. This
is the way algebraic topologists like to view extension questions.

1. A retract in a Hausdorff space is a closed set.

2. A subset A of X is a retract of X iff every continuous function f: 4 — Z has an ex-
tension to a continuous function F: X — Z. [Ifr is a retraction, consider f o r.]

Related to retracts are the absolute retracts. A space R is an absolute retract iff given any
T,-space X, any closed subset 4 of X, and a continuous f: A — R, then f has an extension
to all of X. The reason for the name is given in 3 below.

3. A T,-space is an absolute retract iff it is a retract of every T,-space in which it can be
embedded as a closed subset.
4. R is an absolute retract; any closed interval in R is an absolute retract.

S. Any product of absolute retracts is an absolute retract.

Related to absolute retracts are the absolute nhood retracts. A space Y is an absolute

rhood retract (AN eXand f:A->Y
is continuous, then | Converted with in X.

6. A normal sp{ STn“ c -I subset of a normal
space, it is a retract 0““3' er

7. S' is an AN lrial “ersin“ nt follows from the
no-retraction theore 5!, which you may
assume fornow. 1t|  http://www . stdutility.com

8. The product of finitely many ANRs is an ANR.

15E. C*-embedding: Urysohn’s extension theorem

A subspace A of X is C-embedded (C*-embedded) in X iff every continuous function f: A - R
(f: A - I) can be extended to a continuous function F: X — R (F: X — I). Subsets B and
C of a topological space X are called completely separated iff there is a continuous g: X — I
such that g(B) = 0 and g(C) = 1. Show that a subspace A of X is C*-embedded in X iff
every pair of completely separated sets in A is completely separated in X (this is Urysohn’s
extension theorem).

15F. Order topologies
Every ordered space (6D) is T,.

15G. Extremally disconnected spaces
A topological space X is extremally disconnected iff the closure of every open set in X is open.

1. For any space X, the following are equivalent :

a) X is extremally disconnected,
b) every two disjoint open sets in X have disjoint closures,
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c) every two disjoint open sets in X are completely separated (15E),

d) every open subspace of X is C*-embedded (15E),
[Prove that (a) = (c) = (b) = (a) and (c) = (d) = (b), using the Urysohn extension Theorem
15E for (c) = (d).]

2. Every dense subspace and every open subspace of an extremally disconnected space
is extremally disconnected. (Closed subspaces need not be; see the book by Gillman and
Jerison.) By Exercise 191, products of extremally disconnected spaces need not be extremally
disconnected.

3. The only convergent sequences in an extremally disconnected T,-space are those which
are ultimately constant. [Suppose x, — p, but (x,) is not ultimately constant. Construct
a sequence U,, U,, ... of disjoint open sets in X such that x,, € U, for some subsequence
(%4,) of (x,), and such that p € Uy, for each k. Let G = U,‘:‘;l U, Then G is an open set
containing p, but x,, ¢ G for any odd &.]

Part 3 shows that sequential convergence cannot be used to describe the topology of
any nondiscrete extremally disconnected space. In particular, such spaces cannot be first
countable.

Extremally disconnected spaces are important in studying the Stone-Cech compactifica-
tion of a product space (191.2) as well as, more generally, in the study of the Stone space of

any complete Bool i the reducibility of
mappings of comp. Gonverted with ompact spaces are
precisely the compa STn“ c 'I

15H. Hahn—Band 0““0' er

In the presence of al trial version near space, one can

ask whether a funct =p= s certain algebraic
properties can be ex n“n:l I www-SId““"w-c“m se algebraic proper-
ties are preserved. The answer, if A is a subspace of X and f is a continuous linear functional
on X, is yes. This follows (see part 2) as an intermediate corollary to the Hahn—Banach
theorem (part 1) below. Prerequisite to the understanding of this material is a careful study
of Problems 2J and 7L.

1. (Hahn—Banach theorem) Let X be any linear space, p: X — R a function such that
p(x + y) < p(x) + p(y) and p(ax) = a - p(x) for « > 0. If 4 is a linear subspace of X and f
is a linear functional on A4 such that f(x) < p(x) for all x € 4, then f can be extended to a
linear functional F on X such that F(x) < p(x)forall x e X. [First note that if A’ is a subspace
of X with 4 = A’ and F’ is an extension of f to A’ which is less than or equal to p on A4/,
then for any y ¢ A, a further extension of f to the subspace {x + 1y |xe A, A€ R} can be
found which is less than or equal to p there. Next, use Zorn’s lemma to conclude that there
exists a maximal extension of f, when extensions of f are ordered by g, < g, iff

domg, = domg, and g, =g,|domg,,

which is less than or equal to p. Finally, combine these two results to conclude that the domain
of this maximal extension must be all of X.]

2. If X is a normed linear space and f is a bounded linear functional on a subspace A
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of X, then f can be extended to a bounded linear functional f on X with ||F|| = ||f]|. [Use
the Hahn—Banach theorem with p(x) = ||f]| - ||x]|.]

3. If X is a normed linear space, 4 is a subspace of X and y ¢ A, then there is a bounded
linear functional F on X such that

a) F(4) =0,
b) F(y) = the distance from 4 to y,
o) IIFll =1L

[Define f on {a + A-y|ac A, AecR} by fla+ Ay) = A-6 and use the Hahn-Banach
theorem to conclude f can be extended to a functional F on all of X with |F(x)| < ||x]|| at each
xeX.]

Part 3 can be regarded as giving a form of complete regularity on the space X, in which
subspaces can be separated from points by linear continuous maps. Part 2 could be called a
Tietze extension theorem for normed linear spaces.

151. Jones’ lemma

Prove Jones’ lemma (15.2) by comparing the number of continuous functions on D with the
number on X and using the Tietze extension theorem.

We will introduc 1d investigate the
relationships bety STn“ con“erler questions (about
subspaces, produ R R

Recall that t trial version rountable nhood

bases, was introdi htlll I Iwwwsllllllilitllcnm cond axiom.

16.1 Definition. X is second countable (or, satisfies the second axiom of countability)
iff its topology has a countable base.

Every second-countable space is first countable. On the other hand, any
uncountable discrete space is first countable without being second countable.

16.2 Theorem. a) The continuous open image of a second countable space is
second countable.

b) Subspaces of second countable spaces are second countable.

c) A product of Hausdorff spaces is second countable iff each factor is second
countable and all but countably many factors are one-point spaces.

Proof. a) Let f be a continuous open map of X onto Y. It is sufficient to check
that if # is a base for X, then f(#) = {f(B)| Be %} is a base for Y. For this
purpose, let ¥ be an opensetin Y, pe V. Then f~!(V)is open in X, and if we pick
qge f'(p) = £~X(V), then for some basic open set B, ge B = f (V). It follows
that p € f(B) < V, and thus that the sets f(B) do form a base for Y (where did we
use openness of f7).

b) The restriction of a base for X to a subspace 4 of X is a base for A.
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¢) Suppose X = [] X, is second countable. By (a), each X, is second count-
able and by Exercise 16A, since [ | X, is first countable, there are at most countably
many nontrivial factors.

Conversely, suppose {B,,|n =1,2,...} is a base for X,, for each a e A.
Then the sets of the form

Byw X X By X [T{ X, |0 5 oy ooy 0y}

ainy

form a base for the product space. It is easily verified that, since 4 is countable,
there are only countably many sets of this form. R

An example showing that the requirement that f be open in 16.2(a) is not
frivolous, is given to be worked out in 16B.1.

16.3 Definition. A topological space X is separable iff X has a countable dense
subset. (A set D is densein X iff Cly D = X.)

The real line is separable, since the rationals are dense. A discrete space is
separable iff it is countable.

16.4 Theorem. a) The continuous image of a separable space is separable.

b) Subspaces . {owever, an open
subspace of a Gonverted with
c) A product STn“ c ints, is separable
iff each facton 0n“erler
Proof. a) A cont trial version t of X to a dense
subset of Y- http://www stdutility.com

b) The Moore prane T 15 separaole, wnie tne x-axis 1 1n [ is not; see
Exercise 6B. The assertion for open subspaces is an easy exercise.

¢) =: Since projection is continuous, each X, is separable if || X, is, by
part (a). We proceed to show |A| < ¢. For each a € 4, let U, and V, be disjoint
nonempty open sets in X, (using the fact that each X, is Hausdorff and has at
least two points). Let D be a countable dense set in [ [,., X, and, for each a € 4,
let D, =D n n'(U,). Then D, # & for each «, and for distinct o and f,
D, # Dy since points in n, '(U,) n m; '(V;) which belong to D will belong to D,
and not D;. Thus the map F: A —» P(D) defined by F(a) = D, is one—one and
therefore

|A] < |P(D)| = 2% = .

<: In X, let {d,,, d,5, ...} = D, be a countable dense subset. If we suppose

|A] < ¢, then we can regard A as a subset of the unit interval I. For each sequence

Jy ..., J, of disjoint closed intervals with rational endpoints and each sequence

ny, ..., n of positive integers, define a point p(J 4, ..., J,; ny, ..., n,) as follows:
Doy = dop, if aeld,

Do = dyy otherwise.
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The set D of points p so defined is countable. Moreover, it is dense. For a (basic)
open set in [ | X, has the form

B = nail(Ual) NN TraTnl(Uam)

where U, is open in X,, i = 1,..., m. Then U, contains a point d,, of D,,,
for each i, and there are disjoint closed rational intervals J, ..., J, containing
the points ay, . . ., a,, respectively. The point p(J,, ..., J,; ny, ..., n,) belongs
to Bsince p,, = d,,,, i = 1,..., m. Hence, the set D is dense. B

16.5 Definition. X is Lindelof iff every open cover of X has a countable subcover.

16.6 Theorem. a) The continuous image of a Lindeldf space is Lindeldf.
b) Closed subspaces of Lindelof spaces are Lindeldf; arbitrary subspaces of
Lindeldf spaces need not be Lindeldf.

¢) Products of (even two) Lindeldf spaces need not be Lindelof.

Proof. a) Suppose f: X — Y is continuous and onto and X is Lindelof. Let
{U, | a € A} be an open cover of Y. Then {f~'(U,) |« € A} is an open cover of
X from which we can choose a countable subcover {f~'(U,)|i=1,2...}.
{Ua~ ' i=12.. L swiill bha tha dacirad canntabla conhoasar frnm (Ua | ae A}.

b) Suppose F
cover of F, find f
and the sets V, fo1
cover, {X — F, V
F,s0{U,|oac A}

Converted with

STDU Gonverter

trial version

€ A} is an open
V,. Then X — F
a countable sub-
£1,2,..., cover

Fortheremal  hyp://www.stdutility.com  fsbelow- ®

16.7 Examples. a) Arbitrary subspaces of Lindeldf spaces need not be Lindelof.
Recall  denotes the set of ordinals which are less than or equal to the first un-
countable ordinal w; (as described in 1.19). Since Q is a totally ordered space,
it can be provided with its order topology; recall that a basic nhood of a €Q
is then of the form (ay, a,) = {feQ|a; < f < a,}, where oy < a < a,, with
the modification that nhoods of w, have the form (y, w,] = {feQ |y < f < w,},
fory < w,.

NowQ is a Lindelof space. In fact, given any open coverof , find one element
U which contains w;. Then U contains an interval (y, w,] for some y < w,.
But this leaves at most the set [1, 7] to be covered, and this set is countable, so at
most countably many more elements of the cover will be needed to cover .

The subspace Q, = Q — {w,}, however, is not Lindelof. If for each a € Q,,
weset U, = [1, ), then {U, | « €Q,} is an open cover of £, which has no countable
subcover. For if {U,y, U,,, ...} covers ,, then sup {a,, ay, ...} = w,, which is
impossible, by Theorem 1.20.

b) The product of two Lindeldf spaces need not be Lindelof. Consider the
Sorgenfrey line E which is the real line with the topology in which basic open sets
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have the form [a, b), a < b. In Exercise 16D you will prove this space is Lindelof.
Now E x E is not normal, as we pointed out in Example 15.2, but it is regular,
since E is. But a regular Lindel6f space is normal according to the next theorem,
so E x E cannot be Lindelof.

16.8 Theorem. A regular, Lindelof space is normal.

Proof. Let A and B be disjoint closed sets in a regular Lindelof space X. For each
a€ A, let U, be an open set containing a such that U, n B = @, by regularity.
Similarly, find a set V, for each b € B separating b from 4. Since A and B are
Lindel6f subspaces of X, apparently a countable number of the sets U, cover A,
sayAc U, U, U - ; similarly, B< V; U V, u---. Now construct open
sets S, and T, inductively as follows:

S, =U, T,=0"-5,
S, =U,-T, T, =V, —(5;V8S,)
S3=U; - (T, L T,) T, =V —(S; 08,0V,

Converted with

Then it is easily STn“ con“erter sjoint open sets

containing A and _ -
trial version
httn://www stdutilitv.com

16.9 Theorem.

a) Lindeldf,

b) Separable.
Proof. a) Let 2 be a countable base for X. Suppose % is any open cover of X.
For each U € % and x € U, there is some B, ; € # such that xe B, ; = U. Now
B = {B,y|xeU, Ued} is really a countable set, since #' < #. Say

{B.v|xeU, Ue} = {B,,y, Bs,vy---}- Then Uy, U,, ... is a countable
subcover from %.

b) You did this as Exercise 5F.2. Simply pick one point from each element of
a countable base and verify that the resulting countable set is dense. B

The next examples show that, in general, no other implications between the
properties in Theorem 16.9 will hold.

16.10 Examples. a) A separable space not Lindeldf. The space E is separable,
hence sois E2 = E x E. But E?is not Lindelsf (otherwise it would be normal by
Theorem 16.8).

b) A Lindelof space not separable. Let X be uncountable and discrete.
Adjoin an extra point x* to X and specify that its nhoods will be {x*] U A, where
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A is the complement of a finite set in X, while nhoods of points in X remain the
same. Then the resulting space X* is Lindelof (in fact, every open cover has a
finite subcover) but not separable, since there are uncountably many points x € X

and each is open in X*.
16.11 Theorem. For a (pseudo)metric space X, the following are equivalent:

a) X is second countable,
b) X is Lindeldf,
c) X is separable.

Proof. By 16.9 it suffices to show (b) implies (a) and (c) implies (a) for a pseudo-
metric space. Thus, let (X, p) be a pseudometric space.

b) = a): Suppose X is Lindelof. Let %, = {U(x, 1/n) | x € X}. For each
n, %, is an open cover of x and hence has a countable subcover #}. Then
U =UFOU% U - is a countable collection of open sets in S. Let W be a
nonempty open set in X, and x € W. Then U(x, 1/m) ¢ W for some m. Now
since %3%,, covers X, there is some y € X such that x € U(y, 1/2m). Then

. ‘ Converted with

re., Uy, 1/2m) is W W. Thus % is a
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Then {Unm | N =1,z 5 M =T, %, .-y > vountavic, —vwo ordlm 1t 1S a base.

Let x € W, W a nonempty open set in X. Then U(x, 1/m) = W for some m. But
some d, € U(x, 1/2m) and then U(d,, 1/2m) = U(x, 1/m) so

xeU,,, =Ud, 1/2m) c W.
Thus, {U,,} is a base as advertised. B

16.12 Example. Experience indicates the necessity of pointing out that a separable,
first-countable space need not be second countable. E provides an easy counter-
example. It is separable since the rationals are dense, and first countable since
the sets [x, x + 1/n) form a nhood base at x, but not second countable. For if
E were second countable, then E x E would (in two easy steps) be normal, which
is not true.

Problems

16A. First countable spaces
1. Every subspace of a first-countable space is first countable.

2. Aproduct [] X, of first-countable spaces is first countable iff each X, is first countable,
and all but countably many of the X, are trivial spaces.
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3. The continuous image of a first-countable space need not be first countable [discrete
spaces are first countable]; but the continuous open image of a first-countable space is
first countable. (See also part S below and 23K.)

4. For a space to be first countable, it is not sufficient that each point be a G;. [Construct
a space X by adjoining to the real line (whose topology is unchanged) a single point p whose
nhoods are all sets of the form (a, 00) — C, where C is a countable subset of (a, c0) with no
cluster points. Verify that p is a G, but has no countable nhood base. Why the condition that
C be “scattered?”]

The condition that each point be a G; is sufficient for first countability of a compact
space. (See 17F.7.)

5. For each ne N, let X, be a copy of the subspace {0} U {I/m|m = 1,2,...} of R.
Let X be the disjoint union of the X,. Ts the quotient Y of X obtained by identifying all
accumulation points of X first countable?

16B. Second countable spaces

1. A quotient of a second-countable space need not be second countable. [For each
ne N, let I, be a copy of [0, 1] and let X be the disjoint union of the spaces I,. Now identify
the left-hand endpoints of all the intervals I,. The resulting space Z is not first countable at
the distinguished point, and hence is not second countable, although X is second countable.]

‘ 2. Any base for Converted with ble subfamily which
is a base.
3. Any increasi STn“ cnn“erler ie usual order must

be countable.

16C. The countal Irial version

Let N be any cardin h“n:l I WWW.SI[IIIIIIIW.Bﬂm is a family of open
subsets of X with |%| = N, a subfamily ¥~ of % exists with |[¥"| = Xand (| {V | Ve ¥} # 0.
We say X satisfies the countable chain condition iff every family of disjoint open subsets of
X is countable.

1. Every separable space has caliber N;.
2. Every product of separable spaces has caliber N;.
3. If X has caliber ¥, then X satisfies the countable chain condition.

4. Investigate the three properties mentioned in 1 and 2 for a space X with ¥, elements
and the “co-countable” topology, in which the open sets are ¢ and all complements of countable
sets.

It is an open question whether the product of two spaces, each with the countable chain
condition, has the countable chain condition. Also, this condition plays a key role in the
enunciation of the Souslin hypothesis with which we will be concerned in Section 21.

16D. Lindeldf spaces
A subset A4 of a space X is G4-closed in X iff each point p ¢ A is contained in a G, disjoint
from A.

1. The Sorgenfrey line E is Lindelof. Conclude that E is a T,-space.

2. If X is Lindeldf, every uncountable subset of X has an accumulation point.
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3. A regular space is Lindel6f iff each open cover has a countable subcollection whose
closures cover (i.e., has a countable dense subsystem).

4. Any space is Lindelof iff each closed filter & with the countable intersection property
(whenever F,, F,, ...e %, then ﬂ F, # o) has a nonempty intersection. [The complements
of the sets in an open cover with no countable subcover generate a base for a closed filter with
the countable intersection property. ]

5. A regular space is Lindelof iff each open filter with the countable intersection property
has a cluster point [the complements of the closures of the sets in an open cover having no
countable dense subsystem form an open filter with the countable intersection property].

6. A regular space is Lindelof iff whenever it is embedded in a Hausdorff space, it is
Gs-closed. [A non-Lindeldfspace X has an open filter with the countable intersection property
but no cluster point. Add a point p to the space whose nhoods are {p} U U, where U is any
element of this filter. This provides a Hausdorff space in which X is not G;-closed. The reverse
is easier.]

16E. Hereditarily Lindeldf spaces
A space X is hereditarily Lindelof iff every subspace of X is Lindelof.

1. Every second-countable space is hereditarily Lindelof.

2. Any space X - ace. [Adjoin a point
p to X whose nhoo Converted with of X. Then X U {p}
is Lindel6f.] Thus STn“ c .I

3. If X is hered 0n“er er IE which are not ac-
cumulation points trial version
16F. Cardinality — hittp:/ /www.stdutility.com

1. A separable first-countable space has cardinal <c[c¢ = R °].

2. If X is separable and C(X) denotes all continuous functions f: X — R, then
|C(X) < ¢ [A continuous function is determined by its values on a dense set.]

3. If (X, 7) is second countable, then |1] < «c.

16G. Separable spaces

1. Every subspace of a separable metric space is separable.
2. Prove the irrationals are separable directly by finding a countable dense subset.
3. The set £, of ordinals less than the first uncountable ordinal is not separable.

4. Give an example of a regular, separable space which is not normal. (Compare with
16.8.)

16H. Examples on countability properties
1. The plane with slotted disks (4C) is separable, but neither first countable nor Lindelof
(hence not second countable).

2. The plane with the topology given by radially open sets (3A.4) is separable, but neither
first countable nor Lindelof.
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3. The Moore plane I' is separable, but neither first countable nor Lindel6f.
4. The sequence space m (2H) is not separable. [An uncountable subset 4 of m can be
found such that p(a, b) = 1 whenever a, b e A4.]

5. The sequence spaces ¢ and ¢, (2H) are separable. [Consider sequences with rational
terms which are ultimately constant.]
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Chapter 6

Compactness

17 Compact spaces

Many of the most important theorems in a course in classical analysis are proved
for closed bounded intervals (e.g., a continuous function on a closed bounded
interval assumes its maximum). The basis for the proof of such theorems is
almost without exception the Heine—Borel theorem, that a cover of a closed
bounded interval by open sets has a finite subcover. It is not surprising, then,
that the (topological) property of closed bounded intervals thus expressed has
been made the subject of a definition in topology, the definition of compactness.

This section is long, but falls naturally into three parts. In the first (17.1
through 17.4) we study compactness and equivalent conditions for compactness,
in the second (175 theonah 17 0\ wa civia tha hacia thanzame and examples about

subspaces, prody Converted with es; in the third
(17.10 through 11 act spaces which

are the reasons th STn“ con“erter

17.; Definition. A trial version a ﬁn.ite subcover.
X is countably co a finite subcover.

Evidently, X httn:/ /viww stdutilityv.com delsf. Countable
compactness played an important role in the early stages of topology, because for
the spaces then considered (usually metric spaces) it is equivalent to compactness
(see 17F.6). It is still important in certain restricted directions. Another variation
of compactness, sequential compactness, is introduced in Exercise 17G. It, too,
was once more important than it now is.

17.2 Examples. a) R isnot compact. In fact, the cover of R by the open sets (—n, n),
for n € N, can have no finite subcover.

b) Iis compact. Let % be any open cover of I and let K be the set of all points
c in I such that some finite subcollection from % covers [0, ¢]. Clearly 0 € K.
Also, if ce K and b < ¢, then b e K. Thus K is a subinterval of I containing 0.
Moreover, if c € K, then any finite subcollection from % which covers [0, c]
alsocovers [0, ¢ + €] forsomee > 0(unless ¢ = 1, in which case we have finished).
Thus K is an open set in I. Finally, if k is the right-hand endpoint of K, then
ke K. For pick Ue % such that ke U. Then (k — ¢, k] = U for some € > 0
so that. by adding U to a finite subcollection from % which covers [0, k — €],

116
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we obtain a finite subcollection from % which covers [0, k]. Now K is a closed
subinterval of I which contains 0 and is an open set in I. Thus K = 1. This
proves that I is compact.

c) The ordinal space & is compact. Let % be any open cover of Q. Let «, be
the least element of © such that (a;, @, ] is contained in some element U, of #.
If o; # 1, let a, be the least element of  such that (a,, «, ] is contained in some
element U, of . Continue this process. Then for some n, o, = 1, since otherwise
we would have a sequence a; > a, > -+, which would contradict the well-
ordering of Q. Then {U,, ..., U,} is a subcollection from % which covers all of
Q except possibly 1, so an (n + 1)-element subcollection from % covers . Note
that each of the closed subspaces [ 1, ] of Q is now compact, by 17.5.

Some of the properties of the subspace Q, of Q will be of interest. First note
that Q, is countably compact. For let % = {U,, U,, ...} be a countable open
cover of Q, If no finite subcover of €, exists, then for each n, pick
0, ¢ U, u---0 U, If a =sup {ay, ...}, then « €Q, and no finite subcol-
lection from % covers the compact set [1, o], which is impossible. Next note that
Q, is not compact, since the cover of Q, by the sets [1, a), for & € Q,, can have no
finite subcover. Also. letting Qfa) denote the set of all ordinals <a, Q, — Qo)

is homeomorphic t
it takes the least

transfinite induct
constant on some
is countably com

Converted with

STDU Gonverter

trial version

asily constructed ;
2, and so on by
inction on € is
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compact. By the

next theorem, th . t in f(€,). This
cluster point y is htllll / WWW.SIIlIIIIIIW.Bﬂm of the same net.
Then we can find an increasing sequence o, 5, . . . of countable ordinals such that
|f(aze_1) — ¥ < 1/n and |f(xp,) — 2zl < 1/n, for n = 1, 2, ... . Thus if
a = sup {ay, &y, ...}, we have f(x) = y and f(x) = z, so that y = z. Next we
claim the net (f(e)) converges to this unique cluster point y. If not, then for some
opennhood U of y, Q, — f~}(U)contains a cofinal subset of ,. ButQ, — f~}(U)
is a closed subset of , and thus countably compact (17F.5), and the argument
above can be re-applied to yield a cluster point of (f(«)) other than y. Since this
is impossible, (f(x)) must converge to y. Now for n = 1,2,..., pick a, €L,
such that o > o, implies |f(x) — y| < 1/n. Let oy = sup {a;, &y, ...}. Then
a > ag implies f(«) = y, so f is constant on the tail {x € | & > o} of Q.

This last property of Q, yields an extension theorem: every continuous real-
valued function on 2 can be extended to a continuous function on Q.

17.3 Definition. A family & of subsets of X has the finite intersection property iftf
the intersection of any finite subcollection from & is nonempty.

Families with the finite intersection property are somewhat like filters; in
fact, if & is such a family and & is the collection of all possible finite intersections
from & then & is a filter base, so every family & with the finite intersection property
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generates a filter. Conversely, every filter is a family with the finite intersection
property. Some of the implications in the following theorem will now be clear.

17.4 Theorem. For a topological space X, the following are equivalent:

a) X is compact,
b) each family & of closed subsets of X with the finite intersection property has
nonempty intersection,

c) each filter in X has a cluster point,
d) each net in X has a cluster point,
€) each ultranet in X converges,

f) each ultrafilter in X converges.

Proof. a)=>b): If {E,|ae A} is a family of closed sets in X having empty

intersection, then {X — E,| o€ A} is an open cover of X. By compactness,

there is a finite subcover {X — E,,..., X — E, } and then ()i-, E,, = o, so
{E, | « € A} does not have the finite intersection property.

b) = c¢): If # isa filter on X, then {F | F e %} is a familv of closed sets with

1 1 - F 773 e

the finite intersec Converted with € #}. Then &

has x for a cluster

¢) = d): Thig STn“ con“erler anslation process

from filters to net ) i
d) = e): Ifar trial version at point.

e)=f): Lets  httm://www.stdutility.com  ; then an ultranet
(12D.4) and hence converges. I'hen ¥ converges (1Z.17).

f) = a): Suppose % is an open cover of X with no finite subcover. Then
X —(U,vu---uU,) # o for each finite collection {Uy, ..., U,} from %. The
sets of the form X — (U; u ---u U,) then form a filter base (since the inter-
section of two such sets has again the same form), generating a filter #. Now %
is contained in some ultrafilter & * and, by (f), # * converges, say to x. Now
x € U for some U e %. Since U is a nhood of x, U € # *. But, by construction,
X —Ue% < #*. Since it is impossible for both U and X — U to belong to
Z *, we have a contradiction. Thus % must have a finite subcover. B

The previous theorem gives a hint of one of the lines from topology to more
“applied” branches of mathematics. Compactness can be used by “existential”
(as opposed to “constructive”) analysts, in the following way. Given a differential
equation, it may be possible to topologize some set of functions (among which are
the solutions, if any, of that equation) in such a way that convergence of an ap-
propriate net or sequence of functions to the limit f implies that f is a solution of
the original differential equation. Thus the study of compactness (every net has
a convergent subnet), countable compactness (every sequence has a convergent
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subnet; see 17F) and sequential compactness (every sequence has a convergent
subsequence; see 17G) in spaces of functions is germane to the study of existence
of solutions to differential equations.

We turn now to investigation of the basic structural questions about subspaces,
continuous images and products of compact spaces. That the answers are as
pleasing as they are is one of the primary reasons for the importance of compactness.
In particular, we will have more to say about the Tychonoff Theorem (which is
about products).

We begin with subsets.

17.5 Theorem. a) Every closed subset of a compact space is compact.
b) A compact subset of a Hausdorff space is closed.

Proof. a) If A is closed in the compact space X and % is any open cover of 4,
then for each U € % we can find an open set V in X suchthat V; n 4 = U. Now
{X — A} v {Vy; | Ue%} is an open cover of X which, by compactness, has a
finite subcover. The intersections with A of this finite cover form a finite subcover
of A from %.

b) Suppose A4 is a comnact suhset of the Hausdorff snace X. If a € 4, then

a net (x,) exists it
point b in 4 and

to a also and lim
that A is closed. 1l
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more precise by the following theorem. The proof is left to Exercise 17B.

17.6 Theorem. a) Disjoint compact subsets of a Hausdorff space can be separ-
ated by disjoint open sets.

b) A compact set and a disjoint closed set in a regular space can be separated
by disjoint open sets.
c) If A x B is a compact subset of a product X x Y contained in an open set

W in X x Y, then open sets U in X and V in Y can be found such that
AXBcUXxXxVcW.

17.7 Theorem. The continuous image of a compact space is compact.

Proof. Suppose X is compact and f is a continuous map of X onto Y. If % is
an open cover of Y, then {f ~}(U) | U € %} is an open cover of X and, by compact-
ness, a finite subcover exists, say {f ~(U,), ..., f~}(U,)}. Then, since f is onto,
the sets Uy, ..., U, cover Y. Thus Y is compact. B

This theorem has a nice consequence. If f is a continuous mapping from a
compact space X to a Hausdorff space Y, then each closed subset E of X is compact,
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so f(E) is compact and thus closed in Y. Hence every continuous map from a
compact space to a Hausdorff space is a closed map (and thus a quotient map). One
consequence of this is given in 17.14 at the end of this section.

For use in the next theorem, we recall that an onto mapping takes ultranets
to ultranets (11.11). A proofsimilar to the one given here can easily be constructed
using ultrafilters.

17.8 Theorem (Tychonoff). A nonempty product space is compact iff each factor
space is compact.

Proof. =: If the product space is nonempty, then the projection maps are all
continuous and onto, so the result here follows from 17.7.

<=: Let (x,);c5 be an ultranet in [[,., X,. Then for each fixed o, (7,(x;))en
is an ultranet in X, and hence converges, since X, is compact. By 11.9 it follows
that (x,) converges. Thus the product space is compact. B

The theorem just proved can lay good claim to being the most important
theorem in general (nongeometric) topology. It plays a central role in the develop-
ment of a wealth of theorems within topology and applxcatlons of topology to
other fields. To np==timmrtosat 4L E— f the Stone—Cech
compactification Converted with see 19.4), Ascoli’s
theorem on com nh it (and Ascoli’s
theorem can, in ty STn“ con“erler wrious differential
equations), the p ) B} ace of a Banach
algebra requires trial version t of the Gelfand
representation thg

It is worth m h“n I I WWW s""“l"w com h it, is deceptively
simple; it hides a good deal of muscle Tychonoﬂ” did not have available for his
proof the powerful convergence theorems which roam around in ours. Some idea
of the strength of his theorem can be had by studying Exercise 170, in which you
show that 17.8 implies the axiom of choice. (Thus the axiom of choice must be
used somehow in our proof, since it cannot be derived from the other axioms of
set theory.)

We can use the Tychonoff theorem to provide a number of important examples

of compact spaces.
17.9 Examples. a) A subset of R" is compact iff it is closed and bounded. For if A
is compact, it is closed. Moreover the sets U(x, 1) for x € A form an open cover
of A which, by compactness, has a finite subcover. A routine calculation shows that
A is thus bounded.

Conversely, each closed interval [a, b] in R is homeomorphic to I and thus is
compact. But a closed, bounded subset of R” will be a closed subset of an n-fold
product [ —¢, c] x -+ x [—¢, c] of such intervals and thus will be compact.

b) Every cube is compact. This follows directly from Tychonoff’s theorem,
since a cube is just a product of closed bounded intervals. Of particular interest
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is the Hilbert cube, which is the product I¥° of countably many copies of I. To
us it makes no difference, but a metric geometer working with Hilbert space
H (18.7) would rather think of the Hilbert cube as the product

[0, 1] x [0, 3] = [0,3] x -~

(since then it is isometric, rather than just homeomorphic, to a subspace of H).

c) The Cantor set. Beginning with the unit interval I, define closed subsets
A; o A, o -+~ in I as follows. We obtain A, by removing the interval (3, %
from I A, is then obtained by removing from A4, the open intervals (5, %) and
2, 8. In general, having 4,_;, A, is obtained by removing the open middle
thirds from each of the 2" ! closed intervals that make up A, _,. The Cantor
set is the subspace C = ﬂ A, of I It is a nonempty compact metric space.

We can develop an interesting alternative description of the Cantor set.
Each x € I has an expansion (x;, x,, .. .) in ternary form (that is, each x; s 0, 1 or 2)
obtained by writing x = ) x;/3". These expressions are unique, except that
any number but 1 expressible in a ternary expansion ending in a sequence of 2’s
can be re-expresgad_in an avnancian andina in a caananca of Og (for example, 3
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You should do it if you think you can’t, since it will teach you a lot about product
spaces. Later, in the section devoted to the Cantor set, we will see that the product
of denumerably many nontrivial finite discrete spaces is homeomorphic to the
Cantor set. For this reason, (possibly nondenumerable) products of finite discrete
spaces are called Cantor spaces. The Cantor spaces occupy a special place in
topology. Compactness and discreteness are, in a sense, dual properties, and only
the Cantor spaces carry the banners of both.

We close this section with a study of some of the (nonstructural) properties
of compact spaces which make them important. In particular, we will develop the
relationship between compact Hausdorff spaces, Tychonoff spaces and normal
spaces.

17.10 Theorem. A compact Hausdorff space X is a T,-space.

Proof. It suffices to prove regularity since a regular Lindelof space is normal.
Let A be closed in X, x ¢ A. For each a € A, pick disjoint open sets U, containing
x and V, containing A. The sets V,, a € A, cover A and, by compactness of 4,
some finite collection V,,...,V, is sufficient. Let V = (Ji_, V,, and
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U= ()., U, Then U and V are disjoint open sets containing x and 4,
respectively. l

One importance of this theorem can be brought into focus by recalling that
normal spaces enjoy very nice separation, extension and covering properties,
but that products of normal spaces need not be normal. By combining the above
theorem with Tychonoff’s theorem, we obtain the only result which asserts
normality for a large class of product spaces: every product of compact, Hausdorff
spaces is T,. One of the immediate consequences of this is a result we have already
mentioned without proof: every cube is T,. The search for theorems which assert
normality for various product spaces has occupied the time of some very good
mathematicians; we will return to this topic in Section 21.

Another (related) consequence of Theorem 17.10 provides the important
relationship between compact Hausdorff spaces, Tychonoff spaces and normal
spaces.

17.11 Corollary. The following are equivalent, for a topological space X:
a) X is Tychonoff,

b) X is home * - *
c) X is home Converted with rff space,
d) X is home s c
TDU Gonverter
Proof. a) = b): . . 14.13.
b _ trial version .
) =>c): Eve 5 1S normal.
¢)=d): Eve_ It/ /v stdutility.com

d) = a): Every subspace of a T,-space is a Tychonoff space.

In studying the interplay between compactness and the strong-side separation
axioms (normality and the Tychonoff property) one example has become of
paramount importance.

17.12 Example. The Tychonoff plank. Our basic building blocks are the ordinal
spaces £, with which we are familiar, and Q(w) = N U {w}, where  is the first
infinite ordinal. When Q(w) is given its order topology, the points of N are isolated
(open) and the point w has for basic nhoods the sets {n, n + 1, ...} U {w}.

The product space @ x Q(w) will be denoted T* and the corner point (w,, w)
in T* will be denoted t. The Tychonoff plank is the subspace T = T* — {t} of
T*. Since T* is a compact Hausdorff space, T is a Tychonoff space.

But T is not normal. To develop this fact, some terminology will be useful.
For each ne N, let Q, = Q, x {n}, and for each a €Q,, let Q,(x) be the tail
{B,n)]| B =a}in Q, Also, we will call the set 4 = {(n, w,) | ne N} the right
edge of T, and the set B = {(w, «) |« € Q,} the top edge of T. Now A and B are
closed sets in T, since they are the intersections with T of closed sets in T*. Hence
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if T were normal, there would be a continuous f: T — I with f(4) = 0 and
f(B) = 1. But for each ne N, f is constant on some tail Q,(«,) of Q, since Q, is
just a copy of Q, (see 17.2c). If we let a = sup {ay, a5, ...}, then & < w; and f
takes some constant value on Q,(x) for each n. But since f(4) = 0, this constant
value must be 0 for each n. Thus f(«, n) = O for each n € N, and hence f(«, w) = 0.
But (o, w) € B, contradicting the fact that f(B) = 1. Thus no continuous function
separates the right edge of T from the top edge, so T cannot be normal.

17.13 Theorem. A continuous real-valued function on a countably compact
space is bounded.

Proof. If f: X — R is continuous and X is countably compact, then the open
cover of X by the sets f ~}(—n, n) has a finite subcover. B

17.14 Theorem. A one—one continuous map from a compact space X onto a
Hausdorff space Y is a homeomorphism.

Proof. If f is such a map, then for each closed set E € X, E is compact, so f(E)
is compact, and thus closed, in Y. Thus f is a closed map, and hence a
homeomorphism. B
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Problems

17A. Examples on compactness
1. An infinite set X with the cofinite topology is compact.
2. Which subsets of the Sorgenfrey line E are compact?
3. Which subsets of the slotted plane (4C) are compact?
4. Which subsets of the Moore plane I' are compact?

5. The sequence space m (2H) is not compact [an uncountable subset 4 of m exists any
two of whose points are at distance 1].

17B. Compact subsets

1. A subset E of X is compact iff every cover of E by open subsets of X has a finite sub-
cover. (But note that compactness is not a relative property; that is, if E is compact, it is
compact in whatever space it is embedded.)

2. The union of a finite collection of compact subsets of X is compact.

3. Theintersection of any collection of compact subsets of a Hausdorff space X is compact;;
“Hausdorff” is necessary, even for intersections of two compact sets.
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4. A compact subset of a non-Hausdorff space need not be closed (compare with 17.5).

5. In a Hausdorff space, disjoint compact sets can be separated by disjoint open sets.
(This is an illustration of the general rule, “compact sets behave like points.” The next two
parts of this exercise are examples of the same principle.)

6. In a regular space, a compact set and a disjoint closed set can be separated by disjoint
open sets.

7. If A x B is a compact subset of X x Y contained in an open set W in X x Y, then
there exist opensets U ¢ X and V < Ysuchthat A x Bc U x V < W.

17C. Maximal compact spaces

A compact space X is maximal compact iff every strictly larger topology on X is noncompact.

1. A compact space X is maximal compact iff every compact subset is closed.

2. Every compact Hausdorff space is maximal compact and every maximal compact
space is T, (so maximal compactness acts like a separation axiom for compact spaces).

17D. z-filters in compact spaces

A variant of the convergence characterization of compactness (17.4) is important in studying
the interplay betwe To give it, we must

review the language Converted with

A nonempty co|

X STDU Gonverter

a)ifZ,,Z,e 4 - -
). b trial version
b) if Z e & and

Thus a z-filter is alx h“n:l I wm's'd““"w'c“m ed to that only zero

sets will belong. Convergence for z-filters is easily defined, once we recall that the zero-set
nhoods of a point in a Tychonoff space form a nhoed base (14C). We say a z-filter & in a
Tychonoff space X converges to a point x in X, written & — x, iff each zero-set nhood of
x belongs to #. We say & has x as a cluster point iff x € F for each F € & (since & consists
of closed sets, we needn’t take closures here). Finally, a z-ultrafilter is a z-filter which is con-
tained in no strictly larger z-filter. Parts 1 and 3 below are repeats of parts of the Exercise 12E
on 2-filters.

ice X is a z-filter on

1. Every z-filter is contained in some z-ultrafilter.

2. For a Tychonoff space X, the following are equivalent :
a) X is compact,
b) every z-filter on X has a cluster point (i.e., has nonempty intersection),
c) every z-ultrafilter on X converges.

3. If Z, and Z, are zero sets, & is a z-ultrafilter and Z, U Z, € &, then one of Z; or
Z, belongs to #.
17E. Compact ordered spaces

Call an ordered space X lattice complete iff each nonempty subset has a supremum and an
infimum. Recall that X is Dedekind complete iff every subset of X having an upper bound has
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a least upper bound. Then the following are equivalent:

a) X is compact,
b) X is lattice complete,
¢) X is Dedekind complete and has a first and a last element.

17F. Countably compact spaces

1. A space is countably compact iff each sequence has a cluster point. (Hence, iff each
sequence has a convergent subnet. This does not necessarily mean each sequence has a con-
vergent subsequence, see 11B. Spaces in which each sequence has a convergent subsequence
are studied in 17G.)

2. A T;-space is countably compact iff every infinite subset has a cluster point.

3. The product of a compact space and a countably compact space is countably compact.
(The result fails for two countably compact factors; see the notes.)

4. If X,, X,, ... are all first countable, then [] X, is countably compact iff each X, is
countably compact.

5. Continuous images and closed subspaces of countably compact spaces are countably
compact.

6. For metric sy _ uivalent.

7. Let X beac Converted with guence of open sets
igA)ig juch that ()¢ STn“ cnn“erter x. (Compare with
17G. Sequentially trial version
A space X is seque h“n: I Iwww-slduliliw.cnm rgent subsequence.

(Compare with coulraorevompactross; oo

1. Not every compact space is sequentially compact. [Consider an uncountable product
of copies of I.]

2. Every sequentially compact space is countably compact, but not every sequentially
compact space is compact. Hence, together with part 1, sequential compactness is neither
stronger nor weaker than compactness; just different. [UseQ,.]

3. A first-countable space is sequentially compact iff it is countably compact. (Thus, for
metric spaces, sequential compactness is equivalent to compactness, by 17F.6.)

4. A second-countable T;-space is sequentially compact iff it is compact.
5. The countable product of sequentially compact spaces is sequentially compact. (It

is also true, but difficult to prove, that the product of <, sequentially compact spaces is
countably compact. See the notes.)

6. Assuming the continuum hypothesis, the product of any uncountable family of T;-
spaces, each having more than one point, is never sequentially compact.

17H. Realcompact spaces
Every compact Hausdorff space is Tychonoff, and thus embeddable in some cube. This
makes it clear that a space X is a compact Hausdorff space iff it is embeddable as a closed
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subset of some product of copies of the unit interval I and leads to the following generalization
of compactness: X is realcompact iff it can be embedded as a closed subset of a product of
copies of the real line R.

1. Every compact Hausdorff space is realcompact.

2. Every intersection of realcompact subsets of X is realcompact.

3. Every product of realcompact spaces is realcompact.

171. o-Compact spaces

A space X is g-compact iff X can be written as the union of countably many compact subsets.
X is said to be hemicompact (or denumerable at infinity) iff there is a sequence K, K,, ... of
compact subsets of X such that if K is any compact subset of X, then K < K, for some n.

1. Every hemicompact space is g-compact; the converse fails.

2. Every o-compact space is Lindelof.

3. The product of finitely many g-compact spaces is o-compact. This cannot be extended
to infinitely many factors. [Consider N®°.]

17). Pseudocompact spaces

A space X is pseudd Converted with X is bounded.
1. Every counts
2. In a Tychon STn“ con“erter
a) X is pseu trial version
b) if U, o 1 en sets in X, then
NT.#¢«  htp/ /v stdutility.com
) every countable Open cover ol X has a Nnite subcollection whose closures cover X.

(Compare with 17K.2.)

3. A pseudocompact T,-space is countably compact. [If X is not countably compact,
it has a denumerable closed discrete subset D. Use 15.8.]

17K. H-closed spaces

A Hausdorff space is H-closed (absolutely closed) iff it is closed in every Hausdorff space in
which it can be embedded. This generalizes a property of compact Hausdorff spaces.

An open filter in a topological space is a collection of open sets satisfying the axioms for
a filter, except that only open supersets of elements must belong. See Exercises 12E and 12G
for elementary facts about open filters.

For the duration of this problem, all spaces are Hausdorff.

1. A space X is H-closed iff every open filter has a cluster point. [If some open filter fails
to have a cluster point, a point can be added to X whose nhoods are the elements of the open
filter (together with the point itself), and the result is a Hausdorff extension of X in which X
is not closed. The reverse implication is also done by contradiction. ]

2. A space is H-closed iff every open cover has a finite subcollection whose closures
cover (ie., a finite dense subsystem). [If an open filter does not have a cluster point, the



17] Problems 127

complements of closures of its elements form an open cover with no finite dense subsystem.]
(Compare with 17J.2.)

3. An H-closed space is compact iff it is regular. [One way is trivial. For the reverse, let
% be an open cover and use regularity to prove the existence of a cover ¥~ such that for each
V e ¥, there is some U € % containing V. Then a finite dense subsystem of ¥~ induces a

finite subcover from %.]

4. Let N* be the subspace {0} U {1/n|ne N} of R, and to the space N x N* adjoin a
point g whose nhoods have the form U, (q) = {(n, 1/m)e N x N*|n > no}. Use part 2
above to prove that the resulting (Hausdorff) space X is H-closed and show that X is not
compact.

17L. More on H-closed spaces

1. A regularly closed subset of an H-closed space is H-closed.

2. A descending chain &/ of nonempty H-closed subsets of an H-closed space X has
nonempty intersection. [Let ¢ be the collection of all open sets G in X such that G = A4 for
some A € &/. Show that ¢ has the finite intersection property and thus (17K.1) has a cluster
point p. Thenpe () ]

3. An H-closed * - B Z is a closed filter,
well-order # and us Converted with d sets with the same
intersection. Apply

4. A continuou STn“ con“erter [Use 17K.2.]

S. A nonempty - -
P trial version

17M. Minimal H| . = H
hitp://www stidutility.com

A Hausdorff space & 15 mmmmar rrausaoryy T every ome—one comumuous map of X to a

Hausdorff space is a homeomorphism [i.e., iff there is no strictly weaker Hausdorff topology

on X|. This, again, generalizes a property of compact, Hausdorff spaces.

oo sy 3 PR 2

1. A Hausdorff space X is minimal Hausdorff iff every open filter with a unique cluster
point converges (necessarily to that point). [The key is the statement in brackets after the
definition of minimal Hausdorff space. Thus if a nonconvergent open filter with a unique
cluster point exists, construct a strictly weaker Hausdorff topology on the space (by enlarging
nhoods of the unique cluster point).]

2. Every minimal Hausdorff space is H-closed. [Construct a weaker Hausdorff topology
for a nonabsolutely closed space.] Thus a minimal Hausdorff space is compact iff it is regular.
Also, if every closed subset of a minimal Hausdorff space is minimal Hausdorff, the space is
compact. [See 17K.3 and 17L.3.]

3. Every H-closed space X has a unique weaker topology which is minimal Hausdorff.
[Use the complements of the regularly closed sets in X as a base for a new topology on X.]

4. A space is minimal Hausdorff iff it is semiregular and H-closed.

More is known. A product of minimal Hausdorff spaces is minimal Hausdorff. Every
Hausdorff space can be embedded (as a closed, nowhere dense subspace) in a minimal
Hausdorff space. See the notes.
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17N. Hausdorffness of closed images

1. If f is a closed map of X onto Y and f~!(y) is compact for each y € Y, then Y is
Hausdorff (or regular) if X is.

2. For a compact Hausdorff space X, if f is a quotient map of X onto Y, the following
are equivalent :

a) Y is Hausdorff,
b) fis closed,
¢) {(x, x)€ X x X | f(x;) = f(x,)} isclosedin X x X.

170. The Tychonoff theorem is equivalent to the axiom of choice

1. How does the Tychonoff theorem rely for its proof on the axiom of choice?

2. The Tychonoff theorem implies the axiom of choice [allowable reference: any paper
of Kelley written in 1950].

17P. Onto maps of compact spaces
The basic question we raise here is the following. Given a map f of a compact space X onto
a compact space Y, when is it possible to throw away part of the domain in such a way that
the restriction of f to what remains is a homeomorphism?

Let X and Y be - s map of X onto Y.
Converted with P

1. Thereis a co ps no proper closed
subset of X, onto Y. STn“ cnn“erter

2. If Y is extren B R is mapped onto Y,
then f is a homeom( trial version , pick disjoint open
G, G, such that x, == — G,) are disjoint
and openin vand IO/ /W stdutilitveom | isG1 g

fG) = A~ f(X - Gy,
for i = 1,2, and hence f(x,) # f(x,).]

17Q. Projective spaces

A compact space X is called projective in the category of compact spaces and continuous maps
provided whenever f: X — Z is continuous and g: Y — Z is continuous and onto, then there
is a continuous map 4: X — Y such that f = g o A

Recall that a space is extremally disconnected (15G) iff the closure of every open set is
open. We will draw on parts of Problems 15G and 17P in the course of presenting the following
material.
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1. Every projective space is extremally disconnected. [Let G be an open set in the pro-
jective space X. Let Y be the disjoint union of X — G and G,and g: Y — X the obvious map
(essentially the identity) while f: X — X is the identity. By projectivity of X, there is a map
h: X — Y such that f = g o h. Conclude that G is open.]

2. Every extremally disconnected space is projective. [Let X be extremally disconnected,
and let f: X > Z and g: Y - Z be as in the introductory paragraph. Tn X x Y, let
D = {(x,y)| f(x) = g(»)}. Then D is compact and the projection =, of X x Y onto X carries
D onto X. Apply 17P to get a homeomorphism =, | E of a closed subset E of D with X. Let
h = 7,0 (n; | E)~', where n, is the projection of X x Y onto Y.]

17R. Compact subsets of R

There are uncountably many nonhomeomorphic compact subsets of R. [Use ordinals.]

17S. The Alexander subbase theorem

When describing compactness of X in terms of open covers, it is evident that it suffices to
restrict attention to a fixed base for X. That is, X is compact iff there is a base & for the
topology of X such that any cover of X by elements of 4 has a finite subcover. The corre-
sponding assertion for subbases remains true, if we assume the axiom of choice, but is much
less obvious. Tt is interesting, since it can be used to prove the Tychonoff theorem.

A family £ of s Converted with bver X, and finitely

inadequate iff no fin

1. Given any fi1 STn“ cnn“erter ate family #* > #

which is maximal i finitely inadequate

families. trial version
2. A maximal f| erty: if Cy,...,C,

are subsets of X 4 h“ll:/ I WWW.SWII““W-Wm s to #* for some

k =1,...,n [The proof is by contradiction. ]

3. The following are all equivalent, for a topological space X :

a) there is a subbase % for X such that each cover of X by elements of % has a finite
subcover,

b) there is a subbase ¥ for X such that each finitely inadequate subfamily of € is
inadequate,

c) every finitely inadequate family of open subsets of X is inadequate,

d) X is compact.

[The only hard part is (b) implies (c).]
4. Use part 3 to provide a proof of the Tychonoff theorem.

18 Locally compact spaces

Analysts who deal with abstract spaces often appreciate the presence of some form
of compactness. Quite often, it is enough that the spaces in question be locally
compact.

18.1 Definition. A space X is locally compact iff each point in X has a nhood base
consisting of compact sets.
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Recalling that a space is regular iff each point has a nhood base consisting
of closed sets, we see immediately that every locally compact Hausdorff space is
regular. (In the next section, we will see from a slightly better angle that every
locally compact Hausdorff space is, in fact, completely regular.)

Definition 18.1 provides many compact nhoods of each point in a locally
compact space, but for most spaces, we can stop as soon as one has been found,
according to the next theorem.

18.2 Theorem. A Hausdorff space X is locally compact iff each point in X
has a compact nhood.

Proof. Suppose x has a compact nhood K. Let U be any nhood of x, and let
V = Int (K n U). Then V is an open nhood of x. Now Cl; V is compact and
Hausdorff, so Cly V is regular. Then, since V is a nhood of x in Cly V, there is a
nhood W of x in Cly V with Clg,, W = V. Now W is open in V and hence in
X, and Clg,,y W is closed in Cly V and hence compact; this makes it a compact
nhood of x in X which is contained in U. Hence x has a base of compact nhoods
in X. The other implication is easy. Il

Theorem 18'A nravidac ne ywith thae nonal nath ta nravine 1 Cal CompactneSS,

or nonlocal comp Converted with spaces. For one
thing, it implies compact. Here

wesneances STDU Converter

18.3 ;"fr"}'l"‘es' 3) trial version el
€ space e s are not locally
compact. hitp:/ /www stdutility.com

¢) Manifolds. A topological n-manifold is a Hausdorff space X such that for
each x € X there is a homeomorphism ¢, carrying an open set U in X which
contains x onto an open subset of R" (for X to be a C*-manifold, or a differentiable
manifold, it must also be true that whenever (domain ¢,) N (domain ¢,) # o,
then @, 0 ¢ !'is a C*-function from R" to R"). Using Theorem 18.2, every
topological n-manifold is locally compact. Other properties of manifolds are
mentioned in 18H.

We turn now to the usual questions about subspaces, products and continuous
maps of locally compact spaces, beginning with subspaces.

18.4 Theorem. In a locally compact Hausdorff space, the intersection of an
open set with a closed set is locally compact. Conversely, a locally compact
subset of a Hausdorff space is the intersection of an open set and a closed
set.

Proof. Let X be locally compact and I,. If Aisopenin X and a € 4, then a has a
compact nhood K in X contained in 4, and K is then a compact nhood of a in 4,
so A is locally compact. If Bisclosed in X and b € B, then b has a compact nhood
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K in X and K n B is a compact nhood of b in B, so B is locally compact. Hence,
open subsets and closed subsets of X are locally compact. But (easily) the inter-
section of two locally compact subsets of X is locally compact so, in particular,
the intersection of an open set with a closed set in X is locally compact.

Conversely, suppose Y is Hausdorff and X is a locally compact subset of Y.
It will suffice to show X is open in Cly X (Why?). Let x € X and find a nhood
U of x in X such that Cly U is compact, by local compactness. Say U = X n V
where V is open in Y. Then

ClXAnV)AnX=ClL,UnX=CLU

and the latter is compact. Thus Cly (X n V) n X is closed in Y. But it contains
X nVandthus Cly (X n V); ie, Cly, (X nV)n X o Cl, (X n V). But then
Cly (X nV) < X, and hence (Cly X) n V < X. Thus (Cly X) n V is a nhood
of x in Cly X which is contained in X, so X is open in Cl, X. B

There is one consequence of the previous theorem which crops up often. 4
dense subset of a compact Hausdorff space is locally compact iff it is open.
Quotients of locally compact spaces need not be locally compact. In fact,

the spaces which , studied for their
intrinsic interest. Converted with enerated spaces,”
and are dealt wit] STn“ c -I

Some quotie 0““3' er he next theorem
shows. trial version

18.5 Theorem. i} =n= and X is locally

compact, then NN/ /WWW Stdutility.com

Proof. Suppose y € Y and V is a nhood of y. Pick x € f ~(y) and, by continuity
and local compactness, find a compact nhood K of x such that f(K) = V. Now
x € Inty K, so y € f(Inty K) < f(K) and, since f is open, f(Inty K) is open. It
follows that f(K) is a compact nhood of y contained in V. B

Local compactness behaves well only with respect to finite products, es-
sentially, according to the next theorem.

18.6 Theorem. Suppose X, is nonempty for each o.€ A. Then || X, is locally
compact iff
a) each X, is locally compact,
b) all but finitely many X, are compact.
Proof. =: Projections are continuous and open, so part a) follows from 18.5.

Forb),let x € [ | X, and let W be a compact nhood of x. Then W contains a basic
nhood of the form

T (Ug) 0o 0w 1(U,,),

ay
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and it follows that, if a # ay,...,a,, then n (W) = X, Thus X, is compact
for all a except possibly oy, . . ., a,.

<: Letxe ]_[ X,, and let U be a basic nhood of x; say

U=U, x x U, x[]X,
where we assume the set {&,...,a,} = S is expanded to include all « for which
X, is not compact. It suffices to find a compact nhood contained in U. But, for
each oy, i = 1,..., n, there is a compact nhood K,, of x,, with K,, = U,,. Then,
since X, is compact for a ¢ S,
K=K, x x K, x[[{X,|oz¢S}

is a compact nhood of xand K < U. B

18.7 Examples. a) R" is locally compact for each positive integer n, R*° is not.

b) Hilbert space H is the collection of all real sequences x = (x, x,,...)
such that ) x? < oo, with the metric

dx,y) = Z (>, — Yk)z

The proof that d
and is left to Exgq
show now that ¢
Forn=12,...
and whose kth ¢
having no cluster

Converted with
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hwarz inequality
.)in H. We will
H is not compact.
nate is 0 if k # »
| sequence in B,

B, is not compact.

It follows that H h“nl I www's""l“"w'c“m act nhood of 0 in

H, then for sufficiently small ¢, B, would be a closed subset of K and thus compact.
Other properties of H are given in Exercise 18B.

.

Problems
18A. Examples on local compactness
1. Q is not locally compact.
2. The Moore plane I' is not locally compact.
3. The Sorgenfrey line E is not locally compact.
4. The slotted plane (4C) is not locally compact.

5. Let A = X and let 7 be the topology for X consisting of @ together with all subsets of
X containing A. Is (X, 7) locally compact?

6. Discuss local compactness of the radial plane (3A.4).

18B. Hilbert space
Recall that H denotes all real sequences x = (xy, X, ...) with ). x2 < oo.

1. The distance function d(x,y) = /Y. (x, — »,)? is a metric for H. [Use the Schwarz
inequality: (). x,y,)* < Y, x2 Y yi.]
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2. If (x"),enis a sequence in H, then x" — x in H implies x! — x;in Rforeachi = 1,2,... .
The converse fails.

3. His separable.

4. The topology on H differs from the topology it would inherit as a subspace of R™.
[See part 2.]

5. R" is isometric to the subspace of H consisting of all sequences (x;, X,, . . .) such that
x, = 0fork > n

6. H is isometric to a nowhere dense subset of itself.

Part 6 above shows that, for subsets of H, the property of being open in H is not a topo-
logical (or even a metric) invariant. The corresponding result for R” is true: if U and V are
homeomorphic subsets of R" and U is open, then V is open. This result, due originally to
Brouwer and called invariance of domain, is most elegantly proved using the machinery of
algebraic topology.

18C. Quotients of locally compact spaces

Compare with Theorem 18.5.

1. The closed continuous image of a locally compact space need not be locally compact.
[Let X be the plane hose elements are A

and the sets {x} for ] Converted with because 9 is upper

semicontinuous (see
2. The closed ¢ STn“ cnn“erter compact provided

the pre-image of eag - - ded in part 1).
trial version

3. The conditio
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18D. Subsets anasuogroups oy TopoTOgICar groups

Let G be a topological group. (13G.)

1. If U and V are open in G, so is UV. If A and B are closed in G, AB need not be closed.
[An example can be found in R with its usual topology and addition (caution: then AB
becomes 4 + B).] If one of A or B is compact, then AB is closed.

2. If F is compact and U open in G, with F < U, then for some nhood V of the identity
inG, FV < U.

3. If F is compact in G; then for each nhood U of e, there is a nhood V of e such that
xVx~! < U, for each x € F. (Compare with 13G.6(d).)

4. For x, ye G and A, B = G we have

a) A-Bc 4B
b) (A7) = (A)~!
¢) xAy = x4y

d) if ab = ba, for each a€ A, b € B, then ab = ba foreachae 4, be B.
5. If H is a subgroup (Abelian subgroup, normal subgroup) of G, so is H.
6. A subgroup is discrete iff it has an isolated point.
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7. Every open subgroup is closed.
8. Every locally compact subgroup is closed. (This is difficult.)

18E. Quotients and products of topological groups
Let G be a topological group.

1. The product [] G, of topological groups is a topological group when given the product
topology and pointwise multiplication (m,(x - y) = m,(x)n,(y)). The projection =, is a con-
tinuous open homomorphism.

2. Let H be a closed normal subgroup of G. Then G/H, the set of all left cosets xH of H,
is a topological group when given the quotient topology and factor group structure. The
natural map P: G - G/H, P(x) = xH, is continuous and open.

3. G/H is discrete iff H is open.

4. If G is locally compact and K <= G/H is compact, a compact set F = G exists with
P(F) = K.

5. If Giscompact, so is G/H. Conversely, for locally compact G, if H and G/H are compact,

s0is G. [See 4.] A similar theorem holds for local compactness (i.e., if H and G/H are locally
compact, so is G), but the proof (due to Gleason) is difficult. See the notes.

18F. Character -
9 Converted with _
Let G be a locally ¢ rorphism y: G - T
where T is the cirg STn“ c 'I blogy and complex
multiplication). 0n“er er
1. Theset Gofa trial version hen given pointwise
muldplicationand € hyra:/ /www. stdutility.com

P(F,e) = {xe G|lxx) — 1] < ¢ forall xe F},

for compact F = G and ¢ > 0, form a base at the identity 1 (1(x) = 1, for all x € G).
G is called the character group of G.

2. G is locally compact and Abelian.

3. If G is compact, G is discrete. If G is discrete, G is compact.

4 R=R N=T T=N

5.6=0G. [Map G - G by x —» &,, where &, is the character on G defined by
€. (x) = x(x). Assume the fact that if a # e in G, then for some y € G, x(a) # 1 (this is very
hard to prove!) and show x — & is a topological isomorphism (2 homeomorphism and an
isomorphism) of G onto G.] This is the Pontryagin duality theorem.

18G. A regular space not completely regular

Recall that T denotes the Tychonoff plank (17.12) (2 x N*) — {(w,, w,)}. Let Z be the set
of all integers, positive, negative and zero and form the product T x Z. Identify points in
T x Z as follows: if n is odd, the right edges of T x {n} and T x {n + 1} (which are copies
of T) are identified point for point and if n is even, the top edges of T x {n}and T x {n + 1}
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are identified point for point. The image T, of T x {n} under the resulting quotient map is
clearly a homeomorphic copy of T.

Now add points a and b to the quotient space obtained, the basic nhoods of a being of the
form U,(a) = {a} U Jm=n T, and the basic nhoods of b being of the form

U,b) = {b} U O T

as n ranges over all integers. Let the space | 22 _,, T, U {a, b} be denoted K.

1. K isregular and T;.

2. Let f: K — R be continuous, let n be an even integer, and let p be a positive integer. If
S = 1/p at all but finitely many points on the right edge of T,, then f > 1/(p + 1) at all but
finitely many points on the right edge of T, _,. [Otherwise, / < 1/(p + 1) at infinitely many
points on the right edge of T, _,, and hence on the right edge of T, _;, and then (see 17.12)
there is some i, < w, such that,in T,_,, f(, w,) < l/(p + 1) for all § > B,. Since the top
edge of T, _, coincides with the top edge of T,, we would have f(B, w,) < 1/(p + 1) for all
B > Boin T,. This is impossible, since f > 1/p on most of the right edge of T, entails f > 1/p
on most of the top edge of T, (again using 19F(1)).] Similarly, if / < —1/p at all but finitely
many points on the right edge of T,, then f < —1/(p + 1) at all but finitely many points on

the right edge of T, | -
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continuous real-valued function is constant! See the notes.
18H. Manifolds

Topological n-manifolds were introduced in 18.3(c). Let X be a compact n-manifold.

1. If U is an open subset of X which is homeomorphic to R”", the quotient of X obtained
by collapsing X — U to a single point is homeomorphic to the n-sphere S™.

2. X can be embedded in a finite product of spheres (and hence in some Euclidean space
R™). [You need an evaluation map.]

19 Compactification

Since compact Hausdorff spaces behave nicely, it is of interest to study the process
of “compactification” that is, the process of embedding a given space as a dense
subset of some compact Hausdorff space.

19.1 Definition. A compactification of a space X is an ordered pair (K, &) where
K is a compact Hausdorff space and / is an embedding of X as a dense subset of K.
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In many cases 4 will be an inclusion map, so that X < K. In other cases, we
can agree to write X when we mean A(X) (referring to our earlier remarks that
homeomorphic spaces are, to a topologist, the same), so that we can again write
X <= K. Whenever one of these situations occurs we say simply that K is a
compactification of X, and think of K as containing X as a dense subspace.

Many examples of compactifications lie at hand. To mention a few, [0, 1]
is a compactification of [0, 1), S* is a compactification of R (under stereographic
projection), the ordinal space €2 is a compactification of ,. These are all obtained
by adding one point to the space X to be compactified; this process can be
generalized to arbitrary locally compact Hausdorff spaces.

19.2 Definition. Let X be a locally compact, noncompact Hausdorff space, p a
point not in X (for example, p = X). Let X* = X U {p}, and let the basic nhoods
of p be the sets of the form {p} U (X — L), where L is a compact set in X. Nhoods
of points in X are unchanged in X*. In Exercise 19A, you will verify that this is
a valid assignment of nhoods in X*. Clearly X* is compact (since the element of
an open cover which contains p will cover all but a compact subset of X) and X
is open and dense—in ¥* Mareaver V* ic Hancdarff (nracicely because X is

locally compact 4 Converted with pint compactifica-
tion (Alexandroff
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We have just used the fact that if a space has a compactiiication, it is a Tychonoff
space. To establish the converse, that every Tychonoff space has a compactifica-
tion, we recall the details of the embedding of any Tychonoff space in a cube.
The procedure we will outline here is a modification of that used in the original
embedding theorem (14.13) in that here we use the bounded continuous functions
from X to R while there we used the continuous functions from X to I. Since a
bounded continuous function from X to R can be regarded as a function from X
to some closed bounded interval, the difference is not great.

Let C*(X) denote the collection of all bounded continuous real-valued
functions on X'; the range of each f e C*(X) can be taken as a closed bounded
interval I, in R. Since X is Tychonoff, the collection C*(X) separates points from
closed sets in X and thus, by 8.16, the evaluation map e: X — [] {I,| fe C*X)}
defined by

19.3 Theorem. ychonoff space.

[e(x)]f = f(x)
is an embedding of X in []I s- Note that under the embedding e, the element
f of C*(X) is transformed into the restriction to e(X) of the fth projection map
ny; thatis, for f: X - I, f = n,0e (Fig 19.1)
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Figure 19.1

19.4 Definition. The Stone—Cech compactification of X is the closure fX of e(X)
in the product [ [ I,. (More formally, (BX, e) is the Stone—Cech compactification
of X))

The central useful fact about the Stone—Cech compactification is an extension
property, given by the following theorem.

19.5 Theorem. If K is a compact Hausdorff space and f: X — K is continu-
ous, there is a continuous F: fX — K such that F o e = f.

Proof. K is a Tychonoff space and thus can be embedded by an evaluation map
¢ inacube [] {I, | g € C¥K)}. The situation is illustrated in Fig. 19.2.

]—I If ]—I Ia
Converted with
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trial version
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We can define a map H:[[I, > [[I, as follows; for each re[]I,,
[H(1)], = t;o,. This map is continuous when followed by each projection
m,, in fact (m, o H)(t) = m,°%(t), so H is continuous. Now H takes e(X) into €'(K),
for an element of e(X) has the form e(x) for some x € X and

Hle(x)], = [e(x)]gor = g o f(x) = [¢(f(0)],

so that H[e(x)] = €/(f(x)). But e(X) is dense in fX, so H[e(X)] is dense in H(BX)
and thus, since €'(K) is closed and contains H[e(X)], H(BX) < ¢'(K). Finally,
define F = ¢ ~'o(H|BX) Then F:BX — K is continuous and Foe = f
since, for x € X,

Foe(x) = e '[H(e(x)] = ¢ '[e(f(x)] = f(x). W

Very often it is possible to deal with e(X) directly (as, for example, when
dealing with preservation of a topological property in the passage from X to
BX). Then X is often written for e(X), so that X < X, and the above theorem
becomes: every continuous function from X to a compact space K can be extended
to pX.
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Theorem 19.5 actually characterizes the Stone—Cech compactification, up
to what is called a topological equivalence. We need some preliminary terminology
and lemmas.

19.6 Definition. If (K,, #,) and (K,, 4,) are compactifications of X, we write
(K, hy) < (K,, h,)iff there exists a continuous F: K, — K, suchthat Foh, = h,
(Fig. 19.3). When emphasis on F is needed we write F: (K, ;) < (K, &,). Note
that F is just an extension to K, of the canonical homeomorphism 4, o h;* of
h,(X) with A,(X).

Figure 19.3

(In case h, and h, are inclusion maps, this says (K, ;) < (K, h,) iff there is

a continuous F: | , th
(K Converled with )
1)
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any compactifica called the Stone—
Cech compactific  hitp://www.stdutility.com

19.7 Lemma. (K., hy) and (K,, h,) are topologically equivalent compactifica-
tions of X iff there is a homeomorphism H of K, with K | such that H o h, = h,.

Proof. Exercise 19E. B
19.8 Lemma. IfF. (Kl, hl) < (Kz, hz) then

a) F | hy(X) is a homeomorphism of h,(X) with h,(X),
b) F carries K, — h,(X) onto K; — h;(X).

Proof. a) Infact F | hy(X) = hy o hst.

b) From (a), F is onto. Thus we can prove (b) by proving, more generally,
that whenever S is Hausdorffand f: S — T is a continuous map whose restriction
to a dense subset A of S is a homeomorphism, then f(S — 4) = T — f(A).
Suppose not. Then for some xe 4 and ye S — A4, f(x) = f(y). Pick disjoint
nhoods U of x and V of y. Now f(U n X) is a nhood of f(x) in f(A), since f is
a homeomorphism, so f(U n X) = W n f(A) where W is a nhood of f(x) in T.
But any nhood V"’ of y contained in V contains points of 4 not in U, so (V') ¢ W.
Thus f is not continuous at y, a contradiction. l
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The proofs of the following theorems are now easy exercises (19E).

19.9 Theorem. If (K., h,) and (K,, h,) are compactifications of X and (K,, h,)
has the extension property of Theorem 19.5, then (K, h{) < (K5, h,).

19.10 Corollary. (BX, e) is characterized up to topological equivalence by the
extension property.

Thus BX is (up to topological equivalence) the only compactification of X
with the extension property and, by 19.9, it is the largest element in the collection
of compactifications of X partially ordered by <. Note that, if X < X and
X < K, 19.9 provides a continuous F: X — K such that F | X is the identity
while 19.8 says F(X — X) = K — X. We will use this fact later.

More light can be shed on the nature of the Stone—Cech compactification
using the following terminology.

19.11 Definition. A subset 4 of a space T is C*-embedded in T iff every bounded
continuous real-valued function on 4 can be extended to T.

Either regarded as a consequence of 19.5 or taken directly from the fact that
the bounded real-valued continuous functions on e(X) are just the restrictions to

e(X) of the projec . X. This property
also characterize Gonverted with
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Figure 19.4

For each g: L — I, the map g o f o h~': h(X) — I, has a continuous extension
h,: K > 1, Define G: K - [] 1, by
[G(0], = hyl0).

Then G is continuous since for each projection =, of I1 I,, m,0 G(t) = hy2), so
that m, o G is continuous. Moreover G carries h(X) into e(L) since

G[h(x)], = hyh(x)) = (g o f o h7)(h(x)) = g[f ()] = e[f(X)],-
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But G[A(X)] is dense in G(K) and e(L) is compact, so G(K) < e(L). Thus
F = e~ G carries K into L and, by the above computation, Fo h = f. W

Theorem 19.12 is most useful in proving that one familiar space is or is not
the Stone—Cech compactification of another.

19.13 Examples. a) I is not the Stone—Cech compactification of (0, 1) since the
bounded continuous real-valued function sin (1/x) on (0, 1) cannot be extended
toL

b) From 17.2, every continuous real-valued function on the ordinal space
Q, can be extended to , so fQ, = Q.

c) As an exercise (19F), you will show every continuous real-valued function
on the Tychonoff plank T can be extended to T* (see 17.12). Thus fT = T*.

d) |AN| = 2% From Theorem 16.4, the product I° of ¢ copies of I has a count-
able dense set A. Any one—one map f of N onto A is continuous and hence has
an extension f?: BN — I° (by 19.5). Since f* is onto a dense subset of I', it is onto
I'. Thus |[AN| > Il = ¢¢ = 2% On the other hand, there are ¢ elements in
C*(N) so SN < If and thus |fN| < 2¢

Converted with
Problems
19A. The one-po STn“ cnn“erter
The procedure used trial version ally compact, non-
compact Hausdorff o= (* = Y u {p} with
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is a compact subset of Y. Y* is called the Alexandroff extension of Y.
1. This is a valid assignment of nhoods in Y*.
2. Y*is compact and Y is open in Y*.
3. Yisdensein Y*iff Y is noncompact.
4.

Y* is Hausdorft iff Y is locally compact and Hausdorff.

19B. The one-point compactification: examples

1. The one-point compactification of R” is homeomorphic to S™.

2. The one-point compactification of N is homeomorphic to the subspace {0} U {1/n ] n=
1,2,...} of R.

3. The one-point compactification of the Tychonoff plank T is T* (see 17.12).

19C. Compactification in the plane

The one-point compactification X* of X has the property that X* — X is a discrete space.
Find a nonlocally compact subset of the plane which has a compactification K such that
K — A is discrete.
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19D. Compactification of ordered spaces
Every ordered space has an ordered compactification [use 17E].

19E. Exercise on topological equivalence

1. Compactifications (K, #;) and (K, 4,) of X are topologically equivalent iff there is
a homeomorphism H: K, — K, such that H o h, = h;. [For necessity, if

F:(Kuh) < (K hy)  and  G:(Ky hy) < (K, hy),

then F and G are inverses and hence homeomorphisms. |
2. Prove 19.9 and 19.10.

19F. The Tychonoff plank
Show that the Tychonoff plank T is C*-embedded in T* [see 17.12].

19G. C*-embedding and BX
Let X and T be Tychonoff spaces.

1. If X is dense and C*-embedded in T, the embedding e: X — BX can be extended to
an embedding E: T = 8X

2. If X is C*-en Comnverted with quivalence).
wh. caranali) ST CONURHTRY

L |BN| > |BQI. trial versi b.5.]

2 150l > B! rial version 5]

3. |BN| = |6Q] http://www .stdutility.com

191. B(X x X) # X x BX
Exercise 15G on extremally disconnected spaces is a necessary prerequisite to this problem.
1. BX is extremally disconnected iff X is extremally disconnected. [15G.1c for sufficiency.]
In particular, if X is discrete, fX is extremally disconnected.
2. If D is any infinite discrete space, fD x BD is not homeomorphic to f(D x D). [Show
BD x BD is not extremally disconnected by studying the closure of the open set
{(x,x)e BD x BD|x e D}.]

The Stone—Cech compactification of a product has been intensively studied. The identity
B(T X.) =[] BX, holds iff [] X, is pseudocompact; see the notes.

19]. Filter description of fX
In 17D we observed that a completely regular space is compact iff every z-ultrafilter converges
(i.e., is fixed). A compact space containing a copy of X can be obtained by “fixing” the free

z-ultrafilters on X.
Let BX be the space whose points are the z-ultrafilters in X. For each zero set Z < X,

define Z* = {# e BX | Ze F}.
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1. The sets Z* can be used as a base for closed sets to obtain a topology on BX. [Use
5E.2 and 17D.3.]

2. For x € X, let h(x) be the unique z-ultrafilter converging to x. Then 4 is an embedding
of X as a dense subset of BX. (Hereafter we identify X with A(X), so X < BX.)

3. For each zero set Z in X, Clgy Z = Z*.
4. For zerosets Z, and Z, in X, Clgy (Z, n Z,) = Clgx Z, n Clgx Z,.

5. BX is a compact Hausdorff space. [Tt is enough to show each family of basic closed
sets with the finite intersection property has nonempty intersection.]

6. Each continuous map f of X into a compact Hausdorff space K can be extended to
BX. (This should be compared with 19.5.) [If pe BX — X extend f to p as follows: pisa
unique z-ultrafilter in X and # = {Z = K| f~'(Z) € p} is a zfilter in K. Show & is prime
(12E) and thus has a unique cluster point g (12E.6). Define f(p) = g. (This is essentially a
use of 12F.)]

7. BX = BX.

19K. Wallman compactification

Let X be a Hausdorff space, and let yX be the collection of all closed ultrafilters on X. For
each closed set D — X, define D* < yX to be the set

Converled with
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3. X is dense in yX (more accurately, A(x) is dense in yX). More generally, if D is closed
in X, then Cly D = D*,

4. If A and B are closed subsets of X, Clx (4 n B) = ClLy A n Cl,x B.

5. yX is compact. [Any collection of basic closed sets with the finite intersection property
has nonempty intersection. ]

6. Every continuous function on X to a compact Hausdorff space K can be extended to
yX. [Mimic the proof of 19J.6.]

7. yX is Hausdorff iff X is normal. [Use part 4 for necessity.] Thus yX = BX iff X is
normal (by 6).

19L. Wallman basis problem
The procedure used to obtain X in 19J and yX in 19K can be generalized. Let # be any
base for the closed sets of X satisfying the following conditions:

a) for each closed set F and x ¢ F, there is some A€ % such that xe Aand AN F = g,

b) finite unions and finite intersections of elements of # belong to 4,

¢) if A, Be # are disjoint, then for some Cand De#, Ac X — C,B<c X — D and
X-OCOn(X—-—D)=wg.
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Then 4 is called a Wallman base for X ; a space X is seminormal iff it has a Wallman base.
Now let o/ be any base for the closed sets of X and call # < & an «-filter iff # consists
of nonempty sets and
i) F,n F,e % whenever F|,F, e %,
ii) F € & whenever F > G € # and F belongs to /.

An o -ultrafilter is a maximal o/-filter. See 12E for basic results on .«7-filters.
Let w_4(X) be the set of all o/-ultrafilters on X and for each 4 € &, let

A* = (FewX)|Ae F}.
Lett, = {4* | Ae o).
1. ©,, is a base for the closed sets of a topology on w 4(X). (w(X) with this topology is

called the Wallman space of the Wallman base ., whenever </ is a Wallman base.)

2. The mapping h: X — w_,(X) which takes x € X to the (unique) <7-ultrafilter in w (X)
which converges to x is an embedding of X in w ,(X).

3. X is dense in w,(X). More generally, if 4 € o/, then Cl,x) 4 = A*.
4. If A, Be o/, then Cl, x, (4 N B) = Cl,x) A N Cl, x) B.

5. wﬂ(X) is Ha A Vo ulb¥s ol 4 = IX/a11 1. £ X
A great deal Gonverted with the following two
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compactification of X can be obtained from some Wallman base for X. A limitation on the
search for a correct Wallman base in X to produce a particular compactification K is given in
the next problem.

19M. Wallman basis, continued

Let o/ be a Wallman base for X. A bounded function f: X — R is o/-uniformly continuous
iff for each € > 0, a finite collection A, . .., 4, € o exists such that /(X — A,) has diameter
<¢ foreachk =1,...,n

1. The continuous real-valued functions which extend from X to w_(X) are precisely the
&/-uniformly continuous ones.

2. If K is a compactification of X, the zero sets of those bounded continuous functions
fon X to R which extend to K form a Wallman base .« for X.

3. The Wallman space resulting from the base in 2 need not be K [Consider K = R*.]

19N. H-closure

An H-closure of a Hausdorff space X is an H-closed space containing X as a dense subset.
The ultrafilter process introduced in 19J and 19K for describing compactifications of a
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topological space X can be used here, with some modification, to describe the “best” H-
closure of X. See 17K for the basic facts about H-closed spaces.

1. A HausdorfT space is H-closed iff every open ultrafilter converges.

Now let € be the collection of nonconvergent open ultrafilters on X and for each # € &,
let the nhoods of # in the space aX = X U & be the sets {#} U G, where G € #. Nhoods
of points in X are unchanged.

2. aX is a topological space, containing X as an open dense subset.

3. aX is H-closed.

4. oX is the largest H-closure of X ; ie., if T is any H-closure of X, T is the continuous
image of o X, under a map which is the identity on X.

190. Realcompactification

1. Construct a realcompactification for any Tychonoff space X, that is, a realcompact
space containing a dense subset homeomorphic to X, by following step for step the construction
of BX given in the text (but replacing C*(X) by C(X)). This is the Hewitt realcompactification
(Nachbin completion) of X, denoted vX.

2. Show that every real-valued continuous function f on X can be extended to vX (that
is, that X is C-embedded in vX). Conclude that X < vX < BX.

3. Describe the Converted with
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Hewitt realcompact STn“ cnn“erler
20 Paracompac trial version
Paracompact sp h“nl / www.std““"w.cﬂm 944 as a natural

generalization of compact spaces still retaining enough structure to enjoy many
of the properties of compact spaces, yet sufficiently general to include a much wider
class of spaces. The notion of paracompactness gained stature with the proof, by
A. H. Stone, that every metric space is paracompact and the subsequent use of
this result in the solutions of the general metrization problem by Bing, Nagata
and Smirnov. The central role played by paracompactness, or paracompact-like
properties, in some of the current areas of intensive investigation in topology
ensure it a permanent place alongside metrizability and compactness among the
most important concepts in general topology.
To proceed, we need a great deal of terminology applying to coverings.

20.1 Definition. If % and ¥~ are covers of X, we say % refines ¥", and write % < ¥V,
iff each U € % is contained in some V € ¥". Then we say % is a refinement of ¥".
If % is a cover of X and 4 < X, the star of A with respect to % is the set
St(A, %) =J{Ue#u|An U # o).

We say % star-refines ", or % is a star-refinement of ¥~, written % * < v, iff for
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each U e %, there is some Ve ¥ such that St (U,#) < V. Finally, % is a
barycentric refinement of ¥, written % A ¥", provided the sets St (x, %), for
x € X, refine ¥". As an easy exercise, the reader should prove that a barycentric
refinement of a barycentric refinement is a star-refinement ; thatis,if # A v A%,
then % * < W . (See Exercise 20B.)

20.2 Definition. A collection % of subsets of X is locally finite (or nhood finite) ift
each x € X has a nhood meeting only finitely many U € %. We call % point
finite iff each x € X belongs to only finitely many U € %. (We have already met
point finite covers in Section 15 in connection with their shrinkability in normal
spaces.) Apparently every locally finite collection is point finite. A notion related
to local finiteness is that of a discrete collection of sets. A collection % of subsets
of X is discrete iff each x € X has a nhood meeting at most one element of %.
Clearly every discrete collection of sets is locally finite.

Finally, we point out that given any property of collections of sets in X,
there is a corresponding “g-property” which we illustrate with an example. A
collection ¥~ of subsets of X is o-locally finite iff ¥ = ()72, ¥, where each
¥, 1s a locally finite collection in X. The definition of a “g-discrete” collection

should now be clpas—Ttrarmanth maintina ant thae 6404 Lacally finite cover
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be covers.
20.3 Examples. a) STn“ con“erter nite. In fact, for
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point finite.

To illustrate the properties of locally finite collections, we prove some simple
lemmas.

20.4 Lemma. If {A;,| A€ A} is a locally finite system of sets in X, then so
is {A; | 1e A}.
Proof. Pick p e X and find an open nhood U of p such that U n 4, = @ except
for finitely many A. Butthen U n 4, = o except for these same A. This establishes
the lemma. B

20.5 Lemma. If{A;| A€ A}isalocally finite systemof sets, then| ) A, = ) A4;.
In particular, the union of a locally finite collection of closed sets is closed.

Proof. Easily () A, = () 4;. On the other hand, suppose p € (] A;. Now some
nhood of p meets only finitely many of the sets 4,, say A;,,..., A, Since every
nhood of p meets () 4;, every nhood of p must then meet 4, U - U A4, .
Hence,pe A, U - -U A, = A,, u--- U 4, so that, for somek, pe A,,. Thus

U 4, = | 4,, establishing the lemma. B
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20.6 Definition. A Hausdorff space X is paracompact iff each open cover of X has
an open locally finite refinement.

It should be pointed out that some writers do not require that a paracompact
space be Hausdorff.

20.7 Theorem. If X is a Ty-space, the following are equivalent:

a) X is paracompact,

b) each open cover of X has an open a-locally finite refinement,

c) each open cover has a locally finite refinement (not necessarily open),
d) each open cover has a closed locally finite refinement.

Proof. a) = b): A locally finite cover is g-locally finite.

b) = ¢): Let % be an open cover of X. By (b), there is a refinement ¥~ of %
such that ¥" = (), ¥7,, where each ¥, is a locally finite collection of open
sets, say # , = {V,,| B € B}. For each n, let W, = Lﬁﬂ V,g. Then {W,, W,, ...}
covers X. Define 4, = W, — | Ji<, W;. Then {4, [ne N} is a locally finite
refinement of {W,|neN}. Now consider {4, N V,;|neN, e B}. This is a

locally finite refin _

c)=d): Let Converted with ck some U, in %
such thatx e U,, ich that V, = U,.
Now {V, | x € X} STn“ con“erter finite refinement
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d) = a): Let % be an open cover of X, ¥~ a closed locally finite refinement.
For each x € X, let W, be a nhood of x meeting only finitely many V € ¥". Now
let o be a closed locally finite refinement of {W, | x € X}. For each Ve ¥, let

V*=X - )J{AdeAd |AnV = a}.

Then {V* | V € 77} is an open cover (the sets V'* are open by Lemma 20.5) and is
furthermore locally finite. For consider x € X. There is a nhood U of x meeting
only 4,,..., A, say, from /. But whenever U N V* # g, wehave 4, " V* # ¢
for some k = 1,...,n which implies 4, N V # @. Since each 4, meets only
finitely many ¥, we must then have U n V* = g for all but finitely many of the V*.

Now for each Ve ¥, pick U € % such that V = U, and form the set U n V*.
The collection of sets which results, as V ranges through 7”, serves as an open
locally finite refinement of % ; the details are easily checked. B

20.8 Corollary. Every Lindelof Ty-space is paracompact.

Proof. A countable subcover is a g-locally finite refinement. B
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Regarded either as a consequence of 20.8 or taken directly from the definition
(since a finite subcover is a locally finite refinement) we have the fundamental
result that a compact Hausdorff space is paracompact. The following theorem
establishes the importance of paracompact spaces as the smallest known class
of spaces including both the compact and the metrizable spaces.

20.9 Theorem. (A. H. Stone) Every metric space is paracompact.

Proof. Let % be an open cover of the metric space (X, p). Foreachn =1,2,...
and Ue %, let U, = {xe U|p(x, X — U) > 1/2"}. Then

pPUp X = Upuy) 2 12" — 1271 = 1/277 1

Let < be a well-ordering of the elements of . Foreachn = 1,2,...and U € %,

let
Ut =U,— J{Vs1: Veu, V<U}.

Foreach U, Ve%,andeachn = 1,2,..., we have

Us € X — Voo,

or
Converted with
(depending on wlh S'"]“ cnn“er Ier case,
Hence, defining a trial version
hitn://www stdutility.com

we have p(U;, V;) > 1/2"*2 so ¥, = {U, |Ue %} is discrete for each n.
Hence, v~ = U v, 1s o-discrete, and thus o-locally finite. Moreover, ¥ refines
9 and covers X. (If x e X, find the first U € % to which x belongs, and then
x e U, for some n.) B

Note (and we will use this fact) that the above proof can be used without
change to conclude that any open cover of a pseudometrizable space has an open
locally finite refinement.

The normal spaces also form a class of spaces including both the compact
spaces and the metric spaces. The relationship between paracompactness and
normality is given next.

20.10 Theorem. Every paracompact space is normal.

Proof. We first establish regularity. Suppose 4 is a closed set in a paracompact
space X and x ¢ A. For each y€ A4, find open V, containing y such that x ¢ V.
Then the sets V), y € A, together with the set X — A, form an open cover of X.
Let % be an open locally finite refinement andlet V = () {(We# | W n A # o}.
Then V is open, contains 4, and V = () {W| W n 4 # @}. But each such set
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W is contained in some V,, and hence W is contained in ¥, and thus does not
contain x. Hence x ¢ V. Thus x and A are separated by open sets in X.

Now suppose 4 and B are disjoint closed sets in X. For each y € 4, by regu-
larity, find open ¥, such that y e ¥, and ¥, n B = 0. Then proceeding exactly
as above, we can produce an open set V such that 4 ¢ Vand V n B = o. Thus
X isnormal. @

Recall that ©, denotes the set of ordinals less than the first uncountable
ordinal w,. The next theorem gives us the easiest example of a normal space which
is not paracompact. Another example can be found in 20H.

20.11 Example. €, is not paracompact. Otherwise, the cover by sets

Uﬂ = {))EQO,}) < ﬁ}’ ﬂeQO’

has a locally finite refinement {V, | a€ A}. For each a €Q,, a € V, for some a € 4
and hence (f(«), ] = V, for some f(x) < «. We assert that some f, belongs to
(f(a), o] for a cofinal set of points a. It is sufficient to prove this since then f,
will necessarily belong to infinitely many V.

If no such B, exists, then for each B, € Q,, the set {f | foralla > B, f(a) > Bo}
is nonempty. Hei ; tquence of points
defined inductive Converted with Note that for all

> a, fla) > a dsi * > a,
;tor> eZchj;(,a f(>a*[; STn“ con“erter nf(ozs"‘l)ncze Z*. >th

this is impossible - :
By contradict Irial version perty. H

Having estab hitp://www.stidutilitv.com |, of things,

we proceed to investigate the usual questions involving subspaces, products and
continuous images.

20.12 Theorem. a) An F -subset of a paracompact space is paracompact (so
closed subsets of paracompact spaces are paracompact).

b) The continuous closed image of a paracompact space is paracompact if it
is Hausdorff.

¢) The product of a paracompact space with a compact T,-space is paracompact.
Proof. a) Suppose F = | )X, F, is an F,-subset of a paracompact space X,
where each F, is closed in X. Let {U,|ae A} be an open cover of F; say
U, = F nV,, where V, is open in X. Foreachn, {X — F,} U {V,|a€ A} is an
open cover of X which has an open locally finite refinement w,. Let

o, ={WnF|Wea,}.

Then <, is a locally finite collection of open subsets of F and ( )%, «, clearly
refines {U, | « € A}. Thus {U, | « € A} has an open g-locally finite refinement, so
X is paracompact by 20.7.
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b) We will provide only a sketch of the proof of this result. The reader
interested in the complete details is referred to the original proof as given by
Michael (see the notes). Michael proves that a T;-space is paracompact if every
open cover % has a refinement ¥~ such that () ¥” is closed for each ¥ < 7.
(7 is called a closure-preserving closed refinement of %). The techniques used
to prove this are similar to those you will see in the proof of 20.14 below. Note
that a closed locally finite refinement of 4 would satisfy this requirement, so that
for Ty-spaces the stated property is equivalent to paracompactness, by 20.7.

Now suppose X is paracompact and f is a closed continuous map of X onto
Y. Then Y is a T;-space, so it suffices to show every open cover % of Y has a
closure-preserving closed refinement. But {f ~'(U) | U € %} is an open cover of
X and thus has a closed locally finite refinement #". It is easily checked that,
since () #” is closed for any #” < #, the cover ¥" = {f(W)|WeW# '} is a
closure-preserving closed refinement of . Thus Y is paracompact.

c) Let X be paracompact, Y compact, and let % be an open cover of X x Y.
For fixed x € X, a finite number of elements of %, say Uj,..., Uy , cover

Anx?

{x} x Y. Pick an open nhood V, of x in X such that V, x Y = |Jjz, U, (see

17.6c). The sets V;—-oescranacae theanah ¥V farm an anan cavasof X' [ et ¥ be an
open locally finite Converted with x. Consider the
sets (V x Y)n U rh ¥". This is a
refinement of % a1 STn“ con“erler n(x,yeX x Y,
there is a nhood ) i " and the nhood
U x Yof(x, y)ci trial version

2013 Examples. a  NUAD://WWW.STHURIITY.COM the paracompact

space Q. (But if every open subspace of X is paracompact every subspace is
paracompact; see Exercise 20E.)

b) The Sorgenfrey line E is regular Lindelof and thus paracompact, while
E x E is not normal and thus not paracompact. So products of paracompact
spaces need not be paracompact. See also Exercise 20F.

c) Every discrete space is paracompact and every topological space is the
continuous, one—one image of a discrete space. Thus continuous images of
paracompact spaces need not be paracompact. Another example is given in
13.9(b). Note there that X is paracompact and Y is the image of X under an open
continuous map, but Y is not T,.

We close this section with a final property of paracompact spaces which will
prove useful later on, in the material on uniform spaces. The proof embodies the
actual approach used by A. H. Stone to prove every metric space is paracompact.

20.14 Theorem. A T,-space X is paracompact iff each open covering of X
has an open barycentric refinement.
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Proof. Suppose X is paracompact. % is any open cover of X. Let " = {V, |ae A}
be an open locally finite refinement of %, and by 15.10, since X is normal, let

W= (W, |ac A}

be a shrinking of ¥". Now #” must be locally finite also. Pick x € X and let
A, = () {V,|xe W,}. Since each such V, contains x, this is really a finite
intersection, so A4, is open. Let B, = | J {W, | x ¢ W,}. Since #" is locally finite,
B, is a closed set. Now set C, = A, — B,. We assert & = {C, | x € X} is the
required open barycentric refinement.

Fix y e X and pick « such that ye W,. We claim St (y, &) = V,. Suppose
yeC, (ie., C, is part of St (y, &)). But then since y € W,, we have x € W, also
(otherwise W, = B,,so y ¢ C,). Butif x e W, then A, = V, and hence C, < V,.
SoSt(y,&) < V,.

Thus & is a barycentric refinement of ¥~ and hence of %.

Suppose, conversely, that X is T, and each open cover has an open barycentric
refinement.

First we show X is regular. Let p e X and let A be a closed set in X not con-
taining p. Then {X — p, X — A} is an open cover of X. Let ¥, be an open

barycentric refine - entric refinement
of ¥',. Then 7 Converted with St (p, ¥",) and
St (4, ¥,) are the STn“ c some V, V' € ¥ ,,
V contains p and 0n“erler ,) meets both A
and p, which is in trial version ocal
ext we shq . n open o-locally
finite refinement]  MEAM//WWW.StHUtIlItV.COM  |ch that #, is a
barycentric refinement of # and, for each n = 1,2,...,%,,, is a barycentric

refinement of #,. For each a«€ A, define V, = {xe U, |St(x,%,) = U, for
some n}. Note that if St (x, #,) = U, then because %, , is a barycentric re-
finement of %,, St(x,%,,,) consists of points of V, [precisely, for each
yeSt(x,Uys1), St(V,#p+1) < U, so yeV,]. Moreover, for each xe X,
St (x, %,) < some U, so x € some V,. Thus the sets V, form an open refinement
of % with the property that, if x € V, then St (x, %,,) = V, for some m. We will
find a o-locally finite refinement of the cover {V, |a € A} = ¥".

Well-order ¥ say as V;, V,,..., V,,... . Foreach fixedn = 1,2,... define
a sequence of closed sets H,,,, H,,, ..., H,,, . . . as follows (see Fig. 20.1):

Hnl =X — St (X - Vl’%n)
and
H,,a=X—St((X—Va)uUH,,,,,OZl,,>, ifa > 1.
B<a
Note (as a mildly intricate exercise) that St (H,,, %,) is contained in V, and does

not meet H,, for any f # «. Now, the sets H,, foralln = 1,2,... and x € 4,
cover X. Forif x € X, there is a first index o for which x € V,. Then, from above,
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St (x, %,,) < V, for some m. We claim x € H,,,. If not,

x € St ((X — V) ulJ H,y, %m>,
B<a
and then St (x, #,,) meets (X — V,) U (Jp<u Hnp- Since St (x, %,,) is contained
in V,, it must then meet some H,,; for f < o. But then x € St (H,;, %,,) < Vj,
which is impossible since « was the first index for which x € V.
Finally, for each n = 1, 2,... expand the sequence H,, of closed sets to a
sequence of open sets by defining

Gna = St (Hmz: %n+ 2)'

Converted with

STDU Gonverter

trial version
http://www .stdutility.com

Then G,, < V, foreacha and n, and the G, for alla and n form an open cover of X.
It suffices, then, to show each subcollection {G,, | o« € A} is locally finite. In fact,
it is discrete. Since %, , is a cover of X, it is sufficient to show no U e %, ,
meets both G,, and G,; for a # B. Otherwise, there exist Vi, V, € %, , such that
Vi meets both H,, and U, and V, meets both H,; and U. But St (U, %, ,) then
meets both H,, and H,; and hence, since %, ,, * < %,, some W € %, meets both
H,,and H,;. Then St (H,,. %,) meets H,;, which is impossible.

Thus {G,, |a€ A} is discrete, so {G,, |a€e A, n=1,2,...) is a g-locally
finite refinement of ¥~, and thus of . B

Figure 20.1

20.15 Corollary. A T,-space is paracompact iff every open cover has an open
star-refinement.

Proof. A barycentric refinement of a barycentric refinement is a star refinement. B

Problems

20A. Examples on paracompactness
1. The scattered line S (5C) is paracompact.
2. The Moore plane T, the slotted plane (4C) and the radial plane (3A) are not paracompact.
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3. Discuss paracompactness of the sequence spaces m, ¢ and ¢, (2H).

20B. Barycentric and star refinement

1. A barycentric refinement of a barycentric refinement of a cover % is a star-refinement
of %.

2. If %, is the cover of a metric space X by (1/3")-spheres about each of its points, then
Upiy *< U,

3. If % is an open cover of X, ¥ is an open barycentric refinement of %, and for each
U e % we define Fy = X — St(X — U, ¥"), then {Fy, | U € %} is a closed cover of X.

20C. Partitions of unity

A partition of unity on a space X is a collection ® of continuous functions from X to R* (the
nonnegative reals) such that, at each x € X, ¢(x) # 0 for only finitely many ¢ € ®, and
Y oew @(x) = 1. @ is called locally finite iff each x € X has a nhood on which all but finitely
many ¢ € ® vanish. ® is subordinated to a cover % of X iff each ¢ € ®@ vanishes outside some
Ueq.

For a T-space X, the following are equivalent :

a) X is paracomnact

b) Every open ¢ Converted with bordinated to it,

)
)
c) Every open ¢ to it.
[For (a) = (b), use 1 STn“ con“erler nent of %, then con-

struct (and modify) = = completely regular.
Then, let 77, be the trial version @€ ®. Show ¥, is

locally finite and J hitp:/ /www stdutility.com

20D. Metacompact spaces

A space is metacompact iff each open cover has an open point finite refinement.
1. If% is any point finite cover of X, then % has an irreducible subcover ¥”; i.e., no proper
subcollection of ¥~ covers X.

2. A countably compact metacompact space is compact. [An irreducible open subcover
of an open point finite cover of a countably compact space must be finite; use 17F.2.]

20E. Subspaces of paracompact spaces
Let X be paracompact.

1. If every open subspace of X is paracompact, then every subspace of X is paracompact.

2. Every paracompact space with a dense Lindel6f subspace is Lindelof. In particular,
then, a separable paracompact space is Lindel6f. [Since a paracompact space is regular, to
show it is Lindelof, it is enough to show every open cover has a countable dense subsystem,
by 16D.3.]

3. If X is Lindeldf and F is a closed subset of X which is not a G; and which is con-
tained in X — X, BX — F is not paracompact [use 2].
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20F. Products of paracompact spaces

The following result supplements the result (20.12) that the product of a paracompact space
with a compact space is paracompact.

The product of a paracompact space with a metric space need not be paracompact. [In
fact, if P denotes the space of irrationals and S is the scattered line, then S is paracompact
(20A.1) and P is metric, but S x P is not even normal. For the sets 4 = {(x,y)e S x P|x
is rational} and B = {(x, x)€ S x P | x € P} are closed and cannot be separated by disjoint
opensetsinS x P.

20G. Continuous images of paracompact spaces
If f is a perfect mapping of X onto Y (i.e., if f is continuous, closed, and f~(y) is compact

for each y € Y) then X is paracompact iff Y is paracompact.

20H. A separable, normal nonparacompact space

Recall that 2, denotes the set of all ordinals <w, the first uncountable ordinal.

1. To each o €Q,, we can assign a function f,: N — N such that whenever « < f, then
eventually (i.e., for n > N,;) f(n) < fp(n).

We will use the functions £, to describe a topology on X = (N x N) u&,. For each

a e, and integer - (@) is {o} together
with a portion of the Converted with follows:
a) points of | STn“ c 'I
b) if & is a ng 0n“er er mn=12...,
c) if aisa li trial version hg B < a, choosing
an integer| Jﬂ<y$a Uny(7) be a
mhoodof it/ /www.stdutility.com

2. The above is a valid assignment of a nhood base to each point in X, making X a
Hausdorff, separable topological space.

3. X is normal. [Of two disjoint closed sets H and K in X, one must be countable
(consider their intersections with Q). For this set, say H, find o, € Q, such that no ordinal
beyond oy lies in H. For each a € Q,, pick an integer #, as follows:

a) n, > Ny if a > aq (see 1 for the definition of N,),
b) arrange the countably many ordinals <a, in a sequence (beginning with ay),
g, &y, . . . and define n,, to be 1, n,, to be any integer larger than

max (N, Noaor - -+ > Nay_ 1)

aoak>

Using the integers #, thus defined, a nhood U(x) of « of the form U, («) or Uﬂ<vsa U,
can be contructed using the scheme in either (b) or (c) above, as is appropriate. If (c) is needed,
f is taken to be the largest ordinal <a which is not in H (or f = | if H contains all ordinals
<)

Let U=[Hn (N x N)]Ju Uas,, U(x). Then U is an open set containing H whose
closure does not meet K.]

4. X is not paracompact. [The cover of X by the basic nhoods defined in (a), (b) and (c)
can have no locally finite refinement. |
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21 Products of normal spaces

In this section, all spaces are assumed to be Hausdorff (so that normality and the
T,-axiom are equivalent here). Sorgenfrey’s example of a pair of normal spaces
whose product is not normal is well known. We will discuss here subsequent
work on the problem of suitably restricting spaces X and Y to make X x Y
normal. Specifically, we will require that X be normal and ask: wunder what
conditions on Y will X x Y be normal? The results are largely disappointing,
although attempts to find positive theorems have led to a number of interesting
insights and one pretty strange result. Our program will take us through three
conditions on Y:

a) Y metric,

b) Y compact,

¢) Y compact metric.

The first condition is easily disposed of In Exercise 20F, we provided an
example, due to Michael, of a normal space X and a metric space Y such that the
product X x Y was not normal. Alternatively, a study of Michael’s paper would

do no harm. H j products X x Y
with conditions Converted with hem: X can be

hereditaril
ereTlhzrlsgcgflrdac( STn“ con“erter by a theorem of

Tamano based o - - W to present this
based trial version P
theorem; it is int

211 Theorem. IAD://WiWW Stdutility.com |, . x.

a) X x BX is normal,

b) for each compact F <= BX — X, there is a locally finite open cover
{U,| e A} of X such that (Clyy U;) N F = o, for each 4 € A,

¢) X is paracompact.

Proof. a)=>b): Suppose X x BX is normal and let F be a compact subset of
BX — X. Then Ay = {(x,x)e X x BX | x€ X} and X x F are disjoint closed
subsets of X x X, sothereisa Urysohn function f: X x X — Iwith f(Ay) =0
and f(X x F) = 1. Let f, be the restriction of f to {x} x BX, for each x € X,
and defined on X x X by

d(x, y) = sup | f(p) — £,(P)-

peBX

Then d is a pseudometric on X, which induces a topology t on X weaker than the
original topology. Now the cover of (X, 1) by spheres U(x, 1) = U, has locally
finite refinement {U, | A € A} by elements of 7 (and each U, is an open set in X
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with its original topology). If y € U,, then d(x, y) < 3, so

L) = 1£0) = L0l < %

Hence f,(p) < % for each pe Cly;x U,. But f(p) = f(x, p) = 1 for each pe F
so (Clgx U,) n F = o for each x € X. Hence (Clgxy U;) N F = o for each A€ A.

b) = ¢): Let {U, |« € A} be any open covering of X. For each o fix an open
set U¥ in X such that U¥ n X = U,. Let F, = X — U} for each « and set
F = () F,. Then F is a compact subset of X — X so, by part b), there is a locally
finite open cover {V; | A € A} of X such that (Cl;x V;) N F = o for each 4. Then
Clyx V; = | U for each A and, since Clgy V; is compact, it is contained in the
union of a finite subcollection {UZ,..., U¥ }. It follows that V;, = ( Jiz, U,,.
If we now let H,, = V;, n U, for each A€ A and k = 1,...,n,, then {H,,}
is a locally finite refinement of {U, | « € A}. Thus X is paracompact.

c) = a): If X is paracompact, then X x SX is paracompact (by 20.12) and
thus normal. B

d .1 1 s N b | Al

As we have n=—+ to the question:
is the product of a Gonverted with mal? The answer,
since there are nq

The last theo STn“ con“erter nclusive result in
a string of atten . } baracompactness.
These attempts 4 trial version ct that the para-
compact spaces \ . =r= ble by the family
of all nhoods of t !,I“nl / m.?ldullllt"r.cﬂm by Corson,t who
showed that paracompactness of X was equivalent to the imposition of two global
conditions:

1. the family of all nhoods of the diagonal is a uniformity for X, and
2. X x BX is normal.

Tamano’s theorem eliminates any reference to uniformities for X, providing a
completely topological characterization.

Returning to the main line of development in this section, we ask whether
the product of a normal space X with a compact metric space Y is normal. To
handle this case, the work of Dowker is significant; it requires a definition.

21.2 Definition. A space X is countably paracompact iff every countable open
covering has a locally finite refinement. A countably paracompact normal space
is called a binormal space.

T The example referred to by Kelley in a footnote does not work.
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21.3 Theorem. Let X be normal. The following are then equivalent:

a) X is countably paracompact,
b) each countable open covering of X has an open point-finite refinement,
c) each countable open covering {U,|n =1,2,...} of X is shrinkable; i.e.,
has an open refinement {V,|n = 1,2,...} withV, < U, forn = 1,2,...,
d) each sequence F, > F, o - - of closed sets with empty intersection has
an “expansion” to open sets G; > F; with ﬂ G, = o

Proof. a) = b): A locally finite refinement is point finite.

b) =c): Let {U,|n = 1,2,...} be a countable open cover of X, {V,|ae A}
a point finite refinement. Forn = 1,2, ... let

=J V| V,cU,V, ¢ Ujifj < n}.

Then V; < U;fori =1,2,...and {V,|n = 1,2,.. .} is still point finite. But any

point finite cover in a normal space is shrinkable (15.10).

c)=d): If {F, |n = 1 2 } 1s a decreasmg sequence of closed sets with
empty intersecti cover of X. If
Viln=12,. Converted with V,|n=1,2..}

will be an expans on.
d) = a): Let STn“ con“erler and, for each n,

let F, =X — (U - - in expansion of
{F,|ln=1,2,... rial version pick W, W,, ...

as follows: http://www stdutility.com
W, is any open set with X — G, =« W, W, n F, = o,
W, is any open set with W, U (X — G,) =« W,, W, " F, = o,
and so on. Then {W,|n = 1,2,...} is an open cover of X, since

(X - G,|n=12..)

covers X, and moreover
) W, = Wiy,
i) X -G, =W,
i) W, = Ui=1 U..
Now let S, = W,,, — W,_, forn > 2 (and S; = W,). Then since W, _, = W,,

S, > W,.y — W,, foreachn,so {S,|n = 1,2,...} is an open cover of X. More-
over, ;N S; # oiff |i — j| < 1. Finally, consider the sets

S, nU, S nU,
S,nU,, S, nU,, S, N U,
S;nU,, S; N U,, S; N Us,, S;nU,
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and so on. These are all open, they cover X (since the S, cover X and the union
across the nth row above is S,), and they form a refinement of {U, | n=12...}
Moreover, S; N U; can meet at most the other sets on the same row and the rows
one above and one below (in the scheme above). Thus if xe X and S, n U,
contains x, then S, n U, is a nhood of x meeting only finitely many sets of the form
S;n U, Thus {S; n U; |ieN,j=1,...,i+ 1} is alocally finite refinement of
{Uyn=1,2,...}. 1

With the last result, we are now ready for the fundamental result on products
of normal spaces and compact metric spaces. One interesting aspect of the
following theorem: it ties normality of such products to normality of the more
special class of products X x I where X is normal; these products are of interest
to those who do homotopy theory.

21.4 Theorem. The following are equivalent for any (Hausdorff) space X:

a) X x Iis normal,
b) X x Y is normal whenever Y is compact metric,
c) X is binormal.

Proof. a)=c): | Converted with ormal. To show
countable paraco f closed sets with
nr.-otan  STDU GONVErter o

trial version
(Fig. 21.1) and let i} =n= ed setsin X x L
Let U be an or MAD://www.stdutilitveom | "

G, = {xe X |(x, 1/n)e U}. Then G, is open,z;,, > F,and () G, = 0. Thus X
is countably paracompact, by 21.3.

I

=

w|

F, 12}

Figure 21.1
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c) = b): Let A and B be disjoint closed setsin X x Y. Let{B,|n =1,2,...}
be a base for Y and for each finite subset y of N let H, = U.., B,- Let

A, ={yeY|(x,y)eA}and B, = {ye Y | (x, y) € B}. For eachy, let
U ={xeX|A,cH}n{xeX|B, <Y - H,)

Then each U, is open. To show this, suppose A,, = H,. Then if y¢ H,
(x0, ¥) ¢ A. Since A is closed, there is then a basic open nhood N, x M of (x,, y)
in X x Y which does not meet A. The sets M, thus obtained as y ranges through
Y — H, form an open cover of Y — H,. Since Y — H, is compact, we can find
a finite subcover {M,,..., M, }. Let N = (), N,. Then N is a nhood of
xo, and x € N implies A, = H,. Thus {x€ X | 4, = H,} is an open set in X.
Similarly, {xe X | B, = Y — H.} is open in X. It follows that U, is open in X.

Furthermore, the sets U, cover X. For if x € X, then for each y € A4, there is
some B, such that y € B, and B, N B, = @. The sets B, thus obtained as y ranges
through A, form a cover of A, so a finite subcover can be extracted. Thus 4, < H,
and H, n B, = o for some finite subset y of N. Then x € U,.

Now let ¥ be any locally finite refinement of the cover formed by the sets U,
and for each y le j W, form a locally
finite cover with t| Converted with y is a finite subset

of N} be a shrink STn“ c < W, for each y.
Define V to be th 0““3"3' n all ﬁzlite subsets
of N. Then V is ¢ trial version

V=U®  hup//wwwstdutilitycom (U, x H))

and this does not meet B. Thus X x Y is normal

b) => a): This is obvious. B

The theorem above provides an answer to our fundamental question: that
is, the spaces which have normal product with every compact metric space are the
binormal spaces. But it also raises a question with an interesting history. Is every
normal space binormal? We will refer to the assertion that this is so as Dowker’s
conjecture. A counterexample to Dowker’s conjecture, that is, a normal space
which is not binormal, will be called a Dowker space. In this terminology, M. E.
Rudin has shown that Dowker’s conjecture cannot be proved with the existing
axioms of set theory (through the axiom of choice). In fact, from Dowker’s con-
jecture she deduces a result (the Souslin hypothesis, that every compact ordered
space with the countable chain condition is separable) which is known to be
independent of these axioms (a recent result of Jech, Tennenbaum and Solovay).
It is still unknown whether a Dowker space can be constructed using existing
set-theoretic axioms through the choice axiom.
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Problems

21A. Countable paracompactness

1. Every perfectly normal space is countably paracompact.
2. A closed subset of a countably paracompact space is countably paracompact.

3. The product of a compact space and a countably paracompact space is countably
paracompact. [Study the proof of 20.12(c).]

21B. Semicontinuity in countably paracompact spaces

1. Let X be countably paracompact and normal. If g is a real-valued lower semicontinu-
ous function on X and £ is a real-valued upper semicontinuous function on X with A(x) < g(x)
for each x € X, then there is a continuous real-valued function f on X with A(x) < f(x) < g(x)
for each x € X. [For each rational r, let G, = {x | A(x) < r < g(x)} and let {U, | r € Q} and
{V, | r € Q} be locally finite open coverings of X such that ¥V, = U, = G,. Define f, to be
continuous from X to [ —oo, co] such that f,(x) = —oo if x¢ U,, f,(x) = r if xe V. Let
J(x) = Lub. f,(x). Show f has the required properties. |

2. If X has the prooertv expressed above. then X is countablv paracompact and normal.

[Show X is normal - ts in X with empty
Converled with re Fy = X) and set

intersection. Set g(3

e STDU Gonverter

21C. Normality 1 trial version

Let A be an uncoui n“n. I Iwww s“““iliw com he positive integers.
Consider the space b—zeq vy oy proarvwormrooa o wp—,) of a point ¢ in T
consists of all points ¢ for which ¢, = ¢, fora € {ay, ..., a,}.

1. For each positive integer k, let 4, be the set of all points ¢ in T such that each integer
other than k occurs at most once among the coordinates of z. Prove that the sets A, are closed
and pairwise disjoint.

2. T is not normal. [Suppose A, is contained in an open set U. Define a sequence
Xy, X,, . . . Of points of 4, as follows: let x, be the point all of whose coordinates are 1, and let

U(x,; ay,...,a,) beanhood of x; contained in U. Let x, be the point all of whose coordinates
are 1, except that the a;th coordinate of x, is i, fori = 1,..., n; and let
U(xg5 0 vy Qs Oyt 1y -+ - 5 Olyy)

be a nhood of x, contained in U. Continue, obtaining a sequence X, X,, . . . of points of 4
and a related sequence «,, «,, . . . of coordinate indices. Now let x be the point of 4, whose
coordinates are 2 except that x,, = ifori = 1,2,... . Prove 4, and 4, cannot be separated
by showing x € Cly U.]

3. Every countably compact, T;-space contains a closed copy of the integers (ie., a
countable, closed, relatively discrete set).
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4. If a product of nonempty T,-spaces is normal, all but countably many of the factor spaces
are countably compact.
5. If X is any product of metric spaces, the following are all equivalent:
a) X is normal,
b) X is paracompact,
c) all but countably many of the factor spaces are compact.
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Chapter 7

Metrizable Spaces

22 Metric spaces and metrizable spaces

Our purpose in this section is twofold: we seek to establish the notational and
conventional groundwork for the material to follow and to prove a few basic facts
about metric and metrizable spaces. We will begin by investigating products and
continuous images of metrizable spaces.

22.1 Definition. Two metrics p, and p, on the same set M are said to be equivalent
if they generate the same topology on M.

A topologist, then, is always willing to replace a given metric with an equiva-
lent metric if it serves some purpose. One useful result in this direction is the
following theorem.

22.2 Theorem.

ed metric.

Converted with
Proof. In fact, t}

bound: define ne STn“ con“erter

trial version
http://www .stdutility.com

The reader will verify (22F) that these are indeed metrics on M, giving the same
topology as p does. B

a metric with a

We are prepared to use 22.2 immediately.

22.3 Theorem A nonempty product space | [,.4 M, is metrizable iff eack M,
is metrizable and M, is a single point for all but a countable set of indices.

Proof. =: Each M, is homeomorphic to a subspace of the product and hence
metrizable. Moreover, the product is first countable, if metrizable, and thus can
be at most a countable product (see 16A.2).
<: Let M,, M,, ... be metrizable spaces. Using 22.2, let p; be a metric on
M,, bounded by 1, which gives the topology on M;, fori = 1,2,... . Define p
on [, M;asfollows: for x = (xy, X,,...)and y = (yy, y5, .- .),
0
pixi, yi)
plx,y) =) =

i=1

161
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This s easily verified to be a metric. We will show that it gives the product topology
on[[E, M,

Let x = (xy, X,,...) be a point in [[{2; M;. A basic nhood U of x in the
Tychonoff product topology restricts only finitely many coordinates and thus
can be written

U = Upl(xlagl) X Upz(x27 82) X oo
x U, (X &) x [[{My|k=n+1,n+2..1}

& = min<%,%,...,%>.
Now a routine calculation shows that if p(x, y) < ¢, then p(x;, y;) < ¢; for each
i =1,...,n, so that apparently U,(x, ¢) = U. Thus the product topology on
[ M, is weaker than the topology induced by p. On the other hand, given ¢ > 0,

we can choose N large enough that Y 2 v, 1/2° < /2. Then it is easily verified
that

Let ¢ be chosen so that

Um(xl,%) x Converted with
STDU Gonverter e Uno)
trial version
that the t 1 =g 1 .
S0 Hat e toPO' httme//www stdutilitvcom  P°°%

22.4 Example. Among the spaces admitied to metrizability by the last theorem
the most important are R™°, also called Frechet space, and its subspace I"°, the
Hilbert cube (which we studied in 17.9). These two spaces, together with Hilbert
space H (18.7), form the backbone of the theory of separable metric spaces. One
easy result that is of particular interest: any one of these spaces can be homeo-
morphically embedded as a subspace of any other. This embedding property
takes on additional significance once the Urysohn metrization theorem (23.1)
is proved, since a part of that theorem asserts that every separable metric space
is homeomorphic to a subset of IN°. Thus any one of I¥°, R¥°, or H can be used
asauniversal space for separable metric spaces. Still dealing with homeomorphisms
between these three spaces, it is immediately clear that I*° cannot be homeomorphic
to either R®° or H, since it is compact and the others are not even locally compact.
The question of whether R®° is homeomorphic to H has been only recently
settled (in a very general context) in the affirmative; in fact, R. D. Anderson has
proved that all separable infinite-dimensional Banach spaces are homeomorphic.
(See 247 for the definition of a Banach space.)

Turning to continuous maps of metric spaces, we limit ourselves to quoting
results which will be proved later when better machinery is available.
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Quotients of metrizable spaces need not be metrizable; they are studied in
Exercise 23K. In Section 23, as a corollary to the Urysohn metrization theorem,
we will prove that the continuous image of a compact metric space is a compact
metric space if it is Hausdorff.

We close this section with one of the fundamental results about compact
metric spaces. It is used both in dimension theory (an application we will not see)
and in building the theory of uniform spaces (which we get to in Sections 35
through 41).

22.5 Theorem (Lebesgue covering lemma). If {U,,..., U,} is a finite open
cover of a compact metric space X, there is some 6 > 0 such that if A is any
subset of X of diameter <9, then A < U, for some i.

Proof. Suppose not. Then for each ne N, let 4, be a set of diameter <1/n such
that 4, ¢ U, for any i. Pick x, € A4, for each n, and let x be a cluster point of the
resulting sequence. Now x € U,;, for some i, so for some § > 0, U(x, §) < U,.
Pick n large enough that 1/n < 6/2, and find m > n such that x,, € U(x, §/2).
Now x,, € 4,,, so A4,, N U(x, §/2) # o, while the diameter of A,, is less than §/2.
It follows that 4,, = U(x, §) = U,, a contradiction. B

Any number Converted with alled a Lebesgue
number for the co
STDU Gonverter
Problems . .
trial version

22A. Resulisont hawnef fygww stdutility.com

1. The collection of all metrics on a fixed set M has cardinal number 2™,

2. Every 2-element metric space can be embedded isometrically in the real line R. Every
3-element metric space can be embedded isometrically in R% There are 4-element metric
spaces which cannot be isometrically embedded in Hilbert space H and hence cannot be
embedded in any R" (since each R" is isometric to a subspace of H, by 18B.5).

22B. Perfect normality

1. Show that a compact Hausdorff space is metrizable iff the diagonal A in X x X is
a zero set. [If A is a zero set, it is the zero set of a nonnegative function.]

2. Find a perfectly normal compact space X which is not metrizable.

3. Conclude that the product of two perfectly normal compact spaces need not be per-
fectly normal.

22C. Linear topological spaces
A (real) linear topological space is a real linear space (vector space) E with a Hausdorff topology
such that:

TL-a) vector addition is continuous; that is, the map a: E X E — E defined by
a(x, y) = x + y is continuous,



164 Metrizable spaces [22

TL-b) scalar multiplication is continuous; that is, the map s: R x E — E defined by
s(4, x) = Ax is continuous.

For x and y in E, denote by L(x, y) the set of all points z such that z = 1,x + A,y with
0< A, <land A, + 4, = 1. A subset A of E is convex iff whenever x and y belong to 4,
L(x, y) € A. A linear topological space is locally convex iff each point p of E has a base of
convex nhoods.

1. Every normed linear space (2J) is a locally convex linear topological space.

2. If Aisconvex and x € A°, y € 4, then L(x, y) — {y} = 4.

3. If A and B are convex, so are A°, A, A + B, A n Band, for 1€ R, 14.

4. A convex open set A in L is regularly open (3D). So a locally convex linear topological
space is semiregular (14E).

5. A linear topological space is a topological group (13G).

22D. Metric-absolute retracts

A space Y is a metric-absolute retract iff whenever A is a closed subset of a metric space X
and f: 4 — Y is continuous, then f can be extended to all of X (compare with 15D).
Let (X, d) be a metric space, 4 a closed subset of X. Let L be a locally convex linear

topological space (2 Converted with
1. An open, loc operties:
ey STDU GONvErter
b) ifae 4 an . } uch that, for U € %,
UnWw ; trial version
[To get %, consider . ST 1 X — A which get
smaller as they get h“!"l I wm's'd““"w'c“m d a canonical cover
of X — A
2. If % is a canonical cover of X — A, for each U, € %, define

dix, X — U,)
Yvea d0x, X — U)’
Then Ay, is continuous on X — A, and if ay is a real constant for each U e %, then
Y vea, % * Au(x) is continuous on X — A.

3. Let % be a canonical cover of X — A. For each U € %, pick x; € U and then find
ay € A such that d(xy, ay) < 2-d(xy, A). If f: A > L is any continuous function, define
F:X - Lby

'luo(x) =

F(x) =) Ay(x)" flay), for xeX — A,

Ueu

F(x) = f(x), for xe A

Then F is continuous. [Check continuity at points a € 4 as follows. Let V be any convex
nhood of F(a) and, by continuity of £, find 6 > 0 such that f maps the d-sphere about a into
V. Let W be the (9/3)-sphere about « in X. Apply (b) of part I, to find W' = W such that,
forUe%, Un W' # o= U c W. Verify that x;, € W' = F(xy) = flay) € V. Then apply
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part 1 again, finding W” < W’ such that Un W” # o = U < W'. The claim is that
FW") < V. (Forxe W' n (X — A), F(x) will belong to the convex hull of a finite set of the
f(ay), and hence to V. For xe W” n A, F(x) € V because W" < W.)]

4. Thus every locally convex linear topological space is a metric-absolute retract.

22E. Extending metrics

Let (X, d) be a metric space, A a closed subset of X. For ae A, define r,: A - R by
r{x) = d(a, x). Now fix a point a € A and define ¢ on A by (x) = r, — r,(so ¢(x)is a function
on A, for each x € 4). Provide C*(4) and C*(X) with their sup norms (2J.4).

1. ¢ maps A4 continuously into C*(4). Now by 22C.1 and 22D 4, there is a continuous
extension ®: X — C*(4) of ¢. Let L be the linear topological space C*(4) x R x C*(X)
with norm defined by

I1(f; p, @Il = max (111, |pl, llgl])
Map X onto L as follows: for x € X, let o, (y) = d(x, y) and let

F(x) = (®(x), d(x, A), d(x, A) - o).

Clearly F: X — L and F is continuous.

2. F is an isomg j

3. Fisa homeo GConverted with

4. If X is any n STn“ c 'I ompatible metric on
A, then p can be extd 0““3' er
22F. Bounded mg trial version
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pi(x, y) = min {1, p(x, y)}  and  py(x, y) = p(x, Y)/[1 + p(x, y)]

are metrics equivalent to p on X.

2. Every metric generating the topology of a compact metrizable space is bounded.

3. Conversely, if every metric generating the topology of a metrizable space X is bounded,
then X is compact. [Otherwise, a sequence (x,) exists in X with no cluster point. Define p
on (x,) by p(x,, x,,) = |n — m| and apply 22E.4.]

23 Metrization

A natural question follows the statement that metrics generate topologies,
namely, “which topologies?” More precisely, can a condition be found which is
equivalent to metrizability but which deals only with open sets? The search for
such conditions was long and was not satisfactorily concluded until the early
1950’s when Bing, Nagata and Smirnov independently provided similar char-
acterizations. Our general metrization theorem (23.9) is given in the form proved
by Nagata and Smirnov.
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Before giving the main metrization theorem, we will provide some other
useful results on metrization. The first is the classical theorem of Urysohn,
characterizing the separable metric spaces.

23.1 Urysohn’s metrization theorem. The following are equivalent for a Ti-space
X..

a) X is regular and second countable,

b) X is separable and metrizable,
¢) X can be embedded as a subspace of the Hilbert cube 1.

Proof. a) = c): Let & be a countable base for X, and let o = {(U, V) | U Ve#
and U = V}. & is countable and, since X is a regular Lindelof space and thus
normal, for each pair (U, V) in ., there is a function fy,: X — I such that
fO)=0,f(X —V)=1 IfF = {fyy | (U, V) e &}, then Z is countable, and
certainly & separates points from closed sets in X. It follows, by 8.16, that if I,
is a copy of I for each fe #, the evaluation map e: X — [] s I, defined by
giving coordinates:

[ex)], = f(x),

is an embedding. Converted with have established
“ STDU G

c) = b): Mo 0n“erter bspace of I,

b) = a): Thi trial version

Apparently s¢ httn: f [wwws“l“[iliw[;nm rom metrizability
only by a separatrom axTomr.

23.2 Corollary. The continuous image of a compact metric space in a Hausdorff
space is metrizable.

Proof. Let f be a continuous map of a compact space X onto a Hausdorff space
Y. Then Y is compact and thus regular so, by Urysohn’s theorem, it suffices to
show Y is second countable. Let # be a countable base for X and let € be the
collection of all finite unions of sets from 4. Then 2 = {Y — f(X — C)| Ce ¥}
is a countable collection of open sets in Y; we claim it is a base for Y. Let U be
open in Y and suppose pe U. Then f~!(p) = f~(U) and f~!(p) is compact.
Now a simple argument shows that there are sets By,..., B, in 4 such that
fYp)c Byu---UB,c f7Y(U). Let C=B,u---uUB, Then Ce®% and
(easily)pe Y — f(X — C) < U. Thus D is a base for Y. B

The next metrization theorem will be useful later in our work with uniform
spaces. We need some terminology.

23.3 Definition. A normal sequence in a space X is a sequence %, %, . . . of open
covers of X such that %, star-refines %,, for n = 1,2,... . It will be called
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a compatible normal sequence in X iff {St (x, #%,)|n = 1,2,...} is a nhood base
at x, for each x € X. Any open cover of X which is %, in some normal sequence
in X will be called a normal cover. (Thus, every cover in a normal sequence is
a normal cover.)

23.4 Theorem. A topological space X is pseudometrizable iff it has a compat-
ible normal sequence. (Hence, a T,-space is metrizable iff it has a compatible
normal sequence.)

Proof. If X is pseudometrizable, its topology generated by the pseudometric
p, define %, = {U ,(x, 1/3") | x € X}. Then the sequence %,, %,, . . . is a compat-
ible normal sequence in X. (Certainly the sets St (x, %,) form a nhood base at x,
for each x in X. It is also pretty clear that St (Up(x, 13", #,) = U, (x, 1/3*71),
sothat... U3 *< U, *< U,.)

Conversely, suppose we have a compatible normal sequence (%,) for X.
Define t on X x X as follows:

f(x,y) =0 if yeSt(x,%,), for all n,

l( \ 1 1f 4 Q¢ ( 17) 78R\
« Converted with
« STDU Gonverter |
trial version }
Now for x, ye X o= .., X,} of points
of X such that x, hitn://www stdutility.com

p(x, y) = inf {Zn 1x;_g, %) [ {x1,- .., X,} € FAx, y)}.
i=2

The reader will have no trouble verifying that p(x, y)is a pseudometric. It remains
to show that p is compatible with the topology on X.

Let ¥7, be the cover of X by the spheres U (x, 1/2"). It will suffice to show that,
for any n,

a) U, <V ,_1,

b) ¥V, < U,-1,
since it will then be clear that the topologies generated by the two sequences are
the same. (Compare the nhood bases at any point.)

a) Suppose U e #%,. Pick xe U. If ye U, then y € St (x, %,) so t(x, y) < 1/2"
and hence p(x, y) < 1/2" < 1/2""'. Thusy € U(x, 1/2""1),s0 U = U (x, 1/2" 7).
Thus %, < v, _;.

b) To show ¥", < %, _,, it is enough to prove that whenever p(x, y) < 1/2",
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then x and y lie together in some element of %, since then
U,(x,1/2") < St (x, %,) =< U

for some Ue %, .
Hence, suppose p(x, y) < 1/2". Then

k
inf Y #x;_y, x;) < 1/27

SEL(x,y) i=2

and consequently, for some sequence {x,, ..., x,} from L(x, y),
k 1
X g, %) < =
ig,l (xz —1 X ) 2,,

We proceed now by induction on the length k of this sequence. If k = 2, then
t(x, y) < 1/2" so that ye St (x, %), y ¢ St (x, %,,+,) for some m > n. Hence, in
particular, y € St (x, %, ;), from which it follows that x, y € U for some U € %, , ,
in fact, so that certainly x, y lie together in some U’ € %,. (Recall, then, that if
t(x, y) < 1/2", we have x and y together in some element of %,,, , ; we will use this
again.)

Suppose the = k, and suppose
S,y x,) < s-I-n I;m&arled with b that
Then trial version
http://www.stdutilitv.com
= DA

i=2

so that
k 1
Z Hx;_1, X;) < P
i=j+2

Now by the inductive hypothesis x,, x; lie in some U, € %, ,; while the argument
above shows, since #(x;, x;, ;) < 1/2", that xj, x;, ; lie in some U, € %, , and
finally, using the inductive hypothesis again, x;, {, x, lie in some U; € %, . Then
x, and x; lie in St (U,, %,,,) = U for some U € %,. This establishes our claim,
by induction. Il

The above construction should be studied carefully. It and the theorem it
proves are fundamental building blocks in the theory of uniform spaces, which
we will develop in Sections 35 through 41.

We exhibit a use of the above theorem by proving the following elegant
neighborhood characterization of metrizable spaces, a slight alteration of a result
of Nagata.

23.5 Theorem. A T,-space X is metrizable iff each x € X possesses a countable
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nhood base {U, | n € N} with the following properties:

a) Y€ an = Uyn < an—l
b) y¢ an—l = Uyn N an = 0.

Proof. =>: This part is easy, since the properties (a) and (b) are obviously satisfied
if U,, is the disk of radius 1/2" about x.

<: Let%, = {U,,| xe X}. Weclaim St (U,,, %,) < U,,_,,foranyn > 2.
Suppose U,, n U,, # o. Then, by property (b),z € U,,_,. Hence, by property (a),
U,, < U,,_, and thus St (U,,, %,) < U,,_, as asserted. It now follows that
Y, star-refines %, _, for any n > 2, so that %,, %5, ... is a normal sequence.
It also follows that St (x,%,) < U,,_, for any n > 2, so that %, U, ... is
compatible with X. Thus, by 23.4, X is metrizable. B

We introduce now an idea which is obviously related to the notion of a
compatible normal sequence; it will subsequently be used in Theorem 23.7.

23.6 Definition. A development for a space X is a sequence %, %,, ... of open
covers of X such that %, refines %, _,, and, at each x € X, {St(x,%,)|n=1,2..}
is a nhood base. FA-—emacahaviaa a—dasalamesant o callad davalgpgble. A Moore
space is a regular Converted with

The requiren] rwise satisfactory

sequence without STn“ con“erler should do it!) to
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The normal M trial version 1 Moore space is
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be unsolvable. S
spaces can easily be given here. It is the first recorded metrization theorem, due
to Alexandroff and Urysohn in 1923.

23.7 Theorem. A Ty-space X is metrizable iff it has a development Uy, U, . . .
with the additional property that whenever U, V € U, and U NV # @, then
UuvuVc W for some We %, _,.

Proof. Necessity is easy. If X is metrizable, take for %, the collection of /4"
spheres in X.

To prove sufficiency, we employ the nhood metrization theorem, 23.5. Let
Uy, U,, ... be a development for X with the required property. Then easily,
for each n > 1, we find that if U € %,, and x € U, then St (U, %,) < St (x, %, _,).
Now for n = 1,2,... and x € X, define U,, = St (x, %,). Then we need only
verify properties a) and b) of Theorem 23.5.

a) If ye U,,, then for some Ve %,, xe Vand y € V. But then
Uyn = St (y’ %n) < St (Va L?ln) < St (X’ %nfl) = an—l’

using the comment above for the next-to-the-last step.
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b) If U,,nU,, # o, then for some U, Ve%, UnV # e But then
UuV c W for some We4,_,, and hence y € St (x, #,_;) = U,,_;. Thus, if
y¢U, ,thenU,nU,, =0 R

Each of the metrization theorems so far given possesses unique advantages.
The Urysohn theorem is an indispensable part of the theory of separable metric
spaces; 23.4 (which is a variant of the “uniform metrization theorem”) will play
a key role in building a theory of uniform spaces in Chapter 8 ; the nhood metriza-
tion theorem, in addition to having a unique visual appeal, is clearly well suited
to dealing with spaces whose primary description is a nhood description; the
Alexandroff-Urysohn theorem is historically important and takes on additional
significance in investigation of questions involving metrization of Moore spaces.

The last three named theorems are general, in the sense that they apply,
unlike the Urysohn theorem, to any topological space. The next theorem, which
also possesses this advantage, is usually called the “general metrization theorem,”
however, because it alone provides the Urysohn theorem as an easy corollary.
It was discovered and proved in the early 1950’s by Nagata, Smirnov and in a
slightly different form, Bing. Our treatment is essentially Smirnov’s. Note the

key role played b.r A I Stnno’c thonram that avusaru matric cnanr > is paracompact
The vehicle fo Converted with with the Urysohn
theorem, an emb generalization of
e STDU CONUErter
23.8 Definition. L¢ trial version neralized Hilbert
space of weight T, e D):
. httn://www stdutility.com .
Let 4 be an ifracascrorvaramrar oo corsstsoranrmanctions x: A — R

such that

a) x, # 0 for at most countably many a € A,
b) ) 4eq X2 converges,

where we are writing x, instead of x(a). Note that the sum in (b) makes sense, since
itis really a countable sum. The distance function in H' is defined, just as it was in
Hilbert space H, by

d(X, y) =V Z (xa - ya)z'

Recall that a collection % of sets in X is o-locally finite provided % = U,‘?: ‘U,
where each %, is a locally finite collection.

23.9 Theorem. A topological space is metrizable iff it is Ty and has a a-locally
finite base.

Proof. Necessity follows from the fact that every metric space is paracompact.
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Thus, let %, be the cover of X by 1/2" spheres, and let ¥*, be a locally finite re-
finement of %,. Then | ) 77, is a o-locally finite base for X. Since every metric
space is T3, necessity is proved.

We now prove sufficiency. Let X be a space with a o-locally finite base
B = U 4%,. It is apparent that X is paracompact, since every open cover has a
o-locally finite refinement consisting of basis elements, and hence X is normal.

Next, we show X is perfectly normal. Let G be open in X. By regularity, for
each x e G, there is a basis element B, such that B, = G. Let

B, = ) {B,| B, € %,}.

Then B, is the union of a locally finite collection of closed sets and hence closed,
and G = | )2, B,. Thus every open set in X is an F,, so X is perfectly normal.
(See 15C.1.)

Now each basis element B,, has the property that for some continuous
fua: X > LB, = {x€ X | f,,(x) # 0}, by perfect normality. Let 7 be the cardinal
number of the base %, and let H* be the generalized Hilbert space of weight 7;
we can use the pairs #, « as the index set A in the definition of H*. Define F: X — H*
by giving coordinate functions F,,(x) = [F(x)],, as follows:

Converled with
The denominato - - x € B, for only
finitely many B,, trial version y a, if »n is fixed.
Thisalsoshowst — htp://www . stdutility.com  f « Since

1
S FL() < 55,
we find that

1
Z:Fi(@ < Z:E;=:1

so that F(x) is indeed an element of H. We claim F is a homeomorphism of X
with a subset of H".

First, if x # y in X, then for some B,,€ 4, x€ B,, and y ¢ B,,. Then
Ju(x) # 0 and f,,(y) = 0, from which it follows that F,,(x) # F,(y), and hence
F(x) # F(y). Thus, F is one-one.

Continuity is harder. First, note that each F,, is continuous as a map of X
into R. Now let x, € X and ¢ > 0 be given. Choose N so large that

© 1 62

Y <7

n=N+1

Now let U be a nhood of x, meeting only finitely many B,, for n < N; say, U
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meets B ., B Let V = U be a nhood of x, such that for x € V,

njap g

€

N

fori = 1,...,k Nowfor x € Vand any pair n, o other than n;, a; fori = 1,...,k,
we have F, (x) = F,(x,) = 0. Hence, for xe V,

'Fn.-a.-(x) - Fn.-al-(XO)l <

62

k
Z Zana(x) - Fna(xo)lz = Z |Fn,-ai(x) - Fn,-ag(XO)lz < 5
i=1

n<N a

But we also have

2 X NFu(x) = Fulxo)* < 3 3 (FRlx) + Frfxo))

n>N a n>N a
1 1 1 é
< mt o) =2) <=
,.>ZN<2 2) ,,>Z~2 2

by choice of N. It now follows that, for x e V,

Converted with

weceorxe v ST CONUEHEr |, ., _

Finally, we s

Suppose F(x) ¢ F| trial version nd (li?m ﬂ(A)= 0.
Hence f,(x) # 0 e and F,(A4) =0
and then, obviou  MUN://www stdutilitvcom | 74 < Fa),

so F(A4) is closed. &

The proof of the general metrization theorem just given is that of Smirnov.
Nagata’s proof of the same theorem is accomplished by converting a g-locally
finite base for X to a countable collection of locally finite covers (using perfect
normality), proving that a locally finite cover of a normal space is a normal cover,
and then applying the uniform metrization theorem (23.4).

Problems

23A. Examples on metrizability
1. The looped line (4D) is metrizable.
2. The scattered line S (5C) is not metrizable.
3. The disjoint union of metrizable spaces is metrizable.

4. Let A be any infinite set and for each a € A4, let I, be a copy of I. Let Z be the
disjoint union of the spaces I, and let X be the quotient of Z obtained by identifying all the
left-hand endpoints. Let a denote the common left-hand endpoint of the spaces I, in X. Does
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the following metric:
px,y)=Ix—d +la—y if xel,yelsa#p,
p(x, y) = |x — | if x,yel,
generate the topology of X? The set X with the metric p is the hedgehog space (of spininess

|A]), and p is the hedgehog metric. Metrizability of quotient spaces in general is discussed in
Exercise 23K.

5. Find a countable Hausdorff space which is not metrizable.

23B. Exercise on normal sequences and covers

1. Let 4 be an open cover of X. If there is a normal open cover {U, | 1€ A} of X such
that, for each 1, {G n U, | G € 4} is a normal cover of U,, then ¢ is a normal cover of X.

2. If % is a normal cover of X, then {G x Y |G e %} is a normal cover of X x Y.

3. Every locally finite open cover of a T,-space is a normal cover.

4. If a normal sequence %, %,, . .. is compatible with X, then | ) %, is a base for X.
The converse fails.

23C. Metrizability of X*

The fonowing are alleanivalent far a lapcalluy camnact metric enace Y -

a) X is separab GConverted with
D=l STDUG
c) X* is metriz 0n“erter
(Recall that X* is th trial version
23D. Metrizabili http://www .stdutility.com

1. If p e X has a countable base of nhoods in X, it has a countable base of nhoods in fX.

2. No point in X — X can be a G; in fX. [Otherwise {p} is a zero set in fX. Use the
resulting function f to construct disjoint zero sets in X whose closures in fX are not disjoint.
Then refer to 19J.4.]

23E. Urysohn’s theorem

1. Prove that X is T; and second countable iff X is a separable metric space by appealing
to the general metrization theorem (23.9). (Compare with 23.1.)

2. Give an example of a second countable Hausdorff space which is not metrizable
(thus showing regularity is needed in 23.1).

3. Show that a regular Lindel6f space need not be metrizable (so that second countability
cannot be weakened in 23.1). Recall that a regular separable space need not even be normal
(16G) so that improvement of 23.1 in this direction is not possible either.

23F. Semimetrization
A semimetric on a set X is a function d: X x X — R satisfying the requirements: for all
xand yin X,

a) d(x,y) = 0iff x = y,and

b) d(x, y) = d(y, x).
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One can define open sets in a semimetric space just as if d were a metric, and the result is a
topology on X. The question then arises: which topological spaces are semimetrizable?

1. X is semimetrizable iff at each x € X, a countable nhood base {U,,|n=1,2,...}
can be found such that ye U, < xe U,,.

2. Not every first countable space is semimetrizable.

23G. Piecewise metrizability

1. If a Tychonoff space X is the union of a locally finite collection of closed, metrizable
subspaces, then X is metrizable.

2. If a T,-space X is the union of any locally finite collection of metrizable subspaces,
then X is metrizable. [Use 15.10.]

3. A locally metrizable, Hausdorff space is metrizable iff it is paracompact. (Thus, every
paracompact n-manifold is metrizable.)

4. A space can be the union of two metrizable subsets without being metrizable. [Let X
be the one-point compactification of an uncountable discrete space.] For further results, see
the notes.

5. If X is T, and the union of two compact metrizable subsets, then X is metrizable. (This
is the addition theorem for compacta. It is also true for countable unions; see the notes.)

23H. The nhood 1 Converted with
Provide examples t Tn“ c -I y itself sufficient to
ensure metrizability s 0““3' er
231. The genera trial version
L Exhibitaspe  nttp-//wiww . stdutility.com

2. Show that regularity is needed in the general metrization theorem; that is, that T;
cannot be replaced by T, in 23.9. [See 23E.2.]

23]. Frink’s metrization theorem
Use the uniform metrization theorem (23.4) to prove the following metrization theorem, due
to A. H. Frink.
A T,-space X is metrizable iff there is a nhood base {U,, | ne N} at each x € X such
that:

a) le > UxZ =200,
b) for each n e N, there is some m > nsuch that U, " U, # 0 = U,, = U,,.

23K. Metrizability of quotient spaces
Let f be a closed continuous map of a metric space M onto a space Y.

1. If peY has a countable nhood base, then f~*(p) has compact frontier. [Let
{V,|n=1,2,...} be a countable nhood base at p. If Fr(f~!(p)) is not compact, let (x,)
be a sequence in Fr (f ~!(p)) with no cluster point. For each n, find y,e f~'(V,) — Fr (f ~(p))
within 1/n of x,. Then E = {y,|n = 1,2,...} is closed and hence f(E) is closed in Y. But

ye f(E) — f(B).]
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2. Suppose for each pe Y, f~!(p) has compact frontier. Let F, = [f~!(p)] and define
sets U, as follows:
W,, = {xe X | d(x, Fr F,) < 1/n}
Von = W, U Int F,

Upn - f(Vpn) =Y - f(X - an)'
Verify that {U,, |n = 1,2,...} is a nhood base at p € Y satisfying the conditions of 23J.

3. The following are equivalent :

a) Y is metrizable,
b) Y is first countable,
c) For each p € Y, f~!(p) has compact frontier.

23L. Metrizability of continuous images

According to 23.2, the Hausdorff continuous image of a compact metric space is metrizable.
This result cannot be improved by weakening the conditions on the space, according to part 2
below.

1. Every closed continuous image of a metric space X in a Hausdorff space is metrizable
iff the set of accumulation points of X is compact. [Use 23K.3.]

2. Every contin . \ce is metrizable iff
X is compact. [Use GConverted with
24 Complete m STn“ cnn“erter
Compact spaces ¢ trial version strong property,
tailored to overcg cal space. When
a metric is presen httn:/ /viww stdutilityv.com s of compactness

with a weaker property, tailored to the metric structure. As with compactness,
it provides for the existence of certain limits and, as with compactness, this makes
it interesting to “existential” analysts.

24.1 Definition. A sequence (x,) in a metric space (M, p) is Cauchy (or, where
confusion is possible, p-Cauchy) iff for each ¢ > 0, there is some positive integer
N such that p(x,, x,,) < € whenever m, n > N.

It is apparent that every convergent sequence in (M, p) is Cauchy. For if
€ > 0 is given, as soon as the terms of the sequence pass the point beyond which
they are within ¢/2 of their limit, they will all be within ¢ of each other, by the
triangle inequality.

A Cauchy sequence need not converge, however. For example, the sequence
(1/n) is Cauchy in the open interval (0, 1) with its usual metric, but fails to converge
(in that space). In some metric spaces, every Cauchy sequence converges. This is
true of R with its usual metric, for example, by the classical Cauchy criterion for
convergence.

24.2 Definition. A metric space (M, p) is complete iff every Cauchy sequence in
M converges. We also say p is a complete metric for M. A topological space X
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is completely metrizable iff there is a complete metric for X which generates its
topology. Thus X iscompletely metrizable iff it is homeomorphic to some complete
metric space.

Completeness is a property of metric spaces, complete metrizability is a
property of topological spaces. For example, (0, 1) with its usual metric is not a
complete metric space, but it is completely metrizable since it is homeomorphic
to the complete space R. Some metrizable spaces are not completely metrizable ;
one example is the space Q of rationals, as we will see in 25A.4.

In showing (0, 1) was not complete, we produced a nonconvergent sequence
which was Cauchy because it did converge in a larger space. The next theorem
shows that all examples of noncomplete spaces have the same property, by
providing the fundamental result that every metric space has a completion; that
is, a complete space containing it as a dense subspace. We require a definition.

24.3 Definition. Metric spaces (M, p) and (N, o) are isometric iff there is a one—one
function f of M onto N such that o(f(x), f(y)) = p(x, y), for all x and y in M.
The mapping f is called an isometry.

24.4 Theorem. Every metric space M can be isometrically embedded as a

dense subset _ s unique up to an

isometry whic GConverted with
Proof. The detai STn“ c [he process used
is entirely analog ) 0“_“erter et of equivalence
classes of Cauchy trial version

Let (M, p) be . =n= nces in M. Note
that if (x,), (y,) e IRD://WWW.STHUGIlItY.COM | & and hence

converges. Thus we can define
d((xa), (ya)) = lim p(x, o)

Moreover, d turns out to be a pseudometric. Let (.#*, d*) be the associated
metric space (see 2C.2). For reference, .#* has for points the equivalence classes
[(x,)] consisting of all (y,) such that lim,_, ., p(x,, y,) = 0, and d* is defined on
M* by

d*([(x)], [(va)]) = lim p(x, ya).

Now the map g(x) = [(x, x, ...)] is an isometry of M onto a dense subspace
of 4 *. Moreover, /4 * is complete (an easy diagonal process shows every Cauchy
sequence converges), so .# * is the desired completion of M.

Uniqueness of .#* is easy. If .4’ is any complete space containing M as a
dense subspace, then each point x in .#' is reached by a sequence (x,) in M.
Define f: M' — M * by f(x) = [(x,)], where (x,) is a sequence in M (necessarily
Cauchy!) converging to x. Then f is well defined and preserves distances, and if
xeM, f(x) = [(x, x,...)], so f leaves M pointwise fixed. Bl
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Perusing the proof of 24.4, we obtain the following corollary.

24.5 Corollary. Every pseudometric space has a pseudometric completion, that
is, can be isometrically embedded as a dense subset of a complete pseudometric
space.

24.6 Examples. a) The completion of (0, 1) is [0, 1].

b) The completion of the space of rationals Q is the real line.

c) Let X be any topological space, C,(X) the space consisting of all bounded
continuous real-valued functions f: X — R which are 0 except on some compact
subset of X; ie., Cyo(X) is all real-valued continuous functions with compact
support. Define

p(f, 9) = sup [f(x) — g(x)l.

Then C,, with this distance function is a metric space, but is not complete. Its
completion is the set of functions Cy(X) which are small off compact sets; i.e.,
Co(X) = {f: X > R| f continuous and for each ¢ > 0 there is a compact
K, = X such that |f(x) < eforall x ¢ K,}.

Next on our Converted with 5 theorem (24.9),
one of the more i ng with complete

merie e STDY GONverter

24.7 Definition. Sy = = and A is a subset
of X. We define trial version c X, as follows:

htln:llwww.stdutillitv.cnm

and we accept the convention that osc (f, U) = oo if U n 4 is empty.
If X is a topological space and x € A, we define the oscillation of f at x to be

osc (f, x) = inf {osc (f, U) | U nhood of x}.

24.8 Lemma. Let X be a metric space, Y a complete metric space and A = X.
If f: A > Y is continuous, then [ can be extended to a continuous function
f*: A* > Y, where A* isa Ggsetin X and A = A* < A.

Proof. Let A* = {xe A|osc(f, x) = 0}. For xe A* let (x,) be any sequence
in A converging to x. Given ¢ > 0, since osc (f; x) = 0, there is some nhood U
of x such that osc(f, U) < e Since x, — x, there is some N such that
mn > N = x,, x,, € U= p(f(x,), f(x,)) < e Thus,(f(x,))is a Cauchy sequence
in Y and since Y is complete, f(x,) — y for some y. Now define f*(x) = y. The
reader should check that this definition of f*: 4* — Y is independent of the
choice of the sequence (x,) converging to x, and that f* as defined is continuous.
It remains, then, to show that A* is a G4-set in X. But if we let

A, = {xe A|osc(f, x) < 1/n},
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then A, is open in A. For if y € A4,, then there is some open nhood U of y such
that osc (f, U) < 1/n, and it is clear that U n 4 = A4,. Since A* = (2, A4,,
A*isa Gzsetin 4 and thus in X. B

24.9 Theorem. (Lavrentieff) If X and Y are complete metric spaces and h
is a homeomorphism of A = X onto B < Y, then h can be extended to a homeo-
morphism h* of A* onto B* where A* and B* are Gs-sets in X and Y, respectively,
and A < A* < A,B < B* < B.

Proof. Since h: A — Y is continuous, it can be extended to a continuous map
h*: A; —» Y, where A, = Aand A4, is a Gs-set in X.

Since A~!: B —» X is continuous, it can be extended to a continuous map
g*: B; - X, where B, = B, and B, is a Gsset in Y.

Let A* = {x € A, | h*(x) € By}. Thisis the inverse image of a G,-set, and thus
a Gy-set, in A; and hence in X. We claim h* | A* is a homeomorphism of A* onto
the G,-set B¥* = {x € B, | g*(x) € 4,} in Y. We can prove this by showing

a) h*(4*) = B*.
b) (h%) ! = g*.

If x € A*, then A*(
If y € B*, then g*
Moreover, since
x € A*, h* and g?

Converted with

STDU Gonverter

trial version

hus 4*(4*) < B*.
wus A*(A*) = B*.
)] = x, for each
f A* onto B*. B

Making good uestion of manu-
facturing new co httn:/ /viww stdutilityv.com h is not difficult,
but the full force or Cavrenuenr s tneorenT WIIT D€ Tieeded 1o obtain a pleasant
subspace theorem. We can easily prove a weak subspace theorem now.

24.10 Theorem. A closed subset A of a complete metric space (M, p) is complete.

Proof. If (a,) is a p-Cauchy sequence in 4, it is also Cauchy in M and hence
converges, say to a. But A is closed, so a € 4. Thus every Cauchy sequence in A
converges (to a point in 4). W

24.11 Theorem. Suppose X, is a nonempty metric space for n = 1,2,... .
Then [ | X, is completely metrizable iff each X, is completely metrizable.

Proof. =: Pick a;e X;, i =1,2,.... Then X, is isometric to the closed
subset

X¥ = {(xy, x5,..) e[ X, | x; = a; except for i = n}
of [T X,, and it follows that X, is completely metrizable.

<: Suppose p, is the complete metric for X,, n = 1,2,... . The bounded
metric
py = min (p,, 1)
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already introduced in 22.2 as equivalent to p, is easily verified to be complete
(24A.3). Define p on [ | X, by

o Pn(Xns Vi)
px, y) = ). o -
n=1
We know that this gives a compatible metric on [[ X,, so only completeness
remains to be checked. Suppose x!, x,... is a p-Cauchy sequence in [] X,.
Then for each i, x}, x7,. .. is a pf-Cauchy sequence in X;, and hence converges,

say to y;. We assert x', x?,... convergesto y = (y;, ¥, ...). Lete > 0 be given.
Choose N so large that ) v, (1/2") < ¢/2. Then pick N, so large that when
n> N,
wron €2
oy < =
P ¥) < o
fori =1,..., N. Then forn > N, we find

" S pE(xXE, ¥i)
px" y) =3 o

i=1

Converted with

STDU Gonverter

trial version
http://www .stdutility.com

We are now Teauy Tor e suUspace Ueorenr rme Iost part is due to
Alexandroff, the second to Mazurkiewicz. Both are classical results from the
1920’s.

so that (x") conve

24.12 Theorem. A Gj-set in a complete space is completely metrizable. Con-
versely, if a subset A of a metric space M is completely metrizable, it is a
Gs-set.

Proof. First, suppose G is open in the complete space (M, p). Define
f(x) = 1/[p(x, M — G)] for each xe G. Then f is continuous on G (24E).
Now define

p*(x, y) = plx, y) + [f(x) = f()

for x, y e G. Then p* is a metric on G, and if a sequence (x,) in G is p*-Cauchy,
then it is p-Cauchy. Also, for any € > O there is some integer N such that
1 1

nZN:|f(xN)_f(xn)' <€e= p(xn’M_G)_p(xN,M—G) <€

An easy computation with this last inequality shows that p(x,, M — G) must
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be bounded away from 0; thus, for some 6 > 0,
(x,) © My = {xe M |p(x, M — G) > 6}.

But M, is closed in M and thus complete. and (x,) is p-Cauchy. so (x,) converges
in M, and hence in G. Thus, every p*-Cauchy sequence converges and we have
established that G is completely metrizable, provided p* gives the same topology
as does p on G. This is left as an exercise (24E).

Now suppose H is a Gg-set in M, say H = () H,, where each H, is open.
From the above, H, is completely metrizable, for each n, and hence [ H, is
completely metrizable. But the set

A= {(xy,Xs..)e[[Hy|xy =x;="""}
is closed in [ | H, and thus completely metrizable, and by Exercise 241, the map
fx) = (x,x,...)
is a homeomorphism of H with A. Thus H is completely metrizable.

Conversely, suppose 4 is a completely metrizable subspace of a metric space
M, and let M denote the completion of M. The inclusion i: 4 - M is a homeo-

morphism, and tH _ to a homeomor-
phism of G-sets. GConverted with idently i(4) = A4
must itself be a G bin M is a Gy, A
sac,nvem | S1DU GONuerter

Thus, the co trialversion se metric spaces
which are G;-sets . bsolute G4-sets”).
Next we see tha httn://www stdutility.com nt, in nonmetric

embeddings.
24.13 Theorem. For a metric space X the following are all equivalent:
a) X is completely metrizable,
b) X is a Gy in its completion X,
c) X is a G; in every metric embedding,
d) XisaG;in X,
e) X is a G; whenever densely embedded in a Tychonoff space.

Proof. The equivalence of (a), (b), and (c) has already been established in Theorem
24.12.

c)=d): Let p be a bounded metric on X compatible with the topology.
For each x € X, let ¢,.: X — R be the function

(l’x(J') = p(X, y)

This is a bounded continuous real-valued function on X so by the mapping
property for fX, there is an extension ¢, of ¢, to all of fX. Define p* on fX by
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p*(a, b) = inf,x {|@(a) — @(b)|}. Then p* is a pseudometric on X, for
i) p*(a,a) =0
ii) p*(a, b) = p*(b, a)
iti) if a, b, c € X, then

p*a, ¢) = inf|5,(a) — .(c)

< inf13,(@) — G,(b) + inf1G.(6) — G.(0)]

p*(a, b) + p*(b, ).

Moreover, the restriction of p* to X is p, and p* is a “continuous pseudometric”
on BX; that is, the topology it induces is weaker than the usual topology on fX.

Now perform the usual metric identification on (fX, p*). The result is a
metric space K which contains X (X < X is not affected by the identification
since p* is already a metric there). Let A: fX — K be the identification map.
Now X is a G in K, and hence A ~}(X) is a G, in (X, p*) and hence in fX. But
h'(X) = X.

d) =e): Syj : ] id let f[: XY
be an embedding Gonverted with e Y. Then f has

i 4 — G,) = H,, f
:nze)l(,tzr,ls.l.o.n .fT STn“ cnn“erter \pact and, mor(c):

over, for each n, J

~

trial version
httn://www stdutilitv.com .
Thus fA(X) = fProF—q 1o —"TT=m s> = oz and hence in Y.

Note that we did make use of the fact that X was dense in Y in our tacit use of the
assumption that BY was a compactification of X, so that f# was onto.

e) = c¢): If X is embedded in a metric space M, then by (e) X is a G4 in X and
X is, of course, a G; in M. It follows that X isa G;in M. B

We conclude this section with an important fixed point theorem for complete
spaces.

24.14 Definition. If f: X — X, a fixed point of f is a point x € X such that f(x) = x.

24.15 Definition. A map f: X — X, where (X, p) is a metric space, is p-contractive
provided d(fx, fy) < a - p(x, y) for some a < 1 and all pairs (x, y) in X x X.

24.16 Theorem. (Banach) If X is complete in the metric p and f: X - X
is p-contractive, then f is continuous and has precisely one fixed point.

Proof. That f is continuous is clear (any distance decreasing map is continuous).
If x, y are both fixed points of f in X, then f(x) = x, f(y) = y so

d(x, y) = d(fx, fy) < a-d(x, y),
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but since « < 1, this can be so only if d(x, y) = 0; ie., if x = y. Hence f has at
most one fixed point.

Choose xe X. Consider the sequence xj, x,,... defined as follows:
Xy =X X, = f(xy),..., %, = f(x,_;)- Then xi, x,,... is a Cauchy sequence
and hence converges, say to x,. We claim x, is the required fixed point. In fact,
since x, — x, and f is continuous, we have f(x,) — f(x,). But the sequence
f(xy), f(x,), ... 1s just x,, x5, ... so that x, = f(x,). It follows that f(x,) = x,,
as claimed. H

Fixed-point theorems, such as the one just given, are useful in proving certain
existence theorems in differential and integral equations. One example is given
in 24L.

Problems

24A. Examples on completeness and completion
1. Hilbert space H (18.7) is complete.
2. The completion of Cy((X) is Co(X) (see 24.6c).

3. If pisacomj -
Converled with
4. If I is any cld STn“ cnn“erter rous functions on I,
with the sup metric - -
5. The space P trial version
24B. Torally bou_ AN/ /W Stdutility.com

A metric space M is totally bounded iff for each ¢ > 0, a finite number of e-disks will cover
M.
1. Every totally bounded metric space is bounded. The converse fails.
2. A metric space is separable iff it is homeomorphic to a totally bounded metric space.
3. A metric space is totally bounded iff each sequence has a Cauchy subsequence.
4. A metric space is compact iff it is complete and totally bounded.

The results of this exercise, particularly 3 and 4, have generalizations to uniform spaces.
See Section 39.

24C. Equivalent conditions for completeness
In a metric space (X, d), define the diameter of A = X to be 6(4) = sup {d(x, y) | x, y € A}.

1. The following are equivalent :
a) X is complete.
b) each decreasing sequence C, o C, > - - of closed sets with 6(C,) — 0 has non-
empty intersection.
c) each infinite totally bounded (24B) subset has an accumulation point.



24} Problems 183

2. The condition that §(C,) — 0 in b) above is necessary.

3. A metrizable space is compact iff it is complete in every compatible metric. [Use
22E.4 for sufficiency.]

24D. Completion
Check the details in the proof of 24.4. Specifically:

1. d, as defined on ./, is a pseudometric.
2. The map g(x) = [(x, x, . . .)] is an isometry of M with a subspace of .4 *.

3. If 4’ 1s a complete space containing M as a dense subspace, for each x € .4, let
(x,) = M be a sequence converging to x and define f(x) = [(x,)]. Verify that f is an isometry
of {% " with . *, such that f(z) = z for each z € M (i.e., f(z) = ¢(z), see part 2).

24E. Equivalent metrics on open subsets
Let G be an open subset of a metric space (M, p). Define f(x) = 1/[p(x, M — G)], for xe G.
Then for x and y in G, define p*(x, y) = p(x, y) + |f(x) — f(Y).

1. fis continuous.

2. p* is a metric on G.

3. p* is equival

GConverted with
24F. Topologica

Certain of the assert] STn“ cnn“erler cular: a completely

regular space X is r space in which it

is densely embeddeq trial version
A space which i h“ll: I Illﬂlﬂll.Sl[llllilit!l.Bllm ologically complete.

24G. Pseudometric completion

Given a pseudometric space (X, p), we can form the metric identification of the completion
of X, ie., (X)*, or the completion of the metric identification of X, ie., X*.

1. The metric identification of a complete pseudometric space is a complete metric
space.

2. (X)* is isometric to X*,
24H. Extending maps
Give an example of a subset A of a metric space X and a continuous map f of 4 into a complete
space Y which cannot be extended to all of 4 (compare with 24.8).

241. Embedding an intersection in a product

If X is a topological space and X, < X for eachn = 1,2,... then ﬂ X, is homeomorphic
to {(xy, X5, .. ) EJ] Xu| %y = X, =2,3,...}.

24]. Banach spaces

A normed linear space (2J) is called a Banach space iff its norm metric is complete.
A sequence x,, x,, ... of points in a normed linear space is summable iff the associated
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sequence x;, Xx; + X,,... of partial sums converges (in the norm metric) and absolutely
summable if ) ||x,|| < oo.

1. A normed linear space is a Banach space iff every absolutely summable sequence is
summable.

2. If Y is any Banach space, the space L(X, Y) of all bounded linear operators (7L) from a
normed linear space X to Y is a Banach space. In particular, the dual space X* of any normed
linear space X is a Banach space.

3. R", with any of the norms given in 2J.6, is a Banach space. [(a) gives the usual metric,
which we already know is complete. ]

4. The space I, of all real sequences (x,) such that Y |x,|*> < oo, with the norm
lx)ll = [ Ix41*]*/ is a Banach space. Compare with 18.7(b).
5. The space s of all sequences of real numbers, with the norm

Lo x)

Gl = 2557 ey

1s a Banach space.

6. For any topological space X, the space C*(X) of bounded real-valued functions on X,
with the sup norm || f]| = sup |f(x)], is a Banach space.

The dimension o _ e underlying vector
space. Converled with

7. If a Banach described in (3), (4)
and (5) above are se STn“ con“erler
24K. The irratio trial version
The space P of irrat h“n: I IWWW.SI[lIIIIlIW.Bﬂm meomorphlc to the
product of denumeiwory o Sy voprosor T ommmerare e raeomars- 11 R as 7y, 1y, L

Now partition P into countably many intervals I, I,, . . . each having rational endpoints and
length <1 Also, so determine I,, I, ... that one of the endpoints of one of the intervals is
ry. Next partition each I, into countably many intervals I, I,,, . .. each having rational
endpoints and length <%. Also, we may so determine these intervals that r, is an endpoint
of some interval of the form I, ,,, while r; is not. Continue, at the kth stage using intervals
of length <(1/2*) with rational endpoints and requiring that r, be an endpoint of some interval
I while none of r,...,r,_, are. For an irrational number p, consider the sequence
I, I, ., ... of intervals containing p. Using 24C to prove that it is onto, show that the map
f(p) = (ny, ny, . ..) is a homeomorphism of P onto the product N¥°.]

nyna...nk

24L. Picard’s theorem

Let f(x, y) be a continuous real-valued function defined on an open set 4 in the plane con-
taining (x,, y,) and suppose f satisfies a Lipschitz condition with respect to y:

[f(6 y1) — f(x, y2)l < My, — y,l.

We assert that the integral equation

X

o(x) = yo +j flt, 0(0) dt, 1)

X0
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which is equivalent to the differential equation

dy
== sy
Y(xo0) = Yo,

has a unique solution defined on some closed interval [x, — K, x, + K].
Let B be an open set such that (x,, yo) € B = 4 and such that |f(x, }) — f(Xe, Vo)l < L,
for some constant L, on B. Let K be a positive constant < 1/M such that

{0, ) [I1x — xol < K, |y — yol < KL} = B.
For each ¢ € C*[x, — K, x, + K], define Ap by

x

Ap(x) = yo +§ f(t, @) dt.

1. A maps a closed subspace of C*[x, — K, x, + K] into itself.

2. A is a contraction mapping, if C*[x, — K, x, + K] is endowed with the sup metric:
P(@1, @2) = sup {los(x) — @,(x)| | x € [xo — K, xo + K]}.

3. Conclude that the integral equation (1) has a unique solution defined on

— K, xo + K -
[xo = K, %o + K] Converted with
24M. Lavrentieff STn“ c
Show that Lavrenti 0““3"3' mplement to 22E.4:
if A is a subset of = = £ on A, then p can
be extended to a co trial version
hitp://www stdutility.com

25 The Baire theorem

The applications of topology to analysis are usually manifested in the form of an
“existence theorem” of some sort and the major share of the work in this direction
is borne, directly or indirectly, by two theorems: the Tychonoff theorem and the
B;iire category theorem. We turn now to the development necessary to introduce
the latter.

25.1 Definition. X is a Baire space iff the intersection of each countable family of

dense open setsin X isdense. Aset A = X isnowheredensein X iffInt, Cly 4 = .

Aset A = X is first category in X iff 4 = ()%, A,, where each A4, is nowhere

dense in X. All other subsets of X are called second category in X. You can visu-

alize first category sets as being “thin”, second category sets as being “thick”.
Every Baire space is second category in itself. In fact:

25.2 Theorem. X is 2nd category in itself iff the intersection of every countable
family of dense open sets in X is nonempty.
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Proof. =: Let G,,G,,... be dense open sets. Then X — G, X — G,,...
are nowhere dense closed sets, so U(X — G;) is first category. Hence
X-UJUX-6G6)=NG; #e

<: If X = () 4,, each 4, closed and nowhere dense, then

X-U4,=NEx-4,)

is an intersection of open dense sets and hence # @, a contradiction. Thus
X # | 4, for any sequence of closed nowhere dense sets 4,.

25.3 Theorem. (Baire) A Gj-set in a compact Hausdorff space is a Baire
space.

Proof. We begin by proving that a compact T,-space is Baire. Let J,, J,,...
be dense open sets in the compact space K, and let U be any open set in K. Now
U n J, # @ so there is a nonempty open set ¥, with ¥V, = U n J, (using regu-
larity). Similarly, a nonempty open set ¥, can be found, n = 2, 3, ... such that
V,cV,_inJ, Now V,,V,...is a decreasing sequence of compact sets, so
(\V,# e But )V, < Un()J,) Thusevery open set U meets () J,, estab-
lishing that m Jn is dense in K Hence K ic a BRaire snace

Now suppos Converted with mpact Hausdorff
space K. We can by Cly X). Now

if G, G,y .. is 2 S'I'n“ con“erter hi,G, = J,n X,

where J; is dense is a sequence of
dense open sets ir trialversion

N¢  hitp//www stdutilitvecom ) &

is dense in K and therefore in X. Hence X is a Baire space. B
25.4 Corollary. a) Every locally compact Hausdorff space is Baire.

b) Every completely metrizable space is Baire.

Proof. Alocally compact space X is open in fX (18.4) and a completely metrizable
space X is a G5 in X (24.13). B

The corollary above, rather than 25.3, is often referred to as the Baire theorem
since it deals with the spaces of most interest to analysts. Its importance is well
documented. Two of the most powerful theorems in functional analysis, the open
mapping principle and the uniform boundedness principle (25D) are direct
consequences of application of the Baire theorem. The example we give next
is typical of an existence theorem based on the Baire theorem ; we show that some
element of a space must have a given property by showing that the space is second
category while the elements which do not have the property form a set of first
category.

25.5 Theorem. There is a continuous real-valued function f on 1 having a
derivative at no point.



25] The Baire theorem 187

Proof. We will show that

a) C(I) = all real continuous functions on [0, 1] is complete in the uniform
metric d, and

b) the set & of functions in C(I) which have a derivative somewhere is first
category in C(I).
It will follow that C(I) — & is nonempty; in fact, it must then be second category.

a) Let fi, f5, ... be a Cauchy sequence of functions from C(I) in the uniform
metric. Then, for each x € I, fi(x), f5(x), . . . is a Cauchy sequence of real numbers
and hence converges, say to f(x). The resulting function f defined on I is easily
verified to be the uniform limit of the continuous functions fj, f5,... and thus
continuous. Since every Cauchy sequence thus converges, C(I) is complete.

b) Define &, forn = 1,2,... by

for some x € [0, 1 — 1/n],

&, = {feC(I)

, rn e S+ h) — f()] }
Converted with

If a function f € C 1 h,
retinences  STIDU CONVEHEY  bving cach . i

closed and has ng R R
trial version _
1. &, has no nd a continuous

function g such ttf D/ fwww.stdutility.com , 1 — 1/n], there
is some 4 € (0, 1/n] with

glx + h) — g(x)

7 > n.

We sketch the construction of g. Find a polynomial function P(x) on [0, 1] such
that d(f, P) < ¢/2. Let M be the maximum slope of P(x) in [0, 1], and let Q(x)
be a continuous function consisting of straight-line segments of slope =+
(M + n + 1) constrained so that |Q(x)| < ¢/2.

Define g(x) = P(x) + Q(x). Thend(f, g) < d(f, P) + d(P, g) < ¢/2 + ¢/2 = eand

_‘ P(x + h) + Q(x + h) — P(x) — Q(x)
- h

g(x + h) — g(x)
h

h h

But for x € [0,1 — 1/n], an h € (0, 1/n] can be found for which the right-hand
sideis >(M +n+1)— M =n+ 1. Thusg¢é&,.

>‘Q(x +h) —0x)]| |Px+ h — Px) '
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2. &,isclosed. The (evaluation)mape: C(I) x I —» Rdefined bye(f, x) = f(x)
is continuous. Tt follows easily that, if h, is a fixed element of (0, 1/n], the map
Epo: C) x [0,1 — 1/n] — R defined by

f&x + ho) — f(¥)
ho

E,(f, x) =

is continuous. Thus E,_'[0, n] is closed in C(I) x [0, 1 — 1/n]. Let
Dy, = {fe C) | (f, x) € E,' [0, n),

for some x € [0, 1 — 1/n]}.

Then D, is closed in C(I). For if f,, e D, form = 1,2,...and f, — f, then
the sequence (x,,) in [0, 1 — 1/n] such that (f,, x,,) € E,.'[0, n] has a cluster point
x; easily, (f. x) € E'[0. n]. so that f € D,,. Moreover.

D, = { fe Converted with /O] _ n}
STDU Gonverter
so that &, = () trial version d. =
http://www .stdutility.com
Problems

25A  Exercise on category
1. The union of finitely many nowhere dense subsets of X is nowhere dense.
2. The frontier of any open subset of X is nowhere dense.

3. Every open subset of a Baire space is a Baire space. The result fails for second category
spaces.

4. The space Q of rationals is not completely metrizable.
5. The space P of irrationals is a Baire space.

25B. Category in a-compact spaces

A topological space X is o-compact iff X is a countable union of compact subsets. For o-
compact spaces, there is a partial converse to the Baire theorem. To state it succinctly, we
will define X to be locally compact at one of its points x iff x has a compact nhood in X.
Note that the set of points at which X is locally compact is always open.

A o-compact space is second category (Baire) iff the set of points at which X is locally
compact is nonempty (dense) in X.
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25C. Continuous functions on Baire spaces

Let X be a Baire space and f: X — R a real-valued continuous function on X. Then every
nonempty open subset of X contains a nonempty open set on which f is bounded. (If you
have done Exercise 7K on semicontinuous functions, you can prove similar results for (1) lower
semicontinuous functions and upper bounds, and (2) upper semicontinuous functions and
lower bounds, which together imply the result for continuous functions.)

25D. Category in Banach spaces

The Baire category theorem plays an integral role in the proof of 1 below, and thus indirectly
in the proofs of three important theorems in analysis: the open mapping theorem, the closed
graph theorem and the uniform boundedness principle.

The definitions and elementary facts about Banach spaces needed here are found in
Problems 2J, 7L and 24J.

1. Let X and Y be Banach spaces and I" a bounded linear operator from X onto Y. For
some € > 0, the image under T' of {xe X |||xl| <1} covers {ye Y ||yl < €}. [Let
B, ={xeX|lIxl]] < 1/2"} for n = 1,2,... . Use the Baire category theorem to conclude
some #n - I'(B,), and hence I'(B,), is not nowhere dense in Y. Then for some ye Y and 6 > 0,

{ze Y|llz — yll < 8} = T(B,) and hence, {ze Y||lzl| < 8} = I'(By). Conclude, using

completeness of X,
2. Open mappin
operator of X onto ]
of X onto Y, itis a
3. If X is a vec
space, and if a cons|

Converted with

STDU Gonverter

trial version

s a bounded linear
e bounded operator

imakes X a Banach
then [|-]|; and [|-]|,

ivalent; th —
are equivatent; that — hatne/ fveww . Stdutility.com

4. Conclude thartrcmorms T T 1T 171 @ [T [T BIVeI I ZJ.0 10T v are all equivalent.
[In 24J.3 you showed each of these is complete. ]

S. Uniform boundedness principle (version 1). Let & be any family of continuous, real-
valued functions on a complete metric space X such that for each x € X, there is some constant
M, such that |f(x)] < M, for all fe #. Then there is some constant M and a nonempty
open set U in X such that |f(x)] < M for each x € U and each f e #. [Let

E,={xeX||f(x)| < nforeach fe F}.

Show E, is closed and apply the Baire category theorem to conclude some E, contains a non-
empty open set U.]

6. Uniform boundedness principle (version 2). Let & be any family of bounded linear
operators from a Banach space X into a normed linear space Y such that at each x € X, there
is a constant M, such that ||I'(x)]| < M, for each I'e #. Then for some constant M,
[IT]] < M for all " e #. [Use part 4. Note that what you want to show is that ||T(x)| < M
for each x with ||x|| < 1.]

25E. Hilbert space

A linear space X becomes an inner product space when to every pair x, y of elements of X a
real number (or, for a complex inner product space, a complex number) {x, y) is assigned,
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subject to the following rules:
(IP1) {x, x> = 0; <{x,x) = 0iff x =0,
(IP2) <x, y> = <y, x) (or, in the complex case {x, y) = m),
(IP3) Lox + By, z) = alx, z) + By, 2).

The number <{x, y) is called the inner product of x and y.

1. Every inner product space is a normed linear space, (2J), when the norm is defined by
[Ixl]| = <x, x)!/2. When the resulting normed linear space is a Banach space, we call the inner
product space a Hilbert space.

2. Cauchy-Schwarz inequality. In any inner product space, {x, y> < [|x|| -||yll. [Set
2 = ||x||/ll¥| and work with the inequality 0 < [|x — Ay||%]

Elements x and y in an inner product space X are orthogonal iff {x, y> = 0. A subset
A of X is an orthonormal system iff any two elements of X are orthogonal and ||x|| = 1 for
each x € A. An orthonormal system which is maximal (with respect to inclusion) is called
complete.

3. An orthonormal system A is complete iff whenever (x, a) = O for each a € 4, then
x = 0. Every inner product space has a complete orthonormal system.

4. If A is a cont ! * —u r—-—x € H, then x has a
unique representati Converted with
for some sequence x trialversion any sequence from
A, then Y (x, x,»2 e many of the inner
products <x, zy, for  INERN//WWNW.STHUIIV.COM quence of clements

of A and set a, = {x, x,».]

25F. An application of the Baire theorem

1. Suppose that for each irrational p, an equilateral triangle 4, (with interior) is constructed
with a vertex at (p, 0) and the opposite side parallel to and above the x-axis. Use the Baire
category theorem and 25A.5 to show that U A, contains a rectangle of the form
{(x,»)eR?*|a < x < b0<y< 1/n} for some a < b and some positive integer n. [It is
enough to show that, for some n, {pe P | 4, has height >1/n} is dense in some interval
[a, b] with a < b.]

2. Let D = {(x, 0)| x is rational} and E = {(x, 0) | x is irrational}. Then D and E are
disjoint closed sets in the Moore plane I. Apply part 1 to show that D and E cannot be con-
tained in disjoint open sets in I'.
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Connectedness

26 Connected spaces

The topological study of connectedness is heavily geometric (or visual). Thus
connectedness-like properties play an important role in most topological char-
acterization theorems, as well as in the study of obstructions to the extension of
functions. The use of connectedness in characterization theorems is exemplified
in later sections of this chapter ; its use in obstruction theory is appropriate subject
matter for a book on algebraic topology.

26.1 Definition. A space X is disconnected iff there are disjoint nonempty open sets
H and K in X such that X = H u K. We then say that X is disconnected by

H and K. When ,

Note that we Converled with 1”. It is apparent,
then, that X is cd STn“ c f X other than o
and X or, equival 0n“erter h empty frontier.
26.2 Examples. a) trial version

b) Any discre  hittm://www.stdutility.com  [ted. In fact, any

T,-space having an 1solated (open) point 1s disconnected. In particular, the ordinal
spaces 2, and Q are disconnected.

c) I'is connected. For if I is disconnected by H and K, with 1 € H, then H
contains some nhood of 1, so ¢ = sup K cannot be 1. Now ¢ belongs to either
H or K and hence some nhood of ¢ is contained in H or K. But any nhood of ¢
contains points of H (to the right of ¢) and points of K (to the left of ¢), a
contradiction.

d) The long line. The ordinal space €, as we have mentioned, is not connected.
A connected space can be obtained from £ by inserting between each pair of
consecutive ordinals a copy of (0, 1) and giving the resulting ordered set the order
topology. This space is called the long line, W. W is connected, since a discon-
nection of W would either disconnect a copy of [0, 1] or isolate a limit ordinal,
neither of which is acceptable. W is also compact (this can be proved in the same
way we proved Q is compact, or else use the criterion for compactness of ordered
spaces given in 17E).

191
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We turn now to the usual questions, involving continuous maps, subspaces
and products of connected spaces.

26.3 Theorem. The continuous image of a connected space is connected.

Proof. Suppose X is connected and f is a continuous map of X onto Y. If Y
were disconnected by H and K, then X would be disconnected by f ~*(H) and
f~YK), so Y must be connected. B

Subspaces of connected spaces are not usually connected; examples abound
in I In fact, the only subspace theorem available dealing with connectedness is
just a useful way of rephrasing the definition so that it can be applied to a subspace
without passing to the relative topology. Note that connectedness of X is not a
part of 26.5.

26.4 Definition. Sets H and K in X are mutually separated in X iff
HAnK=HnK-=g

26.5 Theorem. A subspace E of X is connected lﬁ’ there are no nonempty,

mutua”y Sepavnfn/] conte LI numd ¥ i V ielh I LI .
Proof. If E is dis Converted with htually separated
meXeenznt - STDU Gonverter
trial version
hitn://www stdutility.com
dihubihtabeiaintodhaths

and similarly for (Cly H) n K.
Conversely, if H and K are mutually separated in X and E = H U K, then

ClyH=EnCl,H=HUK)ACly H
(H A Cly H)u (K ~ Cly H)
=H

I

and hence H is closed in E. Similarly K is closed in E. B

26.6 Corollary. If H and K are mutually separated in X and E is a connected
subset of H U K, then E =« H or E < K.

Proof. If H and K are mutually separated in X,soare En Hand En K. R

The last theorem and its corollary provide us with some neat ways of proving
a given space X is connected.

26.7 Theorem. a) If X = () X,, where each X, is connected and (| X, # o,
then X is connected.
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b) If each pair of x, y of points of X lies in some connected subset E,, of X,
then X is connected.

o) If X ==, X, where each X, is connected and X,_, n X, # & for
each n > 2, then X is connected.

Proof. a) Suppose X = H u K where H and K are mutually separated in X.
Then, since X, is a connected subset of H U K for each a, we have X, = H or
X, < K. Since the X, are not disjoint, while H and K are, we must have X, < H
for all « or X, < K for all a; say the former. Then X < H,so K = @. Thus X
can never be the union of two nonempty mutually separated sets in X, so X is
connected.

b) Fixae X. Then X = | J,.x E.,and the latter union satisfies the conditions
of part (a).

c) X,isconnected,andif X, U --- U X, _,isconnected,sois X, U - U X,
by part (a). Thus 4, = X, u- - U X, is connected, for n = 1,2,... . Since
() 4, = X, is nonempty, | ] 4, = X is connected by part (a). B

26.8 Theorem. If E is a connected subset of X and E = A = E, then A is
connected.

Proof. 1t is enou Converted with ,then 4 = Cl, E

vy o OTDU GOMVErTEr 1370

nonempty open
disjoint, nonempt trial version isE B

The two thet  hyip://www.stdutilitv.com  |sgine from con-
nectedness of SOMerarmrar spaces o areaay oo wxovomreeed ) to connected-
ness of others.

26.9 Examples. a) R is connected. For R = ( )., [ —n, n] and each set [ —n, 1]
1s homeomorphic to I and hence connected, while their intersection is nonempty,
so connectedness of R is a simple application of 26.7(a).

b) R" is connected. We can use the same theorem. R”" is the union of the
family of all straight lines through its origin; each such line is homeomorphic to
R and thus connected, so R" is connected.

We turn now to the problem of deciding connectedness for product spaces.
The last theorem will be useful here.

26.10 Theorem. A nonempty product space is connected iff each factor space
is connected.

Proof. If the product is connected and no factor space is empty, then the pro-

jections are continuous and onto and hence each factor space is connected.
Conversely, suppose each factor space X,, a € 4, is connected. Pickae[] X,

and denote by E the set of all points in the product which lie together with a in
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some connected subset of the product. Then E is connected, so it suffices by the
previous theorem to show E is dense in the product.

Let U =n,'(U,)n - - nn,'(U,) be a basic open set in the product.
Pick b,, e U, fori = 1,...,nand define sets Ey, . . ., E, as follows:

E, = {ce[] X,.| c,, arbitrary, c, = a, otherwise}
={ce[]X.|c, =b

arbitrary, ¢, = a, otherwise},

g’ az

={ce[] X.| ¢y = by fori=1,...,n— 1,c, arbitrary,
¢, = a, otherwise}.
Then E, is homeomorphic to X,, and thus connected. Moreover, E, N E;,, = o

fork =1,...,n — 1so ()i, E, = F is connected. But ae F and F meets U.
Thus every basic open set U contains points of E. l

The importance of connectedness for us lies almost wholly with its use in
characterization theorems. In particular, it is not usually possible to deduce the

presence of other . that the space is
connected, or vic Converted with X, and X is not
itself connected, ¥ STn“ c nponents” (maxi-
mal connected pig 0““3"3'

26.11 Definition. I trial version [ containing x is
called the compon h“n:llwww.sldullllw.c“m onnected subsets

of X containing x-
If x # y in X, then either C, = C, or C, n C, = o; otherwise C, U C,
would be a connected set containing x and y and larger than C, or C,, which is
impossible. Thus the components of points in X form a partition of X into maximal
connected subsets. This justifies referring to them as components of X.

26.12 Theorem. The components of X are closed sets.

Proof. If C is the component of x in X, then C is a connected set containing x
and thus C < C, showing that C is closed. B

26.13 Examples. a) In the space Q of rational numbers, the component of each
point g is {g}. We would say, somewhat imprecisely, “the components in Q are
the points.” This example shows, incidentally, that components need not be
open.

b) Recall (17.9c) the construction of the Cantor set C: we define
C,=1-G(G3%)
¢, =¢C, [(9, 9 % %)]
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and so on, with C, being obtained by removing the open middle thirds of the 2" ~*
closed intervals which comprise C, _,. Then C = () 2., C,.

It is easy to see that the components of C are the points, for if x € C, then
among the intervals removed from I in the process of constructing C there are
intervals arbitrarily close to x on either side, and each such interval induces
a disconnection of C.

We give now an important theorem, asserting that connectedness of a space
implies “chain-connectedness” with respect to any open cover. This result will
be useful later in theorems asserting existence of “paths” between points of certain
connected spaces.

26.14 Definition. A simple chain connecting two points a and b of a space X is a
sequence Uy, ..., U, of open sets of X such that ae U, only, b € U, only, and
UnU;#eiffli —jl < L

26.15 Theorem. If X is connected and % is any open cover of X, then any two
points a and b of X can be connected by a simple chain consisting of elements
of U.

Proof. Let Z be _ to a by a simple
chain of elements Gonverted with sinceae Z, Z is
nonempty. We c; STn“ c
Letze Z. Tl 0““3"3' U N Z contains
e ot N rial version - ordenent
. k
Uy,..., U from  hitpe//www.stdutility.com flest [ such that
UnU+# g (eg,nissuchan ). IThen Uy,..., U, U is a simple chain from a

to z. Either way,ze Z. M

Problems

26A. Examples on connectedness
1. The Sorgenfrey line E is not connected.
2. The slotted plane (4C) and the radial plane (3A.4) are connected. [See 6A.]
3. Any infinite set with the cofinite topology is connected.

4. No countable subset of R is connected.

26B. Quasicomponents

Define ~ in any space X by x ~ y iff x and y lie together in some connected subset of X.
Define ~ in X by x = y iff there is no decomposition X = U U V into disjoint open sets, one
containing x, the other containing y.

1. ~ isanequivalence relation on X. The equivalence class [x] of x is just the component
C,of xin X.
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2. =~ is an equivalence relation on X. We call the equivalence class of x the quasi-
component of x in X. The quasicomponent of x in X is the intersection of all open—closed
subsets of X which contain x.

3. The component of x is contained in the quasicomponent of x.

4. In the space X in Fig. 26.1, the quasicomponent of the point x shown is strictly larger
than the component of x.

Figure 26.1
26C. Cardinality of connected spaces

1. A connected, Tychonoff space having more than one point has > ¢ points.

2. A connected, separable, metric space has either one point or ¢ points.

3. Let X be the
are rational. Descri
the x-axis, let V,, d
x-axis. Now for p €
p lies above the x-ax

STDU Gonverter

Converted with

f whose coordinates
nal or irrational) on
— € p + €) on the
e sets V., € > 0; if
the x-axis such that

p, py and p, are the trial version will have irrational
first coordinate, sing h“n- I Iwww slduliliw.cnm 1). The nhoods of p

will be the sets {p} 7T Vpae TUT T U IO 7% IS @ CUUIITauTT,; wonnected Hausdorff
space. [To prove connectedness, show any nonempty open—closed subset H of X must be all
of X.]

4. The space X described in part 3 is not regular.

26D. Subspaces

Among the criteria for a subspace E of a space X to be connected, the following was absent :
E < X is disconnected iff there are disjoint open subsets H and K in X, each meeting E, such
that E < H U K. Find a counterexample. (Thus 26.5 represents the best we can do along
the lines of expressing connectedness of E in terms of the topology on X.)

26E. Nonhomeomorphism
Some use of connectedness lies at the heart of most proofs that two spaces are not homeo-
morphic. Use connectedness to show that X is not homeomorphic to Y when:

. X =R, Y =R"forn > 1, (compare with 28C);

2. X =[0,), Y =R,;

3. X=LY=S!;

4. X =S, Y=S"forn > 1
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Note that in none of the above cases can we distinguish between X and Y using any of the
forms of compactness available to us.

26F. The Cantor set
Every closed subset 4 of C is a retract (7J) of C.

26G. Connectedness in ordered spaces

1. An ordered space X (6D) is connected iff it is Dedekind complete and whenever
x < yin X, then x < z < y for some z in X.

2. Every ordered space can be embedded in a connected ordered space. [First, embed
in a Dedekind complete ordered space. Then whenever x < y in this space, and no z exists
with x < z < y, put a copy of (0, 1) between x and y.]

3. LetIand {0, 1} have their usual orders, and let X = I x {0, 1} have the lexicographic
order. Then X is Dedekind complete. What space results from applying the process in part 2
to X?

26H. Uses of connectedness
1. Any continuous f: I — I has a fixed point (i.e., a point x such that f(x) = x).

2. If P(x) is a polynomial of odd degree, then the equation P(x) = 0 has at least one real
root.

Converted with

- e STDU Gonverter

The definition of ) i des for the non-
existence of a cer trial version ositive approach
to the same sort =n= £) connectedness,
in which it is requ h“nl I www's""l“"w'c“m e space from any
other point along a connected path. This approach is especially useful in studying
connectivity properties from an algebraic point of view, e.g., via homotopy
theory.

27.1 Definition. A space X is pathwise connected iff for any two points x and y
in X, there is a continuous function f: I — X such that f(0) = x, f(1) = y. Such
a function f (as well as its range f(I), when confusion is not possible) is called a
path from x to y.

We call X arcwise connected iff for any two points x and y in X, there is a
homeomorphism f: I — X such that f(0) = x, f(1) = y. The function f (as well
as its range) is called an arc from x to y.

We will observe in 31.6 that every Hausdorff path from x to y contains an
arc from x to y. Thus a T,-space is pathwise connected iff it is arcwise connected!

27.2 Theorem. Every pathwise connected space is connected.

Proof. If H and K disconnect the pathwise connected space X, let f: I » X be
any path between points x € H and y e K. Then f~!(H) and f~}(K) disconnect
I, which is impossible. l
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Converted with

STDU Gonverter

trial version
27.3 Examples. a) hitn://www stdutility.com

V={x0)|x=<0}u {(x,siné) x>0}

is a connected space, but no path can be found from (0, 0) to any point (x, sin (1/x))
with x > 0. Verification is left to 27A.

b) Closed line segments are arcs, so R" is pathwise connected.

Figure 27.1

c) If E is any countable subset of R?, then the space R* — E is pathwise
connected. In fact, if a and b are points in R? — E, then R? — E contains un-
countably many straight lines through each point and two of these will intersect,
giving an arc from a to b.

Paths can be “added,” in the following sense. If aq,b,ce X, and f;: 1 > X
is a path from a to b, while f,: I - X is a path from b to c, then the function
f:1 - X defined by

(£ if 0
f (')_{fz(zz— D3

is a path from a to ¢, obtained by “putting the paths f; and f, end-to-end”. (For

t
t

IA A

1
2
1,

A IA
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example, f is continuous because it is continuous on each of the closed sets
[0, 4] and [3, 1].)

This path addition provides a way to associate with each pathwise connected
space X a group 7,(X) in such a way that homeomorphic spaces have isomorphic
groups. The branch of algebraic topology which is concerned with the relationships
between X and 7,(X) is homotopy theory (a piece of which is developed in Sections
32 through 34). Other branches of algebraic topology study connectivity proper-
ties of a topological space X by associating algebraic structures with X in other
ways. In particular, the ordinary covering notion of connectedness is studied
using Cech homology theory, while singular homology theory (and homotopy
theory) are suited to the study of pathwise connectedness.

For the time being, we will use the addition of paths defined above only to
provide a partial converse to Theorem 27.2. We require a definition.

27.4 Definition. A space X is locally pathwise connected iff each point has a nhood
base consisting of pathwise connected sets. (We should point out here that a
subset A of X is pathwise connected iff any two points in 4 can be joined by a
path lying in A.)

27.5 Theorem. _ re X is pathwise

connected. Converled with
Proof. Letae X STn“ cnn“erter an be joined to a
by a path. Now ) i losed it must be
all of X. trial version

But H is ope . =n= cted nhood of b.
Then any point z h“nl / www'SId“I!llw'c“m n be joined to a

by adding the path from b to a.

Also, H is closed. For if b e H, let U be any pathwise connected nhood of b.
Then U " H # @; say ze U n H. Now b can be joined to z by a path and z
can be joined to a by a path so, by addition of paths again, b H. B

27.6 Corollary. An open connected subset of R" is pathwise connected.

We turn now to the study of locally connected spaces. Unlike most other
localized properties, there is no generally discernible relationship between con-
nectedness and local connectedness.

27.7 Definition. A space X is locally connected iff each x € X has a nhood base of
open connected sets.

27.8 Examples. a) The space [0, 1) U (1, 2] is locally connected but not connected.

b) Consider the space X consisting of the vertical lines x = 0 and x = 1
in the plane, together with the horizontal line segments {(x, 1/n)|0 < x < 1}
forn = +1, +£2,... and the unit interval I on the x-axis (Fig. 27.2). This space
is typical of connected spaces which are not locally connected. X is, in fact,
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Figure 27.2

arcwise connecteq Converted with ill have a base of
connected nhood

27.9 Theorem. STn“ cnn“erter of each open set

s open. trial version
Proof. Suppose ] =n= omponent of the
openfset Up E)n X. h“nl I www's““l“"w'c“!“ ected set V with
x eV < U. Now we must have V < C, so C is open.

Conversely, suppose each component of each open set in X is open. If U
is any open nhood of x in X, then the component of U containing x is an open
connected nhood of x contained in U. Thus X is locally connected. B

27.10 Corollary. The components of a locally connected space are open—closed.

27.11 Corollary. A compact locally connected space has a finite number of
components.

27.12 Theorem. Every quotient of a locally connected space is locally connected.

Proof. Let f be a quotient map of X onto Y. Suppose U is an open set in Y,
C a component of U. For xe f~}(C), let C, be the component of x in the open
set f~!(U). Now f"(C,) is connected and contains f(x) € C, so f(C,) = C. Thus
xeC, = f7!(C). Since C, is open, f~*(C) is open and thus, since Y has the
quotient topology, C is openin Y. I

The theorem above is one of the nicest dealing with preservation of a local
property by continuous maps. For example, it follows that both continuous open
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images and continuous closed images of locally connected spaces are locally
connected.

27.13 Theorem. A nonempty product space is locally connected iff

a) each factor is locally connected,

b) all but finitely many factors are connected.

Proof. The proof is obtained by substituting “connected” for “compact” in the
proof of 18.6, the corresponding theorem for local compactness. See 27F. B

27.14 Definition. X is connected im kleinen at x iff each open nhood U of x contains
an open nhood V of x such that any pair of points in V lie in some connected
subset of U.

Certainly every locally connected space is connected im kleinen. At first
it is easy to believe the converse, but the following example shows that the two
notions are different. The theorem after that shows that they are not much
different.

27.15 Example. At the point x, the space shown in Fig. 27.3 is connected im

kleinen, but has n
Gonverted with
STDU Gonverter
trial version
s s hup//wwwstdutility.com

Figure 27.3

27.16 Theorem. If X is connected im kleinen at each point, then X is locally
connected.

Proof. Let U be an open set in X, C a component of U. If x € C, then there is an
open set V, containing x and lying in U such that each two points in V, lie in a
connected subset of U. It follows that V, < C. Thus C is open and X is locally
connected.

Problems

27A. The topologist’s sine curve

Let V = {(x,0)| x < 0} U {(x, sin (1/x)) | x > 0} with the relative topology in R? and let
T be the subspace {(x, sin (1/x)) | x > 0} of V.

1. Vis connected. [Use 26.7 and 26.8.]
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2. V is not pathwise connected. [If f is a path from (0, 0) to (x, sin (1/x)), then f(I) is
compact and connected. ]
3. T is pathwise connected, but the closure of T in V is not. (Compare with 26.8.)

27B. Combinations of pathwise connected spaces
1. The continuous image of a pathwise connected space is pathwise connected.

2. A nonempty product of finitely many spaces is pathwise connected iff each factor space
is pathwise connected.

27C. Pathwise connectification

Let X be any space and define a topology on Y = X x I as follows: basic nhoods of points
(x, ) for o # O will be the sets of the form {(x, B)| & — € < B < o + €} for € > O (that is,
usual linear nhoods of (x, &) in the appropriate copy of I), and basic nhoods of (x, 0) will have
the form (U x {0}) U {J,ev .., Where U is a nhood of x in X and for each ze U, ¢, > 0
and J,,, = {(z,®)| 0 < @ < ¢,}. Let X* be the quotient of Y obtained by identifying all
the points (x, 1), x € X.

1. X is embedded in X* as the closed nowhere dense set {(x, 0) | x € X}.
2. X* is pathwipeconnactad

3If:X>2Z Gonverted with can be extended to

a continuous functi

oo, o 910U GONVEItEr

The path componen trial version der the equivalence
lati ~ y iff th = H
reanon X http://www stdutility.com

1. The path component containing x € X is pathwise connected and contained in the
component of x.

2. X is locally pathwise connected iff each path component of each open set is open.

3. A path component of X need not be closed. But if X is locally pathwise connected,
the path components of X are both open and closed.

27E. Examples on local connectedness

1. The Sorgenfrey line E is not locally connected.
2. The topologist’s sine curve V is not locally connected.

3. The space of Example 27.15 is not locally connected.

27F. Combinations of locally connected spaces

1. The continuous image of a locally connected space need not be locally connected.
2. A nonempty product space is iff locally connected

a) each factor space is locally connected,

b) all but finitely many factor spaces are connected.
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27G. Property S

A topological space X has property S iff every open cover of X can be refined by a cover con-
sisting of a finite number of connected sets. The property was introduced by Sierpinski in 1920.

1. If X has property S, then X is connected im kleinen at each point, and thus locally
connected.

2. A compact, Hausdorff space is locally connected iff it has property S.

3. Not every locally connected Hausdorff space has property S.

4. The continuous Hausdorff image of a compact locally connected space is compact
and locally connected. Is property S preserved by all continuous maps?

Property S assumes special importance in deciding questions about local connectivity
of certain subsets of R% In particular (see Whyburn: Analytic Topology, p. 112), if 4 is a
connected open subset of R? such that Fr (4) is a continuum, then A4 has property S iff Fr (4)
is locally connected. As a corollary, Fr (A4) locally connected = A4 locally connected.

28 Continua

Compactness an rannactednace ara nawarfnl hnt diccimilar ropertleS. When

they are combine Converted with hlt is an extensive
collection of inter e to give here).

28.1 Definition. A STn“ con“erter T space. Among

the continua we - - rval I, the circle
S!, the torus S? trial version are all continua.

Our main goal is httn:/ /viww stdutilityv.com s to characterize

the unit interval afa the UNIT CIrcIe as conunud.

28.2 Theorem. Let {K,| o€ A} be a collection of continua in X directed by
inclusion. Then () K, is a continuum.

Proof. The intersection is a closed subset of each K, and thus is compact. Suppose
disjoint closed sets H and K can be found with ﬂ K,=HuUK, and xe H,
y € K. For any fixed a,, X can be replaced by K, , and each K, by K,  n K,,
without affecting the intersection, so we may assume X is compact and Hausdorff.
Then H and K are closed in X and can be separated by open sets U and V in X.
Foreach K, K, ¢ U u V since otherwise U n K, and V' n K, would disconnect
K,. Thus we can pick x, e K, — (U u V). The result is a net (x,) which has a
cluster point z in X, by compactness. Now if W is any nhood of z and K, is given,
then for some K; = K,, x;€ W. Thus W n K, # o for each nhood W of z, so
zeK, = K,, foreacha. Thenze (K, = Uu V. But U U V is then a nhood
of z inside which (x,) never gets, by choice of the x,. We have a contradiction.
Thus () K, must be connected. B

28.3 Definition. A continuum K in X is irreducible about a subset 4 of X provided
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A < K and no proper subcontinuum of K contains 4. If 4 = {a, b}, we say K
is irreducible between a and b.

28.4 Theorem. If K is any continuum, any subset A of K lies in a subcontinuum
irreducible about A.

Proof. The set & of all subcontinua of K containing A is partially ordered by
inclusion; ie., K; < K, iff K, = K,;. By 28.2, each chain in this partially
ordered set has an upper bound (the intersection of its elements) and hence, by
Zorn’s lemma, £ has a maximal element K'. Clearly K’ is a subcontinuum of K
irreducible about 4. B

In particular, K will contain subcontinua irreducible between any two of its
points. In the plane, for example, any arc joining a and b is a continuum which is
irreducible between a and b (and so, in general, a continuum irreducible about a
set A will not be unique).

28.5 Definition. Let X be a connected T;-space. A cut point of X is a point pe X
such that X — {p} is not connected. If p is not a cut point of X, we call it a noncut
point of X. A cutting of X is a set {p, U, V} where p is a cut point of X and U

and V disconnect . npty open subsets
of X whose unior Converled with

The property STn“ c 5 preserved under
homeomorphism 0““3"3' ts. Consider the
map f(x) = (cos trial version .

Cut points a val and circle as
continua having d httn:/ /viww stdutilityv.com ting to cut points

is shared by all continua, mowever; Tney all have at [east Two noncut points.
This follows easily from the second of the following lemmas.

28.6 Lemma. If K is a continuum and {p, U, V'} is a cutting of K, then U L {p}
and V U {p} are connected (and thus are continua).

Proof. It suffices to prove the lemma for U u {p}. But the map f defined on
K by

X if xeUu{p

) = )

p if xeV

carries K onto U U {p}, and f is continuous on each of the closed sets U U {p}
and V U {p}, so f is continuous. Thus U u {p} is the continuous image of a
connected space and therefore connected. (Since U u {p} = K — V, U u {p}
isclosed in K and thus compact. The part of the theorem in parentheses follows.) Il

28.7 Lemma. If K is a continuum and {p, U, V} is a cutting of K, then each
of U and V contains a noncut point of K.

Proof. Suppose each point x in U is a cut point, inducing a cutting {x, U,, V,}
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of K. Ifboth U, and V, meet VV U {p}, they disconnect V U {p} which is impossible
by the previous lemma. So one, say U,, is contained in U. Now U, u {x} is a
continuum for each x € U, by the previous lemma. Since {U, U {x}|xe U}
is directed by inclusion, (), [U, U {x}] is a nonempty continuum contained
in U, by 28.2.

Pick g € (),ev [U,x v {x}]. Then U, = U (as above), and if r € U,, then U,
does not contain g (otherwise U, and ¥, both meet ¥, U {g} and disconnect it).
Then U, u {r} does not contain q. But this contradicts the fact that

ge(\(U,u {x}). m
xeU

28.8 Theorem. Every continuum K of more than one point has at least two

noncut points.

Proof. If p is a cut point of K, then a cutting {p, U, V} of K exists, and each of
U and V contains a noncut point of K, by the previous lemma. On the other hand,
if no cut point of K exists, certainly there are two noncut points. ll

As we will see shortly, the property of contmua expressed by Theorem 28.8

isthe key to thecl £ - netric continuum
blessed with exad Gonverted with ies of results, the
first of which say m an old one by
excision without STn“ cnn“erler

28.9 Theorem. trial version its noncut points.
Proof. Let N bet “ﬂlﬂ" er subcontinuum
L of K contains h“n I I SI[I““IIE"F,“ “,I K exists, and L

must lie in one or the other of U and V,say L < U. Then V v {x}, being a con-
tinuum itself, has two noncut points and thus has a noncut point y # x. Then
[V u {x}] — {y} is connected, and U U {x} is connected and these sets meet,
so their union is connected. But their union is K — {y}, while y lies in ¥V, hence
not in U, hence not in L; this is a contradiction since L contains all the noncut
points of K. Il

An order relation can be introduced on certain subspaces of a continuum. It
is the last tool we need to reach our characterization theorems.

28.10 Definition. A cut point p in a connected space X separates a from b iff a
cutting {p, U, V} exists with a € U, b € V. The set consisting of a, b and all points
p which separate a from b is denoted E(a, b). The separation order on E(a, b) is
defined by: p, < p, iff p; = p, or p, separates a from p,. This is easily seen to
be a partial order on E(a, b).

The basis for our proofs of the continuum characterization theorems
(28.13, 28.14) will be the fact that the set E(a, b) is linearly ordered by the separation
order.
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28.11 Theorem. The separation order on E(a, b) is a linear order.

Proof. For each pe E(a, b), let {p, U,, V,} be a cutting of X such that ae U,
andbeV,

If r and s are distinct points of E(a, ¢) — {a, b}, then either s€ U, or se V,.
If the latter, then r separates a from s, so r < s. Hence, suppose se U,. Now
V, U {r} is connected (28.6) and contained in the union of U, and ¥, so it must
be contained in one of these. Since b € V, U {r}, we must then have V, U {r} < V..
Now r € V, so that s separates a from r; ie,s < r.

This completes the proof that < is a total order on E(a, b). B

It is natural to ask, at this point, whether any connection exists between the
order topology on E(a, b) and its subspace topology relative to X.

28.12 Theorem. a) If E(a, b) has more than two points, its order topology is
weaker than its subspace topology.

b) If K is a continuum with exactly two noncut points a and b, then E(a, b) = K,
and the topology on K is the order topology.

Proof. a) It suffices to note that. for p e E(a. b). the sets U, n E(a, b) and
V, n E(a, b) (in th Converted with E(a, b) and

b) If pe K ar trial version g {p, U, V}ofK,
by Lemma 28.7, } =n= us p € E(a, b), so
Ela.b) = K. httn://www.stdutility.com

From (a), the order topology is weaker than the given topology on K. Suppose,
conversely, that U isopenin K and p € U. Firstassuming that pisnotoneofaorb,
we will show that U contains some interval (r,s) = {g€ K | r < g < s} containing
p. Tf not, then whenever p € (r, 5), the closed interval [r, s] = {ge K |r < q < s}
meets K — U. But the sets [r, s] n (K — U) then form a family of closed subsets
of K with the finite intersection property (each [r, s] is closed in K by part a)).

Thus their intersection (in the compact space K) is nonempty. But p € U and

N {lr.s]lpe s} = {p}

which leads to a contradiction. If p is one of a or b, the argument is similar. W

Now every continuum with exactly two noncut points is a totally ordered
set with the order topology induced by its separation order. Using the order, we
are ready to characterize the metric continua with two noncut points as homeo-
morphs of the unit interval.

28.13 Theorem. If K is a metric continuum with exactly two noncut points,
then K is homeomorphic to the unit interval L
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Proof. Let D be a countable dense subset of K not containing the noncut points
a and b. Note that:

a) D has no smallest or largest element,
b) given p and g in D with p < g, there is an element r of D with p < r < q.

In Exercise 28B we show that every countable totally ordered set D with these
properties is order isomorphic, and thus homeomorphic, to the dyadic rationals
P in the interval (0, 1). Let f be an order isomorphism of D onto P.

But each point p of K other than a or b is a cut point, dividing K into sets
A, and B, with 4, < B, (i.e, x < y whenever xe A, and y € B,). It follows that
f(A, n D) and f(B, n D) form a Dedekind cut of the dyadic rationals, and thus
uniquely determine an element F(p) of (0, 1). Defining F(a) = 0 and F(b) = 1,
we have completed the job of extending f to what is obviously an order iso-
morphism, and thus a homeomorphism, of K onto I. B

With the notation and methods we have available now, the characterization
of the circle comes fairly easily.

28.14 Theorem—L£ K ic o wintvic nontimumnn cuch that fav any two points a and
b,K — {a, b Converted with e unit circle.
Proof. First we ¢ is a cutting, then
since Uy U {p} a STn“ cnn“erter oints; say y is a
noncut point of { trial version But now the con-
nected sets (U, \ and their union,
K —{yz}isthe.  http://www.stdutility.com  |theorem. Hence

K has no cut points.

Now let a and b be distinct points of K. Then K — {a, b} = U u V where U
and V are disjoint nonempty open subsets of K. We set U* = U u {a, b},
V* = V U {a, b} and assert that U* and V* are arcs, each having a and b for
endpointsand that U* n V* = {q, b}. Thiswill obviouslyestablishK = U* u V*
as a homeomorphic image of a circle.

First, U* and V* are connected. For suppose U* = S U T where S and T
are disjoint, nonempty and open in U*. If S contains both a and b, then T is open
in U and hence in K. This is impossible, since T is already closed in K (being closed
in the closed set U*). Thus we can suppose a € S, b € T. But now using the same
argument, S — {a} is open and closed in the connected set K — {a}, which is
impossible. Thus U* and V* are connected.

Second, a and b are both noncut points of U* (and similarly V*). For if S
and T disconnect U* — {a}, and if b € S say, then (by arguments similar to those
above) T is both open and closed in K — {a}, which is impossible.

Finally, to show each of U* and V* has precisely two noncut points (namely,
a and b), we proceed in two stages: (1) Suppose each has a third; say p is a non-
cut point of U* and ¢ is a noncut point of V*, each different from a or b. Then the
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sets U* — {p}and V* — {q} are connected, intersect, and their unionis K — {p, g},
a nonconnected set. With this contradiction, we have dispensed with case 1.
(2) Suppose one, say U*, has a third noncut point p. Then if g is any point in V,
we have a cutting {g, 4, B} of V*, where 4 and B are connected and, say, a € 4,
be B. (Easily a and b cannot both belong to one.) Now U* — {p}, 4 and B
form a chain of connected sets whose union is K — {x, y}, a contradiction.

Thus each of U* and V* is a metric continuum with precisely two noncut
points, a and b, and U* n V* = {a, b}. It follows that K = U* U V* is homeo-
morphic to the unit circle. B

Problems

28A. Indecomposable continua

A continuum K is decomposable iff it is the union of two proper subcontinua; otherwise K
is indecomposable. For p € K, consider the set C,, of all points x of K such that a proper sub-
continuum of K contains both p and x (i.e., such that K is not irreducible between p and x).
We call C,, the composant of p (or, the composant of K containing p).

1. Describe the * —

2. Every decom Gonverted with s points.

3. A continuun continuum L with
Inty L # o. STDU Gonverter

4. Let a, b, ¢ be lrial “ersin“ 250 e e of COII-neCtt?d
open sets such that osures contained in
sets of C, _,, with th httn: f [www_s[d““"w_cnm c through b, %, is a

simple chain from a T3 ugh a. Then repeat
the process (Fig. 28.1). Let C, = () {C|Ce%,}, and let C = () C,. Then C is an inde-
composable continuum.

Figure 28.1
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28B. Order isomorphism

Let X and Y be ordered spaces. A map f of X onto Y is an order isomorphism iff f is
one-one and x < y < f(x) < f(y).

1. Every order isomorphism is a homeomorphism relative to the order topologies on
X and Y.
2. Let P denote the set of dyadic rationals in (0, 1); i.e., P consists of all numbers of the
form k/2"forn = 1,2,...and k = 1,...,2" — 1. Then
a) P has no largest or smallest element,
b) if p, g€ P with p < g, then forsomere P,p <r < q.
3. Any countable linearly ordered set D with the properties (a) and (b) given in 2 is order
isomorphic to P. (Thus P is order isomorphic, and homeomorphic, to the set Q of all rationals
in R)

28C. R as a product

The real line R can easily be written as a product space X x Y, by taking X to be a one-point
space. Is R homeomorphic to any product X x Y with X and Y each having more than one
point?

28D. Continua of GBIWBIIBII with
Let A;,A,,...bea STn“ c
Jim sup onverter |,
lim inf trial version rany A,}
so that always lim  INEU:/ /W StdUtilityv.com | ve denote their

common value by lim 4,

1. lim inf A, and lim sup A, are closed sets.
2. If X is compact and each A, is connected, and lim A; exists, then lim A; is connected.

3. If X is a metric continuum which is not locally connected at one of its points p, there
is a nhood U of p such that a sequence K, K, . . . of distinct components of U converges to
a continuum K containing p and disjoint from the K;. (Briefly, non-local connectedness of
a metric continuum implies the existence of a “continuum of convergence,” a result which
is supported by reference to examples of non-locally connected spaces.)

28E. Structure of continua

1. Let K be a continuum contained in X and let U be an open set in X which meets both
K and X — K. Then every component of U n K meets Fr (U).

2. No continuum can be written as the union of countably many disjoint closed sets.
[Suppose L = K; U K, U - . Let G, bean open set containing K, such that G; N K; = o,
and let L, be a component of G meeting K,. Then L, n K, = @, but L, meets some K,,
with n, > 2. Let G, be an open set containing K,, such that G, n K, = o and let L, be a
component of L, n G, meeting L,, Continue. Show that L; > L, > --- but ()L, = o,
obtaining a contradiction. ]
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29 Totally disconnected spaces

A connected space has one component. At the opposite extreme we have an im-
portant class of spaces, typified by the Cantor set.

29.1 Definition. A space X is totally disconnected iff the components in X are the
points. Equivalently then. X is totally disconnected iff the only nonempty con-
nected subsets of X are the one-point sets.

The Cantor set, the space Q of rationals, the space P of irrationals and any
discrete space are all totally disconnected. We give an outline now of a famous
example, due to Knaster and Kuratowski, of a connected space K and a point
p in K such that K — {p} is totally disconnected!

29.2 Example. Recall that the Cantor set C is obtained by deleting a countable
collection of open intervals from I. Let Q be the set of endpoints of these intervals
(s0 Q = C) and set P = C — Q. Let pe R? be the point (3,3) and for each
x € C, denote by L, the straight-line segment joining p and x. Define

L} = {(x;, x,) € L, | x, rational}, if xeQ,
L* = {x. x)e I |x.irrational} if xeP.
Then the subspa Converted with — {p} is totally

disconnected. Se
STn“ con“erter spaces is totally

29.3 Theorem.
disconnected. trial version

b) Every subs =n=

) Every htwp://www.stdutility.com
Proof. a) Suppose C 1s a nonempty connected subset of a product [[ X, of
totally disconnected spaces. Then, for each «, n,(C) is connected and hence must

be a one-point set. It follows that C is a one-point set.
b) is even easier. @

Continuous images of totally disconnected spaces need not be totally dis-
connected. In fact, one of the amazing results in topology is given in Section 30:
every compact metric space is a continuous image of the Cantor set.

We now introduce a concept obviously related to total disconnectedness,
but slightly stronger in the general case as examples and theorems will show.

isconnected.

29.4 Definition. A space X is 0-dimensional iff each point of X has a nhood base
consisting of open—closed sets. Equivalently, X is 0-dimensional iff for each point
x in X and closed set A not containing x, there is an open—closed set containing

x and not meeting A.
The reformulation of the definition makes the following theorem clear.

29.5 Theorem. Every 0-dimensional T,-space is totally disconnected.

To formulate a partial converse to this theorem we need a lemma.
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29.6 Lemma. A compact T,-space X is totally disconnected iff whenever x # y
in X, there is an open—closed set in X containing x and not y.

Proof. This is left to Exercise 29D. B

29.7 Theorem. A rim-compact Ty-space is 0-dimensional iff it is toially
disconnected.

Proof. Tt suffices to prove a locally compact, totally disconnected T,-space X is
0-dimensional. Let 4 be a closed set in X, x ¢ A. Let U be an open nhood of x
with compact closure disjoint from 4. For each p € Fr (U), let V, be an open—
closed subset of U containing x but not p. The sets X — V, form an open cover
of Fr (U) so a finite subcover exists, say corresponding to the points py, . ... p,.
Let V="V, n--- nV,. Then V is an open—closed set in U containing y and
disjoint from Fr (U). But then V < U and hence is an open—closed set in X
containing x and not meeting 4. Thus X is O-dimensional. Il

29.8 Examples. a) The set Q of rationals is 0-dimensional.
b) The Cantor set C is 0-dimensional.

c) If K is the - — {p} is a totally
disconnected met Converted with ercise 29B. Thus

Theorem 29.7 car ST n “ c 0n“erter

An infinite p1 - - crete. According
to Theorem 29.3, trial version ever, totally dis-
connected. Wecl h“n: I IWWW.SI[IIIIiIiW.BIIm viding a converse
to this for an importantorass ortotany usvUnTITTCUspaces —mat s, every totally
disconnected compact metric space is homeomorphic to a subset of a countable
product of discrete spaces.

The development requires the following notion.

29.9 Definition. Let X, X,,... be topological spaces and, foreachn = 1,2,...,
let f, be a continuous map of X, into X, _;. The sequence
XO‘LLXN‘&Xz‘—"‘,
which we abbreviate {X,, f,>, is called an inverse limit sequence. The inverse
limit space of this sequence is the following subset of [ ] X,
X = {(x0, X1, .. .) | £i(x,) = x, _; for each n}.

29.10 Example. Suppose X, > X, o --- and f,: X, » X,_, is the injection
mapping. Then X is homeomorphic to ()%, X,. The map is a natural one
since, as a set,

X, = {(x¢, Xy, ...) | X, = x,,_, for each n}

= {(x¢» X5 - - ) | X0 € [) X,.}-
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That the map f(x) = (x, x,...) is actually a homeomorphism of ﬂ X, onto
X, 1s left as an easy exercise.

This example is the model for inverse limit sequences. Thus it is clear, e.g.,
that many inverse limit spaces will be empty. This does not suit our purposes and
hence provokes the following theorem, generalizing the result that a decreasing
intersection of nonempty compact Hausdorff spaces is nonempty.

29.11 Theorem. If (X, f,> is an inverse limit sequence of nonempty compact
Hausdorff spaces, then the inverse limit space X, is a nonempty compact
Hausdorff space.

Proof. X, is obviously Hausdorfl, since it is a subspace of [| X,. Moreover,
if we let Y, = {(xo, xy,...)e[] X, | f(x,) = x,_}, then X = (), ¥, and each
Y, n- - n Y, is nonempty, so it suffices to show Y, n--- N Y, is compact, for
which it is enough to show each Y, is closed in the compact space [ | X,,.

If z = (zq, 2, .. .) is not in Y,, then f(z,) # z,_, so there are disjoint nhoods
Uoff(z,)and Vofz,_,in X, _,. Let Wbeanhood of z,in X, such that f,(W) < U.
Then W x V x [[{X,|k # n — 1,n} is a nhood of (zo, z,,...) not meeting
Y,. Thus ¥, is closed in [ | X,, as desired. @

Converted with

~ | STDU Converter

trial version
- hnn:llwww.stgutilitv.cnm R

Figure 29.1

29.12 Definition. Let (X, f,> and <Y,, g,»> be inverse limit sequences. A mapping
® of (X,, f,» to (Y,, g,> is a sequence (¢,) of mappings ¢,: X, — Y, such that
Pu_yofn=09no@,forn =12 ...(Fig 29.1). We call ® continuous iff each ¢, is
continuous, onto iff each @, is onto, and so on. The induced mapping ¢: X, — Y,
is defined by

o(xgy Xy, ..) = (‘Po(xo), 9 1(xy), - . )

We know (¢o(xo), @4(x,), . ..) belongs to Y, if (xq, X;,...) belongs to X, by
virtue of the requirement @, _; o f, = g, o @,
29.13 Theorem. a) If @ is continuous, so is the induced mapping @.
b) If @ is onto, so is the induced mapping @, provided the X, and Y, are all
compact Hausdorff spaces.

Proof. a) Suppose ® is continuous. Then denoting the nth projection in [] X,
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by 7, and the nth projection in [ ] Y, by =,

n;l ° (p(XO’ X15 - - ) = (pn(xn) = Qpo Tcn(xo, X5 - )
Thus ¢ is continuous when followed by each projection 7, and hence ¢ is
continuous.
b) Let (yo, ¥1»-..) € Y, and for each n, let A, = ¢, !(y,). Then 4, is a non-
empty compact subset of X,. If 4, = f, | 4,, the sequence
AO &L Al & A2 — - - =

is an inverse limit sequence of nonempty compact spaces (stop to check that 4,
takes A, into A, _,)and hence has nonempty limit space 4. Butif(xy, x;,...)€ 4,
then ¢(xq, x1,...) = (Yo, V1»- - -)- Thus ¢ is onto. B

29.14 Definition. A partition of a set X is a collection of disjoint sets in X which

cover X. If %,, %,, ... is a sequence of partitions of X such that %, refines
U, for each n > 0, then the derived sequence obtained from %,, %,, . .. is the
inverse limit sequence Yo Ly, L2

where Y, is the di — and f, takes each
set in %, to the ui GConverted with

29.15 Theorem

a) For each
open sets of d

STDU Gonverter

trial version

tric space. Then

of X by disjoint
> 0.

b If Y.<y http://wwwstdutilitv.eom  jence %, %,,...

of covers, then X is homeomorphic to the resulting inverse limit space Y.

Proof. a) Since X is compact and totally disconnected, it is 0-dimensional, so
a cover % of X by open—closed sets of diameter <1 certainly exists. By compact-
ness, % can be taken finite, = {U,,..., U,}. Define

v,=U,, Uy=U,-U;, ..., Uy=U,—U, u---0vU,_)).
Then %, = {U}, ..., U,} is a finite cover by disjoint open sets of diameter <1.

Having obtained %,, . .., %, _,, we can refine %, _, by a finite cover of open—
closed sets # = {U,,..., U} of diameter <1/2" and then

%,,z{U,,UZ—U,,...,Uk—UUJ}

i<k
is the desired nth cover.

b) Since the spaces Y, are nonempty, compact, Hausdorff spaces, Y, is
compact and nonempty by 29.11. For each n, define ¢,: X — Y, by letting
@,(x) be the set in %, (i.e., element of Y,) containing x. Then (¢,) is a mapping of
the sequence X <= X «- X « - - -(whereiistheidentity)to Y, <2 ¥, L2 Y, -,
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because if x € X, then
@n_1 0 i(x) = @, _;(x) = element of %, _, containing X,
fu o ©,(x) = f, (element of %, containing x)

element of %, _, containing x,

I

so that the desired commutativity relation holds. Moreover, each ¢, is continuous
and onto and hence so is the induced map ¢: X — Y, (it is obvious that the in-
verse limit space of X «- X <L ---is X). Since X is compact, and Y, is Hausdorff,
¢ is also a closed map. Hence we need only show ¢ is one—one.

But if x # y in X, then say p(x, y) = €. Pick n large enough that 1/2" < ¢/2.
Then since each element of %, has diameter < 1/2", x and y cannot belong to the
same element of %,,; ie., ¢,(x) # ¢,(y). Thus, easily, p(x) # ¢(y). B

Problems

29A. Examples on totally disconnected and 0-dimensional spaces

1. The Sorgenfrev line E is 0-dimensional

2. Theset P o Converted with

3. BN and BQ STn“ con“erter @an and Jerison].
29B. The exampl
Recall the construct trial version points” on the lines
joining endpoints o . =p= lines joining other
points of C to p. http://www.stdutilitv.com

1. Kis connected. [If U is an open—closed subset of K containing p, U has open—closed
intersection with each line L¥. Deduce that U = K.]

2. K — {p} is totally disconnected.
3. K — {p} is not O-dimensional. [The open set {(x, y)|y < %} of K — {p} cannot
contain any open—closed set (otherwise, this set would be a proper open—closed subset of

K).]

29C. Inverse limit spectra

Inverse limit sequences and their limit spaces have a natural generalization, obtained by
replacing the integers as index set with any directed set. Specifically, let A be any directed
set and suppose X, is a topological space for each a € A. For each « and f with a < S, let
Jpa: X3 = X, be a continuous map. The collection of spaces X, and maps f;, will be called
an inverse limit spectrum, denoted <{X,; f;,>, provided the following condition is satisfied : if
a < B <y then f, = fo0 frp

The inverse limit space of an inverse limit spectrum {X,; fj,» is the set

X, = {xe]] X,| whenever a < B, x, = fp(x5)}-
1. If each X, is T, then X  is closed in [ | X,.
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2. Ifeach X, is a (nonempty) compact Hausdorff space, then X , is a (nonempty) compact
Hausdorff space.

3. The projection =, restricted to X, still maps X, onto X,, and the sets n; }(U) fora € 4
and U open in X, form a base (rather than just a subbase!) for X .

4. Suppose {X,; fzo» and (Y,; gs,» are two inverse limit spectra with the same index
set A, and for each a € 4, let h,: X, — Y, be continuous. If the h, satisfy the appropriate
composition condition, then a unique map h,: X, — Y, is induced such that the diagram in
Fig. 29.2 commutes (i.e., such that h, o m, = 7, o h,) for each a € A.

b/

X, — X

h h,

X

TE x
Yoo Ya Figure 29.2

5. If each A, is a homeomorphism of X, with Y,, then 4 is a homeomorphism of X,
onto Y.

Inverse limit spectra and their limit snaces are imnartant in the extension of homology

and cohomology th¢ Converted with 1 theory, applicable
to a wide class of sp .

0. Toaty s 1 DU GONVEITEr

In a compact Haus = = onents. Conclude
P trial version p
that a compact Hay s can be separated

byanopen-closed s yttp://www. stdutility.com

29E. Connectedness in topological groups
Let G be a topological group.

1. The component C of the identity in G is a closed normal subgroup.
2. G/C is totally disconnected (so if G is locally compact, G/C is 0-dimensional).
3. An open—closed compact nhood U of e in G contains an open—closed subgroup

H. [Use18D.2 to find a (symmetric) nhood V of e such that UV < U. It follows that V" < U
for any n. Then (J32; V" is an open (hence closed by 18D.7) subgroup contained in U.]

4. If G is compact, an open—closed compact nhood U of e in G contains an open—closed
normal subgroup N. [Let H be the subgroup given by 3 and let N = ()¢ XHx™ ']

5. If G is locally compact and totally disconnected, the open—closed subgroups of G
form a base at e. [The open—closed nhoods of e are a base. See part 3.]

6. If G is locally compact, C is the intersection of all open—closed subgroups. [G/C is
locally compact and totally disconnected. ]

7. In a locally compact group, the following are equivalent :

a) G is connected,

b) G has no proper open—closed subgroups,
¢) G = | )&, V" for any open nhood V of e.
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29F. Cantor spaces

As a corollary to Theorem 29.15, every totally disconnected compact metric space can be
embedded in a product of countably many finite discrete spaces. The corollary can be
strengthened. Show that every O-dimensional T;-space (hence, every locally compact totally
disconnected T;-space) which has a base 4 of cardinal N can be embedded in the product of ¥
copies of the discrete space with two points. (Recall that a product of two-point discrete spaces
is called a Cantor space.) [The base % can be taken to consist of open—closed sets, by an ex-
tension of 16B.2. For each B € 4, consider the characteristic function of B. Apply 8.16.]

30 The Cantor set

The Cantor set C is a totally disconnected compact metric space. By adding one
more property to this list, we can completely characterize C. Our goal in this
section is the proof of this useful fact, and one of its startling corollaries: every
compact metric space is a continuous image of C.

30.1 Definition. A set A in a space X is perfect in X iff A is closed and dense in
itself; ie., each point of 4 is an accumulation point of A.

The whole spaca Y than ic macfact iff it ic danca in itealf Jn particular, the
Cantor set C is pq Comnverted with

30.2 Lemma. STn“ c .I ally disconnected,

perfect T,-spc 0““0' er v u U, for

s0 hoi - -

me choice 9 trial version

Proof. It suffices =n= ow by induction.
But if U is any no| htln.llwww.slllllllllt]l.cnm e point since X is

perfect. Now if p and g are different points of U, then there is an open—closed
set ¥V in X which contains p but not g, by 29.6. Setting U, = U n V and
U, = U — V gives the desired separation of U. B

Now, given two totally disconnected, perfect, compact metric spaces, we can
approximate them by inverse limit sequences of discrete spaces by using Theorem
29.15 and we can keep the discrete spaces in the two sequences the same size at
each stage, using 30.2. The result is the following theorem.

30.3 Theorem. Any two totally disconnected, perfect compact metric spaces are
homeomorphic.

Proof. Let X, Y be such spaces. Let (%,), (¥",) be sequences of finite covers of
X and Y, respectively, by disjoint open sets, the sets of the nth covers having diam-
eter <1/2". The existence of these is guaranteed by the Theorem 29.15. By using
Lemma 30.2 in order to split sets where necessary, we may assume %, and ¥,
have the same number of elements for each n.

Now if %, = {Uyy,...,Uy,} and ¥°y = {Vy,,..., V},}, then each Uj; is
a union of elements of % ,, and each V;; is a union of elements of ¥",. Again, using
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Lemma 30.2 we can assume U,; and V}; are the union of the same number of
elements of %,, ¥",, respectively, in such a way that Uy, < U,; iff V,, <V,
Continue in this fashion, matching the covers of %, and ¥, for all n.

Now let Xo <2 X, «---and Y, <2 Y, « --- be the derived sequences of
(%,) and (¥7,), respectively. Define ¢,: X, — Y, by ¢,(U,;) = V,;. Then ¢,
is a homeomorphism from X, to Y,, and it is easily verified that ¢: X — Y,
is also then a homeomorphism. But X is homeomorphic to X, and Y, is homeo-
morphicto Y. @

30.4 Corollary. The Cantor set is the only totally disconnected, perfect compact
metric space (up to homeomorphismy.

The previous result provides us with some interesting and easily proved
results (some of which we already know). Recall that 2¥ denotes the product of
N, copies of the two-point discrete space.

30.5 Corollary. The Cantor set C is homeomorphic to 2%°.

30.6 Corollary. The Cantor set C is homeomorphic to C*,

The next res-— — Lomd 4emsliet—-pplication of the
characterization { Comnverted with
30.7 Theorem. STn“ c -I ous image of the
Cantor set. 0““3' er
Proof. Let%,, U trial version closures of open
sets, the sets of %, forn =2,3,.
Say 4, = (U, - !!yn /fwww stdutilitveom | " 5o

that V; = Vy; U -+ UV, is the dlSjOlnt umon of the UI, Now each U,;e %,
is contained in some U, €%, Define Vy; = {(ui, j)|ueU,;} whenever
Uyj = Uy, and let V, = (Jiz, vi=us; Vaij- Then V3, it is worth pointing out,
is somewhat more than the disjoint union of the U,;. Each U,; occurs in the dis-
joint union once for each Uy; such that U,; = U,;. Now define f,: V, - V] by
fo((u, i, j)) = (u, i). Then f, is continuous on each piece V,ij and thus continuous
on V,. Also, there is a map ¢,: V; - X defined by ¢,(»,i) = u and a map
@, V, » X defined by ¢,(u, i, j) = u.

Continue the process. The result is a pair of inverse sequences and a mapping
between them (Fig. 30.1), where i is the identity map on X. The reader should

/2 v,

o b

y X —L» x L, x

,
o
v

Figure 30.1
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check that (¢,) satisfies the composition condition necessary to be a map of
inverse limit sequences. The result is a map ¢: V,, - X of the inverse limit
spaces, which is continuous and onto because X and each V, isa compact Hausdorff
space and each ¢, is continuous and onto.

It is worth pointing out, at this stage, that each V, is a compact metric space,
being a disjoint union of a finite number of compact metric spaces. Let d, be the
metric on V, induced by the metrics on the U,;. We also need the obvious fact
that if (x;, x,,...)€ V,, then we must have ¢(x,) = ¢,(x,) =+, and, if z,
denotes this common value, then for any (y;, y,, . ..) € V,, dy(x,, y,) = d(z,, z,).

We would like to show V_ is the Cantor set. It is compact because each V,
is compact, and metric because it is a subset of the metric space ]_[,ZZ, v, If
X = (xg, Xy,...) and y = (yo, ¥y, ...) are distinct points of V,, then for some
n, x, # y,. Now x, and y, must correspond to distinct points of X (under
¢, V, > X), say to z, and z,. Now if d,, is the metric on V,, then clearly
Ap(Xpms V) = d(zy, z,) for all m > n. Since the diameters of the sets V,,;, ..., V.
which compose V,, approach 0 as m — oo, it follows that beyond some point
N, x,, and y,, belong to different sets of V,,; say, x,, € V.1, Y & Viur- But V,,; is
open—closed in V,,, and hence {(zy, zy,...) € Vo | Zw€ V,u1} is an open—closed

nhood of x in V . cted.
But vV, need Converted with s the Cantor set,
V, x C is a perf STn“ c e which has V,,
and hence X, for 0““3"3'
trial version
Problems =p=
hitp://www stdutilitv.com

30A. Properties of C

1. Cis nowhere dense in L

2. Cis homogeneous (i.e., given x and y in C, a homeomorphism of C onto itself can be
found which carries x to y). Thus, the property of being an endpoint in C is not topological,
but merely reflects a peculiarity of the embedding of C in L

3. Any totally disconnected, compact metric space is homeomorphic to a subset of C.
[See 29.15(b).]

30B. Perfect sets

1. Every perfect set in a complete metric space contains a compact perfect set.

2. A compact Hausdorff space which is countable is not perfect. “compact Hausdorff”
can be replaced by “complete metric.”

3. If A © X has no isolated points, then A is perfect in X.

30C. Open subsets of C

1. Every open subset of C can be written as the union of a finite or infinite sequence of
disjoint open—closed subsets of C.
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2. Every open subset of C is homeomorphic either to C or to C — {0}. [If G is a finite
union as in (1), then G is a 0-dimensional, perfect, compact metric space and is thus homeo-
morphic to C. If G = |J G, as in (1), then we can write C — {0} as (] C, where the C, are
disjoint nonempty open—closed subsets of C and for each », C, and G, are homeomorphic, so
C — {0} and G are homeomorphic (see 7H).]

30D. BN versus C
1. Every compact metric space is the continuous image of SN.
2. Is BN a continuous image of C?

3. Why is C preferable to SN as a universal mapping space for compact metric spaces?

30E. Scattered sets; the perfect kernel
A topological space X is scattered iff it contains no nonempty dense-in-itself subset.

1. Every discrete space is scattered. Exhibit a nondiscrete scattered space. [There are
infinite compact subsets of R which are scattered. ]

2. Every topological space X can be written as the union of two disjoint sets, one perfect,
the other scattered. (The perfect set in this union is called the perfect kernel of X.)

30F. Homeomory Converted with

Let X be a compac ust X™° be homeo-

morphic to X? [A STn“ c I spaces X with this

property are easy t 0n“er er nade in Exercise 8J.
trial version

30G. Convex sets .

A subset E of R" is n“n:l I wm's'd““"w'c“m ains the closed line

segment joining x to y. Show that every closed bounded convex set in R" is the continuous
image of I. [There is a continuous map f of C onto E, by 30.7. How can f be extended to
all of I?]

31 Peano spaces

Here we give a topological characterization of those spaces which are continuous
images of the unit interval L.

31.1 Definition. A Peano space is a compact, connected, locally connected metric
space.

The next three results are directed specifically at the proof of the Hahn—-
Mazurkiewicz theorem, which characterizes the continuous images of I as pre-
cisely the Peano spaces.

31.2 Theorem. Every Peano space is arcwise connected.

Proof. Suppose a and b are points in a Peano space X. Using Theorem 26.15,
there is a simple chain U, 4, ..., U,, of open connected sets of diameter <1 from
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a to b. About each point p of U,; there is an open connected set V' of diameter
<3 whose closure is contained in U,;, and if pe U,;,,; we can arrange that

V < Uy;4, also. Do this for eachi = 1,...,n We wish now to obtain a simple
chain of such sets V from a to b.
Pick x,e U;;nUy;;, fori=1,...,n —1and foreachi =0,...,n — 1

(with @ = x, and b = x,) find a simple chain of the sets V from x; to x;,; in
U,;.:- We cannot simply join these together to get a simple chain from a to b,
because of doubling back (Fig. 31.1), but we can obtain the desired simple chain
as follows: take all elements of the first chain (from a to x;) up to and including
the first one U meeting some element V of the second chain (from x; to x,), then
omit all elements of the first chain after U and all elements of the second chain
before V. Repeat this at all other intersections.

Converted with
trial version
hitn://www stdutility.com Figure 31.1
The result, then, is a chain U,;, ..., U,,, of open connected sets of diameter

<3 such that for each i, U, U,; for some j. Now continue this process, ob-
taining a simple chain of open connected sets of diameter <1/2" whose closures
lie in elements of the previous chain for each n > 1.

For each n, let C, be the union of the closures of the elements of the nth chain.
Then C = ﬂ C, is a compact, connected metric space containing a and b. We
have finished if we show that no points other than a and b are noncut points, since
then C is an arc by 28.13.

Let x e C — {a, b}. For given n, at most one or two links of the nth chain
contain x. Let 4, be the union of all the links preceding these, B, the union of all
the links following these. Then

A={)JA4,nC) and B=|JB,nCO)
n=1 n=1

form a separation of C — {x} into disjoint, nonempty open sets. Thus x is a cut
point of C. W
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The proof just given can easily be modified to show that every open connected
subset of a Peano space is arcwise connected (see 31C.1). We will use this fact a
little later, in the proof of Lemma 31.4.

31.3 Lemma. A compact locally connected metric space is “uniformly locally
connected”; that is, for any € > 0, there is some 6 > 0 such that whenever
p(x, y) < 8, then x and y both lie in some connected subset of X of diameter
<e€.

Proof. Given ¢ > 0, cover X by open connected nhoods of diameter <¢. Reduce
this to a finite subcover {V,,,...,V, } and let 6 be a Lebesgue number (22.5) for
this cover. Then if p(x, y) < J, both x and y belong to some V. B

31.4 Theorem. A Peano space X is uniformly locally arcwise connected; i.e.,
for each € > 0, there is a & > O such that whenever p(x, y) < 6, then x and y
are joined by an arc of diameter <e.

Proof. First, X is uniformly locally connected, by 31.3. Thus if ¢ > 0 is given,
there is a 6 > O such that if p(x, y) < 0, then x and y lie together in a connected

set B of diameter

N TEacrh s R hac an nanan aannantad nha d Ux of diameter

<¢/4. Then U = Converted with and hence, (see
Exercise 31C.1), U en x and y lie in
an arcwise conne STn“ con“erler

We are now 1 trial version m, classifying the
continuous imagg roving that con-
tinuous images o/ It/ /www.sStdutilitv.com | trouble; all the

necessary theorems are already at hand. BUT {0 prove the converse is significantly
more difficult. The basic idea is that given any Peano space X, there is a continuous
map of the Cantor set onto X by 30.7 and, using the small arcs in X provided by
the previous theorem, we can extend this map to the whole unit interval. The
details, of course, are painful.

31.5 Theorem. (Hahn and Mazurkiewicz) A Hausdorff space X is a continuous
image of the unit interval 1 iff it is a Peano space.

Proof. Let fbe a continuous map of I onto X. By 23.2, X must be compact and
metric. Moreover, X is the continuous image of a connected space and a quotient
(in fact, a closed, continuous image) of a locally connected space, so X has these
properties itself. Thus, X is a Peano space.

Now suppose X is any Peano space. Recall C is the Cantor set in I, with
I,,1,,... being the intervals in I — C ordered by size, and for intervals of the
same size, from left to right. Let f be a continuous map of C onto X. Our problem
is to extend f continuously over each I, = (p,, q,). Now f(p,) and f(q,) are already
defined. If f(p,) = f(q,), define f*(p) = f(p,) for each peI,. Now for each
n=172,...find é, > 0 such that p(x, y) < §, in X = x and y are joined by an
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arc of diameter <1/2". But, for each n, find 5, > 0 such that [p — ¢| < 7, in
C = p(f(p), (@) < 6,

Only finitely many intervals I,, ..., I, have length >#, and for each such
I; extend f to (pj, q;) by letting its values run over any arc from f(p;) to f(q;)
in X. Then intervals I, ,,,...,I,, will have length n, < |[I;| < n,. For these
intervals I; we have |p; — q;| < n, so that p(f(p;), f(g;)) < &,. Extend f to
(pj» q;) by letting its values run over any arc of diameter <1 between f(p;) and
f(g;)- Tn general, for the intervals I; such that n,,, < [I}| < n,, we can let the
values of f on (p;, q;) run over an arc of diameter <1/k between f(p;) and f(q;).

The result is a function from I onto C whose continuity can be easily checked,
once you see what is going on.

31.6 Corollary. A T,-space is pathwise connected iff it is arcwise connected.

Proof. By the previous theorem and Theorem 31.2, every path is arcwise
connected. M

Problems
31A. Peano spac Converted with

1. If X is a Pea pace, there is a con-
tinuous map of X o STn“ cnn“erter

2. If a and b are . . oints in Y, the map
f can be so construg trial version
31B. Uniform loc I/ /Wi stdutility.com

1. Every uniformly locally connected space is locally connected. [By 27.16, it is enough
to show such a space is connected im kleinem at each point. ]

2. The converse fails. [Consider the graph of sin (1/x) for x > 0.]

31C. Subsets of Peano spaces
1. An open connected subset of a Peano space is arcwise connected.

2. Is a compact, connected subset of a Peano space always a Peano space?

31D. Mapping the Cantor set

Show that the extension F of the map f of the Cantor set onto X given in the proof of 32.5
is continuous.

32 The homotopy relation

In the next three sections, we will provide a brief introduction to homotopy
theory, one of the branches of algebraic topology. Our limited aim is the develop-
ment of sufficient machinery to prove the Brouwer fixed-point theorem (34.6).
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In this first section, we will build the framework of basic definitions and theorems
which will enable us to introduce the appropriate algebraic techniques in Section
33. The Brouwer theorem will follow easily after we have applied these techniques
to study the unit circle in Section 34.

32.1 Definition. Let f and g be continuous functions from X to Y. We say f
is homotopic to g, written f ~ g, iff there is a continuous function H: X x I - Y
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all xe X. The map H is called
a homotopy between f and g. For clarity, we will sometimes write H: f ~ g
when H is a homotopy between f and g.

Setting f,(x) = H(x, t) for x € X and ¢ € I, the homotopy H is seen to represent
a family {f, | € I} of maps from X to Y, varying continuously with 7, such that
fo = fand f; = g. Thus H gives a continuous deformation of the map f into the

map g.

32.2 Examples. a) In R" define f(x) = x for all x and g(x) = O for all x. Then
f =~ g, the homotopy being given by

H(x, 1) = (1 — 0)x.

b) Let X be _ n any two maps
fg:X - Yarel GConverted with

Note the img - - y. For example,
if D is the disk Irial version n conclude from
example b) above httn:/ /viww stdutilityv.com bic; for instance,

the map f(x) = x and the constant map g(x) = (I, U). But regarded as maps from
S? to S!, f and g are no longer homotopic (34.4).

32.3 Theorem. = is an equivalence relation in the set C(X, Y) of all continuous

maps from X to Y.
Proof. If fe C(X,Y), then H: f ~ f, where H is defined by H(x, ) = f(x) for
allxe Xand te I

If ,geC(X,Y)and H: f ~ g, then H': g ~ f where H'(x,t) = H(x,1 — 1)
forall xe X and t € I

Iff,9, he C(X, Y)and H,: f ~ g while H,: g ~ h,then H: f ~ g, where

H,(x, 2t) 0<t<
H,y(x,2t — 1) Lf<r<

H(x, 1) = {
H is continuous on X x I since it is continuous on each of the closed subsets
X x [0,4]and X x [3,1]. W

32.4 Definition. The equivalence classes in C(X, Y) under the relation ~ are
called the homotopy classes in C(X, Y).
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32.5 Theorem. Composites of homotopic maps are homotopic.

Proof. Suppose f; and g, are homotopic maps from X to Y and f, and g, are
homotopic maps from Y to Z; say H,: f; ~ g, and H,: f, ~ ¢,.

Then f, 0o Hy: f50 f1 ~ f50g;. By transitivity of the homotopy relation, it
remains to construct a homotopy between f, o g, and g, o g;. Define

H: X xI->Z

by H(x, t) = H,(g,(x), 7). Then H is a composite of continuous functions and
hence continuous, and H: f, 0 g; ~ g, 09,. B

32.6 Definition. A space X is contractible iff the identity map i: X — X is homo-
topic to some constant map c(x) = x,, from X to a point x, € X.

It follows from Example 32.2(b) that any convex subset of a Euclidean space
is contractible.

32.7 Theorem. X is contractible iff for any space T, any two continuous maps
f,9: T - X are homotopic.

Proof. Sufficiency is obtained by setting T = X and letting f and g be, respectively,

the identity and a j

For necessity Converted with is a constant map
from X to itself. By the previous
theorem, f = io | STn“ con“erter b g, SO apparently

~g A = -

f=9 trial version
32.8 Definition. TY =n= ally equivalent iff
there are conting AN/ /v stdutilitv.com | . 1.~

and go f ~ iy. The maps f and g are called homotopy equivalences and g is
called a homotopy inverse of f (and vice versa).

Homotopy equivalence is an equivalence relation on any set of topological
spaces, and homeomorphic spaces are always homotopically equivalent. The
converse to the last statement fails, as the following theorem shows.

32.9 Theorem. X is contractible iff it is homotopically equivalent to a one-
point space.

Proof. Suppose X is contractible, say the identity i: X — X is homotopic to
the constant function ¢(x) = x,. Let Y = {x,},andlet j: Y — X be the inclusion
map. Then c o j is the identity on Y and j o ¢ = ¢ is homotopic to the identity
on X. Thus jis a homotopy equivalence from Y to X.

Conversely, suppose f: X — Y is a homotopy equivalence between X and
a one-point space Y, and let g: Y — X be a homotopy inverse. Then go f is a
constant map from X to X which is homotopic to the identity on X, so X is
contractible.

32.10 Definition. A subset A of X is a retract of X iff there is a continuous map
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r: X — A, called a retraction, such that r(a) = a for each ac 4. We call 4 a
deformation retract of X iff there is a retraction r: X — A which is homotopic
(as a map into X) to the identity functionion X. If H: r ~ i, H is called a deforma-
tion retraction.

32.11 Example. A retract need not be a deformation retract. In fact, the one-point
subsets of any space are retracts, but no one-point subspace of S is a deformation
retract (34.4).

32.12 Theorem. If A is a deformation retract of X, then A is homotopically
equivalent to X.

Proof. Let j: A —» X be inclusion and r: X — 4 be the retraction. Then jor
is homotopic to the identity on X and r . j is the identity on A, so r is a homotopy
equivalence. W

We conclude this section by introducing a generalization of the homotopy
relation which will be useful in the next section.

32.13 Definition. A - Aisat logical
space a;d :4'02 X Converled with ai;Z Eils acl) Izrcl)a;iliilag
f:X > Ysucht STn“ c ous in the usual
sense from X to } 0n“erler

TWO continu. trial version pic iff there is a
continuous functi . nd H(x, 1) = g(x)
for all x € X and httn://www. stdutility.com  hus for fand g

to be homotopic mappings of the pair (X, A4) it is necessary that f | 4 = g | 4.
If f and g are homotopic mappings of (X, 4) we say “f is homotopic to g relative
to A” and write f ~ g[A4].

Two pairs (X, 4) and (Y, B) are homotopically equivalent iff there are pair
mappings f: (X, A) - (Y, B) and g: (Y, B) - (X, 4) such that fog ~ iy[B]
and g o f ~ iy[A]. Apparently /| 4 must in this case be a homeomorphism of 4
onto B and g | B must be its inverse.

Clearly, if f ~ g[A], then f and g are homotopic as mappings of X to Y.
The converse may fail, even when f and g agree on A, as the following example
shows.

32.14 Example. Let X be the subspace of R? consisting of the segment
{x|0 < x < 1} of the x-axis, the segment {y | 0 < y < 1} of the y-axis and each
of the line segments {(1/n,y) |0 < y < 1} forn = 1,2,... . Let A be the one-
point subspace {(0, 1)}. X is easily seen to be contractible so, by 32.7, the identity
i on X and the constant map g(x) = (0, 1) are homotopic. Moreover, these two
maps agree on A. But no homotopy H between i and g can have 4 pointwise
fixed, as required for relative homotopy.
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Some of the other relationships between homotopy and relative homotopy
will be explored in the exercises. In particular, homotopy relative to A is an
equivalence relation in the set of all maps from X to Y (see 32B).

We should introduce a note of caution here. The literature contains references
to several notions of relative homotopy, no two of which are exactly alike. It
would be wise to check definitions whenever such a notion is encountered.

Problems

32A. Contractible spaces
1. Every contractible space is pathwise connected.

2. Every retract in a contractible space is contractible.

32B. Relative homotopy
Let (X, A) and (Y, B) be topological pairs.

1. The relation f ~ g[A] is an equivalence relation on the set of all mappings
f:(X, A) - (Y, B).

2. If (X, A) and K and Y are homo-

topically equivalent
from X to Y such tf
between (X, A) and

32C. Homotopy i

Converted with

STDU Gonverter

trial version

notopy equivalence
notopy equivalence

are homotopic.

L Iffo, fi: X =p=
Jofi: X http://www stdutility.com

2. Maps f, and b rorrmreooprosuctopacearemomroropremarey—wt€ homotopic when
followed by each projection.

32D. Weak deformation retracts

IfA = X,amapr: X — Aisaweak retraction of X onto Aiff r - j is homotopic to the identity
on A, where j is the inclusion map of 4 in X. Then A is a weak retract of X. A subset B of X
is deformable into A in X iff there is a continuous map D: B x I - X, called a deformation,
such that D(b,0) = b for all be B and D(B x 1) =« A. Finally, A is a weak deformation
retract of X iff there is a map D: X x I — X such that D(x, 0) = x, for all xe X, and
r(x) = D(x, 1) is a weak retraction of X onto A.

1. Note that r is a weak retraction of X onto A iff it is a left homotopy inverse to the in-
clusion map j. Show X is deformable into A4 (in X) iff j has a right homotopy inverse.

2. Every retract is a weak retract. The converse fails. (But see 32F.)

3. The following are equivalent, for A < X:

a) A is homotopically equivalent to X,
b) A is a weak deformation retract of X,
c) Ais a weak retract of X and X is deformable into A.

(Compare with 32.12.)
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32E. Deformation and retraction
1. Any compact, convex subset of R" is a deformation retract of R".
2. If A is a retract of X, then 4 x Y is a retract of X x Y.
3. Not every weak deformation retract of X is a deformation retract.
4. Aisa deformation retract of X iff A is a retract of X and X is deformable into A4 (32D).

32F. The homotopy extension property

Let X be a topological space, A a subspace of X. We say the pair (X, 4) has the homotopy
extension property with respect to a space Y iff each continuous F’ defined on (X x 0)u (4 x I)
to Y has an extension to a continuous F: X x I - Y.

1. If (X, A) has the homotopy extension property with respect to Y, A is a weak retract
of X iff A is a retract of X.

2. (X, A) has the homotopy extension property with respect to every space Y iff
(X x0)u( x Disaretractin X x L

32G. Null-homotopic maps
A map f: X — Y is null homotopic iff f is homotopic to some constant map of X into Y.
Recall that AX denotes the cone cover X (9.12(f)).

1. Two null-ho _ pic to one another.
2. A map f:X Converted with a continuous map
pAer STDU Converter
33 The fundame trial version
We are now in a |_ h“nl I www's""l“"w'c“m in Section 27 to

associate with any topological space a group (actually, several groups). The basic
idea, of course, is to regard the paths in X as elements of the group, with path
addition as the group operation. The first obstacle we encounter is that it is not
possible to add any two paths in X'; the first must end at the point where the
second begins. This is taken care of (in Definition 33.1) by restricting attention
to the paths which begin and end at some fixed point of X. The second obstacle
is that, even for this restricted family of paths, the requirements of a group opera-
tion are not satisfied by path addition. This we overcome, with the help of the
material of the previous section, by considering homotopy equivalence classes
of paths, rather than individual paths.

The result will be a group assigned to each fixed x, € X which, intuitively,
measures the number of two-dimensional holes in the path component of x,.

33.1 Definition. Let X be a topological space, x, a fixed point in X. A continuous
function f: I » X will be called a loop based at x4 iff f(0) = f(1) = x,. Two loops
fand g based at x, will be called loop homotopic (or, where no confusion can result,
simply homotopic) iff f ~ g[{0, 1}]. Thus a loop homotopy between two loops
based at x, must be a relative homotopy which at any stage carries the endpoints
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of I into x,. We will signify this relation of homotopy between two loops by
S =59

The relation ~, between loops based at x, is an equivalence relation and
hence partitions the set Q(X, x,) of loops based at x, into equivalence classes.
The equivalence class containing f will be denoted [ f], and the set of all such
equivalence classes of loops based at x, will be denoted IT,(X, x,).

We can “add” loops just as we “added” paths in Section 27. If f; and f, are
loops based at x,, we define a new loop f; * f, as follows:

_ J A2 if 0<t<
(fl *fZ)(t) = {fz(Zt _ 1) if % <t <

Then we can elevate the operation * to the set IT,(X, x,) of equivalence classes

of loops by defining
[fi] = [f2] = [f1* 2]

It is left as Exercise 33A for the reader to show that * is then well defined in
IT, (X, xo). That is, if f; ~, g1 and f, =x0 92> then f; * f, ~, g1 * g»-
Thus * is a binary operation on IT,(X, x,).

1
2
1

33.2 Theorem. Converted with
Proof. We check STn“ cnn“erter that
for loops f, g and trial version e the idea behind
the necessary hom h“n I Iwwws“l“““wgnm h is accomplished

by completing the-acuomor e mervar [9 7], UIc actuor o1 g in the interval
[4, 3] and the action of 4 in the interval [%, 1]. This is represented on the top
line of Fig. 33.1. The bottom line represents f * (g * #). A homotopy between
f#*(g=*h) and (f *g) = h can then be constructed by allowing the action of
f, g and A to be divided at time ¢ as shown. The details are left to the reader.

Figure 33.1
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f =
Figure 33.2

Now let e denote the constant map e(f) = x, for all e L. We claim [e] serves
as an identity in IT,(X, x,). It suffices to show fxe ~, fand ex f ~, f for
all f e Q(Y, yo). To exhibit a homotopy for the first, define for each ¢t € I,

Jf<22fz> OSXS?

H(x. t) =
Gonverted with
apiwciie . ST GONUGHIBE  |vhere s come
{(x,0|x<@- trial version ily checked that
H(x,0) = f(x) ar } =n= ition ex f ~_ f
is done in similar___ NI/ /vnnnw stdutility.com

Finally we must show existence of inverses. For each loop f at x,, define f ©
to be the loop

[T =f1-%, 0<x<l,
1 =01

The reader can check that this is well defined. To show [ f]~ is an inverse for
f it suffices to check that f * f© ~, eand f” % f ~_ e First (Fig. 33.2), let

and let

1 —1¢
f(x) 0£x£—2——
= 1 —1t
Hx, 1) fT(x + 9 -—Z—Sxﬁl—t
X, l-r<x<1

The function H is continuous on each of three closed sets which cover the square
and thus continuous, and clearly H(x,0) = (f * f7)(x) and H(x, 1) = e(x) for
all x e I. The homotopy showing f~ % f ~_ e is similarly constructed. l
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h

———==0
X0 h X Figure 33.3

The dependence of I1,(X, x,), called the fundamental group of X based at
X, On the base point x, is not illusory in the general case (33B), but for an important
special class of spaces it can be ignored.

33.3 Theorem. If X is an arcwise connected space, then for any pair of points
Xo and x, in X, I1(X, x,) and I1,(X, x,) are isomorphic.

Proof. Leth: 1 — X bean arcfrom x, to x,, 4" the arc 4 traversed in the opposite
direction. For each loop f based at x,, define a(f) to be the following loop based
at x, (Fig. 33.3):

a(f) = h" = f*h.

This induces a mapping A[f] = [A™ % f = h] of I (X, x,) to II;(X, x,). We
will show this is the desired isomornhism

First, A is si - ko~ b g eh
Forit Hf . g) Converted with e
STDU Gonverter
trial version

hitn://www stdutility.com

isa homOtOpy betweor T ITana T g T
Second, 4 is a homomorphism; that is A([f] * [g]) = A[f] * A[g]. But

ALS) * A[g] = [ % £+ K] = [h % g x 4]
= Db s fehwhwguh] = [ frgsh]

= A([f * g]) = A(Lf] * [g)).

Finally, it is necessary to show A4 is one—one and onto. This is left as
Exercise 33B.

Thus for an arcwise connected space X, we can speak of the fundamental
group I1,(X) of X. This will cause us no difficulty here, but would be an annoying
oversimplification in a deeper study of the fundamental group. In point of fact,
IT,(X)is a set of groups indexed by the points of X, any two of which are isomorphic
under any one of a set of isomorphisms indexed by the paths between the two
points in question. See Exercise 33B.

Later on, we will compute some simple homotopy groups (with the help of
some by no means simple tools). Now we turn to the question of their homotopy
(and thus topological) invariance.
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33.4 Definition. A pair (X, x,) where X is a topological space and x, € X will be
called a pointed space (space with base point). A mapping f: (X, xo) = (Y, yo)
of pointed spaces is a continuous function from X to Y such that f(x,) = y,.

We have associated with each pointed space (X, x,) an algebraic object
IT,(X, x,). The power of the homotopy method in topology is largely traceable
to the fact that mappings of pointed spaces induce homomorphisms of the as-
sociated algebraic structures.

33.5 Theorem. Every continuous mapping f: (X, xo) — (Y, yo) induces a homo-
morphism f* : T1,(X, xo) = I1,(Y, yo).

Proof. For each loop g at x, in X, let f'(g) be the loop at y, in Y defined by
f(9)®) = flg(?)]. This defines a mapping f’ from Q(X, x,) to (Y, y,) which in
turn induces a mapping f* : I1,(X, x,) — I1,(Y, y,) as follows:

f*(g)) = L' @]

To see that f# is well defined, note that if H is a homotopy between g, and g,
in Q(X, x,), then f o H is a homotopy between f'(g,) and f'(g,) in Q(Y, yo)-
It remains to show that f* is a homomorphism, for which it suffices to establish

the neces 1 i
sary alge Converted with .
< F S
ro STDUG <
trial version
33.6 Th . ili e .
o™ hup://www.stdutility.com |7 )

b) Iff and g are connnuuus IMappinygs JTUmt (X, XgJ) (U Y, yO) such that
[ = glxo), then f* = g*.
¢) If f: (X, xo) = (Y, yo) and g: (Y, yo) = (Z, zo), then (g - f)* = g o f*.
d) If r: (X, x) = (A, xo) is a retraction and i: (A, xo) = (X, xo) is the in-
clusion map, then i* is a monomorphism and r* is an epimorphism.

Proof. a) Obvious.

b) It suffices to show that if 4 is a loop based at x, in X, then f*(h) =~ g*(h).
But if f and g are homotopic relative to x,, then f o & and g - & are homotopic;
that is, f*(h) and g*(/) are homotopic.

c) If h is any loop based at x, in X, then fort € I,

[(g - N*W](®) = g o f(h() = g[f(A())]
= g*[f(h(0)]
= g% o f*(h(0)).

d) ro i is the identity map on (4, x,), so r* o i* = (r o i)* is the identity on
IT1,(A, x,). Both results follow. ll
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33.7 Theorem. If (X, x,) and (Y, y,) are homotopically equivalent, then
I1,(X, x,) and I1,(Y, y,) are isomorphic.

Proof. There are mappings f: (X, xo) = (Y, yo) and g: (Y, yo) = (X, x,) such
that f o g is homotopic to the identity on Y and g - f is homotopic to the identity
on X. Then, from 33.6, g* o f* = (g o f)* is the identity on IT,(Y, y,) and
f*og* = (fog)?* is the identity on IT,(X, x,). Since f* and g* are homo-
morphisms, they are thus isomorphisms and the theorem is proved. l

Note that the above theorem (and 33.6b) require relative homotopies as
stated; this is a severe and unnecessary restriction, although the weak result
obtained is sufficient for our purposes. One stronger result is stated in 33C.
Even stronger results can be obtained; see the book by Massey, p. 82.

Problems

33A. The operation *

1. Show that [fi] = [f,] = [f; * f»] is a well-defined operation in IT,(X, x,). (Refer
to 33.1.)

33B. TI,(X) for a Converted with
1. Construct a nd IT,(X, y,) are not
oo STDU Converter ™
ow let X be . . « = I1I{(X, x). For
each path 4 from ) trial version [ * f* h] of G, with
G,. If hisa path frq =p= h from x to z defined
by hitp://www.stdutility.com
A2), T 0<i<3
(h+ k)0) = -
k2t — 1), if s3<t<1L

(This just extends the definition of * to paths which are not loops.)

2. If fis a loop at x, then o is an inner automorphism of G..

3. If his a path from x to y and k is a path from y to z, then a,,;, = o 0 .

This is intended to develop the categorical point of view of IT;(X) as an object in the
category of groups and conjugacy classes of homomorphisms. A better understanding of

this point of view can be gained by reading the relevant portions of Spanier’s book, Algebraic
Topology.

33C. Homotopy equivalence
Show that if X and Y are arcwise connected and homotopically equivalent, then IT,(X) and

I1,(Y) are isomorphic. (This is difficult.)

33D. The higher homotopy groups

Let X be a topological space. Let dI" denote the boundary of the n-cube I"; that is,
or = {(xy,...,x,)el" | some x; is 0 or 1}. An n-dimensional hyperloop based at y, in Y
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is a continuous function f: I" — Y such that f(0I") = {y,}. Define f * g for hyperloops f
and g by

=
IA

(f*g)xy,. . 5 x,) = f2x4, X5, .., X,) if
=9g(2x; — 1, x5,...,X,) if

A
— N

X1
xX; <

Nl
IA

Let Q,(Y, y,) denote the set of n-dimensional hyperloops based at y, in Y and let T1(Y, y,)
denote the set of equivalence classes in Q,(Y, y,) under the relation of homotopy relative to
oI". The equivalence class of f will be denoted [ f].

1. [f]#[g] = [f = g]is a well-defined operation in IT,(Y, y,), making IT,(Y, y,) a group,
called the nth homotopy group of (Y, y,).

2. If f: (X, xo) = (Y, yo) is continuous, the induced map f,([4]) = [f - 4] is a homo-
morphism of I1,(X, x,) into IL(Y, y,).

3. a) If i: (X, xo) = (Y, y,) is the identity, then i,: IT,(X, xo) — I (Y, y,) is the identity.
b) If f: (X, xo) — (Y, yo) and g: (Y, yo) = (Z, zo), then (g o ), = gy o f-
c) If £ g: (X, xo) = (Y, yo) are homotopic relative to x,, then f, = g,.

4. If (X, xo) and (Y, y,) are homotopically equivalent, then IT,(X, x,) and IT(Y, y,)
are isomorphic.

For more on th¢ i
Converled with
» el STDU Gonverter
Let f bealoop ba ) i assign a number
D(f) to f which, trial version winds positively
(counterclockwise . —_— otopy type. This
will enable us to o I/ /www stdutilitv.com

34.1 Definition. Let the loop f be fixed; we will assume f is nonconstant. A proper
partition of I relative to fis a partition0 = a, < a; < - < a, = 1 of Isuch thatif
x € [a;, a;4 1], then | f(x) — f(a;)] < 1 and such that a; # a; = f(a;) # f(a;), except
that f(a,) = f(a,).

Uniform continuity of f on I insures that proper partitions can be found.
(Although we have neither defined nor studied uniform continuity as yet, we need
here only the fact that a continuous function defined on a closed bounded interval
with range in some metric space is uniformly continuous. Any course in real
analysis should include a proof of this fact for real-valued functions and almost
any proof for real-valued functions carries over without change to functions which
take values in an arbitrary metric space. Alternatively, see Theorem 36.20.)

Given a proper partition P = {a,, ..., a,} of I relative to f, the P-approxima-
tion to f is the function f, which in each subinterval [a;, a;,,] traverses from
f(a;) to f(a;4,) the shorter of the two subarcs of S' determined by f(a;) and
f(a;; ). Each of the subarcs 4, thus traversed is assigned a number n(4;): +1 if
the arc is traversed in the positive (counterclockwise) direction and — 1 if the arc
is traversed in the negative direction.
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Figure 34.1

The degree of f is then defined as follows: pick a point x # f(a;) for any i

and define
D(f) = ). {n(4) | x € A;}.
We will show D(f) is independent of the choice of the proper partition P and the

point x. For this pr=ncca suasuill danatathanumbarcinet dafinad which apparently
depends on P and Converted with
34.2 Theorem. idependent of the
choice of x # STn“ cnn“erter
Proof. Let x, be trial version et z, be the first
point after x, (in t . =n= n f(a;) for some i.
Then for any poi h“n L E s“'““"w'c“m he same subarcs

of S relative to the partition P, so D(f P Xo) = D(f, P, x). Next let z, be the
next point after z, which is an f(a;) for some i and suppose z, < x < z, (Fig. 34.1).
Suppose z; = f(a;). Consider f(a; ;) and f(a;, ). There are two cases:

Case l. f(a;—,) and f(a;,,) are on opposite sides of z,. Then the arcs
[f(a;_y), f(a;)] and [f(a;), f(a;+,)] lie in the same direction and one contains
X, the other x; since all other subarcs of S*relative to the partition P contain
both of x, and x or neither, clearly D(f, P, x) = D(f, P, x,).

Case 2. f(a;_,) and f(a;,,) lie on the same side of z,. Then the arcs
[f(a;_y), f(a;)] and [f(a)), f(a;+,)] lie in opposite directions and both contain
one of the points x, or x; again, all other subarcs of S*relative to the partition
P contain both of x, and x or neither, so again D(f, P, x) = D(f, P, x,).

We can continue in this manner past all of the points f(a;) on S'. Hence
D(f, P, x) is independent of the choice of x # f(a;). B

34.3 Theorem. If P, and P, are proper partitions of I, then D(f, P,) = D(f, P,).

Proof. A moment’s reflection (enforced in 34C) should make it clear that it
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suffices to prove this when P, is obtained by adding one point to the partition
P,. Thus let P, = {ag, ay,...,a,) and P, = {ag,...,a;, b,a;4y,...,a,}. But
there must be a point z # f(a;) in S'not lying on either of the arcs [ f(a;), f(b)] or
[f(b), f(a;+ )] Then clearly D(f, P,, z) = D(f, P,, z) and hence

D(f, P,) = D(f, P,). &

Thus we are justified in suppressing the role of the particular proper partition
P used and simply referring to the degree D(f) of the loop f: I — S!. The proof
of our next result establishes the importance of the notion of degree in questions
of homotopy involving S*.

34.4 Theorem. I1,(S)is infinite cyclic.

Proof. Suppose first that f, and f, are homotopic loops based at (1, 0) in S!,
say H: f, ~ f,. Weclaim D(f,) = D(f,). Foreacht 0 < ¢ < 1, let f, be the loop
defined by f(x) = H(x, ) for x e L. Note that for + = 0 and 1, respectively, this
gives f, and f; as it should. By compactness of I, it is sufficient to show that for
each t eI, there is some ¢ > 0 such that s — | < ¢ implies D(f;,) = D(f,). Let

P = {a,,...,a,} be any proper partition of I for the loop f,. By uniform con-
tinuity of H, there - A proper partition
for f. Now let | Converted with by i Pick 8 > 0
mattenveh v ST GonNuerter

a) |z — )l < wial -

b) if |z, — f] nalversion nortest arc from
zytoz; has the — hittp://www.stdutilitycom ) o Jdai.), for

i=01...,n ——

Now use uniform continuity of H to pick € < ¢, such that|s — #| < ¢ implies
|fa;) — fia) < é,fori =0,...,n Then clearly D(f,, P, y) = D(f,, P, y) when-
ever |s — 1] < ¢ and hence D(f,) = D(f,). Thus, by compactness of I,
D(f,) = D(fy).

Now, regarding S! as the unit circle in the complex plane, define the loop
p: I > S' by p(t) = ¢*™. Then, for any integer k, p* = px p* - - - * p (k times)
is the loop p(r) = €'™". Note that the degree of p* is k, so that p* is not homotopic
to p' for k # I Thus the map k — [p*] embeds the positive integers as a group
in IT,(SY). To show this embedding is an isomorphism, we need only show every
loop f in S! is homotopic to p* for some integer k.

To this end, let f: I — S! be a loop based at (1, 0) in S!. Define open sets
A;and 4, in S! by:

= {(x, y)eSy > —15}
= {(x, y) eS|y < 1o}

Then {f~!(4,), f ~'(4,)} is an open cover of I. Let ¢ be a Lebesgue number for
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this cover and let {a,...,a,} be any partition of I into subintervals of length
<é. Then each f[a;_;,a;],i=1,...,n, is contained in either 4; or 4,. By
dropping partition points where necessary, we may assume f[a;_,, ;] and
flai, a;+ 1] are never contained in the same set A;,j = 1 or 2. Now each f(a;) is
contained in a short arc of A; n 4, containing either (1,0) or (—1,0). Let o;
be the map f restricted to [a;_,, a;], and for each i, let #; be the arc from f(a;)
to the point (1,0) or (—1,0), whichever is closer. Now consider the arcs
N1y, Ha0ahy , N30y, - - -, Oliy— 1. I By is the positive arc from (1, 0) to (—1, 0)
and S, is the positive arc from (— 1, 0) to (1, 0), then each of the arcs

- - -
1015 M200H 1 5 H3%3M 25 - oo Bplly—1
is homotopic to a constant map or one of §,, B,, 1, or f;. Hence, we have

f=o0, g oy = (1) 1% 1Mm—z - (120517 N1 %)

which, after cancellation, must reduce to

f =xo B2B1B2B1B2B1 - - B2By

or
and hence, for 5o Gonverted with
s ren, STIDU COMVGITBE v v
P trial version | |
f”%l(Am S htm://wwwstdutilitvgom [ :Vpl;gg’;?[?g;;

is infinite cyclic. &
34.6 Theorem. (Brouwer Fixed-point Theorem.) Every continuous map

f:D->D
has a fixed point.

Proof. If f(x) # x for each x € D, define r(x) for each x € D to be the point where
the line from f(x) through x intersects S*. Then r: D — S! would be a retraction,
contradicting 34.5. B

The higher-dimensional analogs to 34.6 are also true; we are not in a position
to prove them.

Problems

34A. Application of the Brouwer fixed-point theorem
1. Let f; and f, be continuous real-valued functions defined on

D= {(x,y)eR?|x* +y* < 1}.
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Use the Brouwer fixed-point theorem to show the system

filx, ) =0
filx, ) =0
of equations has a solution under certain conditions on f; and f.

2. State and prove a similar theorem for functions of » variables, using a higher-dimensio-
nal version of the Brouwer fixed-point theorem.

34B. Examples of homotopy groups
1. Let X be the “punctured plane” R? — (0, 0). Show that IT,(X) is infinite cyclic.

2. Show that, if X and Y are arcwise connected spaces, then IT;(X x Y) is isomorphic
to IT,(X) x IT,(Y) (direct product).

3. Let T be the torus (9.12c). Then I1,(T) = Z x Z, where Z is the group of integers.
4. Let M be the Moebius Band (9.12d). Then IT1,(M) = Z.

34C. Proper partitions

Show that if D(f, P,) = D(f, P,) whenever P, is a proper partition obtained by adding one

n

P

point to the proper
and P,.

34D. Retracts an
A space X has the fi

1. Every retract

Converted with

trial version

STDU Gonverter

roper partitions P,

X has a fixed point.
d-point property.

of n disjoint copies

2 LetX,bethe  hitn://www.stdutility.com

of the unit interval Fomowtrmar 7, IIaS UIC MATU-PUNIT PTUPCITY.

34E. The fundamental theorem of algebra
Let P(z) = apz" + - - + a,_;z + a, be a complex polynomial, with a, # 0. Let Q(z) = z".
For each real number r > 0, define S, = {z||z| = r} in R%

1. For sufficiently large r, P | S, and Q | S, are homotopic maps of S, into R? — {0}.

2. The polynomial P(z) has a root. [For any r > 0, Q| S, is not a nullhomotopic map of
S, into R* — {0}; hence, for sufficiently large r, neither is P| S,.]



Chapter 9

Uniform Spaces

35 Diagonal uniformities

Uniform spaces are the carriers for the notions of uniform convergence, uniform
continuity and the like. These notions are easily defined in metric spaces (e.g.,
f: M — N is uniformly continuous iff for each ¢ > 0, a 6 > 0 exists such that
whenever p(x, y) < 8, then o(f(x), f(y)) < ¢), the important quality of metric
spaces for this purpose being that distance is a notion which can be applied
uniformly to pairs of points without regard to their location. This quality is not
possessed by topological spaces, where the nhoods of a point (and hence the
notion of “topological distance”) depend on the location of the point, so uniform
spaces will apparently need somewhat more structure than a topology provides,

although we may _

To introduce Converted with miform structure
(a third will be de STn“ cnn“erter bn.
35.1 Deﬁ:ﬁ\t}i;}l:. If trial version (x, x) | x efX } in
X x X. ere ( e we are referring
to by writing A(x____ It/ /www.stdutility.com

IfUand Varesetsin X x X,then U e Vistheset {(x, y) | forsomez, (x,z) e V
and (z, y) e U}. Notice that U and V are just relations on X and o is a natural
extension of the notion of composition of functions.

Our first definition of a uniform structure on X has its roots in the observa-
tion that x and y are close together, in a metric space, iff the point (x, y) is close
to the diagonal in X x X.

35.2 Definition. A diagonal uniformity on a set X is a collection 2(X), or just 2,
of subsets of X x X, called surroundings, which satisfy:

a) DeY = A c D,

b) D,,D, e % =D, nD,e 2,

¢c) DeP = E-E < Dforsome E € 9,

d) De2 = E ! < DforsomeEe 92,

e)De?,D c E=Ec9.

238
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When X has such a structure, we call X a uniform space. The uniformity 2 is
called separating (and X is said to be separated)iff (\{D|De 2} = A.

A base for the uniformity & (also called a base for the surroundings on X) is
any subcollection & of 2 from which £ can be recovered by applying condition
(e). Thus & is a base for 2 iff & < 2 and each D € 9 contains some E € &. Ap-
parently. a collection & of subscts of X x X is a base for some uniformity iff
its sets satisfy (a), (c), (d) and the following modified form of (b):

b) D,,D, €& = D; < Dy n D, for some D; € é.

That 1s, all supersets of elements of & will then satisfy (a)—(e).
A subbase for 9 is a subcollection & of 2 such that all tinite intersections of
elements of & form a base for 2.

35.3 Examples. a) The usual uniformity on R is the uniformity having for a base
the collection of sets D,, ¢ > 0, where

D, = {(x, y)|Ix — yl < ¢}

b) More generally, any metric p on a set M generates a metric uniformity
‘9;) on M’ namely the nnifarmitv havinag far a hace the cate NP ¢ > 0’ where

Converted with

The uniformities STn“ con“erter wetrics are called

metrizable. They
This is an ap trial version metric on X. the
uniformities gene metrics may give

rise to the same u h“n:llm-std“llllw-c“m less structure on

a set than a metric. (See also Exercise 35G.)

¢) Given any set X, the collection 2 of all subscts of X x X which contain
Ais a uniformity on X, called the discrete uniformity. It has for a base the collection
consisting of the single set A.

d) Given any set X, the collection 2 consisting of the single set X x X is
a uniformity on X, called the trivial uniformity.

e) For each a € R, let D, be the following subset of R x R:

D,=Au{(x,y|x>ay>al.

Then the sets D,, a € R, form a base for a uniformity on R.

354 Remarks. a) If De 2, then D ~! € 9. for any uniformity 2 on X.
b) The requirements (c) and (d) in the definition of a uniformity arc together
equivalent to the single requirement: De 2 = E°-E~! < D for vomc E € 9.
First supposc (c) and (d) hold. Then given D e 2. find E, € 2 such that
E,cE, =D and E, €2 such that E;' < E,. Let E=E, nE, Then
E o« E ' < D. Thus the condition above holds.
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D[x]{x

Figure 35.1

On the other hand, if the condition above holds, then given D e 2, find
E€ 2 such that EcE~' < D. Then E~! < D easily, and if F = En E},
thenFG@andF r Y Tl L) A (AN 1. 13

c) The symn GConverted with D~1) form a base

for 9.
“macize  STDUCONVEHEr wo-:-:

is a symmetric ele - -
trial version
A diagonal u h a set X than a

topology since, a htllll I WWW.SIIlIIIiIiW.Bﬂm ormity generates

a topology in a natural way, while different uniformities may produce the same
topology.

35.5 Definition. For x € X and D € 2, we define (see Fig. 35.1)
D[x] = {ye X|(x, e D}

This is extended to subsets A of X as follows:

D[4] = U D[x]

xeA

= {ye X |(x, y)e D for some x € A}.

35.6 Theorem. a) For each x € X, the collection U, = {D[x]| D € 9} forms
a nhood base at x, making X a topological space. The same topology is produced
if any base & is used in place of 9.

b) The topology is Hausdorff iff 9D is separating.
Proof. a) First note that x € D[x] for each x. Second,
Dy[x] n Dy[x] = (D; n Dy)[x],
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so the intersection of nhoods is a nhood. Finally, if D[x] € %,, find E € & such
that E o E = D. Then for any y € E[x], E[y] = D[x], so this property of nhoods
is satisfied.

The proof that only a base & for 2 need be used is left to the reader. See
Exercise 35D.2.

b) Suppose 2 is separating. If x # y in X, then for some D € 9, (x, y) ¢ D.
Find a symmetric E € 9 such that E o E = D. Then if z € E[x] n E[ y], we have
(x,z)e E and (y, z) € E so that (z, y)e E, and hence (x, y)e E° E < D. Since
this is prohibited, apparently E[x] and E[ y] are disjoint nhoods of x and y.

Conversely, if the topology is Hausdorff, then if (x, y) ¢ A, x # y, so that
E[x] n D[y] = o for some D, E € 2, and then D n E is an element of 2 not
containing (x, y). B

35.7 Definition. The topology thus associated with a diagonal uniformity 2
will be called the uniform topology t4 generated by 9. Whenever the topology on
a topological space X can be obtained in this way from a uniformity, X is called
a uniformizable topological space.

35‘8 Examples‘ a} The tannlnav aenerated hu the nenal nnifar lty on R is the

usual topology. Converted with
b) More gen t M generates for
its uniform topol STn“ con“erter rom the fact that,
forxe M, R .
De[ trial version )
It is reasonable t h“nl I www.sllllllilit!l.l:llm uniformity has a

metrizable topology, is the uniformity itself metrizable? Astonishingly, the
answer is no! You will see, in Example 38.5, a nonmetrizable uniformity whose
topology is the discrete topology.

¢) The discrete uniformity on a set X generates the discrete topology.
d) The trivial uniformity on a set X generates the trivial topology.
e) Consider the uniformity for R a base for which consists of the sets

D,=Au{(x,y]|x>ay>a}

for ae R. For any x e R, D,[x] = {x} whenever a > x and consequently this
uniformity generates the discrete topology on R.

This example, together with c), serves to establish that different uniformities
may give rise to the same topology. Thus the correspondence between uniformities
on X and topologies on X is many-to-one, so that a uniformity on X represents
truly more structure on X than a topology. These comments are amplified by the
results in Exercise 41F.

35.9 Theorem. The open, symmetric elements of 2 form a base for 9.
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Proof. An open symmetric set can be obtained by intersecting an open set with
its inverse, so it suffices to show that the open sets form a base, for which purpose
it is enough to verify that De 2 = D° € 9. Pick a symmetric E such that
EocEo°E c D. We have finished if we show E < D°. But if (x, y) € E, then
E[x] x E[y] < D, for if (w,z)e E[x] x E[y], then (x,w)€E, (y,z)€ E and
hence, since (x, y) € E, (w,z)€ E° E° E = D. Thus each (x, y) € E has a nhood
contained in D, so E < D°. B

Now any uniform space we consider is automatically a topological space so
we have there a notion of continuous function. We introduced uniform structures
to provide a notion of uniform continuity, and we define this now.

35.10 Definition. Let X and Y be sets provided with diagonal uniformities 2
and &. A function f: X — Y is uniformly continuous iff for each E € &, there is
some D € 2 such that (x, y) € D = (f(x), f(y)) € E. If f is one—one, onto and both
f and f~! are uniformly continuous, we call f a uniform isomorphism (uniform
equivalence) and say X and Y are uniformly isomorphic (uniformly equivalent).

For the purpose of checking uniform continuity, it is clearly sufficient to
restrict attention to bases for the uniformities £ and &.

35.11 Theorem Gonverted with ous.
Proof. Suppose | STn“ c £and f: X - Y
is uniformly con 0n“erter x) has the form
E[f(x)] for some trial version D€ 2 such that
(x, y) € D = (f(x) . f is continuous
atx. ® http://www stdutility.com

35.12 Examples. a) Let (M, p) and (N, o) be metric spaces. Then f: M — N is
uniformly continuous with respect to the metric uniformities &, and 2, iff for
each ¢ > 0, there is some § > 0 such that (x, y) € D§ = (f(x), f()) e D{. It is
easy to see that this reduces to the usual ¢-6 requirement for uniform continuity
of functions between metric spaces.

b) Any function defined on a space with the discrete uniformity to another
uniform space is uniformly continuous.

c) Examples of continuous functions which are not uniformly continuous
should be familiar; for instance, the function f(x) = x2 from R to R (with the
usual uniformity).

Problems

35A. Examples of uniformities

Verify that each of the following is a uniformity on the set X indicated :

1. The metric uniformity on a metric space (M, p). See 35.3(b).
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2. The discrete uniformity on any set X. See 35.3(c).
3. The trivial uniformity on any set X. See 35.3(d).
4. The uniformity defined on R in 35.3(e), having as a base the sets

D,=Au{xy|x>ay>a} aeR.

35B. More examples of uniformities

Decide which of the following collections are uniformities on the sets indicated and, for each
that is, give the most efficient base you can and describe the uniform topology, in familiar
terms if possible.

1. OnR, let 2 be all subsets of R x R which contain A U V, where V = {(x, —x) | xe R}.

2. Onl, let 2 be all subsets of I x Ioftheform E, = {(x, y) | |x — y| isrational and < €},
e> 0.

3. On [—1,1], let 2 be all subsets of [ —1, 1] x [—1, 1] which contain A U [, where
(1 is the boundary of [ -1, 1] x [—1, 1].

35C. Separation in uniform spaces

Let 2 be a separating uniformity on the set X.

1. If a and b ar GConverted with D[b] = o.
womencoor,  STDU CONUErter 070"
35D. Bases and s trial version
eaChl;c Ief )é;.is a base h“ll: I IWWW.SI[IIIIiIiW.BIIm hhood base at x, for

2. If & is a base (subbase) for the uniformity 2 consisting of open sets, then
{E[x]|E€ &, x€e X}

is a base (subbase) for the topology of X.

3. Let H be a subset of X x X containing A. Then the collection of all subsets of X x X
which contain H is a uniformity for X iff H is symmetric and H - H = H.

35E. Union and intersection of uniformities

1. The intersection of two uniformities on X need not be a uniformity on X. [Let X = I
and for each x eI, let 2, = all subsets of I x I containing A U {(x, 1)} U {(1, x)}. Then
9, is a uniformity on I, but for x # y, 2, N 2, is not a uniformity on I. (See 35D.3.)]

2. If two uniformities do intersect in a uniformity, is the uniform topology of the inter-
section the intersected uniform topologies?

3. The union of two uniformities on X need not be a uniformity on X. [On R, consider
the uniformity 2, of Example 35.3(e), construct a similar uniformity 2, on R such that for
some D, €2,and D, € 2,, D, n D, ¢ D, v D,.]

Compare with 36G.
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35F. Uniformities on topological groups

Let G be a topological group, with % a base of symmetric nhoods at the identity e. The
right uniformity 9y for G has for a base all sets of the form

R, = {(x,y)| x e Uy}

for U € %, while the left uniformity 9, for G has for a base all sets of the form
L, = {(x,y) | xe yU}

forUe#. If 2, = Dx, we say G has equivalent uniform structures.

1. 2, and 9, are uniformities on G, whose topologies 7, and tg are each the group
topology on G.

2. If G is Abelian or compact, then G has equivalent uniform structures.
Since, in Section 38, we will see that every topological space which is uniformizable is
completely regular, part 1 above provides the corollary: every topological group is a Tychonoff

space. This in turn provides the result: every linear topological space (22C) is a Tychonoff
space. [See 22C.5.]

35G. Uniformities from different metrics

Show that if p, and Converted with Mwith0 <m<M
such that mp; < p, on X.
This extends a q S'I'n“ cnn“erter
36 Uniform cov trial version
Any uniformity o, IU://WWW.STHUBIIV.COM | x by giving the

list of covers of X each of which consists of sets “of the same size ”. The result is
an alternative approach to the theory of uniform spaces, and one which is quite
often more convenient than the approach of the previous section.

36.1 Definition. A cover of a uniform space (X, 2) is a uniform cover iff it is refined
by a cover of the form %, = {D[x] | x € X} for some D € 2.

36.2 Theorem. The collection u of all uniform covers of a uniform space (X, D)
has the properties:

a) if Uy, U, € p then for some Uz e p, Uz *< Uy and U5 *< U,,
b) if U < U' and U € u, then U’ € p.
Conversely, given any family u of covers of a set X satisfying a) and b), the

collection of all sets Dy = | J{U x U|Ue%}, for U €y, is a base for a
diagonal uniformity on X, whose uniform covers are precisely the elements of p.

Proof. a) Itissufficient to show that any two covers %, and %, have a common
barycentric refinement. (Recall that a barycentric refinement of a barycentric



36] Uniform covers 245

refinement of % star-refines %.) Pick a symmetric D € 2 such that
D°D c D, D,

Then for each x € X, St (x, %p) < D,[x] N D,[x] and it follows that %, is a
common barycentric refinement of %, and %y,

b) is obvious from the definition of uniform cover.
The converse is left as a straightforward exercise (36C). B

Thus the uniform covers describe a uniformity as well as its surroundings do.
In fact, the relationship between the two should be approached in much the same
spirit one approaches the open sets and closed sets in a topological space: either
describes the structure equally well. Actually, there is an abundance in the litera-
ture of references to “uniform spaces” whose primary structure is a collection of
covers satisfying (a) and (b) above (such a collection is often called a covering
uniformity), so it is best to keep an open mind about the sort of structure involved
when someone starts yelling “uniform space.” We will find it convenient, on
different occasions, to use both coverings and surroundings to describe uniformi-
ties and we emphasize this dual approach with the following convention: here-

after, a uniformity Converted with n X or a covering
uniformity on X.

Although, as STn“ c 'I 1d be used in the
same way as one 0““3' er space, i.e., inter-
changeably, we s trial version rth is not nearly
as neat. The unif e to a base for the
surroundings and h“nl I www.std““"w.cﬂm tion, only a base
(as defined below) for the uniform covers. This causes no real problems, since all
the important concepts defined for uniform spaces can be defined in terms of
bases for the uniformities in question.

36.3 Definition. A base for a covering uniformity x4 on X is any subcollection p’
of u such that

p= {U| U covers X and %' < U for some U’ e y'}.

Once we are over our initial confusion, y’ will simply be called a base for the
uniformity on X (context and notation will make it clear whether the base should
consist of covers or surroundings). Evidently, u’ is a base for some uniformity
on X iff it satisfies (a) of 36.2.

A subbase for the covering uniformity u is any subcollection y' of u such that
all finite intersections of elements of u' form a base for u, where the intersection
of two covers % and ¥" of X isthecover # A V" ={UnV|Ue%.Vev}

In the language of bases, we can restate (and provide a trivial strengthening
of) Theorem 36.2. The proof is left as Exercise 36C. The reader is invited to think
now about the corresponding result for subbases.
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36.4 Theorem. a) If D' isabase for a diagonal uniformity 9, then {% ] De2'}
is a base for a covering uniformity, whose surroundings are precisely the elements
of 9.

b) If W' is a base for a covering uniformity p, then {Dg, | U € i’} is a base for
a diagonal uniformity whose uniform covers are precisely the elements of .

The importance of a self-contained theory of covering uniformities justifies
restating the important properties introduced in Section 35 in terms of uniform
covers. Each of the Theorems 36.5, 36.6 and 36.8 would be the definition of the
property involved if you got into a discussion with someone who knew only
covering uniformities.

The first theorem shows that uniform covers may correctly be interpreted as
covers by sets “of the same size.”

36.5 Theorem. A uniformity is metrizable, generated by the metric p, iff the
covers U? = {U?(x)| x € X} of X by e-spheres, for ¢ > 0, form a base.

Proof. The sets D? = {(x, )| p(x, y) < €} form a base for the surroundings on
X so the covers consisting of the sets

Converted with
form a base for th STn“ cnn“erter
36.6 Theorem. - - LW on X, the sets
St (x, %), for trial version opology.
Proof. Let @ be, NI/ /W stdutilitveom |1y o5 b, for

% € W, form a base for 9, so the sets Dg[x], % € i, form a nhood base at x in
the uniform topology, by 35.6. But

Do[x] = {y|(x, )€ Dy} = {y|(x, y)€ U x U for some Ue U} = St (x, %),
so the theorem is established. H

The last theorem enables us to state the condition that a uniformity on X
be separated in terms of its uniform covers, as follows: a covering uniformity
is separated iff whenever x # y in X, then there is a uniform cover % of X such
that St (x, %) n St (y, %) = @. This can be rephrased, in light of the existence
of a star-refinement of such a cover %, as follows: a covering uniformity is separ-
ated iff whenever x # y in X, then there is some uniform cover %’ of X such that
x¢St(y,«).

36.7 Theorem. Let u be a covering uniformity on X. Then the open uniform
covers of X form a base for p.

Proof. Let 2 be the diagonal uniformity on X corresponding to u. The open
elements of 2 form a base for 2, so the covers %, for D open in 2, form a base
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for p. But %, = {D[x] | x € X} and (easily) if D is open in X x X, then D[x]
isopenin X foreachxe X. B

36.8 Theorem. Let X and Y be uniform spaces. A function f: X — Y is
uniformly continuous iff for each uniform cover %, of Y, there is a uniform
cover Uy of X such that f(U,) < /Ill, where f(U,) = {f(U)| U € U,}. (Hence,
iff for each uniform cover % of Y, f~ ) is a uniform cover of X).

Proof. Suppose f: X — Y is uniformly continuous and %, is a uniform cover of
Y. Let E be a surrounding for Y such that %z < %, and let D be a surrounding
for X such that whenever (x, y) € D, then (f(x), f(y)) € E. Then, easily,

JWUp) < Ug < U,

Conversely, suppose the condition of the theorem holds. Given any sur-
rounding E for Y, find a uniform cover %, of Y such that D, < E and a uniform
cover U, of X such that f(%,) < %,. Then easily, (x, y)€ Dy, implies
(f(x), f() € Dq, implies (f(x), f()) € E, so f is uniformly continuous. H

It is convenient at this point to include a theorem relating the most important
property of unifop=-eauas e foxictanca af ctor rafinamantel ta thg most important

property of surro Converted with It says they are
essentially the san

36.9 Theorem. STn“ con“erler ic refinement of

Y. trial version
b) If Uisas
htip://www stdutility.com
Proof. a) Supposc— — ot~ oo Tor oy oo any element of

Up containing x. It sufﬁces to show D[y] < E[x]. But if ze D[y], then
(y, z) € D and, since (y, x) € D we have (x, y)e D™, so that (x,z)e DD ! c E
and hence z € E[x]. Thus St (x, %,) = E[x].

b) Suppose % star-refines %'. Let (x, y) € Dy © D,,. Then, say, (x, z) € Dy, and
(2, y) € Dy so that there are U, U, € % with (x,z)e U; x U, and(z,y)e U, x U,.
But then St (U, %) contains both x and y and is contained in some U’ € %', and
hence (x, y)e U' x U’ <« Dgy.. Thus Dy o Dy <= Dy,.. B

We end this scction with an introduction to so-called fine uniformities and
fine spaces. We need some preliminary material on combining uniformities.
First recall that a normal sequence of covers is a sequence %, %,, . . . such that
Upey ¥< U, forn = 1,2,...,and a normal cover is a cover which is %, in some
normal sequence.

36.10 Definition. A family v of covers of a set X is a normal family iff every cover in
v has a star refinement in v. Then every normal sequence is a normal family, but
a sequence of covers can be a normal family without being a normal sequence
(e.g., by being two normal sequences intermixed).
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The proof of the following theorem is left as an easy exercise for the reader (36F).

36.11 Theorem. Every normal family of covers of X is a subbase for some
uniformity on X; the converse fails.

36.12 Theorem. If X is any uniformizable topological space, there is a finest
uniformity on X compatible with the topology of X.

Proof. Let {u,|a e A} be the collection of all covering uniformities compatible
with the topology of X. Then u, = | {1, |« € A} is obviously a normal family
and hence is a subbase for a uniformity on X, finer than all the u,. We have
finished if u is compatible with the topology of X.

First, finer uniformities clearly generate finer topologies, so it is sufficient to
show the uniform topology generated by u is contained in the original topology.
But a subbase for u generates a subbase for the uniform topology of y, so this is
clear. B

36.13 Definition. If X is a uniformizable topological space, the uniformity con-
structed in 36.12 is called the fine uniformity on X, denoted pr, and when X is
provided with this uniformity, it is called a fine space.

We can furth Converted with on a topological
space, using the f

36.14 Defiition. A STn“ cnn“erter normally open iff

U = i - : en covers. Not
“; In some trial version vers. Note
that every norma e converse fails.
36.15 Theorem____ h“n:l I www's“l““"w'c“m Il normally open
covers of X.

Proof. If p is any uniformity on X giving the topology of X and %, %,, . .. is
any normal sequence consisting of open covers of X, then the collection
pU {Uy, U, ...}is anormal family and hence a subbase for a uniformity, which
clearly still gives the same topology on X. It follows that every normal sequence
of open covers of X, and hence every normally open cover of X, must be included
n fp.

But, conversely, the open covers in u form a base for ug, by 36.7, and each
open cover in pg is normally open (also by 36.7). B

36.16 Corollary. In a paracompact space, the fine uniformity is generated by
all open covers.

Proof. Every open cover in a paracompact space has an open star refinement, by
20.15, and thus every open cover is normally open. B

The diagonal analogs to the last theorems are easily described.

36.17 Corollary. a) The fine uniformity Dy is generated by all open nhoods
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D of the diagonal such that D = E,| in some sequence E,, E,, ... of open sets
containing the diagonal with E,  E, < E,_,, foralln > 1.

b) In a paracompact space, the fine uniformity is generated by all nhoods of
the diagonal.

Proof. Exercise 36H. B

36.18 Theorem. Every continuous function on a fine space to some uniform
space is uniformly continuous.

Proof. Let X have the fine uniformity up and let f: X — Y. If % is any uniform
cover of Y, then % is a normal cover and hence f~!(%) is normal and open. Then
f~Y %) € pp. Thus fis uniformly continuous. Hl

36.19 Theorem. A compact T,-space has only one uniformity compatible with
its topology.

Proof. Let X be a compact space, u a uniformity compatible with the topology

on X. We will show every open cover % of X belongs to y, so that u must be the
fine uniformity up

For each x 6 cnn“arled with [ (X, ka) U .fOr
some #,.€p Fi for each x, pick

an element V, of] STn“ con“erter say V,,..., Vs,

cover X. Let ¥ sponding covers
Yoo Ve N trial version

hitp:/ /www stdutility.com
sothat " < %. Thus % e u. 1

36.20 Corollary. Every continuous function on a compact T,-space is uniformly
continuous.

Theorem 36.19 is generalized in Exercise 41F, where the topological spaces
with unique uniform structure are characterized.

Problems

36A. Exercise on refinement

A partition of X is a cover of X whose elements are disjoint.

1. Every partition star-refines itself.

2. For any cover % of X, there is a finest partition P(#) refined by %. Each element U
of % is contained in a unique element P(U) of P(%).

3. « star-refines itself iff for some partition P, % < P < #. [If % star-refines itself,
set P = P(%). show that St (U. %) > P(U) for each U € %.]
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36B. Examples of covering uniformities

1. The collection y' consisting of the single cover {X} is a base for the trivial uniformity
on X. (More accurately, u’ is a base for a covering uniformity whose associated diagonal
uniformity is trivial.)

2. The collection y' consisting of the single cover {{x} | x € X} is a base for the discrete
uniformity on X.

3. Inametric space (M, p), the covers %* by e-spheres form a base for the metric uniformity
on M.

4. If the single cover % is a base for a uniformity on X, the same uniformity is generated
by some partition P of X [see 36A.3].

5. The collection p’ of all finite (countable) covers of a set X is a base for a uniformity on
X, whose uniform topology is the discrete topology. [Use partitions; see 36A.]

36C. Coverings give uniformities

1. Let u’ be a base for a covering uniformity x4 on X. Then the collection of all sets
Dy = {U x U|Ue}, for U ey, is a base for a diagonal uniformity & on X whose
uniform covers are precisely the elements of p.

2. Let 2’ be a hase far a diacanal unifarmitu @ an ¥ Then the collection of all covers

Up = {D[x]|xe X Converted with on X whose sur-

roundings are precig

36D. Bounded me STn“ cnn“erter

We already know th trial version nded metric. Prove
that any metric p 1 uniformity as) the

bounded metric p* hitp:/ /www stdutility.com

36E. The Hyperspace

Let 2 be a diagonal uniformity on X and let #(X) be the collection of all closed subsets of
X. For A, Be #(X)and D € 9, we will say 4 and B are D-close iff A = D[B] and B < D[A].

1. The sets {(4, B) | A is D-close to B}, for D € 9, form a base for a diagonal uniformity
24 on #. The resulting uniform space (#, 9 ,) is called the hyperspace of X.

2. The hyperspace of a metrizable uniform space is metrizable. [Replace the metric on
the space by a uniformly equivalent bounded metric (36D) and consider the resulting
Hausdorff metric (2F) on #.]

We will return to the hyperspace in 39D.

36F. Normal families

Every normal family in X is a subbase for some uniformity on X, but the converse fails.

36G. The lattice of uniformities

We saw in 35E that the union or intersection of uniformities on a fixed set X need not be a
uniformity on X. Now show that given any family .o/ of uniformities on X, there is a coarsest
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containing them all and a finest contained in all of them, so that the uniformities on X form
a complete lattice. [Use normal families. ]

36H. Fine uniformities; the diagonal case

1. The fine (diagonal) uniformity 2 on a uniformizable space is the uniformity having
for a base the open sets D > A such that for some sequence D, D,, . . . of open sets containing
A,D,° D, c D,_,forallnand D; = D.

2. In a paracompact uniformizable space, the fine (diagonal) uniformity is generated by
all nhoods of the diagonal.

37 Uniform products and subspaces; weak uniformities

In this section, we provide the standard constructions for uniform structures on
subspaces and products of uniform spaces, as well as the generalization from
product structures to weak uniformities. There are no surprises.

Subspaces, in particular, can be dealt with quickly and easily.

37.1 Definition. If & is a diagonal uniformity on X and A < X, the relative

uniformity induce _ ets D N (A x A),
for D€ 9. With Converted with of X.
Verification t STn“ c 9 actually is a
diagonal uniform 0““3"3'
To describe t - - ced the following
notion. If % is an Irial version e trace of % on A
is the collection {|  hitm://www.stdutility.com

37.2 Theorem. The traces on A of the uniform covers of X form a base for the
uniform covers of A.

Proof. If % is a uniform cover of X, then for some D € 9, {D[x] | x € X} refines
. But then, obviously, {[D n (4 x A)][x]|x € A} refines the trace of % on A,
so the latter is a uniform cover of A.

Conversely, if %' is a uniform cover of A4, then for some D € &

{[D (A x A][x]]|xeA}
refines %'. Then {D[x] | x € X} is a uniform cover of X whose trace on A refines
2.1
37.3 Theorem. The topology on a uniform subspace A of X is the subspace
topology.
Proof. It is sufficient to note that, for De & and a € 4,

[Dn (A4 x A)][a] =D[a]nA. W
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We turn now to the problem of defining a uniformity on the product of uni-
form spaces, subject to the obvious restriction that the topology of such a uni-
formity should be the product topology.

A definition will make life easier.

37.4 Definition. If X, is a set for each « € A and X = [] X,, the ath biprojection
isthemap P,: X x X —» X, x X, defined by P,(x, y) = (m,(x), 7,()))-

37.5 Theorem. If 9, is a diagonal uniformity on X,, for each a € A, then the

sets
P (D,) 00 P (D,

where D, € D, for i = 1,...,n, form a base for a uniformity 2 on [] X,
whose associated topology is the product topology on [ X,.
Proof. a) Easily, A = P.'(D,,) -+ n P;\(D,,).

b) The intersection of two sets of the form P, '(D,) n -+ N P, (D,,) clearly
has the same form.

¢)Let D=P '(D,)n NP 'D,) For i=1,...,n find E, €9,

such that E, o = e =1Y(E,,). Then if
(x,z)€ E o E, we Converted with £ E. Now (x,, y,)
et STDU Converter
Thus (x, z) € D, ¢ trial version

d) Asin(c),i httn://www stdutilitv.com

Finally, to show the product uniformity gives the product topology, note that
if D =P, 'D,) P 'D,) then for xe [] X,,

D[x] = {y|(x, y) e D}
={y|(xa-y,) €D, fori =1,...,n} = () s, ' (Dy,[ X, ])- W

i=1

37.6 Definition. The uniformity constructed in 37.5 is the product uniformity on
n X, and H X, is the product space formed from the factor spaces X,, a € A.

Before describing the uniform covers on a product space, it will be convenient
to introduce the uniform analog to the weak topology induced by a collection of
maps from a set X to topological spaces X,, « € 4; namely, the weak uniformity
induced by a collection of maps from a set X to uniform spaces X,, a € A.

37.7 Definition. For each a« € A, suppose f,: X — X, where X is a set and X,
is a space with a diagonal uniformity &,. Define F,: X x X —» X, x X, by

Fo(x, y) = (fu(x), £:00)),
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for each « € A. The collection of sets of the form

F;Y(D,) N nF ! (D,)

ay

where D, € 9, fori = 1,...,n,is a base for a uniformity on X, called the weak
uniformity generated by the maps f, on X. Verification that this is a base for a
uniformity can be obtained by a trivial rewriting of the proof of 37.5. In the same
way, you can prove that the topology induced by a weak uniformity is the weak
topology induced by the maps f,.

It is clear that the product uniformity on [] X, is the weak uniformity gener-
ated by the projection maps 7.

37.8 Theorem. The weak uniformity generated by the maps f,: X — X, is
the weakest uniformity making each f, uniformly continuous.

Proof. 1t is clear that each f, is uniformly continuous, for if D € 9,, then F_ *(D)
is an element of the weak uniformity and if (x, y) € F, }(D), then (f,(x), f,(y)) € D.

Suppose 2 is the weak uniformity on X, and £’ is any uniformity such that
each f, is uniformly continuous. We will show F, '(D,) n - - n Fg}(D,,) will

always belong to ' _FEaoreach i — 1 n thore will he cAamae Ea.» € 9’ Such that
if (x, y) € E,,, ther Converted with hence
so that the latter STn“ _cnn_“erter
trial version .
37.9 Theorem. e 1aps f,: X - X,
then f: Z — h“n:l ! www . stdutilitv.com y continuous, for

each o.

Proof. If f is uniformly continuous, then f, o f is, for each a, because composition
preserves uniform continuity.

Suppose f, o f is uniformly continuous, for each a. Let D e 2(X). Then
D contains a set of the form F,'(D,,) - - F, (D, ), where F,, is the map
associated with f,, (see 37.7) and D,, € Z,, (the uniformity on X, ). But for each
i =1,...,n, there is some F; € 2(z) such that

(X, y) € Fi = (fazl Of(x)’ fai o f(y)) € Ea.-

since f,, o f is uniformly continuous. Thus for (x, y) € F;, (f(x), f(y)) € Fy, }(E,,),
and hence, if (x,y)e F = (\i_, F; then (f(x), f(y) € ()7=1 F'(E,) = D. This
establishes uniform continuity of . H

It is worth the effort of rewriting the above theorems to have them set apart
for the special case of product spaces.

37.10 Corollary. a) The product uniformity on [| X, is the weakest making
each projection m, uniformly continuous.
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b) A map f: Z - [] X, is uniformly continuous iff n, o f is uniformly con-
tinuous for each o.

Just as with weak topologies, weak uniformities generated by most collections
of maps are just subspaces of product uniformities. Recall that the evaluation map
e: X > [] X, determined by a collection of maps f,: X — X, is the map
[e(x)], = f(x); thatis, e is defined by the relation n, o ¢ = f,.

37.11 Theorem. The evaluation e is a uniform isomorphism iff the maps f,
separate points in X and X has the weak uniformity given by them.

Proof. Exercise 37B. Use the proof of Theorem 8.12 as a model. B

We now turn to the problem of describing the uniform covers on a product
space, or in a weak uniformity, in terms of uniform covers of the factor spaces.
What we are really doing then, is developing the covering description of product,
or weak uniformities.

37.12 Theorem. The weak uniformity on a set X induced by maps f,: X — X,
has as a subbase for its uniform covers the inverse images

Converted with
for o€ A and
Proof. The weak STn“ cnn“erter " uniformly con-
o ralversion it
But since , *<|  http://www.stdutilitv.com /) form a normal

family and thus, by 36.11, are a subbase for a uniformity on X. l

37.13 Corollary. A base for the uniform covers on a product [ X, of uniform
spaces consists of all covers obtained as follows: Pick ay,...,a, and a
uniform cover U; of X,, for each i; then form the cover of [| X, by all the
sets [[ U,, where U, € %;,i = 1,...,n, and U, = X, otherwise.

Problems

37A. Uniform subspaces
1. Show that, if 2 is a diagonal uniformity on X and A < X, the sets D n (4 x A), for
D € 9, form a diagonal uniformity on 4.

2. If A is dense in the uniform space X and % is any uniform cover of 4 (in the relative
uniformity), then {U | U € %} is a uniform cover of X.

37B. Evaluation and the weak uniformity

Let X, be a uniform space and f,: X — X, for each « € 4, where X is a uniform space. Then
the evaluation map e: X — [] X, is a uniform isomorphism (into, not onto) iff the maps
f, separate points and the uniformity on X is the weak uniformity given by the maps f,.
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37C. Sufficient conditions for uniform continuity

Is there a uniform analog to 7.6? That is, if f is uniformly continuous when restricted to each
of two open (or closed) subsets 4 and B of X, whose union is all of X, then is f uniformly
continuous on X?

37D. Metric products and subspaces

1. A uniform product of metrizable spaces is metrizable iff the number of nontrivial
factors is countable.

2. Every uniform subspace of a metrizable uniform space is metrizable.

37E. Uniform quotients
Let X be a uniform space, Y a set, with f: X — Y a map of X onto Y.

1. There is a largest uniformity on Y which makes f uniformly continuous. It is called
the quotient uniformity induced on Y by f, and Y with this uniformity is called a uniform
quotient of X (by f).

2. If Y is a uniform quotient of X by f, the uniform topology on Y may differ from the
quotient topology induced on Y by f.

3. A map f bet _ r each surrounding
D for X, thereisa s Gonverted with tnever x € X. Show
thatif f: X —» Yis STn“ c 'I nduced by f.
37F. Inverse limil 0““0' er
Construct a theory trial version iform spaces which

mimics 29C.

hitn://www stdutility.com

38 Uniformizability and uniform metrizability

Here we tackle two difficult, but important, questions: which topologies come
from uniformities and which uniformities come from metrics?

One lemma is basic to the development of criteria both for uniformizability
and for uniform metrizability. The major part of the development of this lemma
has already been accomplished in Section 23. There, in 23.4, we showed that the
topology generated by a normal sequence %, >* %, >*--- is also generated
by a pseudometric p, and that in fact if ¥, is the collection of 1/2" spheres measured
by p,then¥", < %,_, and %, < ¥ ,_,. This easily leads to the following lemma,

which says any uniform cover in a uniform space can be “approximated” by a
pseudometric.

38.1 Lemma. If % is a uniform cover on a uniform space X, there is a pseudo-
metric p on X such that ¥, = {U,(x, €)| x € X} is a uniform cover for each
€ >0and ¥, < U. Moreover, p can be taken to be bounded by 1.

Proof. First, using the definition of a covering uniformity, a normal sequence
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can be constructed “beneath” % :
R Y K< Y < U

Letting p be the pseudometric associated with this normal sequence by 23.4, the
conclusions of the lemma are easily satisfied by p.

Once p is found, it does not hurt to replace it with min (p, 1) = p*, since
U,dx,€) = U,x,e)forall xand alle < 1. &

The collection of uniform covers which make up a uniformity on X thus gives
rise to a collection of pseudometrics on X. What is more, this collection of pseudo-
metrics can be used to recover the original uniformity. Thus, certain collections
of pseudometrics on X can lay claim to being uniform structures. In Exercise 38A,
you will develop the properties such a collection of pseudometrics must satisfy.

It is also worth mentioning that, by 36.9, the diagonal analog to the normal
sequence that sits under any uniform cover is the composition sequence

e D,eD, =D

contained in any D € 2(X) where for each n, D,° D, = D,_,. Such a sequence
can be used in mpeb-tha cama waw ta aanarata a ncondamatrie

We are prepg Converted with bility. Our policy
of using whichevg nient is stretched

to the limit here; STn“ cnn“erter uniformities, the

other using diago ) i
38.2 Theorem. rial version pmpletely regular.

Proof. =: Let o IUI//wwwstdutilitveom | . .. opoiogy.

and suppose A is closed in X, x ¢ A. For some % € u, St (x, %) " A = o. Let

d be the pseudometric (bounded by 1) associated with % by 38.1. Then
Ux,1)n A = o.

Let f: X — [0, 1] be the function f(x) = d(4,x). Then f is easily uniformly

continuous on X, and f(A4) = 0, f(x) = 1. Thus X is completely regular.

<: Suppose X is completely regular. Let S be the collection of continuous
real-valued functions on X. For fe Sand e > 0, let

Dre={(x,)eX x X|If(x) = f] < ¢},

and let 2 be the entourage uniformity having as base the collection of sets of the
form
Df1,€1 NN Dfm‘n

where f, ..., f,€ S, ¢ > 0. In fact, @ is apparently the weak uniformity gener-
ated on X by its collection of real-valued continuous functions. We need only
show 2 generates the right topology on X.
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Note we are really proving that the topology associated with a weak uniformity
is the weak topology. Suppose A is closed in the original topology on X, and
x¢ A. Find fe S such that f(x) =0,f(4) =1. Let E= D,,,. Then if
ze E[x], (x,z) e E so that |f(x) — f(z)] < % and hence |f(z)] < . Tt follows
that E[x] " A = @, so A is closed in the uniform topology. Thus the usual
topology is smaller than the uniform topology.

For the reverse, it suffices to show E[x] is open in the original topology on
X for each E belonging to the base for the uniformity and each x e X. But
E=D; .0 -nDg . and then

E[x] = Dy, [x] - Dy [X]

so we need only check D, .[x]is openin X. But

Dy o[x] = [ 1AM — L)) < &} = fil (X)) = € filx) + &)

so the desired result follows from continuity of the f,. B
A word of caution. Do not read into the complete regularity we are using to
characterize uniform spaces any separation axioms which are not there. For
example, every pseudometric space is uniformizable, i.c., completely regular, but

the nonmetric exa
on any space is uf

The particula
only one giving {

Converted with

STDU Gonverter

e trivial topology

bt usually be the
unique uniform
bace with several

structure are disc trial version
compatible unifor

As might be i1 http://www .stdutility.com g stone to success
in any search for a uniform metrization theorem. The idea of the following proof
is simple enough. According to 38.1, each element of the base of a uniformity can
be described by a pseudometric. If there are only countably many pseudometrics
to deal with, the result of combining them is still a pseudometric, and it will
describe completely the uniformity in question.

38.3 Theorem. A uniformity uon X is pseudometrizable iff it has a countable base.

Proof. If p is a pseudometric giving the uniformity u, then {%,, %,,...} is a
countable base for u, where %, = {U(x, 1/2") | x € X}.

Conversely, suppose {#,, %, ...} is a base for u. By taking common star
refinements in order, we may assume - - - *< %, *< 9%,. Let d, be the pseudo-
metric associated with %, by 38.1 and assume d, < 1. Define

Thend isa pseudometricon X, and {Uy(x, 1/2") | xe X} < {U, (x, 1) | x € X} < %,
so for each n the cover %, belongs to the uniformity u, generated by d. Thus

1S g
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We will be done if we show {Ug(x, €) | x € X} € u for each € > 0. Pick N
large enough that ) = v, (1/2") < ¢/2. Now, by 38.1, the uniformity generated
by d,, is contained in u for each n, so that {U, (x, 2"¢/(4N))| x € X} belongs to 4,
for each n. Let % be a common refinement of these N covers. Then given U € %,
for some x,,..., xyin X,

N 2"6
Uc (YU, Xy —
nOI dn( " 4N>
and a routine computation shows that, if x € U,

n

N 2
() Ug, | Xns N < U (x, €).
n=1

It follows that Z < {Uyx, ¢)| xe X}. W

38.4 Corollary. A uniformity is metrizable iff it is separating and has a countable
base.

It is well at this point to correct what is a common misconception. A uni-
formity u is metrizahle if far came meotric the cavere of ¥ hv ceenheres form a base

for e If u is met Converted with etrizability of the
associated topolo

38.5 Example. An STn“ cnn“erter can be found in

the countable ord trial version
hitp:/ /www stdutility.com

(see Fig. 38.1). Tmem {w, Tore 8Z,7 15 @ vase Tor a umrormty which cannot be
metrizable (for any countable base would lead to a collection (D, ) with the property
that sup, {«,} = w,), but whose topology is obviously the discrete topology;
indeed, D[] = {B} if p < a.

Q o _

Rp————————
2

Figure 38.1



38] Problems 259

Problems

38A. Gage structures

A covering uniformity u on a space X is prescribed by giving a collection of uniform covers.
By 38.1, then, we could describe such a uniformity by giving the family {p, | « € 4} of pseudo-
metrics, such that for each « and ¢ > 0, ¥ ¢ = {Upa(x, €) | x € X} is a uniform cover; ie,
by giving the family of all pseudometrics which generate a weaker uniformity than the original
uniformity (38.1 ensures that the original uniformity will be the smallest containing all these
weaker uniformities).

1. The collection ¢ of pseudometrics so obtained has the properties :

a) p1,p2€Y = p; v pye¥, where p; v p, = sup (py, p,),
b) if p is a pseudometric and for each ¢ > 0 there isa 6 > 0 and a p’ € ¢ such that

p'(x,y) < o= p(x,y) <¢thenpe%.
We call ¢ the gage of the uniformity u.

2. Conversely, any collection ¢ of pseudometrics on X satisfying a) and b) of 1 is a gage
for some covering uniformity p.

3. A collection @ satisfying b) only is a base for the gage obtained by taking all possible

pseudometrics p; V- o where n o cd

Hé(li. /;my collecti Converted with llest possible gage,
called the gage gene

'fS.n?.itr.l:e gIages STn“ cnn“erter e clan trezflt then)l(os
uniformities. In par . . pology of u on X is
generated by the nh trial version

6. Let X be a WWW. n f e C*X), define

psx, y) = 1f(x) — 1 htw:// — ,s“““lllw com __ge for a uniformity

compatible with the topology on X.

Gages do a good job of illuminating the nature of the generalization from pseudometric
spaces to uniform spaces; a pseudometric space is a space with a gage generated by a single
element.

38B. Separation axioms in groups
1. Every topological group (13G) is TychonofE [See 35F.]

2. Every locally compact topological group is normal. [Let U be a nhood of e such that
U is compact. Let H = (J&, (Uu U Y = ()&, (Uu U™'). Then H is an open sub-
group of G (hence closed) and is g-compact, therefore Lindelof, therefore normal. Thus
{oH | a € G} is a cover of G by disjoint, open—closed normal subspaces. Proceed.]

38C. Metrization of topological groups
Let G be a topological group (13G).

1. G is metrizable iff G is first countable [35F, 38.4]. (More can be shown, with some
difficulty. If G is first countable, then it has a left invariant metric p; i.e., p(ax, ay) = p(x, y)
foralla, x, ye G.)
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2. If G is locally compact, G is metrizable iff the identity e is a G;. (Again the metric can
be taken as a left invariant.)

38D. Examples on metrization

For each of the following uniformities on the set indicated, decide whether it is metrizable,
pseudometrizable or neither. If it is neither, decide whether or not the associated topology is
metrizable.

1. The uniformity 2 on R which has for a base the sets

D,=Avu{(xy|x>ay>al
foraeR.
2. The discrete uniformity on any set X.

3. The uniformity on R having for a base all countable covers of R.

38E. Uniformizability and the fine uniformity

Give an example of a completely regular space X for which the uniformity 2 generated by
the continuous real-valued functions on X (see 38.2) is not the fine uniformity.

Converted with
39 Complete u
The notion of ¢ STn“ con“erter metric spaces to
uniform spaces. 4 - - ion of the notion
of a Cauchy sequ trial version
39.1 Definition. L NAM://wwmw stdutilitveom |, v i o-coueny

(or just Cauchy) iff for each D = 2, there is some 4, € A such that (x;,, x;,) € D
whenever 4,, A, > 1,. The corresponding covering description is as follows:
(x,) is u-Cauchy, or just Cauchy, iff for each uniform cover %, there is some 1y € A
such that x;, and x,, lie together in some element of % whenever 4,, 1, > 4,.

39.2 Theorem. Every convergent net is Cauchy.

Proof. If x, - x and D € 9, pick symmetric E € & such that E° E c D. Then
(x;) is eventually in E[x], say for 1 > 1o, and now if both 1, and 1, are >A4,,
then (x;,, x) € E and (x,,, x) € Eso (x;,, x;,) e EcE < D. B

39.3 Definition. If every Cauchy net in a uniform space X converges, then X is
a complete uniform space.

The concept of completeness thus defined matches up with the definition
already given for metric spaces, according to the next theorem. As preparation
for reading the proof, note that if X is a metrizable uniform space, generated by
a metric p, then a sequence (x,) in X is Cauchy in the sense of 39.1 iff for each
€ > 0, there is some n, such that p(x,, x,,) < ¢ whenever n;, n, > n,; ie., iff
it is Cauchy as defined earlier for metric spaces.
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39.4 Theorem. A space X with a uniformity 9 generated by the metric p is
complete iff p is a complete metric.

Proof. If 9 is complete, every Cauchy net, hence every Cauchy sequence, con-
verges, so p is complete.

Conversely, suppose p is complete and (x,;) is a Cauchy net in X. Pick
A, € A so that whenever A, 4’ > 4,, we have p(x,, x,.) < 1. Having picked
Alye..>Ay_y choose A, greater than A,,...,4,_; so that whenever 1,4 > 4,
we have p(x;, x;.) < 1/n. Then x,. - x for some x € X. But the terms of (x;)
are residually close to the terms of (x; ) so we must then have x; — x. (See 39A.) W

There is a pitfall to be avoided here. Given a metrizable topology on X,
there will always be some complete uniformity compatible with that topology,
even if X with this topology is not completely metrizable. See Exercise 39B
for a discussion of completely uniformizable topological spaces.

We will develop now some of the elementary properties of complete uniform
spaces. These will make complete spaces seem quite a bit like compact spaces;
many of the elementary properties enjoyed by compact spaces are also found in

complete spaces, imfaot—Tha caction sill and swith an inuactinatian of the property,
total boundedne Converted with en completeness
and compactness tinuous functions
whoserangeisa i §T DU GONUSHEr

39.5 Theorem, trial version complete.

by A complett  huup://www.stdutility.com ;<o

Proof. a) A Cauchy net (x,) in A4 is Cauchy in X and hence converges. Its limit
in X must belong to the closed set A, so A is complete.

b) A net (x;) in A which converges to x € X is Cauchy in 4 and thus has a
limit point y € A. Since X is Hausdorff, limits are unique, so x = y. Thus 4
is closed. B

39.6 Theorem. A nonempty product of uniform spaces is complete iff each
factor space is complete.

Proof. Suppose | | X, is complete. Each X, is homeomorphic to a closed subspace
of the product and is thus complete, by 39.5.

On the other hand, suppose X, is a complete space for each « € 4. Then the
projection into X, of a Cauchy net in the product is Cauchy in X, and thus con-
verges to some point x,. The original net then converges to the point in the
product whose ath coordinate is x,, foreachx € 4. B

The analogy between completeness and compactness does not extend to
mapping properties. In fact, the uniformly continuous image of a complete
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space need not be complete. The situation is actually even worse than this; see
Exercise 39C.

We turn now to a study of the difference between completeness and compact-
ness of a uniform space.

39.7 Definition. A uniformity 2 on X is totally bounded (precompact) iff for each
D € 9, there is a finite cover {U,,..., U,} of X such that U, x U, < D, for
each k. Equivalently, a covering uniformity x4 on X is totally bounded iff u has
a base consisting of finite covers. If X is equipped with a totally bounded uni-
formity, it is called a totally bounded (precompact) uniform space.

39.8 Lemma. X is totally bounded iff each net in X has a Cauchy subnet.

Proof. Let (x,) be a net in the totally bounded space X. Now given any D € 2,
there is a set U, < X such that U, x U, = D and (x,) is frequently in Up,.
Let I = {(4,D)| D € 2 and x, € Up}, directed by (,, D;) < (4, D,) iff 1, < 4,
and Up, o Up, For each (4, D) eI define x; py = x,. Then (x; p)) is a subnet
of (x,) and, given D, € 2, pick A, € A so that (1y, Do) € I. Then

(ALD), (A, DA>(1 DYosiy ~Noll ~TI =TI x Uy < D,

Do
50 that (x; p) is ¢ Converled with

On the other D € 9 exists such
that no finite co STn“ con“erter < D for each k.
Then if EoE - - x] = D for each
x € X that no fini trial version we can construct

by induction a s h“n f IV, s“l““"w com ny i < n. Easily,
(x,) can have no Caucmy suomer. m

39.9 Theorem. A uniform space X is compact iff it is complete and totally
bounded.

Proof. If X is compact and (x,) is a Cauchy net in X, (x,) has a cluster point x,
and since it is Cauchy, (x,) must converge to x. Thus X is complete. Since every
net has a convergent, hence Cauchy, subnet, X is also totally bounded.

To show a complete, totally bounded space is compact, note that every net
has a Cauchy subnet (by total boundedness), which is a convergent subnet (by
completeness). W

We continue this section with an extension theorem. Recall that a continuous
function on a subset 4 of a metric space X to a complete metric space Y can be
extended to a G,-subset between A and its closure by the primitive version of
Lavrentieff’s theorem (24.8). If the function in question is uniformly continuous,
we can extend it to all of 4.

39.10 Theorem. A uniformly continuous function on a subset A of a uniform
space X to a complete uniform space Y can be extended to A.
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Proof. For each x € 4, a Cauchy net (x;) in 4 converges to x. The net (f(x;))
is easily still a Cauchy net, and hence converges in Y, say to y. We define f(x) = y
in this case.

To show f is uniformly continuous, let 2 and & be the uniformities on X and
Y, respectively, and let E' € &. Pick symmetric E € & such that E°cE° E c E'.
Now find an open D € & such that, if x and y are points of 4 and (x, y) € D, then
(f(x), f(»)) e E. We claim if x and y are points of 4 and (x, y)€ D, then
(f(x), f(y)) € E". This will establish uniform continuity of f on 4.

Find nets (x;) and (y,) in 4 converging to x and y respectively. Since D is
open and (x, y) € D, eventually (x;, y,) € D, and thus (f(x,), fly,)) € E eventually.
But, since f(x,;) converges to f(x), eventually f(x;)e E[f(x)] and thus
(f(x,), f(x)) € E. Similarly, (f(y,), f(y)) € E eventually. Now it follows that
(f(x), f(y)) € E° E ° E = E, establishing the theorem. I

We will prove now that every uniform space can be uniformly embedded
in a product of pseudometric spaces. These factor spaces all have pseudometric
completions, by 24.5, so we have an obvious scheme for obtaining a completion
of any uniform space, analogous to the procedure used to obtain the Stone—Cech
compactification of a Tychonoff space. The idea behind the proof of the key

bedding th i
embedding theor Converted with

39.11 Theorem
pseudometric

Proof. Let u =

STDU Gonverter

trial version

in a product of
[ is separated.

vhich we assume
proof below, with

is separating (the
the metric identi httn:/ /viww stdutilityv.com «,, associate a
pseudometric d, USINg Lemma 338.1, and [et X, denote the pscudometric space
(X, d,). Let X7 be the metric identification of X,, the identification map being
h,. and define e: X — [] X} to be evaluation: [e(x)], = A,(x). Since u is sepa-
rating, any two distinct points x and y are at positive distance in some d,.. and hence
e is one—one. The composition of e with any projection map is uniformly con-
tinuous and thus e is uniformly continuous. Finally, to show e ! is uniformly
continuous, let D, be an element of the diagonal uniformity on X associated with
u. If d, is the pseudometric associated with D, (by way of %,), then note that
{(x, ) e X x X |dyx, y) <1} = D,. If welet

T, = {(xs yo) € X3 x XF [ di(x, y) < 1},

then T, belongs to the metric uniformity on X, and thus
T = PAT) = {(x, y) e [T X2 x [T X¥ | d*(x,0 ya) < 1}
belong to the uniformity on [| X} But
e (T) = {(x, y) e X x X|d,x, y) <1} = D,.

This establishes uniform continuity of e 1. I
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39.12 Theorem. Every uniform space X can be uniformly embedded as a dense
subspace of a complete uniform space X which is unique, in the sense that
if Y is any complete space containing X as a dense subspace, then X and Y
are uniformly isomorphic, under an isomorphism leaving X pointwise fixed.
Moreover, X is separated iff X is.

Proof. X can be embedded in a product of pseudometric spaces, X < HX'“
and each X, has a pseudometric completion X,. Then the closure in [] X, of
X is a complete uniform space containing X as a dense subspace. Moreover,
each X, can be made metric if X is separated, and then the resulting completion
of X will be Hausdorff and hence separated.

Uniqueness remains. But if Y is any completion of X, then the identity map
i: X - X has uniformly continuous extensions I: X - Y and J: Y —» X, by
39.10. It follows that I is the required uniform isomorphism of X with Y. B

39.13 Theorem. The completion of a totally bounded uniform space is compact.

Proof. In fact, we can show that whenever a uniform space Y contains a dense
totally bounded subspace X, then Y is totally bounded.

Let % be anyuniform caviar af V ol an anan otar rafinament of 4, and let
W' be a finite uni Converted with ", It is sufficient
to show {W | We

First, it is a STn“ cnn“erter f Y whose trace
on X is #"' and fi ) i Wo € W, is open,
Wyc Wyn X, a trial version Wew . Thus,

W, refines {W | | . pe ver of Y.
Second, {17 | httn://www.stdutilityecom " " .

P

St(V,¥") = U for some Ve ¥ and U € % and it follows that W< U. R

Thus the uniform completion of a totally bounded uniform space is, in fact,
a compactification of X (whose unique uniformity restricts to the uniformity on
X). Conversely, given any compactification BX of X, BX has a unique uniformity
(which is totally bounded), thus giving rise to a totally bounded uniformity on X.
The resulting one—one correspondence between totally bounded uniformities
on X and compactifications of X will be further studied in Section 41 on proximities.

Problems

39A. Cauchy nets and Cauchy sequences
Supply the missing details in the proof of Theorem 39.4. Specifically :

1. If (x,,) is constructed as in 39.4 and x,, — x, then x; — x.

2. If the requirement that 1, be greater than or equal to all of 1,,..., A,_, is dropped,
(x;,) need not be a Cauchy sequence.

3. Every subnet of a Cauchy net is Cauchy.
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39B. Completely uniformizable spaces

A topological space is completely uniformizable iff there is a complete uniformity which gener-
ates its topology. Thus every completely uniformizable space is completely regular.

1. A completely regular space X is completely uniformizable iff the fine uniformity on
X is complete. [If 2, and 2, are uniformities on X generating the same topology, and
2, = 2,, then 9, complete = 2, complete. ]

2. Every paracompact space is completely uniformizable.

As a consequence of 2, every metric space is completely uniformizable. Thus a completely
uniformizable metric space need not be completely metrizable, nor can we prove a Baire
theorem (25.4) for completely uniformizable spaces.

39C. Mapping properties of complete spaces

With mapping properties, the analogy between complete uniform spaces and compact spaces
ends.

1. The uniformly continuous image of a complete uniform space need not be complete.
(The situation is even worse. The uniformly continuous and uniformly open image of a
complete space need not be complete. See the notes.)

2. If X is a com c _ 1d f is a continuous
uniformly open maj onveried with miformly open as a

map of X into the ¢ STn“ con“erter sed in 7.]

39D. Completene trial -
Recall that the hyp alversion by forming the set

# of all closed subsg h“n: I IWWW.SI[lIIIiliW.Bﬂm on J# the collection

of all sets of the form {74, DJ[ A 15 D=CIUST U Dy, Ul U € 2, WICIC A & 1id B are D-close iff
A < D[B]and B = D[A].

1. The hyperspace of a complete metric space is a complete metric space. [Refer to 36E.2.]

2. The hyperspace of an arbitrary complete uniform space need not be complete. [Con-
sider a complete space X of cardinality ¢ whose (covering) uniformity is the uniformity having
as a base all countable covers of X (36B.5).]

39E. Homeomorphism does not imply uniform isomorphism

There is an uncountable family of countable discrete metric spaces, no two of which are
uniformly isomorphic. [From 17R, there are compact subsets C,, a € Q,, of R no two of
which are homeomorphic. For each «, let D, = {x,,, x,,, ...} be a countable dense subset
of C, and let X, = {(x,,, 1/m) | m = n} in R% Then X, is a countable discrete metric space
whose completion is X, U C,. Use 39.12 to conclude that a uniform isomorphism of X,
onto X, would induce a homeomorphism of C, with Cj.]

39F. Filters and completeness

Filters can be used to describe completeness in a uniform space. A filter & in a uniform space
X is Cauchy iff # contains an element of each uniform cover of X. (In the language of diagonal
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uniformities, & is Cauchy iff it contains a set 4 such that A x A < D, for each surrounding
D)

1. Every convergent filter is Cauchy.
2. X is complete iff every Cauchy filter converges.

39G. Examples on completeness and completion

Decide which of the following uniform spaces are complete. For those that are not, try to
describe their uniform completion in simple terms.

1. The uniformity ¥~ on R having as a base the sets

D,=Avu{xy|x>ay>ad}
foraeR.

2. Any set X with the discrete uniformity.

40 Proximity spaces

The basic purpose in this section is to introduce a new “nearness relation”, called
proximity, on a set X and tn ectahlich a ane-—ane carreenaondence between the

prOXimitieS on X con“arled with
40.1 Definition. A and ¢ is a binary
relation on 2(X) STn“ cnn“erter

P-1) 0 § A, trial version

P2y adato  hyp//www.stdutilitv.com

P-3) A 6 Bimplies B0 4,

P4 A5(BuC)iff A6 Bor A6 C,

P-5) A ¢ Bimpliesthereare C, D = XsuchthatC n D = gand 4 § (X — C),
B § (X — D).
The space is called separated if it satisfies the additional axiom:

P-6) a 6 b impliesa = b.

We speak, in practice, of “the proximity space X” and ¢ is referred to as the
proximity on X. The phrase A 6 B is read “A is close to B” (or, where confusion
is possible, “A is é-close to B”). As with uniformities, it causes no real loss in
generality to assume most proximities are separated.

40.2 Examples. a) In any set X define 4 6 B iff both A and B are nonempty.
This defines a proximity on X, called the trivial proximity.

b) In any set X, define 4 § Biff A n B # . This always defines a proximity
on X, called the discrete proximity.

c) In any normal topological space X, define 4§ B iff A n B # @. This
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provides a proximity on X, called the elementary proximity. It is separated iff
X is T,. In a sense to be made precise in the next section, all proximities are
obtainable as elementary proximities.

d) In a space X with a diagonal uniformity £, define A § B iff for some
De 9, D[A] n D[B] = @. Equivalently, from the existence of elements E € &
such that E o E = D, the definition above can be made to read, 4 § B iff for some
De9,D[A] n B = o.

If a covering uniformity u is given on X, the definition becomes A § B iff
for some % € u, St (4, %) n St (B, %) = o; equivalently, from the existence of
elements %' such that %’ * < %, we can write the definition 4 § B iff for some
Ueu St(A, %) N B = o.

A proximity which can be obtained in either of these ways (they are the same,
by the translation process for uniformities) is called uniformizable. As we will
see later in this section, all proximities are uniformizable.

In both cases, the proximity induced by a uniformity is separated iff the
uniformity itself is separated.

e) As a special case of (d) (verify that it is a special case) in a metric space X,
a proximity is obtainad-ifsua dabfina 4 S DG A4 DV — 0 Whagever a proximity
is obtainable in th Converted with trizable proximi-
ties are always are the pseudo-

metrizable proxim ST GONUEHE | obviovs anatogs

to those of metriz

trial version
40.3 Definition. In iff A4 (X — B).
When 4 o B v WU/ /W Stdutility.com |-,

40.4 Theorem. Proximity nhoods have the following properties, for any
A B Cc X:

P-1) o cc A,

P-2) if A c< B, then A — B,

P3Y Acc (BN C)iff A c= Band A c= C,

P-4) if A == B then for some C, A cc C cc B,

and in a separated space
P-5) if a # b, thena cc X — {b].

Conversely, given a relation cc between subsets of a set X satisfying
(P-1) through (P-4)', we can define u proximitydon X by A § Biff A = X — B,
and the proximity nhoods of A relative to O will be precisely those sets B for
which A == B. Moreover, 6 will be separated iff (P-5) holds.

Proof. Left as Exercisc 40B. B
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40.5 Theorem. In any proximity space (X, 0):

a)if A0 Band A = C,B = D, then C 6 D,
b) if AN B # o, then A 6 B,
c)if Acc Bc C,then A == C.

Proof. (a) follows directly from (P-3), while (b) follows from (a) and (P-2), and (c)
follows from (P-3)'. W

40.6 Definition. In a proximity space (X, J), define 4 = {x|x & 4}. The result
is a closure operator on P(X) (Exercise 40C), thus providing a topology on X,
called the topology induced by 6. The topological spaces whose topologies can
be derived in this way from proximities are called proximizable.

In the topology induced by a proximity §, the nhoods U of a point x are
precisely the proximity nhoods of x; that is, those sets U for which x c= U. It
is not in general true, however, that the nhoods of a set 4 are the proximity nhoods
of A (see Exercise 40C).

Whenever we use a topology on a proximity space (X, 9), it is assumed to
be the topology induced by 4.

40.7 Theorem. Converted with
b) if A cc H
Proof. a) If A6 STn“ con“erter r hand, suppose
(e cC —_ .
b)If 4 cc | hatn://wwwistdutilitveom |, 1 cc 5,

so A = B°. The converse fails, even for the proximity generated by the usual
metric on the plane. Let 4 be the set {(x, 0) | x > 1}, B the set of points (x, y)
with x > 0 and |y| < 1/x. Then 4 = B°, but d(4, X — B) = 0, so it is not true
that A = B. R
40.8 Theorem. The topology induced by a proximity induced by a uniformity
is the uniform topology.

Proof. Let 2 be a diagonal uniformity on X. Then U is a uniform nhood of x
iff D[x] = U for some D € 9 iff E[x] n E[X — U] = o for some E € 2 [take
E symmetric so that E° E < D] iff x § (X — U) in the proximity induced by 9
if x cc U iff U is a proximity nhood of x. B

40.9 Definition. If (X, ) and (Y, &) are proximity spaces, a map f: X — Y is
a proximity map (p-map, 6-map) iff whenever 4 § B in X, then f(4) ¢’ f(B) in Y.
Alternatively, fis a p-map iff whenever C c=’ D in Y, then f ~}(C) == f~!(D)
in X.
40.10 Theorem. a) Every p-map is continuous.

b) Every uniformly continuous map is a p-map.
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Proof. a) Let f: X - Y be a p-map. To show f is continuous, it suffices to
show f(A) < f(A) for each 4 = X. But xe 4 iff x6 4, and if x & 4, then
f(x) 6 f(A), which implies that f(x) € f(A). Thus f(4) < f(A).

b) Let (X, 2) and (Y, &) be uniform spaces and suppose f: X — Y is uni-
formly continuous. Now suppose C ==’ B. Find a symmetric E € & such that
E[C] = B (for C$ Y — B, so for some E, E[C] n (Y — B) = ¢). Let D be an
element of & such that if (x, y) € D, then (f(x), f(y)) € E, by uniform continuity
of f. We assert that D[ f “*(C)] = f~*(B). For if xe D[ f~*(C)], then for some
ye f7HC), (x, y)e D. Then (f(x), f(y)) € E and f(y)e C, so f(x)e E[C] = B
and hence x € f ~!(B). Thus D[ f~(C)] = f~*(B), so that f }(C) == f~*(B). ®

40.11 Theorem. If v is totally bounded, a map f: (X, p) — (Y, v) is uniformly
continuous iff it is a p-map (relative to the induced proximities).

Proof. Let f be a p-map. It suffices to show that f ~!(n) € u for each finite uniform
cover # of Y, since these form a base for (Y, v).
We begin by supposing n has two elements, say # = {N, N,}. If

[T ¢ n
then for each % ¢ Converted with pth X — f7H(Ny)
and X — f(N, s."]“ c I
and hence, since trial version br every uniform
cover #"of ¥, & http://wwwstdutilitvcom | St(Y — Ny,

meets Y — N,. TmsTsTmpossioe. 1Tnus J J € &

We can complete the proof by showing every finite uniform cover is refined
by an intersection of two-element uniform covers. Let %' = {U,,..., U,} be
a uniform cover and pick %’ such that %' *< %. Fori = 1,...,nlet

W, = {(Uew|St(U, %)< U}

Since each U’ € %' is included in some W, we have [ J=, W, = Y. Also, W, = U,
foreachi = 1,...,ns0%; = {U;, Y — W,} isacover of Y for each i. Moreover,
each #7; is a uniform cover of Y since (it is easily checked that) %' < #",. But
then

"///z{ﬂT,-iTieWi}:WlA'H/\Wn
i=1

is a uniform cover of Y,and #" < %.

40.12 Definition. A one—one, onto map f such that both f and f~! are p-maps is
a p-isomorphism. Apparently, a one—one onto map f: (X, d) — (Y, d’) is a p-
isomorphism precisely when A 6 B iff f(A4) ¢’ f(B); ie., precisely when C cc D
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iff f(C) == f(D). Such maps are also called proximity isomorphisms or ¢-
isomorphisms.

The next theorem follows easily from Theorem 40.10.

40.13 Theorem. a) Every p-isomorphism is a homeomorphism.

b) Every uniform isomorphism is a p-isomorphism.

We now know that proximity represents a structural layer somewhere
between uniformity and topology. The rest of this section will be devoted to

substantiating the claim that the theory of proximity spaces is, in a sense, a theory
of totally bounded uniform spaces.

40.14 Definition. We say % = {U, | x € A} is a p-cover of the proximity space X
iff there is a cover ¥~ = {V, | a € A} of X such that ¥, c= U, for each a € A. We
call ¥~ a p-refinement of %.

40.15 Theorem. Every proximity is induced by some totally bounded uniformity.

Proof. We assert that, given a proximity 6 on X, the collection u of all finite

p-covers of X is a_base for a uniformitv on X. whose associated proximity is 0.

If so, t.he uniforn Converted with renerating covers
are finite.
otz GTOW GONverter
U= ) i € .},
trial version
and % < U, U .
Next, given 4 U0/ /Www.stdutilitv.com | 4. acuany, by

20B.1,itisenough to find a barycentric refinement #" of %. Write% = {U,,...,U,}
and let ¥ = {V;,...,V,} be a p-refinement of #. For i =1,...,n find H;
and G; such that V, cc H, cc G; c= U; (using 40.4), and set A} = U;,
A} = X — V. Then, for each i, A! and A? are open and, by 40.7, A} U A} = X
Let #” be the cover of X by the z" open sets of the form Ay N - N AL where
each ¢;is 1 or 2. Then #  is a p-cover, since it is p-refined by the cover

{Y¢n- N Yer|eg=1or2},

where Y! = G; and Y? = X — G,, and thus # € u. Moreover, # is a bary-
centric refinement of %. In fact, given x € X, x € ¥ for some i, and we can show
St (x, #") = U,,, for if xe W for some We# then the ioth factor Ajcof W
cannot be X — V| ,so it must be U;,. Thus W < U,,.

Finally, we show that the resulting uniformity on X induces the proximity
0 we started with. For this purpose, it suffices to show 4 § Biff St (4, )" B = o
for some finite p-cover % of X.

If A § B, then A —c= X — B and hence

Acc Cicc C,cc C3cc C4c= X — B
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for some Cy, C,, C5,C4 = X. Set % = {C4, X — Cy}. Then since C; cc C,
and X — C, cc X — Cy, % is a p-cover of X. Moreover, St (4, %) < C,, so
St (A, %) N B = o.

Conversely, suppose St (4, %) N B = o for some finite p-cover %. Then if ¥
is a p-refinement of %, A = St (A,¥") c= St (A, %) = X — B,so A3 B.

40.16 Corollary. The proximizable topological spaces are precisely the com-
pletely regular spaces.

Proof. The proximizable spaces, by Theorem 40.15 together with Example
40.2(d), coincide with the uniformizable spaces. H

40.17 Definition. Given a proximity 6 on X, the totally bounded uniformity con-
structed in 40.15 which generates it will be denoted u; (or, in the case of the
corresponding diagonal uniformity, 9;).

40.18 Theorem. u; is the only totally bounded uniformity giving the proximity
0.

Proof. It suffices to show that the finite p-covers form a base for any totally

bounded unifor 1txr 40 ywhinkh canaratac 8 Nlasy tha Srnita vanif m covers form a
base for u, by to Converted with form cover, ¥~ a
finite star refine € % such that

s, < v STIDU CONURHRY  Fhich refines .

so it suffices to sh ) i
It is enough t trial version 1y star refinement

of 77, then easily § =n= iat Vg (X — Uy),
o ity e/ www stdutility.com pX =Y

40.19 Theorem. If u is any uniformity inducing 0, then p; < .

Proof. Since both u and u; generate the same proximity, the identity
i: (X, p) — (X, us) is a p-map. Then, since y; is totally bounded, i is uniformly
continuous by 40.11. Thus y; < u. B

The study of proximities on X is now revealed as merely the study of equiva-
lence classes of uniformities on X, under the equivalence relation u, ~ u, iff
u; and p, give the same proximity on X. Moreover, each equivalence class of
uniformities contains precisely one totally bounded uniformity, the smallest
uniformity in the class. As we have said, then, in certain ways the study of prox-
imity structures reduces to the study of totally bounded uniform structures. The
next section provides a good illustration.

The real reason for an interest in proximity structure lies in the fact that many
of the interesting properties of uniform spaces turn out not only to be uniform
invariants, but to be proximity invariants; that is, turn out to be possessed by
all uniform spaces which are proximity isomorphic to any uniform space having
them.
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Problems

40A. Examples of proximities

Verify that each of the following is a proximity relation on the set in question.

1. The trivial proximity (40.2a).

2. The discrete proximity (40.2b).

3. The elementary proximity on a normal space (40.2c).

4. The uniform proximity on a uniform space—both kinds. (40.2d.)
5. The metric proximity on a metric space (X, d) (40.2e).

40B. P-nhoods

1. Given a proximity space (X, d), show that the relation —c in (X, ) satisfies axioms
(P-1) through (P-4)' of 40.4, and also (P-5) if X is separated.

2. Conversely, show that any relation —c satisfying (P-1) through (P-4)" will generate

a proximity J, with the definition 4 § B iff A cc X — B, for which cc is just the p-nhood
relation. Also, (X, d) is separated iff (P-5) holds.

40C. The proxim j
. GConverted with I .
1. Verify that / on any proximity

space (X, J), making ST n “ c ﬂn“e"er

2. The resulting
3. The nhoods trial version vhich {x} == U.

4 M = 1 X,b
oreeeneral it/ /www . stdutility.com  [ePoesyon Ao

the converse fails.

40D. Proximizable topologies

Our verification that the proximizable topological spaces were precisely the completely
regular ones was indirect; we showed proximizability equivalent to uniformizability. We
can, however, explicitly construct a proximity on any completely regular space compatible
with the topology on that space.

Given a completely regular space X, define A § B iff for some continuous f: X — I,
f(A) = 0 and f(B) = 1. Then ¢ is a proximity on X compatible with the topology on X.

40E. Subspace proximities
Given a proximity space (X, §) and A = X, a proximity é,, is induced on A4 in a natural way,
namely, B, Ciff Bé C.

1. 6,isa proximity on 4. It is called the relative proximity on A and A with this proximity
is a subspace of (X, 9).

2. The topology induced by &, is the relative topology on A.

3. The proximity induced by the relative uniformity on a subset of a uniform space is
the relative proximity.
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Thus, subspaces of proximity spaces work well. We will see later (40F and 41C) that
products and quotients do not behave as nicely.

40F. Product proximities

For each a e Z, let (X,, 8,) be a proximity space. We can define a product proximity on
X =[] X,asfollows: 4 5 Biff whenever A = A; U - U A4,,B =B, U - U B,thenfor
some A; and B;, [m,(4;)] 6, [n.(B;)] for all a.

1. 6 is a proximity on X, the coarsest proximity for which each projection =, is a p-map.

2. The topology induced by ¢ is the product topology.

3. The proximity induced by the product uniformity need not be the product proximity,
even though both produce the product topology. [Take X = Y = N with the usual (discrete)
uniformity and proximity. ]

This result can be stated: products of p-isomorphic uniform spaces need not be
p-isomorphic.

4. The proximity induced on a product of totally bounded uniform spaces is the product
proximity. [Use coverings.]

Apropos of 4, Dowker has noted that it is enough if all but one of the uniform spaces is

1 1

totally bounded. Tl
Converled with
41 Compactnes STn“ c -I
| onverwer
Here our basic p . B} ence between the
compatible proxi trial version ipactifications of
X. =n=
hitp://www.stiutility.com

41.1 Theorem. A compact Hausdorjf space admits a unique proximity, given
by the elementary proximity A Biff An B # o.

Proof. Such a space is uniformizable with a unique uniformity, so it must be
proximizable with a unique proximity .

Now if A § B, then A § B by 40.7, and hence A N B = o.

Conversely, suppose A N B = @. Foreach x € A, X — Bis open and contains
x, so for some open set C,, x c<= C, == X — B. The cover of 4 by the sets
C,, x€ A, has a finite subcover, say 4 <« C, u---u C, = C. Now
C, cc X — Bforeachi=1,...,ns0C c= X — Band hence A c= X — B.
Thus A § B,soby 40.7,A 4 B. &

Now suppose X is any Tychonoff space. Then X can be densely embedded
in various ways in compact spaces Y, each such Y has a unique proximity, and
the restriction of that proximity to X, call it dy, gives a compatible proximity on
X (subspace proximities are defined in the obvious way and have all the right
properties; see 40E).

Conversely, given any compatible proximity 6 on X, é corresponds to a
unique totally bounded uniformity u; on X and the uniform completion X of



274 Uniform spaces 41

(X, ps) is a complete, totally bounded uniform space and thus a compactification
of X. Moreover, since (X, u;) is a uniform subspace of X with its unique uni-
formity, we must have 6 = 3.

41.2 Definition. The unique compactification f;X of X corresponding to the
proximity 9§ is called the Samuel compactification of X, relative to 4.

Thus the proximities on X (and hence, the totally bounded uniformities on
X) are in one—one correspondence with the compactifications of X. Moreover,
the method of construction substantiates our claim in 40.2(c) that every proximity
is an elementary proximity. We should state it more accurately: every separated
proximity is the restriction of an elementary proximity on a compact Hausdorff
space. With obvious modifications to the discussion so far, “separated” and
“Hausdorff” can be dropped from the last sentence.

The remainder of this section is devoted to the question: when is ;X the
Stone—Cech compactification fX of X?

41.3 Definition. If 4, and J, are proximities on the same set X, we say 0, is finer
than d, (or, 8, is coarser than 8,)iff A 6, Bimplies A 6, B. Hence, in finer proximi-

ties, it is harder fd _
In the langug GConverted with re, iff A cc, B
implies A c—,; B STn“ c
41.4 Theorem. 0n“erter " has a sup 6 and
an inf §. trial version
Proof. ‘Let ==, nhtp://www.Stdutility.com  [lo the proximity

51. TO dcﬁne the TIT UT UICV PTUATIIIIITITS U 25 10T

a) A cc’' Biff A <, Bfor each 1 € A.

b) A =< B iff there is a set C; = X for each binary rational s in [0, 1] such
that C, = 4, C; = Band s < t implies C, =’ C,.
We leave the verification that =< is a p-nhood relation to Exercise 41A, and pro-
ceed to show it gives the finest proximity coarser than all §,.

First, if A == B, then A ==’ B and hence A ==, B for all 4, so cc is
coarser than all §;,. Second, if ==* is coarser than all ——,, then given that
A =c=* B, we can find C,, such that

A cc* Cy), cc* B
and then C,,, and C;,, such that
A cc* Cyyy c=* Cyp c=* C3)y =< B.

By continuing in this way, we obtain for each binary rational a set C, such that
s < t implies C; cc* C,, which implies C;, =’ C,, where C, = 4 and C; = B.
It follows that A cc= B. Thus cc is the inf of the ——; as claimed.
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To obtain sups, we can take the inf of all proximities finer than the given
family. (There is one such finer proximity: the discrete proximity.) An explicit
construction goes as follows. Define:

a) A cc” Biff A cc,; Bforsome 1€ A

b) A == B iff there are sets A,,...,A4, and B,,...,B, such that
A=Jr,A,B=()l-, Bjand A; =" B, for all i and j.

Again, the verification that = is a p-nhood relation on X is left to Exercise 41A.
We will show it is the sup of the proximities ;.

Certainly it is finer than each §,, since if A c—; B for any A, then 4 c=” B
and hence A < B. If cc* represents any proximity finer than every §,, and
if A &< B, then A = (JIL, A; and B = (), B;, where A, c=" B, for each i
and j; that is, 4; ==, B, for some 4;;€ A. Then 4; ==* B, for each i and j,
so A; c=* (Vi-, B;, for each i, and hence (J/L, A; c=* (\'_, B;; that is,
A cc* B. Thus SC represents the coarsest proximity finer than each §,. B

41.5 Theorem. If {5,| A€ A} is a family of proximities on X, all inducing the

same topology T on X, then 6 = sup 8, also induces 1.

Proof. Uisa d-n _ where x ==, U;
for some 1;€ A i Gonverted with rhood of x, iff U
is a 7-nhood of x.
41.6 Definition. G STn“ con“erter opological space
X, the finest pro trial version bpology on X is
called the fine pra o eorem 41.5.

417 Theorem.____ IR/ /W STdUTItV.COM |7 )00 e

X, then 0, is finer than 6, iff there is a continuous f: f5 X — Bs,X such that
f| X is the identity (i.e., iff B5, X is larger than Bs,X in the partial order on the
set of compactifications of X).
Proof. Since 6, is finer than J,, the identity i: (X, d,) — (X, §,) is a p-map.
Thus i: (X, us,) = (X, u;,) is uniformly continuous (see 40.11) and thus extends
to the uniform completions f; X and f;,X, giving the required map f.

41.8 Corollary. If 6 is the fine proximity on a Tychonoff space X, then
B:X = BX.

Problems
41A. Supremum and infimum of proximities

The relations cc and =< defined in 41.4 are p-nhood relations.

41B. Freudenthal compactification

Proximities provide us with a useful way of generating compactifications of a Tychonoff
space X, since each proximity 6 on X corresponds to a unique compactification f;X of X.
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Define A ¢ B for nonempty subsets 4 and B of X iff for some compact set K in X,
X — K = G u H where G and H are disjoint open sets in X with A = G, B < H. (Thus
A § Biff A and B are separated in X by some compact set.)

1. ¢ is a proximity on X.

2. If X is rim-compact, é is compatible with the topology on X. (A space is rim-compact
iff each of its points has a base of nhoods with compact frontiers.)

3. Each point in ;X has a nhood base consisting of sets whose frontiers lie in X.

The compactification ;X of a rim-compact Tychonoff space thus obtained is called the
Freudenthal compactification of X. From 3, it has the property that B;X — X is zero
dimensional.

41C. Quotient proximities

If (X, 0) is a proximity space, Y is a set and f is a map of X onto Y, we can, with some
difficulty, provide a quotient proximity structure on Y; ie., give a proximity structure on Y
which is the finest making f a p-map.

We begin by defining 6, on Y by C 8, D iff f~1(C) 6 f~*(D); equivalently, we could
define c=, by C =, D iff f"}C) c=, f~ (D). Unfortunately, —c, fails to satisfy
Axiom (P-4) for p-nhoods (see 1 helow) 1lsine the idea of Theorem 414 we now force (P-4)

by defining c<, by = ere is some C; c Y
such that C, = C, Converled with be, =, is the right

candidate for a quo STn“ con“erter

1. <<, does nd . .

2. cc,isa pn trial version \gh (P-4).

> ccamakes| gt/ /www.stdutility.com |docs so. Thus, the
prOXImlty which cc 7 TOPTITSTITTS IS TUICITOU TU aS UIC YuuTtent proawmty ol Y induced by f

4. The proximity induced by a quotient uniformity (37E) is the quotient proximity.
(This is difficult.)

5. The topology induced by a quotient proximity need not be the quotient topology.
[See 37E.2 and part 4 above.]

6. If f~[f(H)] = H for each open set H in X, then the quotient proximity is given by
cc and it does induce the quotient topology.

41D. The separation identification

There is an analog for proximity spaces to the Tj-identification for topological spaces. Given
a nonseparated proximity space (X, ), define x ~ yiff x J y.

1. x ~ yiff x = 3. Thus ~ is an equivalence relation.

2. Let Y be the set of equivalence classes in X under the equivalence relation ~, with the
quotient proximity induced by the projection map of X onto Y, which takes each x € X to
its equivalence class [x]. Then Y is a separated proximity space, whose topology is the quotient
topology given by f.

3. Topologically, Y is the Ty-identification of X.
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41E. Coarsest uniformities and proximities
The following are equivalent, for a Tychonoff space X :
a) X has a coarsest compatible uniformity,

b) X has a coarsest compatible proximity,
¢) X is locally compact.

[See 40.11, 41.7.]

41F. Unique uniformity and proximity

The following are equivalent, for a Tychonoff space X :
a) X has a unique compatible uniformity,
b) X has a unique compatible proximity,
X — X| < 1.

Converted with

STDU Gonverter

trial version
http://www .stdutility.com
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Chapter 10

Function Spaces

42 Pointwise convergence; uniform convergence

Our overall aim in this chapter is the study of the compactness and completeness
properties of subcollections & of the set Y* of all maps from a space X to a space
Y. To do this, a usable topology, or uniformity, must be introduced on & (pre-
sumably related to the structures on X and Y), and when this has been done, #
is a function space.

We have one topology for Y* and its subcollections already at hand: the
product topology.

42.1 Definition. We say a subcollectmn F < YX has the topology of pointwise

convergence (or, th
induced by the T)
This topology

[:ommrled with

hbspace topology

Y. The structure

on X plays no pg STn“ con“erler akes the form of

evaluation at a p , . map n,: ¥ — Y
is defined by n,(/ trial version on for the name

“topology of poit  hip://www.stdutility.com v s used in this

context.

42.2 Theorem. If % has the pointwise topology, (f;) converges to f in F
ifff (fi(x)) converges to f(x) for each x € X.

Proof. (f;) converges to f in & iff (n(f;)) converges to m(f), for each x € X ;
i.e., iff f;(x) converges to f(x), for each x. B

We have already made a thorough investigation of the properties of product
spaces. In particular, anyone who knows Tychonoff’s theorem can prove the
following theorem with no trouble.

42.3 Theorem. Let Y be Hausdorff. A function space % < Y*, with the
pointwise topology, is compact iff

a) & is pointwise closed in Y* (i.e., & is closed in the pointwise topology
on Y¥),

b) for each x € X, n(F) = {f(x) | f € F} has compact closure in Y*.

278
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As we have said, one of our goals in this chapter is the discovery of conditions
on &, with various topologies, which will force compactness. The Tychonoff
topology on a product space, it will be recalled, was introduced primarily for its
ability to carry things like compactness from Y up to Y*. It is not undue pes-
simism, then, to predict that no interesting topology on function spaces & can be
found for which the compactness criteria are any simpler than they are above. In
fact, if we deal with Hausdorff spaces Y and agree that a topology t is “interesting”
iff it is no smaller than the topology of pointwise convergence, then more is true:
& with such a topology will be compact iff its topology reduces to the pointwise
topology. For if 7, denotes the pointwise topology on # and t the larger compact
topology, then (#, t,) is Hausdorff (since Y is), and the identity i: (%, 1) = (%, 1,,)
is continuous and therefore a homeomorphism!

Hence, for all topologies on Y* larger than 7, (and a good argument is made
by Example 42.4 below for restricting ourselves to these), finding conditions on %
which will force compactness must reduce to writing down the conditions of 42.3
plus additional conditions to make convergence in the new topology reduce to
pointwise convergence.

42.4 Example. Th — X . “—Jet X = Y =R,
and for each firn Converted with stic function of
F:yp(x) = 11if x nclusion, and the

resulting net (yr) STn“ con“erter 1 on R although,

in a natural sense, B R What is needed,
of course, is more trial version
Suppose now . = mity 2. Then a
ppose noW — http://www.stdutilitv.com Y :
product uniformit, e T —or—r—omod D€ NO surprise.

42.5 Definition. If Y is a uniform space, the product uniformity 2, in Y* is called
the uniformity of pointwise convergence (or, the pointwise uniformity).

The topology associated with the pointwise uniformity on Y* is, of course,
the pointwise topology. Another reason for calling this the uniformity of point-
wise convergence is given by the next theorem.

42.6 Theorem. (f;) is a Cauchy net in Y* with the pointwise uniformity iff
(fa(x)) is Cauchy in Y for each x € X.

Proof. If (f;) is Cauchy, then in particular (f; , f;,) is eventually in each member
of 2, of the form P; (D), where D € 9, and hence (f;,(x), f3,(x)) is eventually
in D, so (f;(x)) is Cauchy. (See 37.4 for the definition of P,.)

Conversely, if (f3,(x), f3,(x)) is eventually in each D € 2, for each x € X, then
(f2, f2,) is eventually in P '(D,)n---n P }(D,) for any D,,...,D,e 9 and
Xy, .-, X, € X, so that (f;) is Cauchy. W

Completeness in the pointwise uniformity on a function space must be dealt
with somewhat differently from compactness in the pointwise topology. The main
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difference between the following theorem and the corresponding theorem on
compactness is the fact that the conditions listed are sufficient, but not necessary.
The obstacle to proving necessity is the lack of a theorem saying that uniformly
continuous images of complete spaces are complete. As stated, the theorem
offers no difficulty in proof.

42.7 Theorem. A function space & < Y* with the pointwise uniformity is
complete if

a) & is pointwise closed in YX,

b) the closure of n (%) is complete in Y, for each x € X.

The reader should already know that the pointwise limit of continuous func-

tions (on the real line, say) need not be continuous, so that C(X, Y) is not always
complete in the uniformity of pointwise convergence.

The uniformity of pointwise convergence and its topology occupy one end
of the spectrum of structures used to make function spaces out of collections of
functions. At the other end sit the uniformity of uniform convergence and its

tOpOlOgy. TO 1nt Asina thaca swia snnta that tha cato Af tha farm

Converled with
for D e 9(Y) and STn“ con“erler mity of pointwise
convergence. Lai ) B} rger sets than the
finite sets in this d trial version of this, where the
finite sets are re =n= riformity of all is
obtained by repla___ IR/ /wiww stdutility.com

42.8 Definition. If Y has a uniformity 9, the family of sets of the form
Ep = {(f, 9) | (f(x), g(x)) € D for each x € X},

for D € 9, form a base for a uniformity 9, on Y* called the uniformity of uniform
convergence. Its topology, t,, is the topology of uniform convergence. If (f;) con-
verges to f in this topology, we say (f;) converges uniformly to f. Cauchy nets
(f2) in the uniformity of uniform convergence are called uniformly Cauchy.

The next theorem provides a relationship between pointwise convergence
and uniform convergence which should not be too surprising.

42.9 Theorem. A net (f,) converges uniformly to f iff (f,) is uniformly Cauchy
and converges pointwise to f.

Proof. Necessity is clear. Conversely, suppose (f;) is uniformly Cauchy and
pointwise convergent to f. For any D e 2 we will show (f;) is eventually in
Ep[f] = {g|(f(x), g(x)) € D, for each xe X}. Pick symmetric closed Te 2
so that T = D. Now for some A, if 44, 4, = 4, then (f;,, f3,) € Er, since (f3)
is uniformly Cauchy.
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But then, for each x € X, f,(x) € T[f,,(x)] for all A;, 1, > 4,. Since f;,(x)
converges to f(x) and T is closed, we must have f(x) € T[ f;,(x)] for all 4; > 4,
and x € X. It follows that (f;,, /)€ Er = Epforall 4; > A,. Thus (f;) converges
uniformly to f. W

Completeness in the uniformity of uniform convergence is particularly
easy to describe. Part b) of the theorem below generalizes a fact the reader should
certainly be aware of : if a sequence of continuous real-valued functions of a real
variable converges uniformly to f, then f is continuous.

42.10 Theorem. If (Y, D) is complete, then so are
a) (Y*, 92,)
b) (C(X, Y), 2,)
Proof. a) Suppose (f;) is uniformly Cauchy. Then (f;(x)) is Cauchy in Y for each

x € X and thus converges to a limit f(x). By 42.9, the function f thus defined is
the uniform limit of (f;). Thus Y* is uniformly complete.

b) It suffices to show C(X, Y) uniformly closed in Y*. Suppose f is not

continuous, say gt——Than far cama N e @ {~UNDLLAT\ cantqins no nhood of
x. If T is symme Converted with r each g € E¢[f],
a routine compul (D[ f(x)]) and
thus contains no STn“ cnn“erter sting of functions
discontinuous at| closed and thus
complete. W trial version

Conditions fi h“n:llwww.SId“Iiliw.cﬂm convergence are

rare. In fact, we “wrmr e ourserves o s —arree o to—tre—comment  that the
compact-open topology reduces to the topology of uniform convergence when
X is compact, so that Ascoli’s theorem (next section) applies to the topology of
uniform convergence in this case (see also 43E).

For noncompact X, the topology of uniform convergence is simply too large
to force compactness with a reasonable set of conditions. Put another way, the
topology of uniform convergence will reduce to the pointwise topology for only
a very limited number of subspaces of Y*.

Problems

42A. The function space I".
1. Which of the following subspaces of I' is compact in the pointwise topology?

a) {feI'| f(0) = 0}
b) {f eI'| fis continuous and f(0) = 0}
o) {feI'| fis differentiable and | f'(x)] < 1 for all x e I}.

2. Exhibit a countable dense subset of I' in the pointwise topology.
3. Is I' separable in the topology of uniform convergence?
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42B. Completeness in function spaces

1. Let Y = R — {0}. Which of the following subspaces of Y® is complete in the pointwise
uniformity?
a) YR
b) {f € Y®| f is continuous}
o) {feY*||fl = 1}.

2. Same question for the uniformity of uniform convergence.
42C. Metrizability in function spaces

Let Y be metrizable, its topology generated by a metric p.

1. The uniformity of uniform convergence on the space C(X, Y) of all continuous functions
in Y¥ is metrizable by the metric d(f, g) = sup,x p(f(x), g(x)).

2. When is the pointwise uniformity on C(X, Y) metrizable?

(See also 43G.)

42D. Separability of C*(X)

1. For compact X C*(X) is senarahle iff X is metrizable

2. For arbitrary Converted with [C*(BX) = C*(X)].
ae. compacra— §THU GONVEItEr
Let X be a metric s . . id to be compact iff
f(X) is compact, fir trial version ed in a subspace of
E of finite dimensiof =n=
hitp://www stdutility.com
1. If f,: X — E 15 compact for n = I, Z, . .. and the J, converge uniformly to f, then f

is compact. [It is enough to show f(X) is totally bounded. ]

2. A mapping f: X — E is compact iff it can be uniformly approximated by finite-
dimensional mappings. [For necessity, use the fact that f(X) is totally bounded. ]

43 The compact—open topology and uniform convergence on compacta

It is convenient to begin our discussion of the compact—open topology by returning
again to the pointwise topology. The sets (a, U) = {f€ Z | f(a) e U}, for ae X
and U open in Y, form a subbase for the latter topology on a function space &.
A case can be made, then, for calling the pointwise topology on & the point—open
topology. We can, at the same time, involve the topology of X in our function
space and decrease the size of the basic open sets (thus increasing the size of the
topology) by replacing the points in the point—open topology by the compact
subsets of X. The resulting topology lies somewhere between the pointwise
topology and the topology of uniform convergence.

43.1 Definition. The compact—open topology (k-topology) on & < Y* is the
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topology having for a subbase the sets
(K, U) = {feZ |/(K) = U},

for K compact in X, U open in Y. We denote this topology by 7.
A convenient counterexample to a great many theorems is easily obtained.

43.2 Example. If X is discrete, the compact—open topology on Y* is the pointwise
topology. Thus, nothing can be carried from Y to (Y*, t.), in full generality,
unless it can be carried to product spaces.

The following lemma, an example supporting the general rule of thumb that
compact sets behaving like points, can be proved with no difficulty (or, see
Exercise 17B).

43.3 Lemma. In a regular space, if F is compact, U open and F < U, then
for some open set V,F < Vand V < U.

We denote the set of continuous functions from X to Y by C(X, Y). Most
useful examples of function spaces are spaces of continuous functions, so part b)
of the next theorem is not too disappointing.

43.4 Theorem. .

b) If Y is req Converted with
Proof. We leave STn“ cnn“erter implied assertion
in b) that (Y%, 7 trial version

To prove b), ] itinuous function
in (K, U). Then f  hittp://Www.stdutility.com  [emma above, an

open set V exists with jJ(KJ < ¥, ¥ © U. Ihen j € (K, VJand (K, V) = (K, U).
Now we assert (K, V) < (K, V). If g¢ (K, V), then for some point a in K,
glaje Y — V,soge(a, Y — V). Butthen(4, Y — V)isanhood of g not meeting
(K, V) and thus g ¢ (K, V). Therefore, (K, V) = (K, V).

Now suppose f € ()=, (K;, U;), where each K; is compact in X, each U, is
openinY. Forl = 1, ..., nfind,asabove, open V; = Y such that f € (K;, V;) and
(K, V}) = (K;, U;). Then fe ﬂ?=1 (K;, Vi) and ﬂ?=1 (K, V) = m?=1 (K, V).

Thus, C(X, Y) is regular in the compact—open topology. ll

As with the pointwise topology, if Y has a uniform structure, we have a uni-
form structure on Y* which is associated with the compact—open topology. The
association is not complete, however. The uniform topology matches the compact—
open topology only for spaces of continuous functions.

43.5 Definition. Suppose Y has a uniformity 9. The uniformity of uniform con-
vergence on compacta, or the uniformity of compact convergence, 2,, has for a
subbase the sets

Exp = {(f, 9)| f(x), g(x)) € D, for each x € K}
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where K is a compact subset of X and D € 9. The topology 7, thus induced on
Y* is the topology of compact convergence.

The topology and uniformity of uniform convergence on compacta derive
their names from the following theorem, whose proof is obvious from the defini-
tions involved.

43.6 Theorem. a) (f,) converges to f in the topology of uniform convergence
on compacta iff for each compact subset K of X, f; | K converges to f | K in
the topology of uniform convergence on K.

b) (f,) is Cauchy in the uniformity of uniform convergence on compacta iff
for each compact subset K of X, (f; | K) is Cauchy in the uniformity of uniform
convergence on K.

The promised relationship between the compact—open topology and the
topology of uniform convergence on compacta is given by the next theorem.

43.7 Theorem. For spaces of continuous functions the topology of compact
convergence is the compact—open topology.

Proof. Let (K, [Pta—o—enhhaal £ in tha cammont n topology, g a
continuous funct Converted with g(K) = U. Find
E € 9(Y) such thg s done as follows.
For each x € g(K STn“ con“erler E,. < D, and, by
compactness, say| ,n--nE, and
check the require trial version

http://www stdutility.com

Then D € 9,, and if h € D[g], then (g(x), h(x)) € E, so that h(x) € E[g(x)], for each
x € K, and hence h(x) € E[¢g(K)] = U, for each x € K, from which it follows that
he (K, U). Thus g e D[g] = (K, U). Thus, each subbasic set (K, U), and hence
each open set in the compact—open topology, is open in the topology of compact
convergence.

Conversely, let Ey , be a subbasic set in &,. The sets Eg p[ ], for f continuous
on X, form a subbase for the topology of compact convergence, and it thus suffices
to show they are open in the compact—open topology. Pick T closed and sym-
metricsothat T o T o T < D. By compactness, f(K) = T[f(x)]u v T[f(x,)]
for some x,,...,x,. Set K; = K n f"YE[f(x;)]), T; = Int (T » T)[f(x,)].

Then f(K;) < T, for each i, since f(K;) = T[f(x;)] < Int (T ° T)[f(x;)] = T,
so fe(K;, T;) for each i. Suppose g€ (K;, T;) for each i. Then g(K;) = T; for
i=1,...,n and if xe K, then for some i, xe K;, so f(x)e T[f(x;)] while
f() e T, = (T> D[f(x)]. Hence (f(x), f(x))e T and (g(x), f(x))€To T, so
that (f(x), g(x))e Te T~ T < D. Thus (f(x), g(x)) € D, for each x e K, which
establishes that g € Ex p[f]. Thus fe ()i, (K, T) = Eg p[f], so the latter set
is open in the compact—open topology. B
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We now introduce the concept which plays a central role in the discussion of
both completeness and compactness relative to the uniformity of uniform con-
vergence on compacta and its topology.

43.8 Definition. A topological space X is a k-space (or a compactly generated space)
iff the following condition holds:

a) A = Xisopeniff A n K is open in K for each compact set K in X.

Note that one implication in a) is trivial and never needs proving. Also, it
is clear that “open” could have been replaced by “closed” in a) without harm.
The k-spaces form a wide class of spaces, including all metric spaces, according
to the next theorem, an extension of which is given in 43H.

43.9 Theorem. a) Every locally compact space is a k-space,
b) Every first-countable space is a k-space.

Proof. a) Suppose X is locally compact and 4 n K is open in K for each
compact K < X. Let a e A and let V be an open nhood of a with compact closure.
But then 4 n V is open in V, and hence AnV = (AN V)NV is open in V

and thus in X. T nin X.

b) Suppose A Converted with or each compact
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The k-spaces h“n I IWWW s“““iliw com ce of continuous

functions on conrpacta—orvause;mTtnose—spaves;, to—vontmoo s functions are
precisely those which behave well on compact subsets. The proof of the following
lemma, which says this more precisely, is an easy exercise in applying the definition
of a k-space. See Exercise 43D.

43.10 Lemma. If X is a k-space, f: X — Y is continuous iff f | K is continuous
for each compact K < X.

Using this result and 43.6, which describes convergence on compacta as being
precisely uniform convergence on each compact subset, the following theorem
is easy.

43.11 Theorem. If X is a k-space and (Y, D) is complete, then C(X,Y) is
complete in the uniformity of uniform convergence on compacta.

Proof. If (f;) is Cauchy in the uniformity of uniform convergence on compacta,
then by 43.6 (f, | K) is uniformly Cauchy on K for each compact K = X. Since
C(K, Y) is complete in the uniformity of uniform convergence, a continuous uni-
form limit f: K — Y exists for each K. It is easily seen that if K, < K,, then
fx,| K1 = fx,, and from this it follows that the function f: X — Y defined by
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f(x) = fy(x), for x € K, is well defined. It is continuous by 43.10 above, and since
(f;) converges uniformly to f on each compact K = X, (f;) converges to f in the
topology of uniform convergence on compacta, by 43.6. B

One more definition is needed before we are ready to characterize the compact
function spaces in the compact—open topology.

43.12 Definition. Let X be a topological space, Y a uniform space. A family &
of continuous functions from X to Y is equicontinuous at x e X iff for each
De Q(Y) there is a nhood U of x such that f(U) = D[ f(x)], for each fe #. We
say & is equicontinuous provided it is equlcontmuous at each point of X.

43.13 Lemma. If & is an equicontinuous family of functions, so is the pointwise
closure & of F

Proof. Let fe &, say (f,) is a net in & converging pointwise to f. Now if D is
any closed element of 2(Y) and U is an open set containing x € X such that
g(U) = D[g(x)] for each ge &, then in particular (fy(x), f(y)) € D for each A
and each ye U. Smce D is closed, it follows that (f(x), f()) € D, for each y € U.
Hence f(U) = D]

Thus & is eq Converted with

As we noted ¢ STn“ c n space compact
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involved reduces trialversion equicontinuity is

made clear, then, _
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43.14 Theorem. On an equicontinuous jamily &, the compact—open topology
reduces to the pointwise topology.

Proof. It is enough to show that if f, — f pointwise in &, then f; — f in the
compact—open topology.

It is sufficient to consider a subbasic element (K, U) of the compact—open
topology which contains f. For each x in K, f;(x) — f(x), so eventually, say for
A > Ay, fi(x)isin U. But f(K) = U and f(K) is compact, so for some D € 2(Y),
D[f(K)] < U. By equicontinuity, each x e K has a nhood U, such that
f2(U,) = D[fy(x)] for all 4, and thus, for 2 > 2, f3(U,) = D[f(K)] = U. But
the cover of K by the sets U, has a finite subcover, say by U,...,U,. Pick
Ao = Ay ey Ay, Thenforanyer xeU, ,forsomezandhencefor}t > Ao,

fix) e fiU,) = DLf(K)] = U.

It follows that f, € (K, U) for all > A,.
Then f; — f in the compact—open topology. B

The last result makes the proof of Ascoli’s theorem, on compactness of function
spaces in the compact—open topology, almost trivial. The form of Ascoli’s
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theorem given here is quite general; we will develop in Exercise 43E a more
special form of essentially the same theorem.

In order to prove necessity of the conditions we impose, we must drop
equicontinuity of & for the weaker condition that & be equicontinuous on each
compact subset (more precisely, that for each compact subset K, the family of
restrictions of members of & to K be equicontinuous).

43.15 Theorem (Ascoli). Let X be a Hausdorff, or regular, k-space, Y a
Hausdorff uniform space, and & a family of continuous functions from X to
Y. Then % is compact in the compact—open topology iff

a) & is pointwise closed,
b) for each x € X, n. (&) has compact closure,
c) & is equicontinuous on each compact subset of X.

Proof. If # is compact in the compact—open topology, then & is compact in
the pointwise topology, so necessity of the first two conditions follows from 42.3.
Let K be any compact subset of X, & ¢ the family of restrictions to K of members
of #. It is an easy exercise to show that % is compact in the compact—open

topo]ogy on C( Y\ (which redncec ta the tannlacu af 1inif rm Convergence

since K is compa
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U=Uf1m"'men.

Now for f € #, f € (Uy,, D[ f(x)]) for some i and hence f(U) < f(U,,) = D[ fi(x)],
and it follows easily that f(U) = (Do D)[f(x)] = E[f(x)], so that % is equi-
continuous at x.

To prove sufficiency, it is enough to show that condition c) forces the compact—
open topology to reduce to the pointwise topology. But by 43.14, c) does force
the compact—open topology on F g to reduce to the pointwise topology, for each
compact K = X. Now let (K, U) be any subbasic set in the compact—open
topology on X. From the remarks above, (K, U) | ¢ = {f| K| fe (K, U)} is
pointwise open in % . But the map f — f| K is clearly pointwise continuous
(pointwise convergence is preserved under restriction), and the inverse under this
map of the set (K, U) | F i 1s the set (K, U). Thus (K, U) is pointwise open. ll

bver of & ¢ has a

Problems
43A. Sequence spaces and Ascoli’s theorem

1. The sequence space m (see 2H) is just C*(N) with the uniform metric. It is not compact.
[Use Ascoli’s theorem. ]
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2. The sequence space c (see 2H) is just C*(J) where J is the subspace {0} U {1/n|ne N}
of R. It is not compact.

3. Is ¢, (see 2H) compact?

43B. Separation axioms

1. Show that if Y is Ty, T, or T, then Y* has the same property in the compact—open
topology.

2. Give an example of a regular space Y such that Y* with the compact—open topology
is not regular.

3. If Y is completely regular, so is C(X, Y) with the compact—open topology [see 43.7].

43C. Convergence in the uniformity of uniform convergence on compacta

Prove (a) and (b) of Theorem 43.6.

43D. Continuity on compacta

If X is a k-space, then f: X — Y is continuous iff /| K is continuous for each compact
K c X.

43E. Arzela’s the Converted with

1. A subfamily STn“ cnn“erter v iff it is uniformly

bounded and equic

2. Let £(s, t, u) trial version
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F(s) =J (s, t, x(0) dt.

s<1,0<t< ],

7Y

Then the mapping F(x) = f, takes C[0, 1] into C[0, 1]. Use Arzela’s theorem to show F,
called the Urysohn integral operator, is a compact mapping (42E).

43F. Joint continuity

A topology for a function space & < Y* is jointly continuous (admissible) iff the map
P: # x X — Y defined by P(f, x) = f(x) is continuous.

1. If 7 is a jointly continuous topology for &# and t < 7/, then 7’ is jointly continuous.
The discrete topology on & is jointly continuous (and hence is the largest jointly continuous
topology for 7).

2. Every jointly continuous topology on 7 contains the compact—open topology. (So the
compact-open topology is the smallest jointly continuous topology for & whenever it is
jointly continuous.)

3. Suppose & < C(X, Y). If X is a Hausdorff k-space, then the compact—open topology
on & is jointly continuous. [Show that P: & x X — Y is continuous iff P |(# x K) is
continuous for each compact K = X.]
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43G. Metrizability of C(X)

Let C(X), the collection of continuous, real-valued functions on a Tychonoff space X, have
the compact—open topology.

1. If X is hemicompact (17I), then C(X) is metrizable. [If K,, K,, ... is the sequence
of compact subsets of X required for hemicompactness, define p on C(X) by

o(f, 9) = }:p,.fg)

where p,(f, g) = min (1/2", sup,, |f(x) — g(x)l). Show that p generates the compact—open
topology on C(X)].

2. If C(X) is first countable, then X is hemicompact. [Let f be the function which is
identically 0 on X. Show that if (K, W}), (K,, W,), ... is a countable nhood base at f in
C(X), then K, K,,... is a sequence of compact sets of the kind needed to show
hemicompactness. |

3. C(X) is metrizable iff X is hemicompact.

43H. k-spaces

1. A Subspace af a k-enace need nat he a k-enace

2. The product Converted with Let T be the subset

of the product cons D, x, = n for all but

at most n coording S'"]“ cnn“e"er ¢ for each compact

subset K of the pro

3. A Hausdorff trial version lally compact space.
[If X is a k-space, le{ [and find a quotient

map of T onto X.] http://www.stdutilitv.com

431. The Exponential Law

All function spaces have the compact—-open topology here. Let X be a locally compact,
Hausdorff space, T a Hausdorff space. Then C(X x T, T)is homeomorphic to C(T C(X,Y)).
[If fe C(X x T,Y), define f, € C(X, Y) by f(x) = f(x, t). Then the map @(t) = f, belongs
to C(T, C(X, Y)). The correspondence ®(f) = ¢  is the desired homeomorphism. ]

43]. Homotopy and function spaces
Let C(X, Y) have the compact—open topology.

1. Let X be a k-space. The path components in C(X, Y) are precisely the homotopy
equivalence classes.

2. Recall that (Y, y,) is the subset of C(I, Y) consisting of all loops based at y,. Then
the path components in (Y, y,) are precisely the equivalence classes in (Y, y,) under the
loop homotopy relation (i.e., the relation of homotopy relative to {0, 1}).

3. Recall that Q,(Y, y,) is the subset of C(I", Y) consisting of all n-dimensional hyperloops
based at y, (33D). Then the path components in Q,(Y, y,) are precisely the equivalence classes
in Q(Y, y,) under the relation of homotopy relative to JI".
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43K. The higher homotopy groups

All function spaces are to be given the compact—open topology. If Y is a topological space
and y, € Y, let e, denote the constant loop in Q,(Y, y,); that is, e,(x) = y, for each x e I".
(Q, is defined in 33D.)

1. Q,(Y, y,) is homeomorphic to Q(Q,_ (Y, yo), e,~;). [Use the exponential law (431)
to conclude C(I", Y) is homeomorphic to C(I, C(I"", Y)); use the resulting homeomorphism
to construct a homeomorphism from Q,(Y, yo) to QQ,_ (Y, yo), €,-1)-]

2. TL(Y, y,) is isomorphic to IT,(Q, (Y, Yo), €n—1)-

Now every loop space is an H-space and the fundamental group of any H-space is Abelian.
Thus, by part 2, IT,(Y, y,)is Abelian for n > 1. (For the definition of an H-space and an investi-
gation of its properties, see the book Topology, by Dugundji.)

44 The Stone—Weierstrass theorem

The few elementary ideas from algebra which are necessary to read this section
will not be developed here. Consult any book on algebra.

44.1 Definition. C(X) will denote the algebra of real-valued continuous functions

on the topologic: unctions in C(X
being den‘;tedgc* Gonverted with %)

Our interest ties of C*(X) and
their relationship STn“ con“erter ood deal of work
is currently being trial version of results of this
nature can be fou

Our look at httn:/ /viww stdutilityv.com bgical and lattice-
theoretic results, with the Imited amm ol developing the Stone—Weierstrass

theorem (44.5). The topology we will work with on C*(X) is that induced by the

metric
p(f; g) = sup | f(x) — g(x)!.

xeX

This is called the uniform metric, for the good reason that it induces on C*(X) the
topology of uniform convergence (so if X is compact, C¥*(X) = C(X) is complete
in this metric, by 42.10). As is our established custom, we avoid constant reference
to the fact that the background structure on C*(X) is the uniform metric by using
phrases like “uniformly dense” to mean “dense in the uniform metric” and so on.

The classical Weierstrass theorem deals with the uniform approximation by
polynomials of continuous functions on a closed interval. We will be deriving
it as a special case of the more general Stone—Weierstrass theorem, but to prove
the latter, we need a very weak form of the former.

44.2 Lemma. For each ¢ > 0, there is a polynomial P(x) such that

[IxI — Px)| <€
foreachxin[—1, 1].
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Proof. From the theory of functions of a real variable (see, for example, Apostol,
pp. 420 and 427), there is a binomial series Y ., a,)" which converges uniformly
to(1 — y)}?for yin [0, 1]. Lettingy = 1 — x?for xin [ —1, 1], we obtain as an
immediate corollary that ) >, a,(1 — x?)" converges uniformly to |x| in [—1, 1].
Since each partial sum of this series is a polynomial, the lemma follows.

We need this lemma only to establish the following fact, which is critical to
the proof of the general approximation theorem (44.5).

44.3 Lemma. Any uniformly closed subalgebra .« of C*(X) is a lattice. That
is, if f and g belong to &, so do the functions min(f, g) and max(f, g) [defined
pointwise].

Proof. Since it is easily verified that
min (f, g) = 3(f + 9) — 31/ — 4l,
max (f, g) = 3(f + g) + 21 — 4l,

it evidently suffices to show that, whenever f e &, |f| € o/. Suppose first that
[f] <1 on X. Then, by 44.2, a polynomial P, exists for each ¢ > 0 such that,
on X,

Converted with

and thus | f] is un STn“ con“erler | of which belong

to «/. Thus, in th fl < 1lon X, we
have |f| < 4 for trial version tvious procedure,

find | f/A| € o/ il
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44.4 Definition. If 7 15 any subcollection from C™(X), the subalgebra /(D)
generated by 2 is the smallest subalgebra of C*(X) containing 2. It always
exists, since the intersection of the subalgebras containing & is a subalgebra.
Also the uniform closure #(2) of #/(2) is a subalgebra (the verification is routine),
called the uniformly closed subalgebra generated by 9.

The Stone—Weierstrass theorem provides a set of conditions on £ under
which the uniformly closed subalgebra generated by 2 is all of C*(X). Recall
that a collection of functions separates points iff whenever x # y in X, for some
one of the functions f, f(x) # f(y).

44.5 Theorem.(Stone—Weierstrass). Let X be a compact, Hausdorff space.
If 9 is a collection of functions in C*(X) which separates points in X and
contains the function identically 1, the uniformly closed subalgebra generated
by 2 is all of C*(X).

Proof. The proof bears some resemblance to our proof of Tietze’s theorem earlier.
We will show every function f € C*(X) can be uniformly approximated by func-
tions from «/(2). For this purpose, no true loss of generality results in assuming
infyx f(X) < sup,.x f(x) (otherwise f is constant and, since & contains 1,
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f € #(2)),and then we can assume, without loss of generality, thatinf, x f(x) = —1,
SUp,x f(x) = 1. Thus f: X - [—1,1].
Let A4, = {xe X |f(x) < —3}, B, = {xe X | f(x) > §}. For each ae 4,

and b € B, a function h,, exists with h,(a) # h,(b). Define g,, on X by

4 hyf(x) — hab) | 2

3 hayf@) — halb) 37
Then g,(a) = —%, gub) = %, and g,, € #(2). Fix ae A,. For each ye B,
da(y) = 3,and so g, (z) > for z in some nhood U, of y. A finite number of these

nhoods, say U,,,..., U, , cover B;, and a function g, can now be defined at
each x € X by

gab(x) =

Yn?

ga(x) = min {gayl(x)a R gay,.(x)}'
Note that g,(a) = —%and g, > % on B,, and g, € #(2) by 44.3. By repeating the
procedure just used, evidently we can find a function g € %(2) such that g < —1
on A, and g > % on B,. It follows that |g(x) — g,(x)] < % for x € A, U B,, and
if we define

h(x) = min {g(x), 3}

Converted with
The he B(P) a 50 |f(x)) <3 on

x-won STDUGONVErter (o .oz

yields the relatior ) )
Reapplying t trial version interval [—2, 2],

we can find a fu (%)?; in general,
functions Ay, . . .,

__htp://www stdutilitveom | 2o nich
it follows that f € #4(2). B

We can now obtain the classical Weierstrass theorem as an easy corollary
to the above result.

44.6 Theorem.(Weierstrass). Every real-valued continuous function f on [a, b]
can be approximated uniformly by polynomials.

Proof. The statement is that C*[a, b] is uniform closure of the algebra .« of
all polynomials on [a, b]. But .« is the algebra generated by the set 2 consisting
of the functions x (the identity) and 1 (the function identically one), and 2 satisfies
the conditions of the Stone—Weierstrass theorem, so the uniform closure of
A (D) =  is indeed all of C*[qa, b]. B

By elevating the collection 2 in 44.5 to a subalgebra, we obtain the following
pleasing statement of the Stone—Weierstrass theorem (generalizations of which
are considered in Exercises 44A, B, C and D).

44.7 Theorem. Let X be a compact Hausdorff space. A subalgebra o/ of
C(X) is all of C(X) iff
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a) o is closed (in the uniform topology),
b) o contains the constant functions,

c) &/ separates points in X.

Problems

44A. Stone—Weierstrass theorems for noncompact X : 1

Let X be an arbitrary Tychonoff space. A subset o/ of C(X) is said to separate zero sets in
X iff whenever Z, and Z, are disjoint zero sets in X, there is some f € o/ such that

Z)n f(Zy) = e
1. A subalgebra o/ of C*(X) is all of C*(X) iff

a) o is closed (in the uniform topology),
b) 7 contains the constant functions,
c) o separates zero sets in X. [Consider fX.]

2. The condition (c) in 1 cannot be weakened to the requirement that «/ separate points
in X. [Consider the subalgebra of C*(N) consisting of all functions f such that lim,_, ., f(n)

exists. ] i

The next two p Converted with ype for the algebra
C(X) if X is not con S'I'n“ con“erler
44B. Stone—Weie lrial “ersin“
If X is an arbitrary [ Stone—Weierstrass
theorem for c(x) wi IR/ /i stdutility.com

1. If o is a subalgebra of C(X) closed in the compact—open topology and f € .o/, then
|fle . [If(K, U)is a compact—open nhood of | f|, the methods of 44.3 can be used to produce
a polynomial function P,(f) of f which lies in (K, U).]

2. A subalgebra of C(X) closed in the compact—open topology is a sublattice.

3. A subalgebra &7 of C(X) is all of C(X) iff

a) & is closed in the compact—open topology,
b) 7 contains the constant functions,
c) & separates points.

Note that if X is compact, the result in part 3 reduces to Theorem 44.7.

44C. Stone—Weierstrass theorems for noncompact X : 111

From one point of view, the compact—open topology on C(X) is unsatisfactory; unless
X is compact, it cannot be easily derived from the algebraic structure on C(X) and thus cannot
be used in any attempt to represent certain algebras as algebras of continuous functions.

To remedy this, we will consider the uniform topology on C(X). Recall that a base of
nhoods at f € C(X) in this topology is obtained by considering the sets

Ulf,e) = {ge CX)|If(x) — g(x)| < eforallxe X}  for € > 0.
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We require some terminology. A subalgebra & of C(X) is said to be inverse closed iff
whenever f € o and Z(f) = o, then 1/f € &/. A star subalgebra of C(X) is any subalgebra
& which

a) is closed in the uniform topology,
b) contains the constant functions,

c) is inverse closed.

(Note the lack so far of separation properties.) Part 1 below justifies the introduction of
star algebras.

1. If X is not pseudocompact, there are proper subalgebras of C(X) which are uniformly
closed, contain the constants and separate points.

2. Arational function is an element of C(R) of the form P/Q, where P and Q are polynomials
and Z(Q) = @. # will denote the algebra of bounded rational functions on R. If f e C(R)
and lim,_,, f(x) = lim,_, _ f(x) is finite, then f is in the uniform closure of #. [Apply the
Stone—-Weierstrass theorem to the circle.]

3. If o is a star subalgebra of C(X) and f e .o, then |f| € o/. [It is enough to show
1/1 + |fl)e . But1/(1 + |f]) = g o f where g(t) = 1/(1 + |t|). Apply part 2.]

4. If o/ is a starenhaloahra af C(¥V\and fec of ac C¥B) than a . fe of. [It is enough

- 2

to show g o f/(1 + Converted with i(0)/(1 + t*). Apply
part 2.]

et GTIHU GONVErter

6. A star subalg . } s of X. [Use 44A.1
to show o/ N C*(X trial version

7. A star subalg . S 5 need not be all of
C(X). [Find such !I“n'l I M's“l““llw'c““rl the space Q, of all

countable ordinals. ]

The next problem gives conditions under which a star subalgebra which separates points
and closed sets must be all of C(X).

44D. Stone—Weierstrass theorems for noncompact X : IV

Again, we consider the uniform topology on C(X).

A subspace S of X is said to be Z-embedded in X iff whenever Z is a zero set in S,
there is a zero set Z, in X such that Z, n S = Z.

Let o/ be a star subalgebra (44C) of C(X) which separates points from closed sets and let
&/* denote the set of bounded functions in /. Define an equivalence relation in fX by p ~ g
iff f%(p) = fP(q) for each fe o/* (where f?: X — R is the Stone extension of f: X — R).
Let T be the quotient of X thus obtained, ¥": X — T the identification map. For each
fest* define f: T —» Rby f([p]) = fAp),and let & = {f | fe o*}.

1. Tis a compactification of X (i.e., for p € X, [p] = {p})and ¥ | X is a homeomorphism.

2. A = C(T). [By the Stone—Weierstrass theorem, it is enough to show A separates
points in T.]
3. A Lindelof subspace S of Y is Z-embedded in Y. [Let f € C(S). For pe S — Z(f),
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choose f, € C(Y)sothat0 < f, < 1, f(p) = land f,[Z(f)] = 0. Let ¥, = {xe S| f,(x) > $}.
Then {V,|peS — Z(f)} is an open cover of the Lindelof space S — Z(f), so a countable
subcover {V,, V,,, ...} exists. Letg = Y, (£, /2"). Then Z(g) n S = Z(f).]

4. Let X be Lindelof. If .« is a star subalgebra of C(X) which separates points and closed
sets, then .o/ = C(X). [Use 2 and 3 to show .&/* separates zero sets in X.]

5. Suppose |X — X| < 1. If & is a star subalgebra of C(X) which separates points and
closed sets, then & = C(X).

44E. Applications of the Weierstrass theorem

1. If f: I - R is continuous and fé x"f(x)dx = 0 foreachn =0,1,2,... then f(x) = 0
on L. [You have finished if you show [§ f2(x) dx = 0.]

2. Show directly that C(I) is separable (by exhibiting a countable dense set rather than
by appealing to 42D).

3. Show that the functions of the form f(x) = ) =, ¢, are dense in C(I).

4. Show that the functions of the form )% (a, cos kx + b, sin kx) are dense in
C([0, 2x]).
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Historical Notes

Section 1

The basis for our intuitive set theory is the Zermelo—Fraenkel set theory developed
by Zermelo (Untersuchungen iiber die Grundlagen der Mengenlehre 1) and
strengthened by Fraenkel (Zu den Grundlagen der Cantor—Zermeloschen M engen-
lehre). Their work rests on the researches of Cantor in the 1870’s which first put
mathematics firmly on a set-theoretic base. Zermelo’s work, in particular, was a
direct response to the Russell paradox. For an historical account of the Zermelo—
Fraenkel and other axiom schemes for set theory, see Suppes (Axiomatic Set
Theory). A list of other standard references on set theory would include Fraenkel
(Abstract Set The=——~—Toadonf (Cou Tl A TTal AL-zeo Set Theory) and
Sierpinski (Cardi Comverted with approach to the
ordinals in 1.19 fq

Godel (The ( STn“ con“erler Generalized Con-
tinuum Hypothesi . } 940 that addition
of either the axiof trial version ting set theoretic
axioms would nqg nce of the Axiom
of Choice; The I h“n I I WWW. s“'““llw com I) completed the
proof of mdependence for each by showing nelther could be deduced from the
existing axioms (by showing the negation of each could consistently be added to
the Zermelo—Fraenkel axiom scheme). See P. J. Cohen (Set Theory and the
Continuum Hypothesis) for a discussion of these results and his intuition about the
continuum hypothesis. Another expository reference is Cohen (Independence
Results in Set Theory).

For additional material on lattice theory, see Birkhoff (Lattice Theory).

Section 2

The study of metric spaces was initiated by Frechet in his doctoral thesis (Sur
Quelques Points du Calcul Fonctionnel) and vigorously pursued by a host of Polish
mathematicians in the 1920’s. A general survey of the results obtained is contained
in Sierpinski (General Topology) or Kuratowski (Topology). For placement of
Frechet’s work in the development of topology, see the notes to Section 3. For
other comments on metric spaces, see the notes to Sections 22, 23 and 24.

297
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The theory of metric spaces (and their topologies) is treated in Copson (Metric
Spaces).

Section 3

Topology owes its beginnings to a line of development which began with the first
attempt to classify spaces by Riemann (Uber die Hypothesen welche der Geometrie
Grunde liegen), continued through the already mentioned work of Frechet on
metric spaces in 1906, the work of Riesz (Stetigkeit und Abstrakte Mengenlehre)
in 1909 which used a primitive version of the notion of condensation point to
describe abstract spaces, the work of Weyl (Die Idee der Riemannschen Fldche)
in 1913 who proposed studying abstract spaces in terms of neighborhood systems,
and culminated in 1914 with the epic paper of Hausdorff (Grundziige der Mengen-
lehre) who found the right axiom system for Weyl’s neighborhoods, made them a
suitable abstraction and thus founded modern topology. An excellent detailed
account of the forces prevalent in mathematics in the 1800’s which gave rise to
set theory and point set topology can be found in Manheim (The Genesis of Point

Set Topology). S¢ _
Weyl's paper Converted with velopment of the

structure theory ats, see Springer
(Introduction to R STn“ cnn“erter n Surfaces).

Hausdorff’s 4 - - n, which we treat
in Section 13. T trial version v to Alexandroff
(Zur Begriindung httn:/ /viww stdutilityv.com ologie). See also
Alexandroff and Hopr (7T opologie I). TTe closure operation was axiomatized by
Kuratowski (Sur 'Opération A de T Analysis Situs). The frontier operator also
characterizes the topology. See Albuquerque (La Notion de “Frontiére” en
Topologie).

Properties of the simple extension (3A.5) of a topology are treated in Levine
(Simple Extensions of Topologies) and Borges (On Extensions of Topologies).
Exercise 3C s taken from Kelley (General Topology, p. 57). The lattice of topologies
(3G) was first systematically studied by Birkhoff (On the Combination of Topologies).
For recent developments, see Steiner (The Lattice of Topologies, Structure and
Complementation) and van Rooij (The Lattice of Topologies is Complemented).
The theory of Borel sets (3I) and their derivatives, the analytic sets, is developed
extensively in Sierpinski (General Topology) and Kuratowski' (Topology) for
separable metric spaces. The extension to general metric spaces is begun in
Montgomery (Nown-separable Metric Spaces) and continued in Stone (Non-
separable Borel Sets). For descriptions of the theory in general topological spaces,
see Frolik (On the Descriptive Theory of Sets; Baire Sets Which are Borelean
Subspaces). Their name derives from their consideration in Borel (Legons sur la
Théorie des Fonctions).
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Section 4

The original description of a topological space by Hausdorff (Grundziige der
Mengenlehre) was in terms of nhoods (paralleling our 4.2).

The Sorgenfrey line (4A) was first introduced by Sorgenfrey (On the Topological
Product of Paracompact Spaces). The Moore plane (4B) is a classical example
(see, for example, Alexandroff and Hopf (Topologie 1, p. 31) sometimes called the
Nemitskii plane. Exercise 4G is taken from Alexandroff and Hopf (Topologie 1).

Section 5

The concept of a subbase for a topology appears in Bourbaki (General Topology,
part 1) which is translated from Topologie Générale, Chapters I and 11, Actualités
Sci. Ind. 858 (1940).

The scattered line (5C) is used in the form given by Michael (The Product of
a Normal Space and a Metric Space need not be Normal). The process may be
applied to “scatter” any subset of any topological space.

Section 6 GConverted with

Ordered spaces STn“ c enberg (Ordered
Topological Space 0n“erter (Lattice Theory).
Nachbin (Sur les 1 trial version Drder) has studied
ordered spaces a1 —_— 1 in Solovay and
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Subsets of ordered spaces which are ordered (6D.4) have been characterized
by M. E. Rudin (Interval Topology in Subsets of Totally Orderable Spaces). See
also Lynn (Linearly Orderable Spaces).

Section 7

Many of the ideas in this section existed long before the study of topology and
topological spaces became an independent discipline.

The question treated in 7B was considered by Kuratowski (On a Topological
Problem Connected with the Cantor—Bernstein Theorem). The theory of retracts
and their use in algebraic topology is covered in Spanier (Algebraic Topology).
The material of 7L can be found in any real analysis book, for example, Royden
(Real Analysis). The standard reference on C(X) and C*(X) is Gillman and Jerison
(Rings of Continuous Functions); the germinal reference is Hewitt (Rings of Real-
valued Continuous Functions I). The group of homeomorphisms (7N) is considered
in a fundamental paper by Whittaker (On Isomorphic Groups and Homeomorphic

Spaces).
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Section 8

The Tychonoff topology was introduced by Tychonoff (Uber die Topologische
Erweiterung von Rdumen). The box topology was considered by Tietze (Uber
Analysis Situs) and has been studied recently by Knight (Box Topologies). An
equivalent definition of the product topology is given by Efremovic (Invariant
Definition of Topological Product).

Weak topologies are covered in Bourbaki (General Topology, part 1) under the
name initial topologies.

Theorems 8.12 and 8.16 are folk theorems of long standing used consistently
in Stone—Weierstrass- and Tychonoff-type theorems (see Sections 17 and 44).

It is not universally true that projection maps fail to be closed (8A). See, for
example, Noble (Products with closed projections). The relationship between weak
topologies and the lattice of topologies (81) is discussed in Levine (Families of
topologies on a fixed set).

Fox (On a problem of S. Ulam concerning Cartesian products) provided an
example of nonhomeomorphic spaces X and Y whose squares are homeomorphic
(8J.2).

Converted with
STDU Gonverter
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continuous Colleq rial version tetige Abkildung
kompakter Réume httn:/ /viww stdutilityv.com ind in Aronszajn
(Uber ein Urbilaprovremy. & T1ater Tererence 15 wnyournm (©Open and Closed

Mappings).

Products of quotient maps have been studied recently by Michael (Bi-quotient
Maps and Cartesian Products of Quotient Maps). Strong topologies (9H) are
covered in Bourbaki (General Topology, part 1) under the name final topologies.
Covering projections (9K) are covered more fully in Spanier (Algebraic Topology).

Section 10

The problem of characterizing topological spaces which can be described by
sequential convergence is considered in Ponomarev (Axioms of Countability
and Continuous Mappings), Arhangel’skii (Some Types of Factor Mappings and
the Relations between Classes of Topological Spaces), and Franklin (Spaces in
which Sequences Suffice; Spaces in which Sequences Suffice 1I). See also Dudley
(On Sequential Convergence).

Convergence in the product topology (10.6) is considered in Tychonoff
(Uber einen Funktionenrdum) and in Sections 42—44.
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Section 11

E. H. Moore (Definition of Limit in General Integral Analysis) and later Moore and
Smith (A General Theory of Limits) developed the general theory of convergence
motivated by the considerations in 11.4(c). It was applied to topology by Birkhoff
(Moore—Smith convergence in General Topology) and further developed by Tukey
(Convergence and Uniformity in Topology). Subnets were introduced by Moore
(General Analysis 1, Part 1I) and developed by Kelley (Convergence in Topology)
who there coined the word “net.”

Section 12

The definitions of filter and ultrafilter given here are those of Bourbaki (General
Topology, part I) and are due to Cartan (Théorie des Filtres, Filtres et Ultrafiltres).
The idea can be found in much earlier work, e.g., Caratheodory (Uber die Begren-
zung einfach zusammenhangender Gebiete). The relationship between net and
filter convergence (12.15-12.17) is developed in Bartle (Nets and Filters in
Topology). All the fundamentals of general topology are developed using filter

convergence in K

In the study o Gonverted with E) are important.
Characterization§ ilter convergence
can be found in Gi STn“ con“erler ns). In particular,
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used to characterizerr—~rosvaspaoco g wmatovomsaacr—losures (19N).

Section 13

The T,-axiom is included in the original list of axioms for a topology given by
Hausdorft (Grundziige der Mengenlehre). The T,-axiom is usually credited to
Kolmogoroff and the T;-axiom to Frechet or Riesz (and spaces satisfying these
axioms are sometimes called Kolmogoroff spaces, Frechet spaces or Riesz spaces,
accordingly). Tietze was the first to use the term “separation axiom” (Trennungs-
axiom), in 1923. The Ty-identification (13.2¢) is due to M. H. Stone (A4pplication
of Boolean Algebras to Topology).

The Zariski topology (13D) crops up in algebraic geometry. See, for example,
Hirzebruch (Topological Methods in Algebraic Geometry).

I know of no necessary and sufficient condition for the intersection of two
Hausdorff topologies to be Hausdorff (13F).

Topological groups (13G) were introduced by Schreier (Abstrakte kontin-
werliche Gruppen) and are studied intensively in Hewitt and Ross (Abstract
Harmonic Analysis ).
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Exercise 13H improves 13.9(b) and is due to Shimrat (Decomposition Spaces
and Separation Properties).

Section 14

Regular spaces were first introduced by Vietoris (Stetige Mengen). Completely
regular spaces were considered by Urysohn (Uber die Machtigkeit der zusammen-
hédngenden Mengen) in 1925. Their importance was established with the proof of
14.13 by Tychonoff (Uber die topologische Erweiterung von Raumen) in 1929. The
name “Tychonoff space” was suggested by Tukey (Convergence and Uniformity
in Topology, p. 84). Necessary and sufficient conditions for a quotient of a com-
pletely regular space to be completely regular are developed in Himmelberg
(Quotients of completely regular spaces).

Properties of the double (14B) of a topological space are investigated in
Engelking (On the Double Circumference of Alexandroff’). Semiregular spaces are
considered in M. H. Stone (Applications of the Theory of Boolean rings to General
Topology) and Hewitt (4 Problem in Set-theoretic Topology). Urysohn (Uber die
Mdichtigkeit der Zusammenhdngenden Mengen) introduced the separation axiom
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Urysohn’s Lemma (15.6) was proved m Urysonn (Uvper ate Machtigkeit der
zusammenhangenden Mengen). The Tietze extension theorem (15.8) can be found
in Tietze (Uber Funktionen, die auf einer abgeschlossenen Menge stetig sind). The
theorem has been extended in several ways. See, for example, Dugundji (4n
Extension of Tietze’s Theorem), Hanner (Retraction and Extension of Mappings
of Metric and Non-metric Spaces), or Dowker (On a Theorem of Hanner). Theorem
15.10 appears in Lefschetz (4lgebraic Topology).

Complete normality (15B) was added to the list of separation axioms in 1923
by Tietze (Beitrdge zur allgemeinen Topologie I). Perfect normality was introduced
by Alexandroff and Urysohn (On Compact Topological Spaces). Urysohn (Uber
die Mdchtigkeit der zusammenhangenden Mengen) proved every perfectly normal
space is completely normal (15B, C). The study of retracts, absolute retracts and
ANR’s (15D) began with Borsuk (Sur les Retracts). See also Borsuk (Theory of
Retracts) and Hu (Homotopy Theory). The Urysohn extension theorem (15E) is
a variant of Urysohn’s lemma (see reference above). Extremally disconnected
spaces (15G) were first investigated in Hewitt (4 Problem in Set-theoretic Topology).
The Hahn-Banach theorem (15H) forms a part of any course in real analysis.
See, for example, Royden (Real Analysis).
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Section 16

Second-countable spaces were once (and occasionally still are) called perfectly
separable. The axioms of first and second countability were defined by Hausdorff
(Grundziige der Mengenlehre). Separability was introduced by Frechet (Sur
Quelque Points du Calcul Fonctionnel) in 1906. The Lindelof property was proved
for Euclidean spaces as early as 1903 by Lindelof (Sur Quelques Points de la
Théorie des Ensembles); the formal study of Lindelof spaces was begun in 1921
by Kuratowski and Sierpinski (La Théoréme de Borel-Lebesgue dans la Théorie
des Ensembles Abstraits). Lindelof spaces are called finally compact by authors in
the Soviet Union. See, for example, Alexandroff (Some Results in the Theory of
Topological Spaces).

Tychonoff (Uber einen Metrisationsatz von P. Urysohn) proved sufficiency in
the countable case in 16.4(c) in 1926. The result for ¢ factors is due to Pondiczerny
(Power Problems in Abstract Spaces), Hewitt (A Remark on Density Characters)
and Marczewski (Séparabilité et Multiplication Cartesienne des Espaces Topo-
logiques). For a recent general result, see Vaisild (The Separability of Cartesian
Products). Ross and Stone (Products of Separable Spaces) have written a short
expository paper on separability in product spaces.
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The exact relationship between hereditarily Lindelotr spaces (16E) and
hereditarily separable spaces (those whose every subspace is separable) is unknown.
According to Solovay and Tennenbaum (Iterated Cohen Extensions and Souslin’s
Problem) one can consistently assume the existence of a Souslin space (21n) and
such a space is necessarily hereditarily Lindel6f but not separable.

Mapping theorems for first countable spaces are considered in Ponomarev
(Axioms of Countability and Continuous Maps), Arhangel’skii (Some Types of
Factor Mappings and the Relations between Classes of Topological Spaces) and
Stone (Metrizability of Decomposition Spaces). See also Arhangel’skii (Mappings
and Spaces).

Section 17

Frechet (Sur Quelques Points du Calcul Fonctionnel) was the first to use the term
“compact”. He applied it to metric spaces in which every sequence of points
contains a convergent subsequence or, equivalently, in which every infinite set
has a limit point. Applied to general topological spaces today, these define the
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sequentially compact spaces (17G) and the countably compact spaces (17F),
respectively. Hausdorff (Grundziige der Mengenlehre) first noticed that the
present-day definition, in terms of the Heine—Borel condition, is equivalent in
metric spaces to the definitions given above. It was left to Alexandroff and
Urysohn (Zur theorie der topologischen Rdume) to apply this definition to general
topological spaces; they called such spaces bicompact. Bicompactness won out
over countable and sequential compactness when Tychonoff ( Uber die topologische
Erweiterung von Rédumen; Uber einen Funktionenraum) proved it was preserved
in the passage to products (17.8). This result fails for sequential compactness (see
17G.6) and for countable compactness (an example is given in Novak (On the
Cartesian Product of Two Compact Spaces)). See also Mrowka (Compactness and
Product Spaces) and his references for more on products of countably compact
spaces.

That compactness could be described using the finite intersection property
(17.4) was first noted by Riesz (Stetigkeitsbegriff und abstrakte Mengenlehre).

The Cantor set, (17.9c), was described by Cantor (Uber unendliche, lineare
Punktmannigfaltigkeiten, (e), p. 590).

Maximal compact spaces (17C) were studied by Balachadran (Minimal-
Bicompact Space) .
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A thorough exposition of realcompact spaces (17H) can be found in Gillman
and Jerison (Rings of Continuous Functions). They were introduced by Hewitt
(Rings of Real-valued Continuous Functions, ) as an aid in studying the properties of
the ring C(X). Recent references on realcompact spaces, including their mapping
properties, are Wenjen (Realcompact Spaces), Isiwata (Mappings and Spaces),
Kenderov (On Q-spaces) and Engelking (Remarks on Realcompact Spaces).
Pseudocompact spaces (17J) were defined and studied by Hewitt in the paper
mentioned above. Again, the book of Gillman and Jerison is a good general
reference. A product theorem for pseudocompact spaces has been proved by
Glicksberg (Stone—Cech compactifications of products).

H-closed spaces (17K, L) were first introduced by Alexandroff and Urysohn
(Mémoire sur les Espaces Topologiques Compacts), and later studied by Chevalley
and Frink (Bicompactness of Cartesian Products), M. H. Stone (Application of
the Theory of Boolean Rings to General Topology), Katetov (Uber H-abgeschlossen
und Bikompakt Rdume), Obreanu (On a Problem of Alexandroff and Urysohn),
Scarborough and Stone (Products of Nearly Compact Spaces) and Liu (Absolutely
Closed Spaces). The product theorem was proved by Chevalley and Frink.
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Minimal Hausdorff spaces (17M) were first considered by Urysohn (Uber
die Machtigkeit der Zusammenhangenden Méngen), later by Berri (Minimal
Topological Spaces;, Categories of Certain Minimal Topological Spaces),
Banaschewski (Uber Hausdorffsch-minimale Erweiterung von Rdumen), Tkenaga
(Product of Minimal Topological Spaces), Kawashima (On the Topological Product
of Minimal Hausdorff Spaces) and Scarborough and Stone (Products of Nearly
Compact Spaces). The product theorem mentioned in 17M is due independently
to Ikenaga, Kawashima and Scarborough and Stone; the embedding theorem is
Banaschewski’s.

Various compactness properties are considered in a monograph by Van der
Slot (Some Properties Related to Compactness).

Kelley (The Tychonoff Product Theorem Implies the Axiom of Choice) con-
tributed 170.2. Product theorems without the axiom of choice are discussed in
Comfort (4 Theorem of the Stone—Cech Type, and a Theorem of Tychonoff Type.
without the Axiom of Choice,; and their Realcompact Analogues).

The results in 17Q on projective compact spaces are due to Gleason (Projective

Topological Spaces).
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Tietze (Beitrige zur aligememnen Topologie 1) ana Alexandroff (Uber die
Metrisation der im Kleinen kompakten topologische Rdume) defined local compact-
ness independently. The concept is indispensable now in the theory of integration
and the study of topological groups. See, for example, Hewitt and Ross (Abstract
Harmonic Analysis, 1).

The treatment of manifolds in this book is far from rich. A serious study of
manifolds should include a reading of Bishop and Crittenden (Geometry of
Manifolds), Wilder (Topology of Manifolds), Fort (Topology of 3-manifolds) and
M. Curtis’ rumored book on manifolds, when it appears. There are several books
available on differentiable manifolds (18.3c), among them Auslander and
McKenzie (Introduction to Differentiable Manifolds), Milnor (Topology from the
Differentiable Viewpoint), Poenaru (On the Geometry of Differentiable Manifolds)
and Hu (Differentiable Manifolds).

Brouwer’s theorem on invariance of domain (mentioned in 18B) can be
found in Spanier (Algebraic Topology).

The example in 18G is due to Hewitt (On two Problems of Urysohn); in the
same paper, he modified this example to produce a regular, T;-space on which
every continuous real-valued function is constant.
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Section 19

Caratheodory (Uber die Begrenzung einfach zusammenhangender Gebiete) first
formally considered the problem of extending a space in 1913. Work on compacti-
fication began with Tietze (Beitrage zur allgemeinen Topologie, 11), Alexandroff
(Uber die Metrisation der im Kleinen kompakten topologischen Rdume) and
Alexandroff and Urysohn (Zur theorie der topologischen Rdume), who introduced
the one-point compactification. It continued with Tychonoff (Uber die
topologische Erweiterung von Rdumen), who proved that every Tychonoff space
can be embedded in a compact Hausdorff space. Cech (On Bicompact Spaces)
and M. H. Stone (Applications of the Theory of Boolean Rings to General Topology)
gave their names to the compactification constructed by Tychonoff by proving
its maximality in the sense of 19.5, 19.10 and 19.12. Construction of fX — X
relies on a form of the axiom of choice and any knowledge of its structure, or of
the structure of fX — X, seems to involve the continuum hypothesis. See, for
example, Gillman (The Space SN and the Continuum H ypothesis).

Compactification of ordered spaces (19D) has been studied recently by Kauf-
man (Ordered Sets and Compact Spaces).
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The Wallman compactification (19K) was constructed in the above named
paper by Wallman. Frink (Compactifications and Semi-normal Spaces) introduced
Wallman bases (calling them normal bases) and raised the question (19L) of
whether every compactification of a normal space X is obtainable from some
Wallman base for X. Answers are known in certain special cases: fX is so
obtainable (19K), the closed interval I is so obtainable from the open unit interval,
and the property of being so obtainable is finitely productive according to Hager
(Some Remarks on the Tensor Product of Function Rings), so that, for example,
the closed unit disk is so obtainable from the open unit disk. Other work on
Wallman compactifications has been done by Fan and Gottesman (On Compacti-
fications of Freudenthal and Wallman), Banaschewski (On Wallman’s Method
of Compactification;, Normal Systems of Sets), Njastad (On Wallman-type
Compactifications), Steiner and Steiner (Precompact Uniformities and Wallman
Compactifications, Wallman and Z-compactifications), Brooks (On Wallman Com-
pactifications), E. F. Steiner (Wallman Spaces and Compactifications) and Alo and
Shapiro (4 Note on Compactifications and Semi-normal spaces).

The results in 19M are in the paper of Frink mentioned above.

The concept of H-closure appears as early as 1924, in Tietze (Beitrdge zur

unt can be found
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allgemeinen Topologie, 11) and 1929, in Alexandroff and Urysohn (M émoire sur
les Espaces Topologiques Compacts). H-closures were explicitly constructed by
Katetov (Uber H-abgeschlossen und bikompakt Riume) and Obreanu (On a problem
of Alexandroff and Urysohn).

The Hewitt realcompactification (190) was introduced by Hewitt (Rings of
Real-valued Continuous Functions I). It is sometimes called the Nachbin completion.
There are open questions concerning realcompactifications of product spaces;
see Comfort (On the Hewitt Realcompactification of a Product Space).

Section 20

Paracompactness was defined in 1944 by Dieudonné (Une Généralisation des
Espaces Compacts) and elevated to its present high stature by A. H. Stone (Para-
compactness and Product Spaces), who proved that every metric space is para-
compact, and Bing, Nagata and Smirnov, who used Stone’s result to obtain a
general metrization theorem (see notes, Section 23). Sorgenfrey (On the Topological
Product of Paracompact Spaces) showed in 1947 that products of paracompact
spaces need not be paracompact. In a series of three papers, Michael (4 Note on
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The notions of barycentric and star refinement (Z0B) have been around since
Tukey (Convergence and Uniformity in Topology). The results in 20C are due to
Michael (4 Note on Paracompact Spaces). Metacompactness (20D) is defined and
studied in Arens and Dugundji (Remark on the Concept of Compactness). The
example in 20F was provided by Michael (The Product of a Normal Space and a
Metric Space need not be Normal). The example in 20H was produced by M. E.
Rudin (4 Separable Normal, Non-paracompact Space).

Section 21

The example (20F) cited early in this section is produced in Michael (The Product
of a Normal Space and a Metric Space need not be Normal). The normal spaces
whose product with every metric space is normal have been characterized by
Morita (On the Product of a Normal Space with a Metric Space; Products of
Normal Spaces with Metric Spaces, Products of Normal Spaces with Metric
Spaces 11). See also Ishii (On Closed Mappings and M-spaces 1, II).

Theorem 21.1 is proved in Tamano (On Paracompactness); he relies on earlier
work of Corson (The Determination of Paracompactness by Uniformities). The
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conjecture of Kelley’s mentioned after 21.1 can be found on p. 208 of his book
(General Topology). The counterexample was provided by Corson (Normality
in Subsets of Product Spaces), who also (The Determination of Paracompactness by
Uniformities) provided the first correct result.

Several theorems relating properties of X to properties of X x X have been
proved by Tamano (On Compactifications). A general survey of theorems on
normality and paracompactness of products X x Y can be found in Tamano
(Normality and Product Spaces).

The results 21.3, 21.4 and 21B are all due to Dowker (On Countably Para-
compact Spaces). The result connecting Dowker’s conjecture and the Souslin
hypothesis can be found in M. E. Rudin (Countable Paracompactness and Souslin’s
Problem). Souslin’s hypothesis resulted from a long standing problem posed by
Souslin (Probléme 3). A discussion of the Souslin hypothesis and its independence
of the usual axioms of set theory can be found in Solovay and Tennenbaum
(Iterated Cohen Extensions and Souslin’s Problem). See also Jech (Non-provability
of Souslin’s Hypothesis) and Tennenbaum (Souslin’s Problem). It should be
repeated that although Dowker’s conjecture cannot be proved within the existing
set theory through the choice axiom it is still possible that a counterexample can
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Exercise 21C 15 due to A. H. Stone (Paracompaciness and Product Spaces).
Other work on normality in infinite products has been done by Corson (Normality
in Subsets of Product Spaces; Examples Relating to Normality in Topological
Spaces).

Section 22

The result in 22.4 attributed to R. D. Anderson can be found in Anderson (Hilbert
Space is Homeomorphic to the Countable Infinite Product of Lines). The facts cited
about quotients and continuous images of metrizable spaces are discussed in the
notes on Section 23.

The result in 22B can be found in Hocking and Young (Topology). Linear
topological spaces (22C) are coherently studied in Hu (Introduction to General
Topology), Wilansky -(Functional Analysis) and extensively in Kelley, Namioka
et al. (Linear Topological Spaces). The result in 22D.4 is due to Dugundji (4n
Extension of Tientze’s Theorem). The extension theorem (part 4) given in 22E is
due originally to Hausdorff (Erweiterung einer stetigen Abbildung) in 1938. See
also Kuratowski (Remarques sur les Transformations Continues des Espaces
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Meétriques). The proof given here, based on Dugundji’s result (22D.4), is due to
Arens (Extension of Functions on Fully Normal Spaces) in 1952. Metric extensions
have been considered elsewhere by Hausdorff (Erweiterung einer Homdoomorphie)
in 1930, by Bing (Extending a Metric) in 1947, who rediscovered Hausdorff’s
result 22E.4, and by Lavrentieff (see notes, Section 24). Shapiro (Extensions of
Pseudometrics) has done recent work on extending pseudometrics. See also his
references and Willard (Absolute Borel Sets in their Stone—Cech Compactifications)
and Gantner (Extensions of Uniformly Continuous Pseudometrics).

The result given in 22F can be found in Levine (4 Characterization of Compact
Metric Spaces).

Section 23

Urysohn’s metrization theorem (23.1) was proved in 1925 by Urysohn (Zum
Metrisation problem). Theorem 23.4 is essentially the uniform metrization
theorem ; see the notes to Section 38. The nhood metrization theorem (23.5) is a
slight alteration of a result found in Nagata (A Contribution to the Theory of
Metrization). A recent interesting metrization theorem for compact spaces has
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Moore space conjecture arises can be found 1 an article by Jones (Remarks on
the Normal Moore Space Metrization Problem). It presently occupies the time of
a great many good mathematicians; see, for example, Bing (4 Translation of the
Normal Moore Space Conjecture). It is a classical result of Jones that, with the
continuum hypothesis (actually, with 2% < 2%1) every separable normal Moore
space is metrizable. It is a recent result of Heath (Screenability, Pointwise Para-
compactness, and Metrization of Moore Spaces) and Silver (unpublished as yet)
that it is consistent with the axioms of set theory through the axiom of choice (but
not, of course, the continuum hypothesis) to assume the existence of a non-
metrizable separable normal Moore space.

The metrization theorem given in 23.7 is due to Alexandroff and Urysohn
(Une Condition Nécessaire et Suffisante pour qu'une Classe (£) Soit une Classe
(2)).

)The general metrization theorem (23.9) was proved independently by Nagata
(On a Necessary and Sufficient Condition of Metrizability), Smirnov (4 Necessary
and Sufficient Condition for Metrizability of a Topological Space) and, in somewhat
different form, Bing (Metrization of Topological Spaces).

The theorem on metrizability of the one-point compactification of a locally
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compact space (23C) was essentially proved in Alexandroff and Urysohn (Mémoire
sur les Espaces Topologiques Compacts). Metrizability of fX (23D) is discussed
in Gillman and Jerison (Rings of Continuous Functions).

The result 23G.3 is due independently to Nagata (On a Necessary and Sufficient
Condition of Metrizability) and Smirnov (On Metrization of Topological Spaces).
The result 23G.4 was first mentioned in Alexandroff and Urysohn (Mémoire sur
les Espaces Topologiques Compacts). It can be strengthened. An example of Bing
(Metrization of Topological Spaces, Example 3) shows that a nonmetrizable space
can be the union of two open metrizable subsets. Necessary and sufficient condi-
tions for a finite union of open metrizable spaces to be metrizable are given by
A. H. Stone (Metrizability of Unions of Spaces). See also Corson and Michael
(Metrizability of Certain Countable Unions). The addition theorem (23G.5) was
actually proved in the following form: if X is compact and the union of countably
many compact metrizable subsets, then X is metrizable. See Smirnov (The
Metrizability of Bicompacta Decomposable into the Sum of Sets with a Countable
Base). A general discussion of this and other addition theorems can be found in
Arhangel’skii (Mappings and Spaces).

The metrization theorem in 23J is due to Mrs. A. H. Frink (Distance Functions
and the Metrizati
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For a result related to the metrization problem, see Sion and Zelmer (On
Quasi-metrizability).

Section 24

Complete metric spaces were introduced along with the definition of metric spaces
by Frechet (Sur Quelques Points du Calcul Fonctionnel). Separable completely
metrizable spaces are called Polish spaces in Bourbaki (General Topology, Part 2).
The proof that every metric space has a completion (24.4) is based on the familiar
method of defining the irrational numbers by means of Cauchy sequences and is
due to Hausdorft (Grundziige der Mengenlehre). Theorem 24.9 was proved by
Lavrentieff (Contribution a la Théorie des Ensembles Homéomorphes). Without
much difficulty it can be proved equivalent to a metric extension theorem (24M)
complementing Hausdorff’s theorem (22E.4).

The first part of 24.12 is due to Alexandroff (Sur les Ensembles de la Premiére
Classe et les Espaces Abstraits). For the second part, see Mazurkiewicz (Uber
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Borelsche Mengen), Sierpinski (Sur Plnvariance Topologique des Ensembles G,
sur les Ensembles Compléts dun Espace (D)) and Lavrentieff (Contribution a la
Théorie des Ensembles Homéomorphes). Parts (d) and (e) in Theorem 24.13 are the
work of Cech (On Bicompact Spaces).

The fixed-point theorem given in 24.16 is due to Banach (Sur les Opérations
dans les Ensembles Abstraits et leurs Applications aux Equations Intégrales); see
also Banach (Théorie des Opérations Linéaires). Other important fixed-point
theorems include the Schauder theorem: every continuous map of a closed
convex subset 4 of a Banach space onto a compact subset of 4 has a fixed point
[see Schauder (Der Fixpunktsatz in Funktionalrdumen) and Tychonoff (Ein
Fixpunktsatz)] and the Brouwer theorem, about which more in Section 34. For
a general discussion of fixed-point theorems, see Bing (The Elusive Fixed-point
Property), Cronin (Fixed Points and Topological Degree in Nonlinear Analysis),
or Van der Walt (Fixed and Almost Fixed Points). See also McKnight (Brown’s
Method of Extending Fixed Point Theorems) and Ward (A Theorem of Fixed-
point Type for Non-compact Locally Connected Spaces). The Brouwer, Schauder
and Tychonoff fixed-point theorems can be see in action in Hartman (Ordinary
Differential Equations).
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Banach spaces are treated i most modern books on real analysis; see, for
example, Royden (Real Analysis, p. 181). An important extension of the notion
of a Banach space, the notion of a Banach algebra, is obtained by adding further
algebraic structure. Banach algebras are studied in Loomis (4n Introduction to
Abstract Harmonic Analysis) and are the primary objects of study in Naimark
(Normed Rings).

Theorem 24K is proved in Sierpinski (General Topoloyy, p. 143) using con-
tinued fractions.

Picard’s theorem (24L) can be found in Hartman (Ordinary Differential
Equations) or in any book on differential equations. It was proved by Picard
(Mémoire sur la Théorie des Equations aux Derivées Partielles et la Méthode des
Approximations Successives) and Lindelof (Sur I’Application des Méthodes
des Approximations Successives @ I'Etude des Intégrals Réelles des Equations
Différentielles Ordinaires).

ychonoff spaces,

Section 25

First and second category spaces were defined by Baire (Sur les Fonctions des
Variables Réelles) and Theorem 25.4(b) was proved in the same paper. Part (a)



312 Historical Notes

of 25.4 is due essentially to Moore (An Extension of the Theorem that no Countable
Point Set is Perfect). The result 25.5 was proved by Banach (Uber die Baire’sche
Kategorie gewisses Funktionenmengen).

The open mapping theorem, the uniform boundedness principle and the
closed graph theorem (25D) can be found in any book of functional analysis.
See, for example, Wilansky (Functional Analysis). Hilbert spaces (25E) are dis-
cussed in most books on real analysis, for example, Heider and Simpson (Theo-
retical Analysis), Hewitt and Stromberg (Real and Abstract Analysis) or Rudin
(Real and Complex Analysis). For a more extensive treatment, see Halmos (A4
Hilbert Space Problem Book).

Section 26

The modern notion of connectedness was proposed by Jordan (Cours d’Analyse)
in 1893 and Schoenfliesz (Beitrdge zur Theorie des Punktmengen), and put on firm
footing by Riesz (Die Gensis des Raumbegriffs) with the use of subspace topologies.
Before Jordan, Cantor (Uber unendliche, lineare Punktmannigfaltigkeiten e),
p. 576) used the following notion of connectedness: a set (subspace of Euclidean
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forme, qui west pas Homéomorphe avec aucun Ensemble Linéaire). Components
(26.11) were introduced by Hausdorff (Grundziige der Mengenlehre). Theorem
26.15 says essentially that every connected set is connected in the e-net sense of
Cantor (as above).

Quasicomponents (26B) were introduced in 1914 by Hausdorff (Grundziige
der Mengenlehre). The countable connected Hausdorff space in 26C was produced
by Bing (A Countable Connected Hausdorff Space).

Section 27

Arcwise connectedness is much older than connectedness, having been used
explicitly as early as the 1880°’s by Weierstrass. Locally connected spaces were
introduced by Hahn (Uber die allgemeinste ebene Punktmenge, die stetiges Bild
einer Strecke ist) in 1914 and developed by Tietze (Uber stetige Kurven, Jordansche
Kurvenbégen und geschlossene Jordansche Kurven), Kuratowski (Une définition
topologique de la ligne de Jordan) and Hahn (Uber die Komponenten offenen
Mengen) around 1920. Theorem 27.9 can be found in the latter paper. Moore
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(Concerning Connectedness im kleinen and a Related Property) studied connected-
ness im kleinen in 1922. See also Knaster and Kuratowski (4 Connected and
Connected im kleinen Point Set which Contains no Perfect Set) and Whyburn
(On the Structure of Connected and Connected im kleinen Point Sets).

Property S was introduced in 1920 by Sierpinski (Sur une Condition pour
qu'un Continu Soit une Courbe Jordanienne). Spaces with property S are investi-
gated in Whyburn (Analytic Topology) and the references cited there.

For more material on local connectedness and related properties, see
Whyburn’s book (just mentioned) and Hocking and Young (Topology).

Section 28

Although the word was in use earlier (e.g.. “the number continuum.” Bolzano),
the general notion of continua as connected sets with certain properties was
introduced by Cantor (Uber unendliche, lineare Punktmannigfaltigkeiten), where
he regarded them as subsets of Euclidean spaces which are both closed and con-
nected (in his ¢-net sense, see the notes on Section 26). The definition was modified
to use the modern concept of connectedness by Jordan (Cours & Analyse) in 1893.

Compactness see , e definition until
the 1930’s althou Converted with Janiszewski’s, see
below) are proveq STn“ c

Continua irr 0““3"3' | first by Zoretti
(La Notlon d’e Li trial version niszewski (Sur les
Continus Irréduci [he latter gave a
proof of Theorer httn:/ /viww stdutilityv.com rouwer (Over de

Structur der perfecte Punkinerzamelingen), a statement ol which can be found in
Kelley (General Topology). More early references are given by Sierpinski (Théorie
des Continus Irréductibles entre Deux Points, I).

Cut points became an important part of investigations into the properties
of continua in the 1920’s. See, for example, Moore (Concerning the Cut Points of
Continuous Curves and of other Closed and connected Sets) and Whyburn (Con-
cerning the Cut Points of Continua). The separation order (although not the order
topology) on E(a, b) seems to be first mentioned in the latter paper. Theorems
28.13 and 28.14 on the characterization of the unit interval and the unit circle were
essentially proved in 1920 by Moore (Concerning Simple Continuous Curves). A
more exhaustive study of cut points and continua can be found in Whyburn
(Analytic Topology). Recently, a bibliography on analytic topology which
includes several references to results on cut points and continua has been compiled
by McAllister (Cyclic Elements in Topology, a History).

Indecomposable continua (28A) were studied in the 1920°’s by Mazurkiewicz
(Un Théoréme sur les Continus Indécomposables), Janiszewski and Kuratowski
(Sur les Continus Indécomposables) and Knaster (Un Continu dont tout Sous-
continu est Indécomposable). The notion can be found also in Brouwer (Zur
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Analysis situs). A problem posed by Knaster and Kuratowski (Probléme 2) in
1920 was not solved until 1948 by Bing (4 Homogeneous Indecomposable Plane
Continuum) although a continuum constructed in 1922 by Knaster himself (Un
Continu dont tout Sous-continu est Indécomposable) was discovered in 1951 to
be a counterexample. See also Bing and Jones (Another Homogeneous Plane
Continuum) and Hocking and Young (Topology).

The result in 28E.2 is due to Sierpinski (Un Théoréme sur les Ensembles F ermés).

Before leaving continua, we should mention one famous unsolved problem.
The plane-continuum problem asks whether every continuum K in the plane which
has connected complement has the fixed-point property (that every continuous
f:K — K has a fixed point). Borsuk (Sur un Continu Acyclique qui se laisse
Transformer Topologiquement et lui méme sans Points Invariants) produced a
chain of three-cells (homeomorphs of I x I x I) whose intersection fails to have
the fixed-point property. Finding a counterexample for the plane-continuum
problem is equivalent to finding an example similar to Borsuk’s using two-cells
in the plane. A recent reference on the problem is Bell (On Fixed-point Properties
of Plane Continua).

Section 29 Converted with
Totally disconne by Knaster and
Kuratz])wski (Sur STn“ con“erter chyexample 29.2
appears (on p. 2 trial version Fonnexes et Non
Connexes), where

The 0-dimeng httn:/ /viww stdutilityv.com odern dimension

theory. The inductive demnition of the dimension ind X of X goes as follows:
ind @ = —1 and ind X < n iff each point of x has a base of nhoods U with
ind [Fr (U)] < n — 1. This definition provides a satisfying theory for separable
metric spaces, as detailed in the classic book of Hurewicz and Wallman (Dimension
Theory), but has serious drawbacks in more general settings. In the general case,
use of one of the following dimension functions seems more appropriate: (1)
Inde = —1andInd X < niff given disjoint closed sets A and B of X, there is an
openset Uwith4 < U,U n B = gandInd [Fr(U)] <n — l,or(2)dimX < n
iff any finite open cover of X has a refinement by an open cover of order <n + 1,
where the order of a cover is the largest number of sets from the cover having some
point in common. The three dimension functions are called the weak inductive
dimension (ind X), the strong inductive dimension (Ind X) and the (Lebesque)
covering dimension (dim X). All three are equal for separable metric spaces.
Katetov (On the Dimension of Non-separable Spaces) and Morita (Normal Families
and Dimension Theory for Metric Spaces) extended dimension theory to general
metric spaces and showed Ind X = dim X for such spaces. Roy (Failure of
Equivalence of Dimension Concepts for Metric Spaces) gave an example of a metric
space X for which ind X # dim X. A comprehensive account of the status of
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dimension theory up to 1965 can be found in Nagata (Modern Dimension Theory).

Inverse limits (29.9 and 29C) were introduced in topology by Alexandroff
(Untersuchungen iiber Gestalt und Lage abgeschlossenes Mengen). They are
useful in the theory of compact topological groups. See, for example, Weil
(L’intégration dans les Groupes Topologiques et ses Applications) or Pontrjagin
(Topological Groups). In all these sources and other references from earlier periods,
they are called projective limits (of inverse systems). That Theorem 29.13(b) fails
to hold for noncompact spaces was demonstrated by Henkin (A4 Problem on
Inverse Mapping Systems).

The results in 29E can be found developed in Hewitt and Ross (Abstract
Harmonic Analysis I).

Section 30

Perfect sets were introduced by Cantor (Uber unendliche, lineare Punktmannig-
faltigkeiten (f)). The theorem characterizing the Cantor set (30.4) is proved in
Hausdorff (Grundziige der Mengenlehre); see also Hausdorff (Set Theory). The
theorem that every compact metric space is a continuous image of C (30.7) is due
to Alexandroff and Llrusahn (Méwmaive cur loc Fenacse Tanalaaiqyes Compacts).

A recent refg Converted with is no Universal-
projecting Homeo

A detailed st S'"]“ con“e"er emadeni (Sur les

Ensembles Clairsé ) i
trial version
httn://www stdutilitv.com

Peano spaces areso—comea oocatorrvamo o wre——owroegmremplit toute une
Plane) in 1890 shattered many ideas about dimension and continuity prevalent
at the time by producing a “space-filling curve,” that is, a continuous map f
carrying I onto I x L. Twenty-five years later Hahn (Mengentheoretische Charac-
terisierung der stetigen Kurven) and Mazurkiewicz (Sur les Lignes de Jordan)
characterized the continuous images of I by proving Theorem 31.5. There is
considerable present-day interest in finding a Hahn—Mazarkiewicz theorem for
nonmetric spaces. For progress up until 1966, see Mardesi¢ (On the Hahn—
Mazurkiewicz Problem in Non-metric Spaces).

A different approach to the proof of the Hahn—Mazurkiewicz theorem is
found in Hall and Spencer (Elementary Topology).

Excellent accounts of the development of the notion of continuous curve can
be found in the book by Hurewicz and Wallman (Dimension Theory) and the
article by Whyburn (What is a Curve?).

Section 31

Sections 32, 33

The fundamental group was introduced by Poincaré (4Analysis Situs; Cinquiéme
Complément a I’ Analysis Situs) around 1900. Hurewicz (Beitrdge zur Topologie
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der Deformation 1-1V) studied the fundamental group and introduced the higher
homotopy group in a series of four papers in the 1930’s. For more extensive
accounts of homotopy theory than we are able to give, see Hilton (An Introduction
to Homotopy Theory), Hu (Homotopy Theory), Massey (Algebraic Topology: An
Introduction) or Spanier (Algebraic Topology). For applications of homotopy
theory to other branches of topology, see Steenrod (The Topology of Fibre
Bundles), Hurewicz and Wallman (Dimension Theory) or Buseman (The Geometry
of Geodesics).

Section 34

That IT,(S") is infinite cyclic has been known since the fundamental group was
introduced (see notes, Section 32). The Brouwer fixed-point theorem was first
proved in 1910 by Brouwer (Beweis des Jordanschen Kurvensatzes). The proof
given here is based on the no-retraction theorem (34.5) due to Borsuk (Sur les
Retracts). Brouwer’s theorem can be proved without the use of algebraic methods.
See, for example, Whyburn (4nalytic Topology).

Section 35 Converted with

Uniform continui ned on Euclidean
spaces by Heine STn“ con“erter ergence had been
et er b islversio o e
Points du Calcul httn:/ /viww stdutilityv.com U engenlehre) and

the fact that continuous Tunctions on compact spaces are uniformly continuous
was implicit in the work of many who shared in the early development of topology
in the 1920’s. It was not until 1937 that Weil (Sur les Espaces a Structure Uniforme
et sur la Topologie Générale) introduced the general notion of a uniform space.
The approach via surroundings (as well as another approach, see the notes to
Section 38) was used by Weil and developed by Bourbaki (General Topology,
Part 1). Another approach, distinct from Weil’s and Bourbaki’s and much more
convenient from a topological point of view, was developed by Tukey (Convergence
and Uniformity in Topology) and is presented in the next section.

A comprehensive overview of the theory of uniform spaces, including biblio-
graphical notes (in the preface and at the end of each chapter), can be found in
Isbell (Uniform Spaces).

Section 36

Uniform covers were used as the basis for defining uniform structures by Tukey
(Convergence and Uniformity in Topology). His approach is the “best” in the eyes
of many, in a sense made precise by the following quote taken from the preface
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of Isbell’s book on uniform spaces: “. .. in this book, each system is used where it
is most convenient, with the result that Tukey’s system of uniform coverings is
used nine-tenths of the time.”

According to 36.16, every open cover of a paracompact space is a uniform
cover (in the fine uniformity). This does not characterize paracompact spaces;
the spaces it does characterize are described by Cohen (Sur un Probléme de M.
Dieudonné) and studied by Mansfield (Some Generalizations of Full Normality).
See also Corson (The Determination of Paracompactness by Uniformities) and the
notes to Section 39.

Section 37

All the results in this section are variants of basic results contained in any of the
three standard monographs on uniform spaces by Weil (Sur les Espaces a Structure
Uniforme et la Topologie Générale), Tukey (Convergence and Uniformity in
Topology) and Bourbaki (General Topology, part 1).

Uniform quotients (37E) are discussed at greater length in Isbell (Uniform
Spaces). together with their generalization. the strong uniformities (dual to the

weak uniformiti B} form spaces (37F)
are discussed in B Converted with
i | STDUConverter
The uniform met trial version in the language
of uniform space httn:/ /viww stdutilityv.com bn Nécessaire et

Suffisante pour quume Classe (Z) Soif une Classe (7)), Its statement and proof
were simplified by Chittenden (On the Metrization Problem and Related Problems
in the Theory of Abstract Sets) and A. H. Frink (Distance Functions and the
Metrization Problem); Weil, in his 1937 monograph, gives the theorem in the
language of uniform spaces. The approach via uniform covers is, of course, due
to Tukey.

The uniformization theorem (38.2) is due to Weil.

Gage structures (38A) were introduced in Weil’s original approach to uniform
spaces.

The argument used to prove that every locally compact group is normal
(38B.2) can be modified to show paracompactness without trouble, using Michael’s
theorem (20.7).

The results given in 38C are the cornerstone results on metrization of topo-
logical groups. 38C.1 is due to Kakutani (Uber die Metrisation der topologischen
Gruppen) and Birkhoff (4 Note on Topological Groups). Many other results and
examples can be found in Hewitt and Ross (4bstract Harmonic Analysis I). One
fascinating result, due to Hulanicki (On Locally Compact Topological Groups of
Power of Continuum) and Jones (On the First Countability Axiom for Locally
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Compact Hausdorff Spaces), is as follows: a locally compact topological group
containing an open set with N, elements is metrizable.

Section 39

Complete uniform spaces were defined by both Weil and Tukey in their germinal
monographs.

Uniform spaces can be completed in a manner analagous to the process used
to construct metric completions in Section 24 by turning to Cauchy filters; see
Bourbaki (General Topology, Part 1) and Exercise 39F. Our approach is that of
Kelley (General Topology) and Isbell (Uniform Spaces).

Kelley (General Topology) raised the question of whether a space X which is
completely uniformized (39B) by the family of all open covers (or the family of all
nhoods of the diagonal, if you wish) is necessarily paracompact. Corson (Normality
of Subsets in Product Spaces) provided a counterexample and, by adding another
condition (The Determination of Paracompactness by Uniformities) achieved a
characterization of paracompactness. See also the notes to Section 36. Later
Tamano showed Corson’s extra condition was by itself necessary and sufficient

for paracompactr
The example

continuous map

Kothe (Die Quot

Converted with

STDU Gonverter

open, uniformly
, can be found in
mes, p. 33). The
nation available;

proof of the resu trial version
it is developed in

For further d httn:/ /viww stdutilityv.com space, see Isbell
(Uniform Spaces).” The Tilter approach to completeness and completion (39F) is
employed in Bourbaki (General Topology, Part 1).

One of the deepest theorems available to date in uniform spaces would appear
in this section if there were space to develop it. It is due to Shirota (A Class of
Topological Spaces) and says: a Tychonoff space in which every closed discrete
subspace has nonmeasurable cardinal is completely uniformizable iff it is real-
compact (17H). So far, the theorem can be used without the cardinality restriction,
since every cardinal number known to man is nonmeasurable. For a discussion
of measurable cardinals and realcompactness and a development of Shirota’s
theorem, see Gillman and Jerison (Rings of Continuous Functions).

Section 40

Although it had been suggested as early as 1908 by Riesz (Stetigkeitsbegriff und
abstrakte Mengenlehre), and the idea was revived in 1941 by Wallace (Separation
Spaces), the theory of proximity had its real beginning with Efremovic (The
Geometry of Proximity I) in 1952, and was developed thereafter by several authors
(largely in the Soviet Union), notably Smirnov (On Proximity Spaces, On Proximity
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Spaces in the Sense of V. A. Efremovic, On Completeness of Proximity Spaces 1, 11;
On the Dimension of Proximity Spaces). Expository accounts appear in books by
Thron (Topological Structures) and Csaszar (Fondements de la Topologie Générale) ;
the latter book is concerned with providing a common axiomatic scheme for
topology, uniformity and proximity structures.

Our account of proximity structure here has been heavily influenced by a
reading of notes compiled by A. H. Stone for lectures given at the University of
Rochester in 1967.

For comments on the relationship between proximity structures and totally
bounded uniform structures, see the notes to Section 41.

The reference in the last paragraph of 40F is to Dowker (M appings of Proximity
Spaces). For results of metrization of proximity spaces, see Leader (Metrization of
Proximity Spaces).

Section 41

The equivalence of proximity structures on X, totally bounded uniform structures
on X and compactifications of X was developed by Smirnov (On Proximity Spaces

in the Sense of V. _ nt account of the
direct relationshig Converted with ximities is found
in Gal (Proximit STn“ c also Alfsen and
Fenstad (On the 0““3"3' Totally Bounded
Umform'Stru.ctun trial version y str}lctures and
compactifications ires) is developed
in Leader (On Cly hittm://WWwW.sStdutility.com  Proximity Spaces
by Local Clusters):.

Other recent references include Alfsen and Njastad (Proximity and Generalized
Uniformity) and Smirnov (Proximity and Construction of Compactifications with
Given Properties).

The Freudenthal compactification (40B) is treated in Isbell (Uniform Spaces).

Spaces with a unique uniformity (41F) were studied by Doss (On Uniform
Spaces with a Unique Structure).

Section 42

The study of pointwise convergence of (sequences of) functions is as old as the
calculus. The study of uniform convergence began hard on the heels of the formal-
ization of the notion of limit by Cauchy (Cours & Analyse de I'Ecole Royale
Polytechnique) in 1821. It was motivated by an example of Abel (Untersuchen
iiber die Reihe 1 + [m/1]x + [m(m — 1)/2]x* + [m(m — 1)(m — 2)/(2-3)]x> +
-+ -us.w.) showing that pointwise convergence of continuous functions to a
function f was not enough to ensure continuity of f, as Cauchy had assumed in
1821. Seidel (Uber eine Eigenschaft der Reihen welche Discontinunliche Functionen
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Darstellen), in an 1848 paper, first showed (without naming it) that uniform con-
vergence was what had been lacking. In the last half of the 19th century, in the
hands of Heine, Weierstrass, Riemann and others, uniform convergence came
into its own in applications to integration theory and Fourier series.

The study of sets, or spaces, of functions began with the work of Ascoli (Le
Curve Limitediuna Varieta Data di Curve), Arzela (Funzioni di Linee) and Hadamard
(Sur Certaines Applications Possibles de la Théorie des Ensembles). These papers
mark the beginning, not only of function space theory, but of general topology
itself, for it was the questions which they raised that men like Frechet, Riesz,
Weyl and finally Hausdorff (see notes, Section 3) were trying to answer.

Coherent attempts to study topologies on spaces of functions in their own
right began in 1935 with Tychonoff (Uber einen Funktionenraum), who pointed
out that his product topology (see notes, Section 8) on Y* is just the topology of
pointwise convergence. The term function space is used much earlier in connection
with questions of a topological nature about sets of functions; see, for example,
Birkhoff and Kellog (Invariant Points in Function Spaces), but I can find no earlier
work which explicitly refers to a function space as a set of functions with a given
topology. The uniformities of pointwise and uniform convergence were first

explicitly defined B} blogy).

The result of Gonverled with an Inner Charac-
teristic of the Set STn“ c pmpact Hausdorff
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trial version
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The compact—opem topology was nirst systematicalty aenmned and studied by Fox
(On Topologies for Function Spaces) and Arens (A Topology for Spaces of Trans-
formations). Most of the basic results in this section, including the description of
the compact—open topology as the topology of compact convergence, can be
found in these papers.

Ascoli’s theorem (43.15) is a generalization of Arzela’s theorem (43E): the
latter was proved by Ascoli (Le Curve Limite di una Varieta Data di Curve) in 1883
and Arzela (Sull’ Integrabilita delle Equazioni Differenziali Ordinarie) in 1895.
Custom recognizes the priority of Ascoli by assigning his name to the general
version of the theorem. The form of Ascoli’s theorem we give here is due to Gale
(Compact Sets of Functions and Function Rings); he improved an earlier general
version of Ascoli’s theorem given by Myers (Equicontinuous Sets of Mappings),
which involves spaces of functions from a locally compact or first-countable
space X to a metric space Y.

Joint continuity (43F) is studied in the papers of Fox and Arens cited above;
Arens’ paper also contains the theorem (43G.3) on metrizability of C(X). Other
results relating on properties of C(X) with the compact—open topology to proper-
ties of X can be found in Nachbin (Topological Vector Spaces of Continuous
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Functions), Shirota (On Locally Convex Vector Spaces of Continuous Functions),
and Warner (The Topology of Compact Convergence on Continuous Function
Spaces).

Spaces with compactly generated topologies (43.8, 43H) were considered in
1939 by Whitehead (Simplicial Spaces, Nuclei and m-groups). They were used in
the study of function spaces by Gale in the paper cited above, where the name
k-space first appears (he attributes it without reference to Hurewicz). Results on
products of k-spaces (43H.2) can be found in Dowker (Topology of Metric Com-
plexes) where two k-spaces are produced whose product is not a k-space, Cohen
(Spaces with Weak Topology) where it is shown that a product of a locally compact
Hausdorff space and a k-space is a k-space, and Michael (A Note on the Product
of k-spaces) where it is shown that Cohen’s result is the best possible. The result
43H.3 is due to Cohen (Spaces with Weak Topology).

Other references on k-spaces and function spaces include Mrowka (On
Function Spaces), Brown (Function Spaces and Product Topologies), Weston (A
Generalization of Ascoli’s Theorem), Bagley and Yang (On k-spaces and Function
Spaces), Poppe (Stetige Konvergenz und der Satz von Ascoli und Arzela) who gives
a survey of known Ascoli-type theorems, and Noble (k-Spaces) who surveys and
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Theorem 44.6 was proved 1 188> by weierstrass (Uber die analytische Darstell-
barkeit sogenannter willkiirlicher Functionen reeller Argumente). For comments
on his method of proof, see Hewitt and Ross (Abstract Harmonic Analysis 1,
p. 281). Another popular method of proof relies on Fejer’s theorem on summation
of Fourier series; see Sz.-Nagy (Introduction to Real Functions and Orthogonal
Expansions, p. 430), or Apostol (Mathematical Analysis, p. 481). Yet another
popular proof uses an interpolation formula due to Bernstein (Demonstration du
Théoréme de Weierstrass Fondée sur le Calcul des Probabilités), and can be found
in McShane and Botts (Real Analysis). For other proofs, see Fejer (Uber Weier-
strassche Approximation, besonders durch Hermitesche Interpolation), Royden
(Real Analysis, p. 313) and De Branges (The Stone—Weierstrass Theorem).

The Stone—Weierstrass theorem (44.5, 44.7) was first proved by M. H. Stone
(Applications of the Theory of Boolean Rings to General Topology). See also Stone
(The Generalized Weierstrass Approximation Theorem).

The approximation theorem in 44A was published by Hewitt (Certain
Generalizations of the Weierstrass Approximation Theorem). The approximation
theorem 44C.6 is due to Mrowka (Some Approximation Theorems for Rings of
Unbounded Functions). M. Jerison has been credited with 44D.3 by Henriksen
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and Johnson (in the paper cited below). The result in 44D.4 was proved by
Mrowka in the paper above, after Isbell (Algebras of Uniformly Functions) had
proved it for X locally compact and o-compact. It is interesting to note that
Hager and Johnson (4 Note on Certain Subalgebras of C(X)) have shown that
parts 4 and 5 of 44D cover the ground completely. That is, if C(X) is the only star
subalgebra of C(X) which separates points and closed sets, then either X is
Lindelof or [fX — X| < 1.

Stone—Weierstrass methods were introduced as a means of characterizing
certain algebras as algebras of continuous functions by Anderson and Blair
(Characterizations of the Algebra of all Real-valued Continuous Functions on a
Completely Regular Space; Characterizations of Certain Lattices of Functions).
Later work has been done by Henriksen and Johnson (On the Structure of a Class
of Archimedean Lattice-ordered Algebras), Anderson (Approximation in Systems
of Real-valued Continuous Functions) and Jensen (A note on Complete Separation
in the Stone Topology). For a somewhat different point of view on function
algebras (including the complex-valued case) see Browder (Introduction to
Function Algebras) or the survey article by Royden (Function algebras).

44E.1 is stolen from Rudin (Principles of Mathematical Analysis).
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to unique limit, 13.7

of subnet, 11.5, 17F

of subsequence, 17G

see also filter convergence, net

convergence, sequential convergence

convex set, 22C
countable ordinal, 1.19
countable set, 1.13, 1.14
countable chain condition, 16C

vs. caliber, 16C

in products, 16C

vs. separable, 16C, 21n
countable dense sybsystem, 16D
countable intersection property, 16D.4
countably compact spaces, 17.1, 17F

C(X) and C*(X) for, 17.13

cluster points in, 17F

characterization
closed sets in, 28
component of, 2
composant of, 2§
of convergence, 2
cutting of, 28.6, 1
examples of, 28.1
Ias, 28.13
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==—1.2(c), 17F.6, 20D

Converted with f, 17F

. 17F

IS

indecomposable, zo7x

intersection of, 28.2

irreducible, 28.3, 28.4, 28.9

vs. locally connected, 28D

St as, 28.14

subcontinua of, 28.3, 28.4, 28.6, 28A.3
continuum hypothesis, 1.16, 1n

vs. Dowker’s conjecture, 21n

vs. sequential compactness, 17G.6
vs. Souslin’s hypothesis, 21n
contractible space, 32.6

examples, 32.6, 32.14

iff, 32.7, 32.9

is pathwise connected, 32A
contractive map, 24.15

convergence

characterizes topology, 10.4
11.7,12.6

of filters, 12.3, 12E, 12G, 13.7, 17.4, 17K,
17M

Us. normal, 1773
product of, 17F, 21C
are pseudocompact, 17J
vs. sequentially compact, 17G
sequences converge in, 17F
subspaces of, 17F
countably paracompact space, 21.2, 21.3,
21.4,21A, 21B, 23B
covers, 15.9
intersection of, 36.3
traces of, 37.1
see also open cover, locally finite cover,
refinement, star-refinement, etc.
covering, 15.9
covering projection, 9K
covering space, 9K
covering uniformities, 36.2, 36C
base for, 36.3, 36.4, 36.7, 36C
vs. diagonal uniformity, 36.2, 36.4, 36.9,
36C
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examples of, 36.5, 36.15, 36B De Morgan’s laws, 1.4, 1B
fine uniformity as, 36.15, 36.16 dense set, 7C, 16.3
gage of, 38A in compact space, 19.1, 19.2,19.4, 19L
metrizable, 36.5 continuous function determined on, 7C,
on product, 37.13 13.13,13.14
separating, 36.2 vs. closed discrete set, 15.2
subbase for, 36.3, 36.11, 36F is countable, 16.3
on subspace, 37.2 in H-closed space, 19N
topology generated by, 36.6 is Lindelof, 20E
see also diagonal uniformity, uniform in normal space, 15.2
space. uniformities in paracompact space, 20E
cube, 14.13 in product space, 7F
sequential compactness in, 17G.1 in realcompact space, 190
subspaces of, 14.13, 19.4 denumerable set, 1.13
cut point, 28.5, 28.6, 28.7, 28.10 denumerable at infinity, 171
cutting, 28.5, 28.6, 28.7 derived set, 4.9, 4.10
derived sequence, 29.14
D (disk) has fixed-point property, 34.6 developable space, 23.6, 23.7
D(f),34.1,34.2, 343 development, 23.6, 23.7
S-isomorphism, 40, —40-12 <L Ll W n12 7 998, 35.1
é-map, 40.9-40.11 Converted with 5.2
é-nhoods, 40.3-40.7 6.4, 36C
decomposable conti STn“ c 'I
decomposition, 9.5 0n“er er ies, 36.2, 36.4, 36.9,
finite, 9E trial version
upper semicontin A, 35B
decomposiionmap  htp://www.stdutility.com 17, 36H
as closed map, 9.9 U Bage SITUTTUTES, 30A
as quotient map, 9.6 metrizable, 35.3(b)
decomposition space, 9.5 on product, 37.5
vs. identification space, 9.11 separating, 35.2, 35C
vs. quotient space, 9.6, 9B subbase for, 35.2, 35D
see also quotient space on subspace, 37.1
Dedekind complete (ordered space), 17E see also covering uniformities,
deformable, 32D uniformities
deformation, 32D diameter of a set, 24C
vs. deformation retract, 32E .4 differentiable manifold, 18.3
deformation retract, 32.10, 32.11 dim X, 29n
homotopy type of, 32.12 dimension of Banach space, 24]
iff, 32E .4 dimension theory, 29n
vs. retract, 32.11, 32E .4 direct topology, 9H, 91
vs. weak deformation retract, 32E directed set, 11.1
deformation retraction, 32.10 direction (order), 11.1
vs. retraction, 32.11 disconnected, 27.1
vs. weak retraction, 32D.3 see also connected spaces
see also deformation retract discrete collection or cover, 20.2

degree of f, 34.1, 34.2, 34.3 discrete metric, 2.2(e)



discrete proximity, 40.2
discrete topological spaces, 3.2(c)
continuous functions on, 7A
product of, 29.15, 30.5
as subspace, 4G, 15.2,17]J.3
vs. totally disconnected, 29.15
uniformities for, 35.8(e), 39E
discrete uniformity, 35.3(c)
disjoint union, 9.13, 9J
metrizability of, 23A
disk, 2.4
see also D
distance between sets, 2.4
distance function, 2.1
distributive lattice, 1.11
distributive law for sets, 1.4, 1B
domain of a function, 1.6
double of a space, 14B
Dowker’s conjecture, 21.4

Index 353

equivalent norms on Banach space, 25D .4
equivalent uniform structures, 35F
evaluation map, 8.11

as embedding, 8.12, 8.16, 19.4, 37.10,

37.11, 37B
eventually, 10.1, 11.3
exponential law, 431
extension of continuous functions

to fX, 19.5, 19.10, 19.12

on closed set, 15.8, 15D, 22D

to G,-set, 24.8

in metric spaces, 22D, 24.8

on (2, 17.2(c)

in normed linear space, 15H

on retracts, 15D, 22D

to Wallman compactification, 19M.1
extension of homeomorphisms, 24.9
extension of metrics, 22E, 24M
extension of uniformly continuous

£ 42 200 10

Dowker space, 21.4

dual space, 7L Converted with d space, 15G, 17P,

duality theorem (Po
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see also Sorgenfre lrial “ersin“

E(a, b), 28.10, 28.11

element of a set, 1.1 hitp:/ /www stdutility.com

elementary proximity, #U.z, 1.1
embedding, 7.8
evaluation as, 8.12, 8.16, 19.4, 37.10,
37.11, 37B
empty set, 1.2
e-disk, 2.4
as open set, 2.7(c), 2D
equicontinuous family, 43.12-43.15, 43E
equipotent sets, 1.12
equivalence class, 1.8
equivalence relation, 1.8
components given by, 26B
homotopy as, 32.3, 32.8, 32B
in proximity space, 41D
in pseudometric space, 2C
quasicomponents given by, 26B
for Ty-space, 13.2(c)
equivalent compactification, 19.6, 19.7,
19.8, 19E

equivalent metric, 22.1, 22.2, 24A, 24E, 36D

IITCT, TZ.1

base for, 12.1

Cauchy, 39F

closed, 12E

cluster point of, 12.3, 16D .4, 17.4, 17D,
17K.1, 17M..1

convergence of, 12.3, 17M.1

with countable intersection property,
16D .4

vs. finite intersection property, 17.3

image of, 12.7

lattice of, 12B

maximal, 12.10

vs. net, 12.15, 12.16, 12.17

open, 12E

prime, 12E

of zero sets, 12E

see also closed filters, open filters,
z-filters, ultrafilters

filter convergence, 12.3
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continuity described by, 12.8
vs. net convergence, 12.17, 12D
in product, 12.9
topology described by, 12.6
to unique limit, 13.7
fine proximity, 41.6
gives compactification, 41.8
fine space, 36.13, 36.15, 36.18, 36.19
fine uniformity, 36.13-36.19
C(X) does not generate, 38E
completeness of, 39B
finer filter, 12.1
finer proximity, 41.3, 41.7
finer topology, 3.1
see also stronger topology
finite character, 1.18
finite decomposition, 9E
finite-dimensional map, 42E

finite intersection property, 17.3, 17.4

of open set, 4G

in product, 8D

inR2?, 3B

in subspace, 6.4

topology described by, 3n
function, 1.6

characteristic, 1.15

continuous, 2.3, 2.8, 7.1

inverse of, 1.6, |H

one-one, 1.6

onto, 1.6

semicontinuous, 7K

uniformly continuous, 35.10, 36.8

see also continuous function, mapping
function space, 42.1ff

examples, 2B, 2H, 21, 4F, 7L.3, 8G.2,

24.6, 42.11f

functionally Hausdorff space, 14G
fundamental group, 33.2, 33.3, 33.6, 33.7

£l N4 4

first category, 25.1
first countable spacg Comnverted with
and countably co
vs. every point a STn“ c 'I
is k-space, 43.9 0n“er er
vs. semimetrizablg trial version 5C
and separable, 5K P4.13,25.3
sequential conver httn:/ /viww stdutilityv.com 24.9,24.12

and sequentially compact, T7G.3 —_exenamg [uncuon to, 24.8

fixed filter, 12.1
fixed points, 24.14
for continua, 28n
for contractive map, 24.16
for f: D - D, 34.6
for f: I - 1,26H
retracts and, 34D
Frechet filter, 12.2
Frechet space, 22.4
see also R™°
free filter, 12.1
free union, 9.13
see also disjoint union
Freudenthal compactification, 41B
frequently, 11.3
Frink’s metrization theorem, 23J
frontier, 3.13, 3.14, 3.15
empty, 26.1
nhoods describe, 4.7

extending homeomorphism to, 24.9
extending metric to, 24M
point as, 15C, 16A .4, 23D
gage structure, 38A
I, 4B
see also Moore plane
general metrization theorem, 23.9, 23E
generalized Hilbert space, 23.8
group
fundamental, 33.2
of homeomorphisms, 7N
homotopy, 33.2, 33D
topological, 13G

H (real Hilbert space), 21, 18.7, 18B
complete, 24A
vs. Hilbert cube, 22.4
as [P-space, 21
not locally compact, 18.7



metrics for, 18B, 24A

vs. R® 224

separable, 18B
H" (generalized Hilbert space), 23.8
H-closed spaces, 17K, 17L

dense subset of, 19N

vs. minimal Hausdorff, 17M

and semiregular, 17M 4
H-closure, 19N
Hahn-Banach theorem, 15H
Hahn—-Mazurkiewicz theorem, 31.5
Hausdorff criterion, 4.8
Hausdorff metric, 2F

completeness of, 39D.1

vs. hyperspace, 36E

uniformity generated by, 36E
Hausdorff spaces, 13.5, 13.7

closed continuous images of, 17N

closed subsets of, 17K
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homeomorphisms, 7.8, 7.9
as closed maps, 8.5
on compact space, 17.14, 17P
extension of, 24.9
on extremally disconnected space, 17P
group of, 7N
one-one continuous functions as, 8.5,17M
as open maps, 8.5
order isomorphisms as, 28B
piecewise definition of, 7TH
vs. p-isomorphism, 40.13
of product, 8J, 30F
of subsets of R, 7.10, 7G, 17R
vs. uniform isomorphisms, 39E
homogeneous space, Cantor set as, 30A
homotopic maps, 32.1, 33.1
composition of, 32.5
all maps are iff, 32.7
homotopically equivalent spaces, 32.8

compact subsets of
continuous images
14.7

ces as, 33C

Converted with as, 32.12

f, 33.7, 33C

convergence in, 13 STn“ cnn“erter ups of, 33D

examples of, 13.6,
examples of non-,
as maximal compas

open continuous in  A{tN://wWiww.stdutility.com

trial version D.3

nt topological pairs,

13.12, 13H
product of, 13.8
quotients of, 13.8-13.12, 17N
vs. semiregular, 14E
vs. separated proximity, 40C
vs. separated uniformity, 35.6
subspaces of, 13.8
vs. Urysohn spaces, 14F

Hausdorff topologies
intersection of, 13F
hedgehog metric, 23A
hemicompact spaces, 171, 43G
hereditarily Lindelof space, 16E
Hewitt realcompactification, 190
higher homotopy groups, 33D, 43K
Hilbert cube, 17.9(b), 22.4, 23.1
Hilbert space (abstract), 25E
Hilbert space (generalized), 23.8
Hilbert space (real), 18.7
see also H

MIOMOtopY, 3Z.1
as equivalence relation, 32.3
examples, 32.2, 32.14
of loops, 33.1
of pair-maps, 32.13
in products, 32C
in subspaces, 32C

homotopy class, 32.4
as path component in C(X, Y), 43J

homotopy equivalence, 32.8

homotopy extension property, 32F

homotopy group
fundamental, 33.2
higher, 33D, 43K
see also fundamental group, higher
homotopy groups

homotopy inverse, 32.8, 32D.1

hyperloop, 33D

hyperspace, 36E
completeness of, 39D
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I (closed unit interval), 1.2
not fX, 19.13
compact, 17.2
connected, 26.2
continuous image of, 31.5
as continuum, 28.13
as factor in normal product, 21.4
not homeomorphic to S, 26E

product of, 14.12, 14.13, 17.9(b), 17G.1

usual metric on, 2.2(d)
identification space, 9.11
examples, 9.12, 9A
as metric space, 2C
as separated proximity space, 41D
as Ty-space, 13.2(c)
identity map, 1.7
homotopy of, 32.6
inclusion map, 1.7

isolated point, 4G
isometric spaces, 2G, 24.3
isometry, 2G, 24.3
examples of, 2G, 18B.5, 18B.6, 24.4

jointly continuous, 43F

K (Knaster—Kuratowski space), 29.2,
29.8(c), 29B
k-space, 43.8
continuous function on, 43.10, 43D
first countable space is, 43.9
vs. locally compact, 43.9, 43H
subspace of, 43H
k-topology, 43.1
see also compact—open topology
Klein bottle, 9.12(¢)
Kuratowski closure operation, 3.7

Ind X, 29n L (looped line), 4D, 12A, 14A, 23A
ind X, 29n "
indecomposable co Gonverted with 12(H)
induction, 1.21, 1.27 ion to, 32G
transfinite, 1.22 STn“ c I
inner product space 0n“er er
interior, 3.9, 3.10 trialversion
vs. closure, 3.9 e 81, 91
examples, 312,3  hitm://www.stdtilitv.com 5o
vs. frontier, 3.14 Tattice complete, I7E

nhoods describe, 4.7

in product, 8D

in subspace, 6.4

topology given by, 3.11
intersection, 1.3

of covers, 36.3

as inverse limit, 29.10

of Hausdorff topologies, 13F

of topologies, 3G

of uniformities, 35E
invariance of domain, 18B
inverse-closed subalgebra of C(X), 44C
inverse limit sequence, 29.9-29.13

of uniform spaces, 37F
inverse limit space, 29.9-29.13, 29C
inverse limit spectra, 29C
image (of function), 1.6
irreducible continuum, 28.3, 28.4
irreducible subcover, 20D

Lavrentieff’s theorem, 24.9, 24M
Lebesgue covering lemma, 22.5
Lebesgue number, 22.5
left homotopy inverse, 32D.1
left uniformity, 35F
lexicographic order, 6D.3
limit of sequence of sets, 28D
limit ordinal, 1.19
Lindelof spaces, 16.5
accumulation points in, 16D.2, 16E.3
BX for, 20E
C(X) for, 44D 4
vs. compact, 17.1
continuous images of, 16.6
and countably compact, 17.1
as dense subspaces, 20E.2
embedding of, 16D.6, 44D .3
embedding in, 16E
examples of, 16.7, 16.10, 16D



examples of non-, 16.7, 16.10, 16H
hereditarily, 16E
iff, 16.11, 16D
vs. metrizable, 16.11, 23E.3
vs. normal, 16.8
open covers in, 16D
vs. paracompact, 20.8
product of, 16.6, 16.7
g-compact spaces are, 171
vs. second-countable, 16.9, 16.11
vs. separable, 16.10, 16.11
Stone—Weierstrass type theorem for,
44D 4
subspaces of, 16.6, 16