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engineering, and mathematics. It can be used as a course text or for self-study.

This Third Edition includes a new overview of Cartan’s exterior differential forms. It
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cations to a single extended problem in engineering; namely, the Cauchy stresses created
by a small twist of an elastic cylindrical rod about its axis.
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Preface to the Third Edition

A main addition introduced in this third edition is the inclusion of an Overview

An Informal Overview of Cartan’s Exterior Differential Forms,
Ilustrated with an Application to Cauchy’s Stress Tensor

which can be read before starting the text. This appears at the beginning of the text,
before Chapter 1. The only prerequisites for reading this overview are sophomore
courses in calculus and basic linear algebra. Many of the geometric concepts developed
in the text are previewed here and these are illustrated by their applications to a single
extended problem in engineering, namely the study of the Cauchy stresses created by
a small twist of an elastic cylindrical rod about its axis.

The new shortened version of Appendix A, dealing with elasticity, requires the
discussion of Cauchy stresses dealt with in the Overview. The author believes that
the use of Cartan’s vector valued exterior forms in elasticity is more suitable (both in
principle and in computations) than the classical tensor analysis usually employed in
engineering (which is also developed in the text.)

The new version of Appendix A also contains contributions by my engineering
colleague Professor Hidenori Murakami, including his treatment of the Truesdell stress
rate. [ am also very grateful to Professor Murakami for many very helpful conversations.

Xix






Preface to the Second Edition

This second edition differs mainly in the addition of three new appendices: C, D, and
E. Appendices C and D are applications of the elements of representation theory of
compact Lie groups.

Appendix C deals with applications to the flavored quark model that revolutionized
particle physics. We illustrate how certain observed mesons (pions, kaons, and etas)
are described in terms of quarks and how one can “derive” the mass formula of Gell-
Mann/Okubo of 1962. This can be read after Section 20.3b.

Appendix D is concerned with isotropic hyperelastic bodies. Here the main result
has been used by engineers since the 1850s. My purpose for presenting proofs is that
the hypotheses of the Frobenius—Schur theorems of group representations are exactly
met here, and so this affords a compelling excuse for developing representation theory,
which had not been addressed in the earlier edition. An added bonus is that the group
theoretical material is applied to the three-dimensional rotation group SO (3), where
these generalities can be pictured explicitly. This material can essentially be read after
Appendix A, but some brief excursion into Appendix C might be helpful.

Appendix E delves deeper into the geometry and topology of compact Lie groups.
Bott’s extension of the presentation of Morse theory that was given in Section 14.3c is
sketched and the example of the topology of the Lie group U (3) is worked out in some
detail.

xxi






Preface to the Revised Printing

In this reprinting I have introduced a new appendix, Appendix B, Harmonic Chains
and Kirchhoft’s Circuit Laws. This appendix deals with a finite-dimensional version
of Hodge’s theory, the subject of Chapter 14, and can be read at any time after Chapter
13. It includes a more geometrical view of cohomology, dealt with entirely by matrices
and elementary linear algebra. A bonus of this viewpoint is a systematic “geometrical”
description of the Kirchhoff laws and their applications to direct current circuits, first
considered from roughly this viewpoint by Hermann Weyl in 1923.

I have corrected a number of errors and misprints, many of which were kindly
brought to my attention by Professor Friedrich Heyl.

Finally, I would like to take this opportunity to express my great appreciation to my
editor, Dr. Alan Harvey of Cambridge University Press.






Preface to the First Edition

The basic ideas at the foundations of point and continuum mechanics, electromag-
netism, thermodynamics, special and general relativity, and gauge theories are geomet-
rical, and, I believe, should be approached, by both mathematics and physics students,
from this point of view.

This is a textbook that develops some of the geometrical concepts and tools that
are helpful in understanding classical and modern physics and engineering. The math-
ematical subject material is essentially that found in a first-year graduate course in
differential geometry. This is not coincidental, for the founders of this part of geom-
etry, among them Euler, Gauss, Jacobi, Riemann and Poincaré, were also profoundly
interested in “natural philosophy.”

Electromagnetism and fluid flow involve line, surface, and volume integrals. An-
alytical dynamics brings in multidimensional versions of these objects. In this book
these topics are discussed in terms of exterior differential forms. One also needs
to differentiate such integrals with respect to time, especially when the domains of
integration are changing (circulation, vorticity, helicity, Faraday’s law, etc.), and this
is accomplished most naturally with aid of the Lie derivative. Analytical dynamics,
thermodynamics, and robotics in engineering deal with constraints, including the puz-
zling nonholonomic ones, and these are dealt with here via the so-called Frobenius
theorem on differential forms. All these matters, and more, are considered in Part One
of this book.

Einstein created the astonishing principle field strength = curvature to explain
the gravitational field, but if one is not familiar with the classical meaning of surface
curvature in ordinary 3-space this is merely a tautology. Consequently I introduce
differential geometry before discussing general relativity. Cartan’s version, in terms
of exterior differential forms, plays a central role. Differential geometry has applications
to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical
systems. Differential geometry occupies the bulk of Part Two.

Einstein’s principle has been extended by physicists, and now all the field strengths
occurring in elementary particle physics (which are required in order to construct a

XXV
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Lagrangian) are discussed in terms of curvature and connections, but it is the cur-
vature of a vector bundle, that is, the field space, that arises, not the curvature of
space—time. The symmetries of the quantum field play an essential role in these gauge
theories, as was first emphasized by Hermann Weyl, and these are understood today in
terms of Lie groups, which are an essential ingredient of the vector bundle. Since many
quantum situations (charged particles in an electromagnetic field, Aharonov—Bohm ef-
fect, Dirac monopoles, Berry phase, Yang—Mills fields, instantons, etc.) have analogues
in elementary differential geometry, we can use the geometric methods and pictures of
Part Two as a guide; a picture is worth a thousand words! These topics are discussed
in Part Three.

Topology is playing an increasing role in physics. A physical problem is “well
posed” if there exists a solution and it is unique, and the topology of the configuration
(spherical, toroidal, etc.), in particular the singular homology groups, has an essential
influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory
play roles not only in modern gauge theories but also, for example, in the theory of
“defects” in materials.

Topological methods are playing an important role in field theory; versions of the
Atiyah-Singer index theorem are frequently invoked. Although I do not develop this
theorem in general, I do discuss at length the most famous and elementary exam-
ple, the Gauss—Bonnet—Poincaré theorem, in two dimensions and also the meaning
of the Chern characteristic classes. These matters are discussed in Parts Two and
Three.

The Appendix to this book presents a nontraditional treatment of the stress ten-
sors appearing in continuum mechanics, utilizing exterior forms. In this endeavor I
am greatly indebted to my engineering colleague Hidenori Murakami. In particular
Murakami has supplied, in Section g of the Appendix, some typical computations in-
volving stresses and strains, but carried out with the machinery developed in this book.
We believe that these computations indicate the efficiency of the use of forms and Lie
derivatives in elasticity. The material of this Appendix could be read, except for some
minor points, after Section 9.5.

Mathematical applications to physics occur in at least two aspects. Mathematics is
of course the principal tool for solving technical analytical problems, but increasingly
it is also a principal guide in our understanding of the basic structure and concepts
involved. Analytical computations with elliptic functions are important for certain
technical problems in rigid body dynamics, but one could not have begun to understand
the dynamics before Euler’s introducing the moment of inertia tensor. I am very much
concerned with the basic concepts in physics. A glance at the Contents will show
in detail what mathematical and physical tools are being developed, but frequently
physical applications appear also in Exercises. My main philosophy has been to attack
physical topics as soon as possible, but only after effective mathematical tools have
been introduced. By analogy, one can deal with problems of velocity and acceleration
after having learned the definition of the derivative as the limit of a quotient (or even
before, as in the case of Newton), but we all know how important the machinery of
calculus (e.g., the power, product, quotient, and chain rules) is for handling specific
problems. In the same way, it is a mistake to talk seriously about thermodynamics
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before understanding that a total differential equation in more than two dimensions
need not possess an integrating factor.

In a sense this book is a “final” revision of sets of notes for a year course that I
have given in La Jolla over many years. My goal has been to give the reader a working
knowledge of the tools that are of great value in geometry and physics and (increasingly)
engineering. For this it is absolutely essential that the reader work (or at least attempt)
the Exercises. Most of the problems are simple and require simple calculations. If you
find calculations becoming unmanageable, then in all probability you are not taking
advantage of the machinery developed in this book.

This book is intended primarily for two audiences, first, the physics or engineering
student, and second, the mathematics student. My classes in the past have been pop-
ulated mostly by first-, second-, and third-year graduate students in physics, but there
have also been mathematics students and undergraduates. The only real mathemati-
cal prerequisites are basic linear algebra and some familiarity with calculus of several
variables. Most students (in the United States) have these by the beginning of the third
undergraduate year.

All of the physical subjects, with two exceptions to be noted, are preceded by a brief
introduction. The two exceptions are analytical dynamics and the quantum aspects of
gauge theories.

Analytical (Hamiltonian) dynamics appears as a problem set in Part One, with very
little motivation, for the following reason: the problems form an ideal application of
exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part
Two, after geodesics have been discussed, do we return for a discussion of analytical
dynamics from first principles. (Of course most physics and engineering students will
already have seen some introduction to analytical mechanics in their course work any-
way.) The significance of the Lagrangian (based on special relativity) is discussed in
Section 16.4 of Part Three when changes in dynamics are required for discussing the
effects of electromagnetism.

Anintroduction to quantum mechanics would have taken us too far afield. Fortunately
(for me) only the simplest quantum ideas are needed for most of our discussions. I
would refer the reader to Rabin’s article [R] and Sudbery’s book [Su] for excellent
introductions to the quantum aspects involved.

Physics and engineering readers would profit greatly if they would form the habit
of translating the vectorial and tensorial statements found in their customary reading
of physics articles and books into the language developed in this book, and using the
newer methods developed here in their own thinking. (By “newer” I mean methods
developed over the last one hundred years!)

As for the mathematics student, I feel that this book gives an overview of a large
portion of differential geometry and topology that should be helpful to the mathematics
graduate student in this age of very specialized texts and absolute rigor. The student
preparing to specialize, say, in differential geometry will need to augment this reading
with a more rigorous treatment of some of the subjects than that given here (e.g., in
Warner’s book [Wa] or the five-volume series by Spivak [Sp]). The mathematics student
should also have exercises devoted to showing what can go wrong if hypotheses are
weakened. I make no pretense of worrying, for example, about the differentiability
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classes of mappings needed in proofs. (Such matters are studied more carefully in
the book [A, M, R] and in the encyclopedia article [T, T]. This latter article (and the
accompanying one by Eriksen) are also excellent for questions of historical priorities.)
I hope that mathematics students will enjoy the discussions of the physical subjects
even if they know very little physics; after all, physics is the source of interesting
vector fields. Many of the “physical” applications are useful even if they are thought
of as simply giving explicit examples of rather abstract concepts. For example, Dirac’s
equation in curved space can be considered as a nontrivial application of the method
of connections in associated bundles!

This is an introduction and there is much important mathematics that is not developed
here. Analytical questions involving existence theorems in partial differential equations,
Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there
is no discussion of Kaehler manifolds nor the algebraic—geometric notions used in
string theory. Infinite dimensional manifolds are not considered. On the physical side,
topics are introduced usually only if I felt that geometrical ideas would be a great help
in their understanding or in computations.

I have included a small list of references. Most of the articles and books listed have
been referred to in this book for specific details. The reader will find that there are
many good books on the subject of “geometrical physics” that are not referred to here,
primarily because I felt that the development, or sophistication, or notation used was
sufficiently different to lead to, perhaps, more confusion than help in the first stages of
their struggle. A book that I feel is in very much the same spirit as my own is that by
Nash and Sen [N, S]. The standard reference for differential geometry is the two-volume
work [K, N] of Kobayashi and Nomizu.

Almost every section of this book begins with a question or a quotation which may
concern anything from the main thrust of the section to some small remark that should
not be overlooked.

A term being defined will usually appear in bold type.

I wish to express my gratitude to Harley Flanders, who introduced me long ago to
exterior forms and de Rham’s theorem, whose superb book [F1] was perhaps the first to
awaken scientists to the use of exterior forms in their work. I am indebted to my chemical
colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin
for helpful criticisms of earlier versions of my lecture notes. I have already expressed
my deep gratitude to Hidenori Murakami. Joel Broida made many comments on earlier
versions, and also prevented my Macintosh from taking me over. I’ve had many helpful
conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth
made many helpful comments on various drafts and also served as “beater,” herding
physics students into my course. Above all, my colleague Jeff Rabin used my notes
as the text in a one-year graduate course and made many suggestions and corrections.
I have also included corrections to the 1997 printing, following helpful remarks from
Professor Meinhard Mayer.

Finally I am grateful to the many students in my classes on geometrical physics for
their encouragement and enthusiasm in my endeavor. Of course none of the above is
responsible for whatever inaccuracies undoubtedly remain.



OVERVIEW

An Informal Overview of Cartan’s
Exterior Differential Forms,
Illustrated with an Application to
Cauchy’s Stress Tensor

Introduction

0.a. Introduction

My goal in this overview is to introduce exterior calculus in a brief and informal way
thatleads directly to their use in engineering and physics, both in basic physical concepts
and in specific engineering calculations. The presentation will be very informal. Many
times a proof will be omitted so that we can get quickly to a calculation. In some
“proofs” we shall look only at a typical term.

The chief mathematical prerequisites for this overview are sophomore courses deal-
ing with basic linear algebra, partial derivatives, multiple integrals, and tangent vectors
to parameterized curves, but not necessarily “vector calculus,” i.e., curls, divergences,
line and surface integrals, Stokes’ theorem, . . . . These last topics will be sketched here
using Cartan’s “exterior calculus.”

We shall take advantage of the fact that most engineers live in euclidean 3-space
RR? with its everyday metric structure, but we shall try to use methods that make sense
in much more general situations. Instead of including exercises we shall consider, in
the section Elasticity and Stresses, one main example and illustrate everything in
terms of this example but hopefully the general principles will be clear. This engineer-
ing example will be the following. Take an elastic circular cylindrical rod of radius a
and length L, described in cylindrical coordinates r, 8, z, with the ends of the cylin-
der at z = 0 and z = L. Look at this same cylinder except that it has been axially
twisted through an angle kz proportional to the distance z from the fixed end z = 0.

X
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We shall neglect gravity and investigate the stresses in the cylinder in its final twisted
state, in the first approximation, i.e., where we put k> = 0. Since “stress” and “strain”
are “tensors” (as Cauchy and I will show) this is classically treated via “tensor analysis.”
The final equilibrium state involves surface integrals and the tensor divergence of the
Cauchy stress tensor. Our main tool will not be the usual classical tensor analysis
(Christoftel symbols Fj. « - - - » €tc.) but rather exterior differential forms (first used in
the nineteenth century by Grassmann, Poincaré, Volterra, . . ., and developed especially
by Elie Cartan), which, I believe, is a far more appropriate tool.

We are very much at home with cartesian coordinates but curvilinear coordinates
play a very important role in physical applications, and the fact that there are fwo
distinct types of vectors that arise in curvilinear coordinates (and, even more so, in
curved spaces) that appear identical in cartesian coordinates must be understood, not
only when making calculations but also in our understanding of the basic ingredients
of the physical world. We shall let x, and u’, i = 1,2, 3, be general (curvilinear)
coordinates, in euclidean 3 dimensional space R>. If cartesian coordinates are wanted,
I will say so explicitly.

Vectors, 1-Forms, and Tensors

0.b. Two Kinds of Vectors

There are two kinds of vectors that appear in physical applications and it is important
that we distinguish between them. First there is the familiar “arrow” version.

Consider n dimensional euclidean space R" with cartesian coordinates x', ..., x"
and local (perhaps curvilinear) coordinates u', ..., u".

Example: R? with cartesian coordinates x' = x,x% = v, and with polar coordinates
u' =r,u?=9.

Example: R? with cartesian coordinates x,y,z and with cylindrical coordinates
R,0,Z.

»

=9
w
® _3,
or
9%
p
L0
i
Example of R2
with polar coordinates

Let p be the position vector from the origin of R”" to the point p. In the curvilinear
coordinate system u, the coordinate curve C; through the point p is the curve where all
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u’, j # i, are constants, and where u' is used as parameter. Then the tangent vector to
this curve in R" is

dp/du’  which we shall abbreviate to  9; or 9/du’

At the point p these n vectors 94, ..., 3, form a basis for all vectors in R" based at
p. Any vector v at p has a unique expansion with curvilinear coordinate components
@', ...,

V= Eiviai = Eiaivi

We prefer the last expression with the components to the right of the basis vectors since
it is traditional to put the vectorial components in a column matrix, and we can then
form the matrices

8=,,...,8,) and v=| . |=0"...v"

Ul’[

(T denotes transpose) and then we can write the matrix expression (with v a 1x1 matrix)
v=20v ©.1)

Please beware though that in 8;v' or (8/du’)v’ or v = Ov, the bold & does not
differentiate the component term to the right; it is merely the symbol for a basis vector.
Of course we can still differentiate a function f along a vector v by defining

V(f) 1= (Z0,0)(f) = Zid/au’ (FHv' 1= Bi(3f/du )’

replacing the basis vector 8/9u’ with bold O by the partial differential operator 9/du’
and then applying to the function f. A vector is a first order differential operator on
functions!

In cylindrical coordinates R, ©, Z in R? we have the basis vectors 8 = O/0R, 0g=
0/00,and 8; = 8/9Z.

Let v be a vector at a point p. We can always find a curve u’ = u'(¢) through p
whose velocity vector there is v, v = du'’/dt. Then if u’ is a second coordinate system
about p, we then have v/ = du” /dt = (du"/ /ou')du' /dt = (0w’ /du')v'. Thus the
components of a vector transform under a change of coordinates by the rule

v/ = 3;@0u"” /au')v"  or as matrices v = (du’/du)v ©.2)

where (du’/0u) is the Jacobian matrix. This is the transformation law for the compo-
nents of a contravariant vector, or tangent vector, or simply vector.

There is a second, different, type of vector. In linear algebra we learn that to each
vector space V (in our case the space of all vectors at a point p) we can associate its
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dual vector space V* of all real linear functionals & : V — R. In coordinates, (V) is
a number

a(v) = ;g0

for unique numbers (a;). We shall explain why i is a subscript in a; shortly.
The most familiar linear functional is the differential of a function df. As a function
on vectors it is defined by the derivative of f along v

df (v) :== v(f) = X;(df/du’)v’ andso (df); = df/ou’

Let us write d f in a much more familiar form. In elementary calculus there is mumbo-
jumbo to the effect that du' is a function of pairs of points: it gives you the difference in
the u’ coordinates between the points, and the points do not need to be close together.
What is really meant is

du' is the linear functional that reads off the ith component of any vector v with
respect to the basis vectors of the coordinate system u

du' (v) = dui(ch')jvj) =

Note that this agrees with du'(v) = v()since v(u') = (Z;0,0)))
= Z)J‘((‘)l'ti/auj)vj = 2j8§’l)j = 'Ui.
Then we can write

df (v) = ;df/du')v' = X (3f/du’)du' (v)
i.e.,
df = X;(3f/du’)du’
as usual, except that now both sides have meaning as linear functionals on vectors.

Warning: We shall see that this is not the gradient vector of f!

Itis very easy to see thatdu', ..., du” form a basis for the space of linear functionals
at each point of the coordinate system u, since they are linearly independent. In fact,
this basis of V* is the dual basis to the basis 91, .. ., 8,, meaning

du'(8;) = &
Thus in the coordinate system u, every linear functional « is of the form
o = X;a;(u)du’  where a(d)) = Eiai(u)dui(aj) = Xq; (u)S; =aj

is the jth component of «.
We shall see in Section 0.1 that it is not true that every « is equal to df for some f!
Corresponding to (0.1) we can write the matrix expansion for a linear functional as

a=(ay,...,a)du",...,du™T = adu (0.3)

i.e., a is a row matrix and du is a column matrix!
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If V is the space of contravariant vectors at p, then V * is called the space of covariant
vectors, or covectors, or 1-forms at p. Under a change of coordinates, using the chain
rule, ¢ = a’ du' = a du = (a)(du/3u’)(du’), and so

a =a@u/ou') = a(du'/du)”" ie, a;=Xa;@u'/ou"”) 0.4)

which should be compared with (©.2). This is the law of transformation of components
of a covector.
Note that by definition, if « is a covector and v is a vector, then the value

av) = av = X;q;v'

is invariant, i.e., independent of the coordinates used. This also follows, from (0.2)
and (0.4)

a(v) =a'v' = a(@u/du’)@u'/du)v = a@u’/du) " (du’/du)v = av
Note that a vector can be considered as a linear functional on covectors,

V(o) = av) = 30

o.c. Superscripts, Subscripts, Summation Convention

First the summation convention. Whenever we have a single term of an expression
with any number of indices up and down, e.g., T4 ,,, if we rename one of the lower
indices, say d so that it becomes the same as one of the upper indices, say b, and if we
then sum over this index, the result, call it S,

abc ac
ZbT be = S e

is called a contraction of 7. The index b has disappeared (it was a summation or
“dummy” index on the left expression; you could have called it anything). This process
of summing over a repeated index that occurs as both a subscript and a superscript
occurs so often that we shall omit the summation sign and merely write, for example,
Te¢ ,, = $%,. This “Einstein convention” does not apply to two upper or two lower
indices. Here is why.

We have seen that if « is a covector, and if v is a vector then «(v) = a;v’ is an
invariant, independent of coordinates. But if we have another vector, say w = dw then
3 viw! will not be invariant

v w = vTw = [(0u'/au)v]’ Qu' /ou)w = v (Bu'/du)" (du’ /du)w

will not be equal to v"w, for all v, w unless (du’/du)” = (du’/du)~", i.e., unless the
coordinate change matrix is an orthogonal matrix, as it is when u and u’ are cartesian
coordinate systems.

Our conventions regarding the components of vectors and covectors

(contravariant = index up ) and ( covariant = index down) (*x)
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help us avoid errors! For example, in calculus, the differential equations for curves of
steepest ascent for a function f are written in cartesian coordinates as

dx'/dt = 9f/dx’

but these equations cannot be correct, say, in spherical coordinates, since we cannot
equate the contravariant components v’ of the velocity vector with the covariant com-
ponents of the differential df; they transform in different ways under a (nonorthogonal)
change of coordinates. We shall see the correct equations for this situation in Section
o.d.

Warning: Our convention (*x) applies only to the components of vectors and
covectors. In @ = a;dx’, the a; are the components of a single covector o, while each
individual dx’ is itself a basis covector, not a component. The summation convention,
however, always holds.

I cringe when I see expressions like ¥;v'w'’ in noncartesian coordinates, for the
notation is informing me that I have misunderstood the “variance” of one of the vectors.

0.d. Riemannian Metrics

One can identify vectors and covectors by introducing an additional structure, but the
identification will depend on the structure chosen. The metric structure of ordinary
euclidean space R? is based on the fact that we can measure angles and lengths of
vectors and scalar products (, ). The arc length of a curve C is

/ds
c

where ds? = dx? + dy® + dz? in cartesian coordinates. In curvilinear coordinates u
we have, putting dx* = (3x*/0u’)du’, and then

ds> = 5,(dx"? = %, jgi;du'du’ = g;;du’du’ (©.5)
where

gij = S (3x*/ou’)(dx* /du’)

= (dp/du’, dp/du’) (since the x coordinates are cartesian)

8ij = (31‘, 8/) = §ji
and generally
(v, w) = g;jv'w’ (0.6)

For example, consider the plane R* with cartesian coordinates x' = x, x> = y, and
polar coordinates u' = r, u?> = . Then

8xx = 1 8xy = O:| . |:gxx gxy:| _ |:] O:|
ie., =
8yx = 0 8yy = 1 8yx  8yy
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Then, from x = r cos@, dx = dr cosf — r sinf d, etc., we get ds* = dr? + r* d6?,

8rr = 1 8ro = 0 . 8rr  &ro _ I 0 q
8or =0 gopo = 72} e [ger gee} N [0 r? ©.7)

which is “evident” from the picture

r do

do

In spherical coordinates a picture shows ds? = dr?> +r? d6? +r? sin® 6 dy?, where
6 is co-latitude and ¢ is co-longitude, so (g;;) = diag(1, r?, r? sin® 0). In cylindrical
coordinates, ds* = dR> + R*d®” + d Z*, with (g;;) = diag(1, R?, 1).

Let us look again at the expression (0.5). If « and g are 1-forms, i.e., linear function-
als, define their tensor product o ® S to be the function of (ordered) pairs of vectors
defined by

a® BV, w) = a(v)B(W) (©.8)
In particular
(du' @ du")(v, w) := v'w*

Likewise (0; ® 9,)(a, B) = a;b; (why?).

o ® B is a bilinear function of v and w, i.e., it is linear in each vector when the other
is unchanged. A second rank covariant tensor is just such a bilinear function and in
the coordinate system u it can be expressed as

E,-,jaijdui X duj

where the coefficient matrix (a;;) is written with indices down. Usually the tensor
product sign ® is omitted (in du’ ® du’ but not in « ® B). For example, the metric

ds* = g;;du' @ du! = g;;du’du’ (©.5')
is a second rank covariant tensor that is symmetric, i.e., g;; = g;;. We may write

ds*(v,w) = (v, W)
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It is easy to see that under a change of coordinates u’ = u’(u), demanding that ds? be
independent of coordinates, g/, du"“du” = g;;du’du’, yields the transformation rule

8oy = (Ou' /9u'") g (du’ /9u”) (©.9)

for the components of a second rank covariant tensor.

Remark: We have been using the euclidean metric structure to construct (g;;) in
any coordinate system, but there are times when other structures are more appropriate.
For example, when considering some delicate astronomical questions, a metric from
Einstein’s general relativity yields more accurate results. When dealing with complex
analytic functions in the upper half plane y > 0, Poincaré found that the planar metric
ds* = (dx?® + dy®)/y* was very useful. In general, when some second rank covariant
tensor (g;;) is used in ametric ds® = g;;dx'dx’/ (in which case it must be symmetric and
positive definite), this metric is called a Riemannian metric, after Bernhard Riemann,
who was the first to consider this generalization of Gauss’ thoughts.

Given a Riemannian metric, one can associate to each (contravariant) vector v a
covector v by

v(W) = (v, w)
for all vectors w, i.e.,
Jo_ ok j d ok k
Vijw’ =V gkjw andso  V; =V gk = &jkV
In components, it is traditional to use the same letter for the covector as for the vector
k
Uj = gij

there being no confusion since the covector has the subscript. We say that “we lower
the contravariant index” by means of the covariant metric tensor (g jx).

Similarly, since (g ;) is the matrix of a positive definite quadratic form ds?, it has an
inverse matrix, written (g/*), which can be shown to be a contravariant second rank
symmetric tensor (a bilinear function of pairs of covectors given by g/*a;by). Then for
each covector a we can associate a vector a by a' = g”a;, i.e., we raise the covariant
index by means of the contravariant metric tensor (g/%).

The gradient vector of a function f is defined to be the vector grad f = V f
associated to the covector df, i.e., df (w) = (V£, w)

(V) = g"of/ou’

Then the correct version of the equation of steepest ascent considered at the end of
section O.c is

du'/dt = (V) = g"df/ou’

in any coordinates. For example, in polar coordinates, from (0.7), we see g"" = 1, g% =

1/’.2’ng =0=g9r'
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O.e. Tensors

We shall consider examples rather than generalities.
(i) A tensor of the third rank, twice contravariant, once covariant, is locally of the
form

A=09,®0;A7, @ du
It is a trilinear function of pairs of covectors o = a;d u',B=>b id u’ and a single vector
v = 9
A(a, B, V) = a;bj AV
summed, of course, on all indices. Its components transform as
A = (Qu/ut)(Qu' Jdu’ ) AT (du* Jdu'?)

(When I was a lad I learned the mnemonic “co low, primes below.”)
If we contracton i and k, the result B/ := A"/, are the components of a contravariant
vector

B7 = A", = AV (9u"/du’ ) (du* /9u"*) (du’ /du’)
= AV @u' Jdul)s*; = AV (0u'! Jdul) = (du' Jdu’) B
(ii) A linear transformation is a second rank (“mixed”) tensor P = 8; P'; ® du’.
Rather than thinking of this as a real valued bilinear function of a covector and a vector,

we usually consider it as a linear function taking vectors into vectors (called a vector
valued 1-form in Section ©.n)

P(v) =[8;P'; @ du’](v) := 8; P' j{du’ (v)} = 8; P' jv’
i.e., the usual
[PW] = Pjv/

Under a coordinate change, (P’ ) transforms as P’ = (du’/du) P(du’/du)~"', as usual.
If we contract we obtain a scalar (invariant), tr P := P/, , the trace of P. tr P’ =
tr P(du’/du)~'(u’/ou) = tr P.

Beware: If we have a twice covariant tensor G (a “bilinear form”), for example, a
metric (g;;), then X gy is not a scalar, although it is the trace of the matrix; see for
example, equation (0.7). This is because the transformation law for the matrix G is,
from (0.9), G’ = (0u/0u’)" G(du/du’) and tr G'# tr G generically.

Integrals and Exterior Forms

o.f. Line Integrals

We illustrate in R® with any coordinates x. For simplicity, let C be a smooth “oriented”
or “directed” curve, the image under F : [a,b] C R! — C c R? (which is read



XXXViii OVERVIEW OF CARTAN’S EXTERIOR DIFFERENTIAL FORMS

“F maps the interval [a,b] on R! into the curve C in R*”) with F(a) for some p and
F (b) for some g.

x!

If @« = a' = a;(x)dx' is a 1-form, a covector, in R?, we define the line integral [« as
follows.
Using the parameterization x' = F(t) of C, we define

fea = [ea;(x)dx' = [La;(x(©))(dx'/dt)dt = [,Pa(dx/dt)dt  (0.10)

We say that we pull back the form o' (that lives in R* ) to a 1-form on the parameter
space R', called the pull-back of «, denoted by F* (o)

F*(a) = a(dx/dt)dt = a;(x(t))(dx' /dt)dt

and then take the ordinary integral [,’a(dx/dt)dt. It is a classical theorem that the
result is independent of the parameterization of C chosen, so long as the resulting
curve has the same orientation. This will become “apparent” from the usual geometric
interpretation that we now present.

In the definition there has been no mention of arc length or scalar product. Sup-
pose now that a Riemannian metric (e.g., the usual metric in R?) is available. Then
to o we may associate its contravariant vector A. Then a(dx/dt) = (A, dx/dt) =
(A, dx/ds)(ds/dt) where s = s(t) is the arclength parameter along C. Then F*(«) =
a(dx/dt)dt = (A, dx/ds)ds. But T : = dx/ds is the unit tangent vector to C since
gij(dx'/ds)(dx’ [ds) = (g;;dx'dx’)/(ds*) = 1. Thus

F*(a) = (A, T)ds = ||A[[|IT| cos Z(A, T)ds
and so
fca = chtands (@.11)

is geometrically the integral of the tangential component of A with respect to the arc
length parameter along C. This “shows” independence of the parameter ¢ chosen, but to
evaluate the integral one would usually just use (0.10) which involves no metric at all!

Moral: The integrand in a line integral is naturally a 1-form, not a vector.

For example, in any coordinates, force is often a 1-form f! since a basic measure of
force is given by a line integral W = [ f! = [ fidx* which measures the work done
by the force along the curve C, and this does not require a metric. Frequently there is a
force potential V such that f! = dV, exhibiting f explicitly as a covector. (In this case,
from (0.10), W = [ f! = [cdV = [,bdV (dx/dt)dt = [,°(V /ox')(dx'/dt)dt =
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LAV (x(t)/dt}dt = V[ x(b)]— V[ x(a)] = V(q)—V (p).) Of course metrics do play
a large role in mechanics. In Hamiltonian mechanics, a particle of mass m has a kinetic
energy T = mv*/2 = mg;;x'x’ /2 (where x" is dx'/dt) and its momentum is defined
by px = 9(T — V)/dx*. When the potential energy is independent of X = dx/dt, we
have py = 9T /3x% = (1/2)mg;; (8" k37 + x'87 ) = (m/2) (g %7 + gux') = mgy;x7.
Thus in this case p is m times the covariant version of the velocity vector dx/dt.

The momentum 1-form “p;dx"” on the “phase space” with coordinates (x, p) plays
a central role in all of Hamiltonian mechanics.

0.g. Exterior 2-Forms

We have already defined the tensor product o! ® B! of two 1-forms to be the bilinear
form o! ® B'(v,w) = a'(v)B'(W). We now define a more geometrically significant
wedge or exterior product @ A S to be the skew symmetric bilinear form

011/\,31::0(1@,31—/31@051
and thus

. . . J J
du? A du* (v, w) = v w* — vFw/ = du’(v)  du’(W)

=l dukv)  duk(w) ©.12)

In cartesian coordinates x, y, z in R?, see the figure below, dx A dy(v, w) is =& the
area of the parallelogram spanned by the projections of v and w into the x, y plane, the
plus sign used only if proj(v) and proj(w) describe the same orientation of the plane as
the basis vectors 8, and 9,.

- proj (w)

proj (v)

Let now x',i = 1, 2, 3 be any coordinates in R3. Note that
dx! Adx* = —dx* Adx? and dx* Adx* =0 (no sum!) (0.13)

The most general exterior 2-form is of the form g = X,_;b;; dx' Adx’ where b;; =
—b;;. InR?, B2 = byy dx' Adx? + bydx® Adx®+ by dx' Adx?, or, as we prefer, for
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reasons soon to be evident,
2 _ 2 3 3 1 1 2 N
B = bydx” ANdx’ + by;dx’ ANdx” + b, dx Adx (©.14)

An exterior 2-form is a skew symmetric covariant tensor of the second rank in the sense
of Section 0.d. We frequently will omit the term “exterior,” but never the wedge A.

0.h. Exterior p-Forms and Algebra in R"

The exterior algebra has the following properties. We have already discussed 1-forms
and 2-forms. An (exterior) p-form r” in R" is a completely skew symmetric multilinear
function of p-tuples of vectors «(vy, ..., v,) that changes sign whenever two vectors
are interchanged. In any coordinates x, for example, the 3-form dx’ A dx’/ A dx* in R"
is defined by

dx'(A) dx'(B) dx'(C) Al B (C!
dx' A dx? A dx*(A,B,C) := |dx/(A) dx/(B) dx/(C)|=|A’ B/ CJ
dx*(A) dx*B) dx*(C) A*  BF C*

(©.15)

When the coordinates are cartesian the interpretation of this is similar to that in (0.12).
Take the three vectors at a given point x in R", project them down into the 3 dimensional
affine subspace of R" spanned by 9;, @;, and 9 at x, and read off & the 3-volume of
the parallelopiped spanned by the projections, the + used only if the projections define
the same orientation as 9;, 8;, and 0.

Clearly any interchange of a single pair of dx will yield the negative, and thus if the
same dx' appears twice the form will vanish, just as in (0.12), similarly for a p-form. The
most general 3-form is of the form o® = Ei<j<ka,~jkdxi Adx? A dx*.In R there is only
one nonvanishing 3-form, dx' A dx?> A dx? and its multiples. In cartesian coordinates
this is the volume form vol*, but in spherical coordinates we know that dr A dO A d¢
does not yield the euclidean volume element, which is r>sin@ dr A df A d¢. We will
discuss this soon. Note further that all p > n forms in R" vanish since there are always
repeated dx in each term.

We take the exterior product of a p-form « and a g-form S, yielding a p + ¢
form o A B by expressing them in terms of the dx, using the usual algebra (including
the associative law), except that the product of dx is anticommutative, dx A dy =
—dy A dx. For examples in R® with any coordinates

al A yl = (a1 dx" + ap dx* + a3 dx*) A (c; dx' + e dx? + ¢3dxY)
= (apdx*) A (crdx") + -+ (a1 dx") A (c2dx*) + -
= (arc3 — a3¢2) dx* A dx® + (azc; — ajc3) dx® A dx!

+ (ajco — axey) dx' A dx?
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which in cartesian coordinates has the components of the vector product a x c¢. Also
we have

al A B% = (a1 dx' + ardx* + a3 dx°) A (by dx* A dx?
+ by dx® Adx' 4+ b dx' Adx?)
= (a1b1 + arb, + a3b3)dx' AN dxz AN dx3

(where we use the notation by := by3, b, = b3, b3 = by, but only in cartesian coordi-
nates) with component a - b in cartesian coordinates. The A product in cartesian R’
yields both the dot - and the cross x products of vector analysis!! The - and x products
of vector analysis have strange expressions when curvilinear coordinates are used in
RR?, but the form expressions o' A 82 and o' A y! are always the same. Furthermore,
the x product is nasty since it is not associative, i X (i x j) # (i x i) x j.

By counting the number of interchanges of pairs of dx one can see the commutation
rule

a? A BT = (=1)PBI Aol (©.16)

0.i. The Exterior Differential d

Firstaremark. If v = 8,0 is a contravariant vector field, then generically (dv¢/0x?) =
Q°, do not yield the components of a tensor in curvilinear coordinates, as is easily seen
from looking at the transformation of Q under a change of coordinates and using (©.2).
It is, however, always possible, in R" and in any coordinates, to take a very important
exterior derivative d of p-forms. We define da” to be a p + 1 form, as follows; « is a
sum of forms of the type a(x)dx’ Adx’ A --- A dx*. Define

dla@x)dx' Adx? A ... ANdx*]=da Adx' Adx? AN dxF
= %,(0a/dx")dx" Adx' Adx! AL AdxF (0.17)

(in particular d[dx’ Adx/ A ... A dx*] = 0), and then sum over all the terms in «”. In
particular, in R3in any coordinates

df’ =df = f/ax"dx" + (3f/dx*dx* + (3f/dx*)dx*
do' = d(ay dx"+ a, dx*+ a3 dx*) = (0a, /0xH)dx* A dx' +(3a, /3x>)dx> A dx' + - - -
= [(da3/9x*) — (3ay/8x*))dx> A dx® + [(da,/9x>) — (das/9x"))dx> A dx!
+[(day/dx") — (3a;/3x*)]dx" A dx? (0.18)
dp? = d(byydx* Adx® 4+ b3 dx® Adx" + by, dx' A dx?)
= [(8by3/03x") + (8b31/0x%) + (8b12/3x>))dx' A dx* A dx®

In cartesian coordinates we then have correspondences with vector analysis, using
again by := by; etc.,

df’ & Vf-dx dao' < (curl a)-“dA” dp* < divB“dvol”  (0.19)

the quotes, for example, “dA” being used since this is not really the differential of a
1-form. We shall make this correspondence precise, in any coordinates, later. Exterior
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differentiation of exterior forms does essentially grad, curl and divergence with a
single general formula (0.17)!! Also, this machinery works in R" as well. Furthermore,
d does not require a metric. On the other hand, without a metric (and hence without
cartesian coordinates), one cannot take the curl of a contravariant vector field. Also to
take the divergence of a vector field requires at least a specified “volume form.” These
will be discussed in more detail later in section O.n.

There are two fairly easy but very important properties of the differential d:

d’a” : = d da? = 0 (which says curl grad = 0 and div curl = 0 in R?) ©.20)
0.
da? ABY)y =da AB+ (—1)P’a Adp

For example, in R® with function (0-form) f, df = (3f/dx)dx + (3f/dy)dy +
(3f/0z)dz, and then d*>f = (3% f/dx dy)dy A dx + --- + (3> f/dy dx)dx A dy
+ .- =0, since (3> f/0y dx) = (3> f/dx 9y).

Note then that a necessary condition for a p-form 87 to be the differential of some
(p — 1)-form, B = daP~!', is that dB = d da = 0. (What does this say in vector
analysis in R* ?)

Also, we know that in cartesian R*, o' A B! < a x b is a 2-form, d(a A B) <
diva x b (from (0.19)), and da < curl a,and weknow o' A y? =y2 A & a- c.
Then (0.20), in cartesian coordinates, says immediately thatd (e AB) = daAB—aAdB,
ie.,

divaxb = (curla)-b— a- (curl b) (0.21)

0.j. The Push-Forward of a Vector and the Pull-Back of a Form

Let F: R — R" be any differentiable map of k-space into n-space, where any

values of k and n are permissible. Let (u', ..., u*) be any coordinates in R¥, let
(x!,...,x") be any coordinates in R”. Then F is described by n functions x' =
Fi(u)=F'@u',...,u", ..., u") orbriefly x' = x'(u).

The “pull-back” of a function (0-form) ¢ = ¢(x) on R" is the function F*¢ =
¢ (x(u)) on R*, i.e., the function on R whose value at u is simply the value of ¢ at
x = F(u).

Given a vector v at the point uy € R* we can “push forward” the vector to the
point xo = F(ug) € R" by means of the so-called “differential of F,” written F,, as
follows. Let u = u(t) be any curve in R* with u(0) = ug and velocity at ug = [du/dt]
equal to the given vy. (For example, in terms of the coordinates u, you may use the
curve defined by u"(t) = uy" + vo"t .) Then the image curve x(¢) = x(u(¢)) will have
velocity vector at ¢ = 0 called F,[vy] given by the chain rule,

[F.(vo)]" := dx' (u(t))/dt]y = [0x'/3u" Ly [du" /dt]y = [9x' /31" Loy Vo
Briefly
[F.(W)]' = (3x'/3u" v’
Then
F v 0/du"]l =v" 8/dx" (dx"/ou"), (0.22),
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and so
F.0, = F.[0/0u’] = [8/3x'1(dx"/du") = 8, (dx" /du")

is again simply the chain rule.
Given any p-form « at x € R", we define the pull-back F*(«) to be the p-form at
each pre-image point u € F~'(x) of R by

(F*a)(v, ..., W) :=a(F.v, ..., F.w) (0.23)
For the 1-form dx’, F*dx' must be of the form a,du®; using dx'(8;) = §'; we get
(F*dx')(8,) = dx'[8;(dx7 /du")] = dx'/ou" = (3x'/du*)du’(D,)
and so
F*dx' = (3x'/du®)du’ (0.22)*

is again simply the chain rule.
It can be shown in general that F* operating on forms satisfies

F*(a? A B7) = (F*a) A (F*B)
and
Fdo =dF*a (0.24)

For example, F*dx' = dF*(x") = dx'(u) = (dx'/du’*)du’, as we have just seen.

For p-forms we shall use the same procedure but also use the fact that * commutes
with exterior product, F*(a A B) = (F*a) A (F*B). For simplicity we shall just
illustrate the idea for the case when B2 is a 2-form in R" and F: R* — R”. For more
simplicity we just consider a typical term by3(x)dx> A dx> of B.

F*[bys(x)dx* A dx®] := [F*bys(x)][F*dx*] A [F*dx’]
i= bo3 (x(u))[(0x/0u)du“]
AL@x*/0u)du‘] (summed on a and c¢)
Now (9x2/0u®)du® = (0x2/du")du' + (0x*/du®)du’* + (3x*/0u’)du’ with a similar
expression for (3x3/9u)duc. Taking their A product and using (0.13)
[(x2/0ub)du' + (0x*/du)du® + (3x/9u)du®] A [(0x3/du")du'
+ (0x? Jou)du® + (3x*/du)du’]
= (@x%/3u")du' A (3x*/du)du® + (3x?/u"Ydu' A (3x° J0u)du’
+ (0x?/du?)du® A (3x3/du")du' + (3x?/du*)du® A (3x/u)du®
+ (0x?/0u’)du® A (3x7/3u")du' + (3x?/du’)du® A (3x°/du*)du?
= [(dx?/3u®)(3x>/0u’) — (3x?/0u®)(3x* /du*)]du* A du’
+[(@x2/0uy(0x>/0u’) — (3x2/0u®)(0x>/ou")]du' A du®
+[(3x?/9u)(@x>/0u*) — (3x2/0u®)(3x>/du")]du' A du?
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and so
F*[byy(x)dx* A dx®] = by (x () Ea-[d(x?, x7) /0, u)du® A du’

where

dx/ou 0x/dv

d(x, y)/0(u,v) = dy/ou dy/dv

is the usual Jacobian determinant. In general, for pulling back a p-form on R" to R
via F: R* - R" we use

F*dx' A... A dx)) =S, [0(x',...0x0)/ae, ..., u")]ldu* A ... Adu"
(0.22)**

This procedure will play a key role in our discussion of surface integrals, see (0.25).

(0.20) and (©.24) contribute to what makes forms so powerful and useful, compared
to vector fields. The push-forward F, associated to a map F: R — R" will map a
vector v at u € R¥ to a vector F,v at x = F(u). But let v be a vector field, say on all
of R* and suppose F is not 1:1. Let u’ % u and F(u') = x = F(u). Then generically
F,v(u") will not agree with F,v(u), and so F,v will not be a well defined vector field
on R". On the other hand, if « is a p-form at x, then F*« will define a unique form at
u and another form at u’. If «” is a well defined p-form field on R" then F*« is a well
defined p-form field on R¥. For fields the tools (9.24) are then available.

Note that when F : R" — R”" is the identity map, using two sets of coordinates,
for example, (r,0) and (x, y) in the plane, and where the identity map F = [ is
x =rcosf,y = rsinf in R?, then the pull-back F*« is simply expressing the form
«, given in coordinates x in terms of the new coordinates u.

Finally note that (0.23) makes sense when « is a covariant p-tensor even if it is not
an exterior form, i.e., even if « is not completely skew symmetric. The pull-back of
the Riemannian metric tensor g, g(v, w) = g;;v'w’ plays a central role in elasticity,
as will be seen in Section ©.p. The pull-back of the quadratic form g;; dx’dx/ is again
just the application of the chain rule. Of course (0.24) does not make sense if « is not
an exterior form.

0.k. Surface Integrals and ‘‘Stokes’ theorem”

We illustrate with a surface V2 in R?. Assume, for example, that R® has the “right
handed orientation.” Assume that V2 is also “oriented” meaning that at each point p of
V there is a preferred sense of rotation of the tangent plane at p (indicated in the figure
below by a circular arrow), and this sense varies continuously on V. For example, if V
has a continuous choice of normal vector everywhere (unlike a M6bius band) then the
right hand rule for R will yield an orientation for V.

We are going to define [ B2 for any 2-form B on R®. If V is sufficiently small we
may choose a parameterization of all of V that yields the same orientation as V, i.e.,
we ask for a smooth 1:1 map

F : region $* C some R?> — onto V2 Cc R? xt =X, %)
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(If V is too large for such a parameterization, break it up into smaller pieces and add
up the individual resulting integrals.) We picture the resulting ¢!, > coordinate curves
on V as engraved on V just as latitude and longitude curves are engraved on globes of
the Earth. We demand that the sense of rotation from the engraved ¢! curve to the ¢*
curve on V (i.e., from F,8; to F,8,) is the same as the given orientation arrow on V.
Wesay V = F(S).

12

orientation
arrow for V2

1l

We now define
/ byydx* Adx® + by dx® Adx' +bpdx' Adx* = / p* = p* = /F*,B
1% 1% F(S) N

reducing the problem to defining the integral of the pull-back of 8 over S. First write
this out, but for simplicity we just look at the term b3 (x)dx> A dx'. As in (0.22)**

/ F*(by1(x)dx® Adx') == / by (x ())[(3x>/31)dt* A (3x'/81")d1"]
S S
= [BuGoaet </ far e
S

= /b31(x(t))[a(x3,x‘)/a(t‘,z2)]dz‘dz2
S

and where the very last integral, with no A , is the usual double integral over a region
S in the t', > plane. Thus

/V'B2 - F(S) p= /S e

= /S b (x()A(x?, x) /", 17)] + by (x () [3(x°, x") /0", 17)]
+bhp(x@)[ax!, xH) /0!, *)])dt dr? (0.25)

Note that one does not need to commit this to memory. One merely uses the chain rule
in calculus and dt' A dt> = —dt*> A dt' to get an integral over a region in the ¢!, ¢
plane, then omit the A and evaluate the resulting double integral.

Interpretation: In cartesian coordinates with the usual metric in R?, associate to
B2 the vector

B = (B' = by3, B> = b3, B = byp)”
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n = [9x/0t'] x [9x/d¢*] is a normal to the surface with components

(a2, x%)/a¢", 1, [a(, xH /e, )], G XD /¢!, HDT

Just as in the case of a curve, where ||dx/dt||dt is the element of arc length ds, so in
the case of a surface, where dx/d¢! and dx/9d¢* span a parallelogram of area
|(0x/0t') x (9x/dt?)|| = |n||, we have the area element “dA” = |n||dt'dt>. Our
integral (0.25) then becomes

/,3 _// (B, n)dt'dt? —// B |In]| cos Z(B, n)dt'dt*

= / / Buoma“dA”  (classically)

v
and this shows further that the integral /', 8 is in fact independent of the parameterization
F used.

Note again that our form version (0. 25) requires no metric or area element.

Moral: The integrand in a surface integral is naturally a 2-form, not a vector.

One integrates exterior p-forms over oriented p dimensional “surfaces” V?.If V7 is
not a “closed” surface it will generically have a (p — 1) dimensional oriented boundary,
written @ V. For example, if V2 is oriented, then the circular orientation arrow near the
boundary curve of V will yield a “direction” for dV ( see the surface integral picture
above)

Stokes’ Theorem /dﬁ”" =?£ pr! (0.26)
\%4 A%

is perhaps the World’s Most Beautiful Formula. The vector analysis versions, using
(0.19), include not only Stokes’ theorem (really due to William Thomson, Lord
Kelvin) when p = 2 and V2 is an oriented surface and 9V is its closed curve boundary,
but also Gauss’ divergence theorem when p = 3, V? is a bounded region in space and
aV is its closed surface boundary. For a proof see Chapter 3.

0.l Electromagnetism, or, Is it a Vector or a Form?

For simplicity we consider electric and magnetic fields caused by charges, currents,
and magnets in a vacuum (without polarizations, . . .)

Electric field intensity E: The work done in moving a particle with charge ¢ along a
curve Cisclassically W = [.q E-drbutreallyw = ¢ [. &' = ¢ [ E;dx'+ E,dx*+
E; dx3. The electric field intensity is a 1-form &' = E; dx' + E, dx*> + E; dx>.

Electric field D: The charge Q contained in a region V? with boundary 9V is
classically given by 47 Q(V?) = [[;, D-dA = [[[, div D vol, but really

92 = d9 =47 Q(V?) = 4n pvol®
117=111 1

where p is the charge density. Stokes’ theorem thus yields Gauss’ law
d9? = 4z pvol®

92 is a 2-form version of &' . In cartesian coordinates 9> = E; dx> Adx> + E, dx* A
dx' + E;dx' A dx®.
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Magnetic field intensity B: Faraday’s law says classically, for a fixed surface V2,
¢,y E-dr=—d/dt [[, B-d A.Really §,, &' = —d/dt [[, #*. The magnetic field
intensity is a 2-form % and Faraday’s law says

ds' = —9%?/ot

where 0%%/0t means take the time derivative of the components of $2. Another axiom
states that

div B=0= d®?

Magnetic field H: Ampere-Maxwell says classically §._,, H-dr =4x [[, j-dA
+d/dt [[, D - dA where V? is fixed and j is the current vector. Really

ézavﬂ(l:éln//vﬁ%—d/dt//v@z

i = 4x }? +99?/0t

and thus

where}/2 is the current 2-form whose integral over V2 (with a preferred normal direction)
measures the time rate of charge passing through V2 in that direction. 3! is a 1-form
version of %2. In cartesian coordinates

3" = Bydx! + Bydx® + Bjodx®

Heaviside-Lorentz force: Classically the electromagnetic force acting on a particle
of charge ¢ moving with velocity v is given by f = g(E 4+ v x B). We have seen that
force and the electric field should be 1-forms, ]ﬁl = q(&' 4+ ?7). v is definitely a vector,
and B is a 2-form! We now discuss this dilemma raised by the vector product x and its
resolution will play a large role in our discussion of elasticity also.

©.m. Interior Products

We are at home with the fact @' A B! is a 2-form replacement for a x product of vectors
in R?, but if we had started out with two vectors A and B it would require a metric to
change them to 1-forms. It turns out there is also a 1-form replacement that is frequently
more useful, and will resolve the Lorentz force problem.

In R", if v is a vector and B? is a p-form, p > 0, we define the interior product of
v and S to be the (p — 1)-form iy B (sometimes we write i (v)8) with values

ivBP(Aa, ..., Ay) =B (v, Ay, ..., A)) 0.27)
(It can be shown that this is a contraction, (iy8)s... = v'Bi.). This is a form since
it clearly is multilinear in A,, ..., A, since § is, and changes sign under each inter-

change of the A, and is defined independent of any coordinates. In the case of a 1-form
B, iypB is the O-form (function)

ivB' = B'(v) = b/
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which is equal to (v, b) in any Riemannian metric. Look at iy(a' A B'):
ivi@' A BH(C) = (@' A BH(Y, C) =a(v)B(C) —a(O)BV)
= ((yo) B(C) — (iyB)a(C) = [(Lv) B — (ivf)a](C)
A more tedious calculation shows the general product rule
iy(a? A 1) = [iv(@”)] A B + (=DPa” AliyBY] (©.28)

just as for the differential d (see (0.20)).

O.n. Volume Forms and Cartan’s Vector Valued Exterior Forms

Let x, y be positively oriented cartesian coordinates in R”. The area 2-form in the
cartesian plane is vol> = dx A dy, but in polar coordinates we have vol> = rdr A d6.
Looking at (0.7) we note that r = /g, where

g = det(g;)) (0.29)
In any Riemannian metric, in any oriented R", we define the volume n-form to be
vol" := /gdx' A ... Adx" (©.30)

in any positively oriented curvilinear coordinates. It can be shown that this is indeed
an n-form (modulo some question of orientation that I do not wish to consider here).
In spherical coordinates in R® we get, since (g;;) = diag(l, r2, r?sin’9), the familiar
vol® = r2sin@dr A dé A dg.

Note now the following in R* in any coordinates. For any vector v

iyvvol’ = i,\/gdx" A dx* Adx® = /gi,(dx' Adx* Adx®)
Now apply the product rule (0.28) repeatedly
iv(dx' Adx* Adx?) = v'dx* Adx® —dx! Aiy(dx® A dx?)
=vldx? Adx® — dx' A [V2dx? — vidx?]
=v'dx* Adx® —vidx" AdxP +vidx' A dx?
and so
iyvol’ = /g[v'dx* A dx® +vdx® A dx' + vidx' A dx?] (0.31)

is the 2-form version of a vector v in R with a volume form vol>.

Remark: For a surface V2 in Riemannian R3, with unit normal vector field n, it is
easy to see that i,vol® is the area 2-form for V2. Simply look at its value on a pair of
vectors (A, B) tangent to V; i,vol’(A, B) = vol’(n, A, B) is the area spanned by A
and B.

Comparing (0.31) with (0.14) we see that the most general 2-form 82 in R® (with
vol?), in any coordinates, is of the form

B> = ipvol’ where b' = by3/./g, etc. 0.14)
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In electromagnetism,
‘ﬁz = l'EVOI3

The same procedure works for an (n — 1) form in R". Note that this does not require
an entire metric tensor, we use only the volume element. If we have a distinguished
volume form (i.e., if we have a coordinate independent notion of the volume spanned by
a “positively oriented” n-tuple of vectors in R"), even if it is not derived from a metric,
we shall use the same notation in positively oriented coordinates, as given in (0.30)

vol" = /gdx' A ... Adx"

where /g > 0 is now merely some coefficient function dependent on the choice of
volume form and the coordinates used. (Warning: this notation is my own and is not
standard.)
If we have a volume form, we can define the divergence of a vector field v as follows
(div v)vol" : = d(i,vol") = d{/g[v' dx* Adx* A ... Adx"
—vidx' AdP AL A" ]

=[d('/g)/ox" +d(v*/g)/ox* 4+ - 1dx" A ... AdX"
ie.,

divv = (1//g)3/9x' (/gv') (0.32)

If, furthermore, the volume form comes from a Riemannian metric we can define the
Laplacian of a function f by

V2= Af i=div V f = (1/4/§)3/0x' (/gg"3f/3x)) (©.33)

We now wish to consider the notion of vector or x product in more detail. We have
seen in Section ©.h that in R? in any coordinates the 2-form

a' Ayl = (a dx' + ay dx? + a3 dX°) A (¢ dx' + ¢, dx* + 5 dx7)

= (arc3 — azc2)dx* A dx>+ (az¢1— ayc3)dx> A dx' + (ayc, — axe))dx* A dx®

corresponds to the cross product a x ¢ in cartesian coordinates, and this 2-form version
is ideal when considering surface integrals in any coordinates.

We shall now give a 1-form version of a x b, we write (a x b),, which will be
very useful in line integrals and in our later sections considering electromagnetism and
elasticity.

In R? with a vol?, and in any coordinates, we define

(a x b), is the unique 1-form defined by (a x b),(¢) := vol’(a, b, ¢)

for every vector ¢. If we have a metric, then (a x b), (¢) = (a x b) - (¢) = vol*(a, b, ¢)
gives the usual definition of the vector a x b, but clearly the 1-form version is more
basic since it does not require a metric. (Question: how would you define a x-product
of n — 1 vectors in an R" with a vol"?)
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Note
vol’(a, b, ¢) = —vol’ (b, a, ¢) = (—ij, voI’)(a, ¢) = —p*(a, ¢) = (—iB°)(c)
where 2 = iy, vol is the 2-form version of b. Thus in any coordinates with a vol®
(a x b), = —i,B> = —i,lin vol’] (0.34)
which, from (0.31)

(axb),= —i(a'd,+ a8, +a’83)/glb' dx* A dx® + b* dx’ Adx' + b dx' A dx?]
= /gl(@®h® — &’bPdx" + (@®b' — a'b*)dx* 4 (a'b* — a*b")dx?]

Now we can write the Lorentz force law of Section 0.1
1 1 2
[ =q@" —iw?

Finally, an important restatement of the cross product in R*. We are going to follow
Elie Cartan and use 2-forms whose values on pairs of vectors are not numbers but
rather vectors or covectors. Let x,® = x, be the covector-valued 2-form with value
the covector x. (a,b): = (a x b), . The jth component of this covector is

x«(@,b); = (axb); = (axb).(8;) =vol’(d;,a,b) = [i(d;)vol’](a, b)
Thus
X« = dx’ ® x; = dx’ ®[i(8;)vol’] (0.35),

Note the ® not A. By definition, the value of the 2-form x, on the pair of vectors a, b
is not a number, but rather the 1-form

x+(@,b) = [vol’(9;, a, b)]dx’
With a Riemannian metric, the contravariant version is the vector valued 2-form
X" = 0; ® gi(8;)vol’ (0.35)*

This is the 2-form that, when applied to the pair of vectors, yields a x b. In cartesian
coordinates we can write it symbolically as the column of 2-forms

ldy Adz dz Adx dx Ady]”

whose value on a pair of vectors (a, b) is the column of components of a x b.

0.0. Magnetic Field for Current in a Straight Wire

This simple example illustrates much of what we have done. Consider a steady current
j in a thin straight wire of infinite length.
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D

C”

Since the current is steady we have Ampere’s law §._,, ' = 4x [[,, Jz Looking at
three surfaces bounded respectively by C, C’, and C” and the flux of current through

them, we have
j{?&(‘l =4nj =7{ ¢!
C ’

while ¢, 3" = 0. Introducing cylindrical coordinates, we can guess immediately that
3! = 2j d6 in the region outside the wire, for it has the correct integrals. We require,
however, that div B = 0 = d%2. Now %2 = iy vol® where H is the contravariant version
of the 1-form 3(. The metric for cylindrical coordinates is diag(1, 72, 1) and Hy = 2j is
the only nonzero component of our guess 7', hence H = g% H, (no sum) = (1/r2)2j.
Then %2 = igvol® becomes

#2 = (2j/rD)i(@p)r dr AdO Adz = —(2j/r)dr Adz = d[—2j(Inr)dz]

Clearly d$ = 0, as required and, in fact, [-2j(In7)dz] is a “magnetic potential”
1-form o! outside the wire, $*> = do'. Another choice is a' = 2jz/r dr.

Elasticity and Stresses

o.p. Cauchy Stress, Floating Bodies, Twisted Cylinders,
and Strain Energy
In learning the sciences examples are of more use than precepts.
Isaac Newton, Arithmetica Universalis (1707)

We look at our cylinder B and its twisted version F'(B) in Section O.a, but first we shall
use cartesian coordinates x'. Consider any small surface V in F(B) passing through a
point p and let n be a normal to V at p. Then because of the twisting, the material on
the side of V towards which n is pointing, exerts a force f on the material on the other
side of V. Cauchy’s “first theorem” states that this force is reversed if we replace n by



lii OVERVIEW OF CARTAN’S EXTERIOR DIFFERENTIAL FORMS

—n, and further this (contravariant) force is given by integrating a vector valued 2-form
tover V (not Cauchy’s language)

fonV =9, [/ t“bi(ab)vol3]
14

where t is the “Cauchy stress tensor.” A sketch of a proof of Cauchy’s theorem will be
given in Section ©.q. Cauchy’s “second theorem” says t“* = t** and a proof sketch is
given in Section O.r. (The fact that the stress force is reversed if n is replaced by —n
informs us (see Section 2.8f) that the stress form is technically a “pseudo-form.” )

As a warm-up check of our machinery, let us look first at an example of the simplest
type of stress from elementary physics. In the case of a nonviscous fluid, given a very
small parallelogram spanned by v and w and with normal n = v x w, the fluid on the
side to which n is pointing exerts a force on the other side approximated by —pv x w,
where p is the hydrostatic pressure. From (0.35) the stress vector valued 2-form is
given by t = —8; ® pgi(8;)vol’. In a pool with cartesian coordinates x, y, z, with
the origin at the surface and z pointing down, look at a floating body B, with portion
B’ below the water surface, with surface normal pointing out of B. While Archimedes
knew the result, we need to practice with our new tools.

B

Then the total stress force exerted on d B from water of constant density p outside B
is, with g¥ = 8" and p = pgz

fzai/ tiji(Bj)Vol3=—6i/ p8i(8;)vol’
0B’ aB’

= -9, pgzdy Ndz — 9, pgzdz Ndx — O, pgzdx Ndy
dB’ dB’ dB’

where we have included the part of dB’ at water level z = 0, even though there is
no water there, since pgz = 0 there and we get a 0 contribution from it. We shall
evaluate the surface integrals by applying Stokes’ theorem (0.26) to B’. The three
2-forms pgz dy A dz, etc, apply only to the outside of B’ since there is no water inside
B’. To apply Stokes’ theorem to B’, we must extend these 2-forms from the boundary of
B’ mathematically to the inside of B’, in any smooth way that we wish, and we choose



ELASTICITY AND STRESSES liii
the same forms as are given outside B’, with p = pyuer again! Then by Stokes
f=-0, /B,d[pgz dyndz] -0, B,d[,ogz dz Andx] -0, /B,d[pgz dx ANdy]

_ —BZ/B/pgdx/\dy/\dz — oW

where W’ is the weight of the water displaced by B’. Equilibrium demands this must
equal the weight of the whole body B. Thus a floating body displaces its own weight
in water. EUREKA!!

Back to our twisted cylinder: Introduce cylindrical coordinates (X%) = (R, ©, Z)
for the untwisted cylinder B. Next, introduce an identical set of coordinates (x*) =
(r, 0, z) and use the capitalized coordinates for a point in the untwisted body and 7, 6, z
for the coordinates of the image point under the twist F. Thus F is described by
r=R,0 =0+ kZ,and 7z = Z, where k is a constant. We need to determine the
Cauchy vector valued stress 2-form t = 8, ® 1, = 8, ®*i(9,)vol® on F(B) in terms
of the twisting forces and the material from which B is made. We shall do this by first
pulling this 2-form back to the untwisted body B by the following procedure; we pull
back the 2-forms t¢ by F* and we push the vectors 8, back to B by the inverse (F~!),,
which exists since F is a 1:1 deformation. The resulting vector valued 2-form on B is

& =[(F (0] ® F*t' = (F).(8,) ® F*[t*i(8,)vol’]
which is of the form
S=0,05" =08, ®S%i(85)vol’ (0.36)

called the second Piola—Kirchhoff vector valued stress 2-form. We shall relate this
form to the twist F' by a generalization of Hooke’s law.

We need to know how this twist F has stretched lengths and changed angles in the
body, and this is described as follows. The euclidean metric is dS*> = (dR*>+ R> d©®> +
dZ?) = ds* = (dr* + r* d9* + dz*). The pull-back (last paragraph of Section ©.j) of
ds? under the twist F is given by the chain rule

F*ds® = F*(dr* +r* d6® 4+ dz*) = dR*> + R*[(360/3©)d© + (00/0Z)d Z]* + d Z*
=dR* + R*dO® +k dZ)* +dZ*
=dR> + R*[d®*> 4+ 2k dOdZ + k* dZ*] + d Z*

Recall what this is saying. At a point R, ®, Z of the untwisted body, given two vectors
A, B, we have not only the scalar product (A, B) = dS*(A, B) but also the scalar product
of the images after the twist, i.e., from (0.23), ds*(F,A, F,B) =: (F*ds*)(A, B). Then
one measure of how much the twist F is distorting distances and angles is defined by
the Lagrange deformation tensor

E := J[(F*ds*) — dS°] 0.37)

The quadratic form (covariant second rank tensor) E is determined by its square matrix.
How do the stresses depend on the deformations? In our twisting case we have
E =kR*dO dZ + 1k*R* dZ*. We will work only to the first approximation for small
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k,i.e., we shallputk> = 0,50 E = kR*d® dZ = %kR2(d® dZ + dZ d©). We write
the components as a symmetric matrix

0 0 0
(Ery)=10 0 kR?/2
0 kRY2 0
The mixed version, using E4;, = GAE;p and (GX!) = diag(l, 1/R?, 1), is the
(nonsymmetric)
0 0 0
(E% =10 0 k)2
0 kR22 0

andthustr E = E4, = 0“mod k2, i.e., putting k> = 0. Finally, putting EA? = E4G'8

0 0 0
(EAB) = [0 0 k/2]
0 k/2 0

Linear elasticity assumes a linear, vastly generalized “Hooke’s law” relating the
stress S to the deformation E. Assuming the body is isotropic (i.e., the material has
no special internal directional structure such as grains in wood), it can then be shown
(e.g., equation (D.9)), that there are then only two “elastic constants” u and A relating
Sto E

SAB = 2uE*® 4+ A(tr E)G*® (0.38)
and so
0 0 0
($By=10 0 uk
0 uk O

This gives rise to the second Piola—Kirchhoff vector valued stress 2-form on the unde-
formed body

5:=8,®8"7i(@,))VOL* =8, ® S"Vi(8;))RARAdO ANdZ
=[8o @ $?%i(8,) +0; @ S?°i1(8,)]RAR ANdO NdZ
$ = ukR[Be ® AR ANdO + 8, ® dZ A dR] (0.38")

Finally, the Cauchy stress vector valued 2-form { on the “current” deformed body
from (0.36),is t = F,0, ® (F~1)*S4. Using F~! definedby R =r, ® = 0 — kz,
Z =z, we get

L= pkr(0y @ (F)*(dR AdO)+ 8. ® (F)*(dZ AdR)]
= pkr[8y @ dr A (d6 —k dz) + 0. ® dz Adr] and discarding k*
t= ukr(0y @ dr AdO + 0, ® dz A dr] (0.39)

To get correct “dimensions” for force we use the “physical” components of force,
i.e., we normalize the (already orthogonal) basis vectors. Since g,, = 1 = g.,, 8, and
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8. are unit vectors, call them e, and e.. But ggo = r2, and so 8y, by (0.6), has length
r, and so we put e; = r~'8,. We make no changes to the form parts dr, df, and dz

L= pkr’ey @ dr A dO + pkre, ® dz A dr (0.40)

We shall now see the consequences of this Cauchy stress. Look first at the lateral
surface r = a. Then dr = 0 there and so £ = 0 on this surface. This means that no
external “traction” on this part of the boundary is needed for this twisting.

Now look at the end boundary at z = L. From (0.40) we have stress from outside

ukr’e, ® dr A d6

acting in the e, direction. This has to be supplied by external tractions since there is
no part of the body past its ends. What is the moment of the traction? We have a disk,
radius a, a force of magnitude pkr? dr df acting in the e, direction on an infinitesimal
“rectangle” of “sides” dr and df. The moment about the z axis is r (ukr?)dr d6, and
so the total moment is uk [[ r’dr d6 = pk(a*/4)2w = 7w uka®*/2. If the total twist at
z = L is an angle of twist « = kL, then the total moment required is 77 ua*a /2L. An
opposite moment is required at z = 0. An experiment could yield the value of u.

In the case of the floating body, treated near the beginning of our Section O.p, our
argument really showed the following. Take any blob of fluid B” surrounded by fluid
at rest under the surface z = 0. Then the hydrostatic stress (pressure) on d B” due to the
water surrounding B” produced a “body force” that supported the weight of the water
in B”. We now show that in the case of our twisted cylinder, to order k,

the Cauchy stresses produce no internal body forces inside the cylinder.

Look at an internal portion B of the cylinder, with boundary d B. The Cauchy stress
acting on B from outside B derives from the vector valued 2-form in (0.40) at points of
d B. For total stress force on d B, we cannot just integrate this because it makes no sense
to add vectors like e, at different points. There is no problem with the e, components
because e is a constant vector field in R?. So let us express the unit vector ey in terms of
the constant basis e, and e,. Again we leave the cylindrical coordinate 2-forms alone.
Now

0/00 = (0x/00)0/0x + (0y/30)0/0y = (—r sinf)e, + (r cosb)e,
ande; = r~1(0/30) = —e, sinf + e, cos ¢, and so (0.40) becomes
t = pkr’(—e, sin@ + e,cos0) @dr AdO + ukre, @ dz A dr

Then, with constant basis, [, , e.ukr? sin6 dr Ad0 = e, [[,, ukr?sin® dr Ad6, etc.,
and so

// t= —ex// ukrzsinedr/\dB—l-ey// wkr*cos® dr A de
9B 9B 9B
—i—ez// wkr dz Adr
9B

But each integral vanishes, e.g., €, [, , nkr?sin6 dr A do =
e, [[[, dlpkr?sin@] Adr A d6 = 0, as desired.
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Itis a fact, alas, that this simple approach will not work to higher order, keeping terms
of order k2. One cannot realize such a simple twist; other deformations are required
(see [Mu]).

I would like to emphasize one point brought out in the calculation above. When
integrating vector valued exterior forms, such as Cauchy’s 9; ® ti(0 j)vol3, we were
forced to make a change to a constant basis for the vector part, 9; = e, A, but kept
the cylindrical exterior forms, yielding

// e, ® A7i(8;)vol’ = e, // A7 (8;)vol® = e, // d[A“17i(8;)vol’]
B B B

and our exterior differential completely avoids Christoffel symbols and tensor diver-
gence of (t"/) in curvilinear coordinates, that appear in tensor treatments.

Finally, let us compute the work done by the traction acting on the face Z = L,
moving each point (R, ®) to the point (R, ® + «). Let 0 < § < «. The traction force
on the small “rectangle” of sides dR, d® at (R, ® + ) has, from (0.38'), covariant
component approximately fo dR d© = goopkgR dR dO = pkg R3 dR d®, where
kg = B/L. The work done in moving this rectangle from 8 = 0 to 8 = « is approxi-
mately (dR d®) [," (wR*B/L)dB = (dR dO)R*a? /2 L. Thus the total work done in
the twist of the face is W = (ua?/2L) [[ R*dR d® = 7 a*a?/4L. In most common
materials (hyperelastic), in particular for our isotropic body, this work yields a strain
energy of the same amount W, that is stored in the twisted body. Furthermore, for
hyperelastic bodies, this can be computed from an integral over the undeformed body
(see Sections A.d and D.a),

W= ;// S*PE,5VOL®

and the reader can verify this in our example using E and S given before and after
(0.38).

This is one reason for our choice, at the beginning of this section, of considering stress
force as being contravariant, rather than covariant. Note that a metric ds* = g;; dx’ dx’
can be thought of as the covector valued 1-form dx’ ® g;; dx/ whose value on any
vector v is the covariant version of v, dx’ ® g;; dx’ (v) = dx'g;;v/ = v; dx'. Likewise,
the Lagrange deformation tensor can be thought of as a covector valued 1-form

§=dX'Q E;;dX’ =dX' @&

The stress tensor is a vector valued 2-form s = 8, ® S4%i(85)VOL? = 9, ® s@4.
It is natural then to construct a scalar valued 3-form by introducing a new product
S(A)& by taking the wedge product of the forms in both and evaluating the 1-form d X’
of & on the vector 4 of &

S(A)E 1= dX (04)[SP4 A @(1)1] — @4 5 &(11)4

which is easily seen, since the two forms are of complementary dimension, to be the
integrand of the strain energy W

S(A)E = [S4Bi(83)VOL | A Eyy dX’ = S*BE,;VOL?

W=%///S(/\)é%
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While work in particle mechanics pairs a force covector ( f;) with a contravariant tangent
vector (dx'/dt) to a curve, work done by traction in elasticity pairs the contravariant
stress force 2-form & with the covector valued deformation 1-form &, to yield a scalar
valued 3-form. (Warning: the notation -(A)- does not appear in the literature.)

0.q. Sketch of Cauchy’s “First Theorem”

z

Consider a plane through a point p on the z axis of a cartesian coordinate system. This
plane generically cuts the x and y axes at two points, yielding two vectors u and v that
span the “roof” of a solid tetrahedron 7, as in the figure above. The coordinate vectors
a,, a,, a, are not necessarily of the same length. The material outside T" exerts a stress
force, call it %t(u, v) across the roof (% because the roof is not a parallelogram). (u, v)
tells us not only the roof, but also u, v, in that order is describing the normal pointing
out of 7. Likewise %’[(v, u) describes a force that the material in 7 exerts on material
outside 7'. t(v,u) = —1t(u, v) can be seen by considering the equilibrium of a small
thin disk with faces parallel to the plane spanned by u and v. This is the first part of
Cauchy’s first theorem.

Stress forces act also on the coordinate faces. We now let the tetrahedron 7' shrink
to the point p by moving the x, y plane up to the point p, the dashed triangle showing
an intermediate position for the bottom face. At each stage the proportions of T are
preserved. As the vertical edge ||a, || shrinks to 0, the stress forces on the faces vanish as
their areas, i.e., as ||a.||* while the body forces, for example, gravity, if present, vanish
as the volume, i.e., as ||a.||>. We will neglect the body forces for vanishingly small T.

For our small T to be in equilibrium we must have, neglecting body forces

t(u, v) + Ha,, a, + ta,, a;) + (a,,a,) = 0
t(ll, V) ~ _t(au ay) - t(axv az) - b(aya ax)
t(u, v) ~ l(a,, a,) + U(a,, a,) + Ka,, a,) (0.41)
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Look at the first term t(a,, a,). The normal to the pair a,, a, is in the positive x
direction and so the area form for the y, z face is dy A dz. Let (1) be the area vector
average of the vector t(a,, a,), so

J[(ay’ az) = (tyz>dy A dZ(aya az)

Now note that for projected areas, dy A dz(u,v) = dy Adz(a, —a;, —a, +a,) =
dy ndz(—a;, —a;) +dy Ndz(—a;, ay)) = dy Ndz(—a;, ay) = —dy ANdz(a;, ay) =
dy A dz(ay, a;). Thus

dy ndz (ay,a;) =dy Adz(u,v) andso Ua,,a,) = (L,;)dy Adz(u,v)
and similarly for the other faces in (0.41). We then have
t(a, v) = (L) dy Adz(a, v) + (L, )dz Adx(u, v) + (L,)dx Ady(u,v)  (0.42)

Now as T shrinks to the point p the average (l;.) tends to a vector t*(p) = t(p)
at p, etc. We can then approximate the stress in (0.42), for a very small parallelogram
at p spanned by u and v

tu,v)~ [ (p)@dy Adz+ VP (p) @dzAdx + E(p) @dx Adyl(u, V)

which suggests Cauchy’s theorem, that for any surface V2 with normal direction pre-
scribed, the stress across V is given by a vector valued integral of the form

/ P, y,20®dyrndz+VP(x,y,2) @dzAdx +F(x,y,2) ®dx Ady
\4
with Cauchy vector valued stress 2-form
t=9, ®1i(9;)vol’ (0.42) Cauchy

but this is not the way it is written in engineering texts. Consider first just the surface
integral of a 2-form % = i (b)vol® over a surface V2 c R (using any coordinates x"),
with unit normal vector field n and covector version the 1-form n,, = n; dx'. Then, when
applied to two vectors v and w tangent to V, “dA” (v, w) := vol(n, v, w) = [i(n)vol]
(v, w) is the area spanned by v and w. Then we can write, with by,, the tangential part
of b

/,B = / i(b)vol® = / i[(b-n)n+ by,]vol = /(b-n)[i(n)vol]
v v v v
since vol(by,, v, w) = 0 for three tangent vectors to V2. Then

/Vﬂz/vi(b)voﬁ=/V(b-n)[i(n)vol]:/V(b~n)dA=/‘/b-7nj dA

Likewise, on a surface V2, engineering texts write the stress

t“n; dA instead of 1"i(8;)vol’
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o.r. Sketch of Cauchy’s “Second Theorem,” Moments as
Generators of Rotations

For Cauchy’s second theorem, the symmetry of the stress tensor t'/ = t//, we shall
consider only the simplest case of a deformed body, at rest and in equilibrium with
its external tractions on its boundary, and with no external body forces (like gravity)
considered. We employ cartesian coordinates throughout. Then, since g;; = §;;, tenso-
rial indices may be raised and lowered indiscriminately and we can use the summation
convention for all repeated indices.

Let B be any sub-body in the interior of the body, with boundary d B. Then the
(assumed vanishing) total stress force covector on B yields

— c .b' 13= c t — c t
0 /aB{d)c}(X)tC i(@b)vo {dx}/as ¢ {dx}/Bd(

where we use the braces { } just to remind us that the basis form to the left of ® is a
constant covector that plays no role in the integral. Since this holds for every interior
B we must have

dt. = dt.%i(9y)vol> =0 for each ¢ (0.43)

which classically is written as a divergence 9z.”/0x" = 0.

For equilibrium we must also have that the total moment of stress forces on 0B
must vanish. Now the moment about the origin, of a force f at position vector r is, in
elementary point mechanics, r x f(r), but this expression makes no sense in more than 3
dimensions. But moments and torques surely make sense in any euclidean R", indicating
that we have not understood mathematically the notion of moment. Now in cartesian
coordinates in R", if we replace r and f(r) by 1-forms =~ = x? dx“ and ﬁ: fe(r)dx©,
then A ]ﬂdoes make sense as a 2-form at the origin of R" and its components, in the
case of R?, coincide with those of r x f(r). There is a more important point. A moment
about the origin 0 of R" is physically a “generator” of a rotation about 0. Let us see
why a 2-form at the origin of R”, with components forming a skew symmetric matrix,
also is associated to a rotation there.

Let g(¢) be a 1-parameter group (i.e., g(¢) g(s) = g(t +s), and g(0) = 1) of rotations
of R" about the origin. Since each g(¢) is an “orthogonal” matrix, g(t) g(t)" =1, where
T is transpose. Differentiate with respect to ¢ (indicated by an overdot) and put t = 0.
Then

0=2(0gO0" + 500" =g + g0

says that A := g(0) (the so-called “infinitesimal generator” of the 1-parameter group
g(1)), s a skew symmetric n X n matrix, and so defines a 2-form @ = Ej<kAjkdxf A dx*
at the origin. For example, a 1-parameter group of rotations about the z axis of R? is,
with w a constant,

cos(wt) —sin(wt) O 0 —w O
g(t) = | sin(wt) cos(wt) O and has generator A=g(0)=|w 0 O
0 0 1 0O 0 0
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with associated 2-form @ = —w dx A dy at the origin. If v is a vector at the origin, then
Av is the vector (Av); = A v* = —v*Ay;, i.e., the covector version of Av is —i (v)a.

Conversely, if A is a skew symmetric n X n matrix at the origin (a 2-form at the
origin), then A generates a 1-parameter group of rotations g(¢) by means of the expo-
nential matrix

g(t) = e =exptA = X;tFA* k!

(it is an orthogonal matrix since g(t)” = exptAT = exp(—tA) = g(—t) = g~ '(1)). A
2-form at the origin of R" generates a 1 parameter group of rotations about the
origin of R”. (Linear algebra also shows that the generator of e’4 is [d/dte'*],—o =
Ae® = A)

Thus to each moment of a force f about the origin of R” we may attach the generator
of its rotations, i.e., a 2-form at the origin, which is simply a skew symmetric n x n
matrix.

Then with our sub-body B of an elastic body in R, the Cauchy stress covector
valued 2-form yields an “area covector force density” with “components” the 2-forms
t. = 1.2 i(8;)vol® at points of the boundary 8 B. The “moment about an origin (chosen
inside B)” density, on d B, has cartesian “components” the matrix of 2-forms

mue = [x.2 — x°1,°1i(8))vol® = xt, — x°t,

Thus the total moment about the origin due to these stress forces on d B is the 2-form
at the origin ¥, .. M,. dx* A dx¢ with components the matrix of numbers

Moo= [ Bote=at = [ diatt - )
aB B
which, from (0.43) (i.e., assuming no external body forces), is
Mac=/dx“Atf—dx”Ata
B

In most common elastic materials, this must vanish if there are to be no “couple
stresses” without applied internal torque sources. Since this holds for any portion B we
must have

dx* A, =dx“ A1, (0.44)
Since these are 3-forms in R?,
dx“ A =dx* At i(8y)vol’ = 1. vol® (0.44)
For example, in R} witha =2andc =1,
dx> Ati"[i(Bp)dx" Adx® Adx®] = dx® At[i(82)dx" A dx* Adx’]
= —dx* At,[i(82)dx* Adx' A dx?]
= —dx’> A2 dx' Adx3
= —12dx> ANdx" AdxP =12 dx" Adx® Adx?

= t;>vol®
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(0.44) then yields z.“ vol® = t,vol®, and since the coordinates are cartesian we have

14 =% (0.45)
Since the Cauchy stress ¢ is a tensor, this symmetry holds in any coordinate system.
This is Cauchy’s second theorem.

Warning: In Section 0.p we allowed and encouraged the use of different coordinates
for the 2-form part and the value part of the stress vector valued 2-form

0, ® z"'ji(é?j)vol3 =e, ® Al[-tl‘iji(aj)VOP =e® 'c‘”'i((‘?j)vol3

o299

The left index “a” on 7 is associated with the e basis and the right index “j” is associated
with the 8 basis. (Think, for example, of e as cartesian and @ as cylindrical.) Does the
fact that ¢ is symmetric, t7 = ¢, insure that T = At is also ? No!

th = (A" =t"AT =1tA" = A7t AT £ 1 generically

0.s. A Remarkable Formula for Differentiating Line,
Surface, and. . ., Integrals

Let v be a time independent vector field in a coordinate patch U of R" with any
coordinates x'. Roughly speaking, i.e., omitting some technicalities, by integrating the
differential equations dx’/dt = v'(x) we can move along the integral curves of v for
t seconds yielding a “flow” ¢, : U — R". Since v is time independent, the ¢; form
a |1 parameter commutative group of mappings, ¢,¢, = ¢,4;, and ¢y is the identity
map. Let V'’ be an oriented r dimensional “submanifold” of U. For examples, V'
is an oriented curve , V2 is an oriented 2 dimensional surface, . ...V" is the kind of
object over which one integrates an exterior r-form o« =« (a scalar valued, not vector
valued form), yielding the number [, «”. As time changes, the flow moves V from
V() =V to V(t) = ¢,(V). We consider only the simplest case where the r-form o
is time independent. How does the integral change in time? The answer can be shown
(see Section 4.3a) to be

d/dt|,—o / o = / ea” (0.46)
V() v
where the r-form £,«”, the Lie derivative of the form «, is defined via the pull-backs
[y ](at x) : = [d/dt]i—op: [ (at ¢;X)]
= liI%{@*[a" (at ¢;x)] — o’ (at x)} /¢ (0.47)
t—

Furthermore, there is a remarkable expression for computing the Lie derivative of any
form, given by the Henri Cartan (son of Elie Cartan) formula

o' =iy(da’) +d@ia") (©.48)
Thus (0.46) and Stokes say

d/dtl,zo/ a’:/ﬁva’:/iv d(x—i—/ Iya (0.49)
V) 1% \% 1%
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Consider for example the case of a line integral in R?, which we also write in classical
form in cartesian coordinates. V! is then a curve C starting at point P and ending at
point Q. Symbolically dC = Q — P. Classically @« = a - dx. Then iy« is the 0-form,
i.e., function v - a, and fac v - a is by definition simply (v - a)(Q) — (v - a)(P). This
is the second “integral” in (0.49). Also, da' is the 2-form version of the vector curl a,
and so iy da, from (0.34), is the 1-form version of —v x curl a. We then have, in the
classical version

d/dt]tzo/c()a-dx=—/c[vx curla] -dx + (v-a)(Q) — (v-a)(P)

The reader might enjoy computing the rates of change of surface and volume integrals

/b-ndA and /vol3
s M

A final remark about time dependent flows and forms. In the real world, vector
fields and forms are frequently time dependent. Consider, for example, R" with local
coordinates x = (x'), and let o” be an r-form (with components that may be time ¢
dependent) and v = 8;v' (¢, x). We may again solve the differential equations dx/dt =
v(t, x) to get maps ¢, but (as discussed in Section 4.3b) generically they will not satisfy
the crucial ¢, o ¢, = ¢, To circumvent this we introduce the space R x R" with
n + 1 local coordinates (x° = ¢, x),1 < i < n, that is, we enlarge the space R" to
R"*! by introducing time as another dimension. We then augment the original vector
field v on R” to the new field v (¢, X) = 8, + v(z, x) on R' x R”". Then it is shown in
Theorem (4.42) that we get new maps ¢, : R! x R" — R! x R" that do form a flow,
and if V = V; is an r dimensional submanifold of the R" slice t = 0, then V (a) = ¢,V
isin slice ¢t = a, and (0.49) is replaced by

a’/dtl,zo/v(t)oz=/V£V0t=/vi(v)d0t+/vd[i(v)a]

— / (da/dt) + iyde + diya (©.50)
v

(note iy = i(v) uses the original vector field v, not the augmented v = v 4 9,). The
bold d is the “spatial” exterior differential of R" (keeping ¢ constant) and d« /9t is the
r-form (with no dt term) where each term of o

a; j(x,t)dx' AL Adx!
is replaced by
[8a; _j(x,1)/dt]mo dX' A ... Adx’

For example, (0.50) tells us that Faraday’s law of section 0.1 says that for a moving
surface V2(¢)

d/dt// BP=—q¢ E—iyB)=—¢ (E+vxB)- -dx
1406} v 1%

is the line integral of the electromotive force along the boundary curve.
Applications to fluid flows, vorticity, and magnetohydrodynamics can be seen in
Section 4.3c.
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CHAPTER 1

Manifolds and Vector Fields

Better is the end of a thing than the beginning thereof.
Ecclesiastes 7:8

Ass students we learn differential and integral calculus in the context of euclidean space
R", butit is necessary to apply calculus to problems involving “curved” spaces. Geodesy
and cartography, for example, are devoted to the study of the most familiar curved
surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and
longitude serve as “coordinates,” allowing us to use calculus by considering functions
on the Earth’s surface (temperature, height above sea level, etc.) as being functions of
latitude and longitude. The familiar Mercator’s projection, with its stretching of the
polar regions, vividly informs us that these coordinates are badly behaved at the poles:
that is, that they are not defined everywhere; they are not “global.” (We shall refer to
such coordinates as being “local,” even though they might cover a huge portion of the
surface. Precise definitions will be given in Section 1.2.) Of course we may use two
sets of “polar” projections to study the Arctic and Antarctic regions. With these three
maps we can study the entire surface, provided we know how to relate the Mercator to
the polar maps.

We shall soon define a “manifold” to be a space that, like the surface of the Earth, can
be covered by a family of local coordinate systems. A manifold will turn out to be the
most general space in which one can use differential and integral calculus with roughly
the same facility as in euclidean space. It should be recalled, though, that calculus in
R? demands special care when curvilinear coordinates are required.

The most familiar manifold is N-dimensional euclidean space RY, that is, the space
of ordered N tuples (x',..., x") of real numbers. Before discussing manifolds in
general we shall talk about the more familiar (and less abstract) concept of a submanifold
of R", generalizing the notions of curve and surface in R’

1.1. Submanifolds of Euclidean Space

What is the configuration space of a rigid body fixed at one point of R"?
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1.1a. Submanifolds of RY

Euclidean space, RY, is endowed with a global coordinate system (x', ..., x") and is
the most important example of a manifold.

In our familiar R?, with coordinates (x, v, 2), alocus z = F(x, y) describes a (2-
dimensional) surface, whereas a locus of the form y = G(x), z = H(x), describes a
(1-dimensional) curve. We shall need to consider higher-dimensional versions of these
important notions.

A subset M = M" C R™"" is said to be an n-dimensional submanifold of R"*",
if locally M can be described by giving r of the coordinates differentiably in terms of
the n remaining ones. This means that given p € M, a neighborhood of p on M can
be described in some coordinate system (x, y) = (x!,...,x", y', ..., y") of R"" by
r differentiable functions

Y=ot xh,  a=1,...r

We abbreviate this by y = f(x), or even y = y(x). We say that x!, ..., x" are local
(curvilinear) coordinates for M near p.

Examples:

() y'= f(x',...,x") describes an n-dimensional submanifold of R"*!.

XN

xl ...

Figure 1.1

In Figure 1.1 we have drawn a portion of the submanifold M. This M is the graph
of a function f : R" — R, thatis, M = {(x, y) € R""! | y = f(x)}. Whenn = 1,
M is a curve; while if n = 2, it is a surface.

(ii) The unit sphere x> + y*> + z> = 1 in R®. Points in the northern hemisphere can be
described by z = F(x,y) = (1 — x> — y*)!/2 and this function is differentiable
everywhere except at the equator x> + y> = 1. Thus x and y are local coordinates for
the northern hemisphere except at the equator. For points on the equator one can solve
for x or y in terms of the others. If we have solved for x then y and z are the two local
coordinates. For points in the southern hemisphere one can use the negative square
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root for z. The unit sphere in R? is a 2-dimensional submanifold of R*. We note that we
have not been able to describe the entire sphere by expressing one of the coordinates,
say z,in terms of the two remaining ones, z = F(x, y). We settle for local coordinates.

More generally, given r functions F*(xy, ..., X,, 1, ..., yr) of n + r variables,
we may consider the locus M" C R"*" defined by the equations

F¥(x,y) = c*, (c', ..., ") constants

If the Jacobian determinant

[8(F1,...,F’)]( )

1 | Yo, Yo

Ay, ..., ")

at (xo, yo) € M of the locus is not 0, the implicit function theorem assures us that
locally, near (xg, yp), we may solve F*(x,y) =c%, a =1, ..., r,forthe y’sin terms

of the x’s
Y= ot a")

We may say that “a portion of M" near (xg, yo) is a submanifold of R"*"” If the
Jacobian # 0 at all points of the locus, then the entire M" is a submanifold.

Recall that the Jacobian condition arises as follows. If F¥(x,y) = ¢* can be
solved for the y’s differentiably in terms of the x’s, y# = y#(x), then if, for fixed i,
we differentiate the identity F*(x, y(x)) = ¢* with respect to x’, we get

A dFe] ayP
- — | — =0
dx' +; [Byﬂ] dx'

dyP ar1 "\ roFe
x5 ) 5]
provided the subdeterminant d(F',..., F")/a(y',...,y") is not zero. (Here
([dF/3y]~"#, is the Ba entry of the inverse to the matrix 9 F/dy; we shall use
the convention that for matrix indices, the index to the left always is the row index,
whether it is up or down.) This suggests that if the indicated Jacobian is nonzero then
we might indeed be able to solve for the y’s in terms of the x’s, and the implicit func-
tion theorem confirms this. The (nontrivial) proof of the implicit function theorem
can be found in most books on real analysis.

Still more generally, suppose that we have r functions of n-+r variables, F* ...,
x"*7). Consider the locus F*(x) = ¢®. Suppose that at each point xq of the locus the

Jacobian matrix

oF“ .

e a=1,...,r i=1,....,n+r
X

and

hasrank r. Then the equations F* = ¢* define an n-dimensional submanifold of R
since we may locally solve for r of the coordinates in terms of the remaining »n.
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A grad G

grad F

G(x, y,2)=0

Figure 1.2

In Figure 1.2, two surfaces F = 0 and G = 0 in R? intersect to yield a curve M.
The simplest case is one function F of N variables ', ..., xM). If at each point
of the locus F = c there is always at least one partial derivative that does not
vanish, then the Jacobian (row) matrix [0 F/dx', dF/dx2, ..., 3F/dx"] has rank 1
and we may conclude that this locus is indeed an (N — 1)-dimensional submani-
fold of RN . This criterion is easily verified, for example, in the case of the 2-sphere
F(x,y,z) = x> 4+ y? 4+ 72 = 1 of Example (ii). The column version of this row
matrix is called in calculus the gradient vector of F. In R? this vector
oF
dax
oF
dy
oF
9z
is orthogonal to the locus F = 0, and we may conclude, for example, that if this
gradient vector has a nontrivial component in the z direction at a point of F = 0,
then locally we can solve for z = z(x, y).
A submanifold of dimension (N — 1) in RY, that is, of “codimension” 1, is called
a hypersurface.
The x axis of the x y plane R? can be described (perversely) as the locus of the quadratic
F(x,y) := y* = 0. Both partial derivatives vanish on the locus, the x axis, and our
criteria would not allow us to say that the x axis is a 1-dimensional submanifold of
R2. Of course the x axis is a submanifold; we should have used the usual description
G(x,y) := y = 0. Our Jacobian criteria are sufficient conditions, not necessary ones.
The locus F(x, y) := xy = 0 in R?, consisting of the union of the x and y axes,
is not a 1-dimensional submanifold of R?. It seems “clear” (and can be proved) that
in a neighborhood of the intersection of the two lines we are not going to be able to
describe the locus in the form of y = f(x) or x = g(y), where f, g, are differen-
tiable functions. The best we can say is that this locus with the origin removed is a
1-dimensional submanifold.
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1.1b. The Geometry of Jacobian Matrices: The “Differential”

The tangent space to R" at the point x, written here as R, is by definition the vector
space of all vectors in R" based at x (i.e., it is a copy of R" with origin shifted to x).

Let x!',...,x" and y', ..., y" be coordinates for R" and R” respectively. Let F :
R" — R” be a smooth map. (“Smooth” ordinarily means infinitely differentiable. For
our purposes, however, it will mean differentiable at least as many times as is necessary
in the present context. For example, if F is once continuously differentiable, we may
use the chain rule in the argument to follow.) In coordinates, F is described by giving
r functions of n variables

y* = F%(x) a=1,...,r

or simply y = F(x). We will frequently use the more dangerous notation y = y(x).
Let yo = F(x¢); the Jacobian matrix (3y*/dx")(x,) has the following significance.

»
v =%(0) w=Y(0)=F,v
x}l
Rﬂ
y()=F(x(t
o F YO=FEE) image of R" under F
o
x = x(t)

Xl, yrfl
y], -
Figure 1.3

Let v be a tangent vector to R" at x,. Take any smooth curve x (¢) such that x (0) = xg
and x(0) := (dx/dt)(0) = v, for example, the straight line x () = x¢ + ¢v. The image
of this curve

y(t) = F(x(1))

has a tangent vector w at y, given by the chain rule

n 9y ) n 9ve A
w =30 =Y ( . )(xo>x’<0> = ( - )(xow

i=1 i=1

The assignment v — w is, from this expression, independent of the curve x(¢) chosen,
and defines a linear transformation, the differential of F at x,

Fo: R — ]R;O F.(v) =w (1.1
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whose matrix is simply the Jacobian matrix (dy%/9x")(xo). This interpretation of the
Jacobian matrix, as a linear transformation sending tangents to curves into tangents
to the image curves under F, can sometimes be used to replace the direct computation
of matrices. This philosophy will be illustrated in Section 1.1d.

1.1c. The Main Theorem on Submanifolds of RY

The main theorem is a geometric interpretation of what we have discussed. Note that
the statement “F has rank r at x,,” that is, [0y®/9x"](x,) has rank r, is geometrically

the statement that the differential
. n r
F* . Rxo - RyozF(Xo)

is onto or “surjective”; that is, given any vector w at y, there is at least one vector v at
Xxp such that F,(v) = w. We then have

Theorem (1.2): Let F : R""" — R and suppose that the locus
F7'(y) :i={x e R | F(x) = y)
is not empty. Suppose further that for all xo € F~'(yo)
F.: Ry — R

is onto. Then F~'(y,) is an n-dimensional submanifold of R"*"

R3

X

X

eeetecccccccccccQeccsleccccccgeccccacranncnaaa

P

=

R2
y

Figure 1.4
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The best example to keep in mind is the linear “projection” F : R® — R?
F(x',x2, x%) = (x',x?), that is, y! = x' and y> = x2. In this case, x* serves as
global coordinate for the submanifold x' = yJ, x? = y2, that is, the vertical line.

1.1d. A Nontrivial Example: The Configuration Space
of a Rigid Body

Assume a rigid body has one point, the origin of R, fixed. By comparing a cartesian
right-handed system fixed in the body with that of R* we see that the configuration of
the body at any time is described by the rotation matrix taking us from the basis of R’
to the basis fixed in the body. The configuration space of the body is then the rotation
group SO(3), that is, the 3 x 3 real matrices x = (x;;) such that

x"=x7" and detx =1
where T denotes transpose. (If we omit the determinant condition, the group is the
full orthogonal group, O(3).) By assigning (in some fixed order) the nine coordinates
X11, X12, - - - » X33 tO any matrix x, we see that the space of all 3 x 3 real matrices,
M (3 x 3), is the euclidean space R’. The group O(3) is then the locus in this R’ defined
by the equations x” x = I, that is, by the system of nine quadratic equations (i, k)

3
(i, k) ijixjk = dix
=1

We then have the following situation. The configuration of the body at time ¢ can be
represented by a point x(7) in R, but in fact the point x(¢) lies on the locus O(3) in
R’. We shall see shortly that this locus is in fact a 3-dimensional submanifold of R®.
As time ¢ evolves, the point x () traces out a curve on this 3-dimensional locus. Since
O(3) is a submanifold, we shall see, in Section 10.2c from the principle of least action,
that this path is a very special one, a “geodesic” on the submanifold O(3), and this in
turn will yield important information on the existence of periodic motions of the body
even when the body is subject to an unusual potential field. All this depends on the fact
that O(3) is a submanifold, and we turn now to the proof of this crucial result.

Note first that since x” x is a symmetric matrix, equation (i, k) is the same as equation
(k, i); there are, then, only 6 independent equations. This suggests the following. Let

Sym® :={x e M3 x 3) | x” = x}

be the space of all symmetric 3 x 3 matrices. Since this is defined by the three linear
equations x;; — x; = 0,1 # k, we see that Sym6 is a 6-dimensional linear subspace of
R?; that is, it can be considered as a copy of R®. To exhibit O(3) as a locus in R?, we
consider the map

F:R’ — R® = Sym® definedby F(x) =x"x —1

O(3) is then the locus F~'(0). Let x, € F~'(0) = O(3). We shall show that F, :
Rio — Sym® is onto.
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~~~~~

curve [
x=x()1

Sym, a copy of RS

F7Y0)=0(3)

Figure 1.5

Let w be tangent to Sym® at the zero matrix. As usual, we identify a vector at the
origin of R" with its endpoint. Then w is itself a symmetric matrix. We must find v, a
tangent vector to R? at x,, such that F,v = w. Consider a general curve x = x(¢) of
matrices such that x (0) = x; its tangent vector at x is x(0). The image curve

Fx@®)=x®Tx@) =1

has tangent at = 0 given by

d . NT T
E[F(X(f))]mo =x(0)" xo 4+ x5 x(0)

We wish this quantity to be w. You should verify that it is sufficient to satisfy the matrix
equation x{ x (0) = w/2. Since xy € O(3), x] = x, ' and we have as solution the matrix
product v =x = xow/2. Thus F, is onto at x, and by our main theorem O(3)= F~'(0)
is a (9 — 6) = 3-dimensional submanifold of R°.

What about the subset SO(3) of O(3)? Recall that each orthogonal matrix has de-
terminant 1, whereas SO(3) consists of those orthogonal matrices with determinant
+1. The mapping

det: R’ > R

that sends each matrix x into its determinant is continuous (it is a cubic polynomial
function of the coordinates x;;) and consequently the two subsets of O(3) where det
is +1 and where det is —1 must be separated. This means that SO(3) itself must have
the property that it is locally described by giving 6 of the coordinates in terms of the
remaining 3, that is, SO(3) is a 3-dimensional submanifold of R’.

Thus the configuration space of a rigid body with one point fixed is the group SO(3).
This is a 3-dimensional submanifold of R°. Each point of this configuration space lies
in some local curvilinear coordinate system.
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In physics books the coordinates in an n-dimensional configuration space are usu-
ally labeled ¢!, ..., ¢". For SO(3) physicists usually use the three “Euler angles” as
coordinates. These coordinates do not cover all of SO(3) in the sense that they become
singular at certain points, just as polar coordinates in the plane are singular at the origin.

Problems

1.1(1) Investigate the locus x2 + y2 — z2 = cin R, for ¢ > 0, ¢ = 0, and ¢ < 0. Are
they submanifolds? What if the origin is omitted? Draw all three loci, for ¢ = 1,
0, —1, in one picture.

1.1(2) SO(n) is defined to be the set of all orthogonal n x n matrices x with det x = 1.
The preceding discussion of SO(3) extends immediately to SO(n). What is the
dimension of SO(n) and in what euclidean space is it a submanifold?

1.1(3) Is the special linear group
Sl (n) == {n x nreal matrices x | detx =1}

a submanifold of some R" ? Hint: You will need to know something about /9 X
(det x); expand the determinant by the j column.This is an example where it
might be easier to deal directly with the Jacobian matrix rather than the differ-
ential.

1.1(4) Show, in R3, that if the cross product of the gradients of F and G has a nontrivial
component in the x direction at a point of the intersection of F =0 and G =0,
then x can be used as local coordinate for this curve.

1.2. Manifolds

In learning the sciences examples are of more use than precepts.
Newton, Arithmetica Universalis (1707)

The notion of a “topology” will allow us to talk about “continuous” functions and points
“neighboring” a given point, in spaces where the notion of distance and metric might
be lacking.

The cultivation of an intuitive “feeling” for manifolds is of more importance, at this
stage, than concern for topological details, but some basic notions from point set topol-
ogy are helpful. The reader for whom these notions are new should approach them as
one approaches a new language, with some measure of fluency, it is hoped, coming later.

In Section 1.2¢ we shall give a technical (i.e., complete) definition of a manifold.

1.2a. Some Notions from Point Set Topology
The open ball in R", of radius ¢, centered ata € R" is

Bye) = (xeR" || x—a|<e]
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The closed ball is defined by
Bia(e)={xeR"|[[x—al<e¢}

that is, the closed ball is the open ball with its edge or boundary included.

Aset U inR" is declared open if given any a € U there is an open ball of some radius
r > 0, centered at a, that lies entirely in U. Clearly each By, (¢€) is open if € > 0 (take
r = (e— || b—a|)/2), whereas By (¢) is not open because of its boundary points. R"
itself is trivially open. The empty set is technically open since there are no points a in it.

A set F in R" is declared closed if its complement R" — F is open. It is easy to
check that each B, (¢) is a closed set, whereas the open ball is not. Note that the entire
space R" is both open and closed, since its complement is empty.

It is immediate that the union of any collection of open sets in R" is an open set, and it
is not difficult to see that the intersection of any finite number of open sets in R" is open.

We have described explicitly the “usual” open sets in euclidean space R". What do
we mean by an open set in a more general space? We shall define the notion of open
set axiomatically.

A topological space is a set M with a distinguished collection of subsets, to be called
the open sets. These open sets must satisfy the following.

1. Both M and the empty set are open.
2. If U and V are open sets, then so is their intersection U N V.
3. The union of any collection of open sets is open.

These open subsets “define” the topology of M. O
(A different collection might define a different topology.) Any such collection of subsets
that satisfies 1, 2, and 3 is eligible for defining a topology in M. In our introductory
discussion of open balls in R"” we also defined the collection of open subsets of R".
These define the topology of R", the “usual” topology. An example of a “perverse”
topology on R" is the discrete topology, in which every subset of R" is declared open!
In discussing R" in this book we shall always use the usual topology.

A subset of M is closed if its complement is open.

Let A be any subset of a topological space M. Define a topology for the space A
(the induced or subspace topology) by declaring V C A to be an open subset of A
provided V is the intersection of A with some open subset U of M,V = ANU. These
sets do define a topology for A. For example, let A be a line in the plane R?. An open
ball in R? is simply a disc without its edge. This disc either will not intersect A or will
intersect A in an “interval” that does not contain its endpoints. This interval will be an
open set in the induced topology on the line A. It can be shown that any open set in A
will be a union of such intervals.

Any open set in M that contains a point x € M will be called a neighborhood of x.

If F:M — N is a map of a topological space M into a topological space N, we
say that F is continuous if for every open set V C N, the inverse image F~'V :=
{x e M | F(x) € V}isopenin M. (This reduces to the usual €, § definition in the case
where M and N are euclidean spaces.) The map sending all of R" into a single point of
R™ is an example showing that a continuous map need not send open sets into open sets.
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If F:M — N is one to one (1 : 1) and onto, then the inverse map F~":N — M
exists. If further both F and F~' are continuous, we say that F is a homeomorphism
and that M and N are homeomorphic. A homeomorphism takes open (closed) sets into
open (closed) sets. Homeomorphic spaces are to be considered to be “the same” as
topological spaces; we say that they are “topologically the same.” It can be proved that
R" and R™ are homeomorphic if and only if m = n.

The technical definition of a manifold requires two more concepts, namely “Haus-
dorff” and “countable base.” We shall not discuss these here since they will not arise
explicitly in the remainder of the book. The reader is referred to [S] for questions
concerning point set topology.

There is one more concept that plays a very important role, though not needed for the
definition of a manifold; the reader may prefer to come back to this later on when needed.

Actopological space X is called compact if from every covering of X by open sets one
can pick out a finite number of the sets that still covers X . For example, the open interval
(0,1), considered as a subspace of R, is not compact; we cannot extract a finite subcov-
ering from the open covering given by the sets U, = {x | I/n <x < 1}n=1,2,....

On the other hand, the closed interval [0,1] is a compact space. In fact, it is shown in
every topology book that any subset X of R" (with the induced topology) is compact
if and only if

1. X is a closed subset of R",
2. X is a bounded subset, that is, || X || < some number c, for all x € X.

Finally we shall need two properties of continuous maps. First

The continuous image of a compact space is itself compact.

PROOF: If f : G — M is continuous and if {U;} is an open cover of f(G) C M,
then { f~1(U;)} is an open cover of G. Since G is compact we can extract a finite
open subcover { f~'(U,)} of G, and then {U,,} is a finite subcover of f(G). O

Furthermore

A continuous real-valued function f : G — R on a compact space G is bounded.

PROOF: f(G) is a compact subspace of R, and thus is closed and bounded. O

1.2b. The Idea of a Manifold

An n-dimensional (differentiable) manifold M" (briefly, an n-manifold) is a topological
space that is locally R” in the following sense. It is covered by a family of local
(curvilinear) coordinate systems {U; x,, . .., x;,}, consisting of open sets or “patches”
U and coordinates x; in U, such that a point p € U N V that lies in two coordinate
patches will have its two sets of coordinates related differentiably

Xy (p) = foy Xy ooy Xp) i=12...,n. (1.3)
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(If the functions fyy are C*, that is, infinitely differentiable, or real analytic, ..., we
say that M is C*, or real analytic, . . ..) There are more requirements; for example, we
shall demand that each coordinate patch is homeomorphic to some open subset of R”.
Some of these requirements will be mentioned in the following examples, but details
will be spelled out in Section 1.2c.

Examples:

(i) M" =TR", covered by a single coordinate system. The condition (1.3) is vacuous.

(ii) M" is an open ball in R", again covered by one patch.

(iii) The closed ball in R" is not a manifold. It can be shown that a point on the edge of
the ball can never have a neighborhood that is homeomorphic to an open subset of
R". For example, with n = 1, a half open interval 0 < x < 1 in R! can never be
homeomorphic to an open interval 0 < x < 1in R'.

(iv) M" = S§", the unit sphere in R™*!. We shall illustrate this with the familiar case
n = 2. We are dealing with the locus x> + y? + 7> = 1.

Figure 1.6

Cover S? with six “open” subsets (patches)
Ut={peS|x(p)>0 U~—={peS|x(p) <0}
U+=1{peS|yp)>0 U-—={peS|yp) <0}
U+t ={pe S |zp) >0} U—~=1{peS|zp) <0

The point p illustrated sits in [U,+] N [U,+] N [U,+]. Project U,+into the xy
plane; this introduces x and y as curvilinear coordinates in U,+.

Do similarly for the other patches. For p € [Uy+]N[U.+], p is assigned the two
sets of coordinates {(u, u;) = (x, z)} and {(v, v2) = (x, y)} arising from the two
projections

7y, : Uy — xzplane and m,, : U, — xy plane
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These are related by v; = u; and v, = +[1 — u% — u%]l/z; these are differentiable
functions provided u? + u3 < 1, and this is satisfied since p € Uy+.

52 is “locally R?” The indicated point p has a neighborhood (in the topology of
$? induced as a subset of R®) that is homeomorphic, via the projection Tyy, Say, tO
an open subset of R? (in this case an open subset of the xy plane). We say that a
manifold is locally euclidean.

If two sets of coordinates are related differentiably in an overlap we shall say
that they are compatible. On S? we could introduce, in addition to the preceding
coordinates, the usual spherical coordinates 6 and ¢, representing colatitude and
longitude. They do not work for the entire sphere (e.g., at the poles) but where they
do work they are compatible with the original coordinates.

We could also introduce (see Section 1.2d) coordinates on S? via stereographic
projection onto the planes z = 1 and z = —1, again failing at the south and north
pole, respectively, but otherwise being compatible with the previous coordinates. On
amanifold we should allow the use of all coordinate systems that are compatible with
those that originally were used to define the manifold. Such a collection of compatible
coordinate systems is called a maximal atlas.

If M" is a manifold with local coordinates {U:; x', . .., x"} and W is a manifold with
local coordinates {V; y', ...,y"}, we can form the product manifold

Ln+r=MnXWr={(p,q)|p€MnaIldq€Wr}

by using x', ..., x", y!, ..., y" as local coordinates in U x V.

S'is simply the unit circle in the plane R?; it has alocal coordinate § = tan~"(y/x),
using any branch of the multiple-valued function #. One must use at least two such
coordinates (branches) to cover S'. “Topologically” S! is conveniently represented by
an interval on the real line R with endpoints identified; by this we mean that there is a
homeomorphism between these two models. In order to talk about a homeomorphism

identify these two points

<0
<O

Figure 1.7

we would first have to define the topology in the space consisting of the interval
with endpoints identified; it clearly is not the same space as the interval without the
identification. To define a topology, we may simply consider the map F : [0 < 6 <
2] — R? = C defined by F(9) = ¢'. It sends the endpoints & = 0 and 6 = 27 to
the point p = 1 on the unit circle in the complex plane. Thismapis 1 : 1 and onto if we
identify the endpoints. The unit circle has a topology induced from that of the plane,
built up from little curved intervals. We can construct open subsets of the interval by
taking the inverse images under F of such sets. (What then is a neighborhood of the
endpoint p?) By using this topology we force F to be a homeomorphism.
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S is the configuration space for a rigid pendulum constrained to oscillate in the
plane

fixed pin

Figure 1.8

The n-dimensional torus 7" := S' x S! x --- x S! has local coordinates given
by the n-angular parameters 6', . .., 6". Topologically it is the n cube (the product
of n intervals) with identifications. For n = 2

L« identify
S 1
— O
é l (CX) identify
o o
6 !

Figure 1.9

T2 is the configuration space of a planar double pendulum. It might be thought that
it is simpler to picture the double pendulum itself rather than the seemingly abstract
version of a 2-dimensional torus. We shall see in Section 10.2d that this abstract
picture allows us to conclude, for example, that a double pendulum, in an arbitrary
potential field, always has periodic motions in which the upper pendulum makes p
revolutions while the lower makes q revolutions.

fixed pin

Figure 1.10

(vi) The real projective n space RP" is the space of all unoriented lines L through the
origin of R"™!'. We illustrate with the projective plane of lines through the origin of R*.
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yd
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Figure 1.11

Such a line L is completely determined by any point (x, y, z) on the line, other
than the origin, but note that (ax, ay, az) represents the same line if a % 0. We should
really use the ratios of coordinates to describe a line. We proceed as follows.

We cover R P? by three sets:

U, := those lines not lying in the yz plane
U, := those lines not lying in the xz plane

U, := those lines not lying in the xy plane

Introduce coordinates in the U, patch; if L € U,, choose any point (x, y, z) on L
other than the origin and define (since z # 0)
X Y
upy = —, Uy = —
z
Do likewise for the other two patches. In Problem 1.2(1) you are asked to show that
these patches make R P? into a 2-dimensional manifold.

These coordinates are the most convenient for analytical work. Geometrically, the
coordinates u; and u, are simply the xy coordinates of the point where L intersects
the plane z = 1.

Consider a point in RP?; it represents a line through the origin 0. Let (x, v, z) be
a point other than the origin that lies on this line. We may represent this line by the
triple [x, y, z], called the homogeneous coordinates of the point in R P? where we
must identify [x, y, z] with [Ax, Ay, Az] for all A # 0. They are not true coordinates
in our sense.

We have suceeded in “parameterizing” the sef of undirected lines through the origin
by means of a manifold, M?> = RP? . A manifold is a generalized parameterization
of some set of objects. R P? is the set of undirected lines through the origin; each point
of RP? is an entire line in R? and RP? is a global object. If, however, one insists on
describing a particular line L by coordinates, that is, pairs of numbers (u, v), then this
can, in general, only be done locally, by means of the manifold’s local coordinates.

Note that if we had been considering directed lines, then the manifold in question
would have been the sphere S2, since each directed line L could be uniquely defined
by the “forward” point where L intersects the unit sphere. An undirected line meets S?
in a pair of antipodal points; R P? is topologically S? with antipodal points identified.
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(vii)

(viii)
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We can now construct a topological model of R P? that will allow us to identify
certain spaces we shall meet as projective spaces. Our model will respect the topol-
ogy; that is, “nearby points” in RP? (that is, nearby lines in R*) will be represented
by nearby points in the model, but we won’t be concerned with the differentiability
of our procedure. Also it will be clear that certain natural “distances” will not be pre-
served; in the rigorous definition of manifold, to be given shortly, there is no mention
of metric notions such as distance or area or angle.

identify identify identify

AN AN N
e D EREED

In the sphere with antipodal points identified, we may discard the entire southern
hemisphere (exclusive of the equator) of redundant points, leaving us with the north-
ern hemisphere, the equator, and with antipodal points only on the equator identified.
We may then project this onto the disc in the plane. Topologically R P? is the unit
disc in the plane with antipodal points on the unit circle identified.

Similarly, R P” is topologically the unit n sphere " in R"*! with antipodal points
identified, and this in turn is the solid n-dimensional unit ball in R" with antipodal
points on the boundary unit (n — 1) sphere identified.

It is a fact that every submanifold of R" is a manifold. We verified this in the case
of $2 c R*in Example (ii). In 1.1d we showed that the rotation group SO(3) is a
3-dimensional submanifold of R?. A convenient topological model is constructed as
follows. Use the “right-hand rule” to associate the endpoint of the vector Or to the
rotation through an angle 6 (in radians) about an axis descibed by the unit vector r.
Note, however, that the rotation 7 r is exactly the same as the rotation —zrr and (77 +o)r
is the same as — (v — «)r. The collection of all rotations then can be represented by
the points in the solid ball of radius 7 in R* with antipodal points on the sphere of
radius 7 identified; SO(3) can be identified with the real projective space RP3.

The Mobius band Mo is the space obtained by identifying the left and right hand
edges of a sheet of paper after giving it a “half twist”

[\

Figure 1.12

- identify
Mo

Figure 1.13
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If one omits the edge one can see that M is a 2-dimensional submanifold of R?
and is therefore a 2-manifold. You should verify (i) that the Mobius band sits naturally
as the shaded “half band” in the model of R P? consisting of S? with antipodal points
identified, and (ii) that this half band is the same as the full band. The edge of the

cap

RP?2

disc

Figure 1.14

Mobius band consists of a single closed curve C that can be pictured as the “upper”
edge of this full band in RP2. Note that the indicated “cap” is topologically a 2-
dimensional disc with a circular edge C’. If we observe that the lower cap is the same
as the upper, we conclude that if we take a 2-disc and sew its edge to the single edge of
a Mobius band, then the resulting space is topologically the projective plane! We may
say that RP? is M6 with a 2-disc attached along its boundary. Although the actual
sewing, say with cloth, cannot be done in ordinary space R? (the cap would have to
slice through itself), this sewing can be done in R*, where there is “more room.”

1.2¢. A Rigorous Definition of a Manifold

Let M be any set (without a topology) that has a covering by subsets M = UUV U. .,
where each subset U is in 1 : 1 correspondence ¢y : U — R" with an open subset
¢y (U) of R".

Abstract set M N
(not necessarily in R™)

Figure 1.15



20 MANIFOLDS AND VECTOR FIELDS

We require that each ¢y (U N V) be an open subset of R"”. We require that the overlap
maps

fvu =ov 0¢¢71 tpu(UNV) - R (1.4)

that is,

-1
by (UNV) 2% M2 R

be differentiable (we know what it means for a map ¢y o ¢;' from an open set of
R" to R” to be differentiable). Each pair U, ¢y defines a coordinate patch on M; to
p € U C M we may assign the n coordinates of the point ¢y (p) in R". For this reason
we shall call ¢y a coordinate map.

Take now a maximal atlas of such coordinate patches; see Example (iv). Define a
topology in the set M by declaring a subset W of M to be open provided that given
any p € W there is a coordinate chart U, ¢y such that p € U C W. If the resulting
topology for M is Hausdorff and has a countable base (see [S] for these technical
conditions) we say that M is an n-dimensional differentiable manifold. We say that a
map F : R” — R? is of class C* if all k™ partial derivatives are continuous. It is of
class C* if it is of class C* for all k. We say that a manifold M" is of class C* if its
overlap maps fyy are of class C¥. Likewise we have the notion of a C* manifold. An
analytic manifold is one whose overlap functions are analytic, that is, expandable in
power series.

Let F : M" — R be a real-valued function on the manifold M. Since M is a topo-
logical space we know from 1.2a what it means to say that F is continuous. We say that
F is differentiable if, when we express F in terms of a local coordinate system (U, x),
F = Fy(x',..., x") is a differentiable function of the coordinates x. Technically this
means that that when we compose F with the inverse of the coordinate map ¢y

Fy :=Fog¢y'

(recall that ¢y is assumed 1 : 1) we obtain a real-valued function F; defined on a
portion ¢y (U) of R”, and we are asking that this function be differentiable. Briefly
speaking, we envision the coordinates x as being engraved on the manifold M, just
as we see lines of latitude and longitude engraved on our globes. A function on the
Earth’s surface is continuous or differentiable if it is continuous or differentiable when
expressed in terms of latitude and longitude, at least if we are away from the poles.
Similarly with a manifold.With this understood, we shall usually omit the process of
replacing F by its composition F o ¢y, thinking of F as directly expressible as a
function F(x) of any local coordinates.

Consider the real projective plane RP?, Example (vi) of Section 1.2b. In terms of
homogeneous coordinates we may define a map (R* — 0) — RP? by

(x,y,2) = [x,y,2]

At a point of R where, for example, z # 0 we may use u = x/z and v = y/z
as local coordinates in RP2, and then our map is given by the two smooth functions

u=f(x,y,z) =x/zandv =gx,y,z) =y/z.
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1.2d. Complex Manifolds: The Riemann Sphere

A complex manifold is a set M together with a covering M = U U V U ..., where
each subset U isin 1 : 1 correspondence ¢y : U — C" with an open subset ¢y (U) of
complex n-space C". We then require that the overlap maps fyy mapping sets in C" into
sets in C" be complex analytic; thus if we write fyy in the form w* = w*(z!, ..., ")
where zF = x* + iyf and w* = u* + iv¥, then u* and v* satisfy the Cauchy—Riemann
equations with respect to each pair (x”, y"). Briefly speaking, each w* can be expressed
entirely in terms of z!, ..., 7", with no complex conjugates 7 appearing. We then
proceed as in the real case in 1.2c. The resulting manifold is called an n-dimensional
complex manifold, although its topological dimension is 2n.

Of course the simplest example is C" itself. Let us consider the most famous non-
trivial example, the Riemann sphere M.

The complex plane C (topologically R?) comes equipped with a global complex co-
ordinate z = x+iy. Itis acomplex 1-dimensional manifold C'. To study the behavior of
functions at “oo0” we introduce a point at 0o, to form a new manifold that is topologically
the 2-sphere S?. We do this by means of stereographic projection, as follows.

(x, y) plane

(u, v) plane

side view

Figure 1.16

In the top part of the figure we have a sphere of radius 1/2, restingona w = u +iv
plane, with a tangent z = x +iy plane at the north pole. Note that we have oriented these
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two tangent planes to agree with the usual orientation of S? (questions of orientation
will be discussed in Section 2.8).

Let U be the subset of S consisting of all points except for the south pole, let V be
the points other than the north pole, let ¢, and ¢y be stereographic projections of U
and V from the south and north poles, respectively, onto the z and the w planes. In this
way we assign to any point p other than the poles two complex coordinates, z = |z|e’’
and w = |w|e~?. From the bottom of the figure, which depicts the planar section in the
plane holding the two poles and the point p, one reads off from elementary geometry
that |w| = 1/|z|, and consequently

1
w= fyy(z) = E (1.5)

gives the relation between the two sets of coordinates. Since this is complex analytic
in the overlap U N V, we may consider S? as a 1-dimensional complex manifold, the
Riemann sphere. The point w = 0 (the south pole) represents the point z = oo that
was missing from the original complex plane C.

Note that the two sets of real coordinates (x, y) and (u, v) make S? into areal analytic
manifold.

Problems

1.2(1) Show that RP? is a differentiable 2-manifold by looking at the transition func-
tions.

1.2(2) Give a coordinate covering for R P2, pick a pair of patches, and show that the
overlap map is differentiable.

1.2(3) Complex projective n-space CP" is defined to be the space of complex lines
through the origin of C™*'. To a point (2o, z1. . .., z») in (C™*" — 0) we associate
the line consisting of all complex multiples i (zg, zy, . .., zp) of this point, 1 € C.
We call [z, z1, ..., zp] the homogeneous coordinates of this line, that is, of this
point in CP™; thus [z, 24, ..., Zn] = [u20, uZ1,...,u2Zn] for al u € (C - 0). If
zp # 0 on this line, we may associate to this point [z, z1, ..., zp] its n complex
Up coordinates zo/zp, 21/Zp, ..., Zn/2p, With zp/zp omitted.

Show that C P2 is a complex manifold of complex dimension 2.

Note that C P has complex dimension 1, that is, real dimension 2. For z; # 0
the Uy coordinate of the point [z, z1] is z = zy/z4, Whereas if zg # 0 the Uy
coordinate is w = zy/zy. These two patches cover CP' and in the intersection
of these two patches we have w = 1/z. Thus CP' is nothing other than the
Riemann sphere!

1.3. Tangent Vectors and Mappings

What do we mean by a “critical point” of amap F : M" — V"?

We are all acquainted with vectors in RV, A tangent vector to a submanifold M" of R"
at a given point p € M", is simply the usual velocity vector x to some parameterized
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curve x = x(t) of R that lies on M". On the other hand, a manifold M", as defined in
the previous section, is a rather abstract object that need not be given as a subset of R" .
For example, the projective plane R P? was defined to be the space of lines through the
origin of RS, that is, a point in R P2 is an entire line in R . if RP? were a submanifold
of R* we would associate a point of R* to each point of RP2. We will be forced to
define what we mean by a tangent vector to an abstract manifold. This definition will
coincide with the previous notion in the case that M" is a submanifold of R". The fact
that we understand tangent vectors to submanifolds is a powerful psychological tool,
for it can be shown (though it is not elementary) that every manifold can be realized
as a submanifold of some R" . In fact, Hassler Whitney, one of the most important
contributors to manifold theory in the twentieth century, has shown that every M" can
be realized as a submanifold of R*". Thus although we cannot “embed” RP? in R*
(recall that we had a difficulty with sewing in 1.2b, Example (vii) ), it can be embedded
in R*. It is surprising, however, that for many purposes it is of little help to use the fact
that M" can be embedded in R”, and we shall try to give definitions that are “intrinsic,”
that is, independent of the use of an embedding. Nevertheless, we shall not hesitate to
use an embedding for purposes of visualization, and in fact most of our examples will
be concerned with submanifolds rather than manifolds.

A good reference for manifolds is [G, P]. The reader should be aware, however, that
these authors deal only with manifolds that are given as subsets of some euclidean space.

1.3a. Tangent or “Contravariant” Vectors

We motivate the definition of vector as follows. Let p = p(¢) be a curve lying on
the manifold M"; thus p is a map of some interval on R into M". In a coordinate
system (U, xy) about the point py = p(0) the curve will be described by n functions
xi, = xi,(t), which will be assumed differentiable. The “velocity vector” p(0) was
classically described by the n-tuple of real numbers dx;,/dtlo, ..., dx} /dt]y. If po
also lies in the coordinate patch (V, xy), then this same velocity vector is described
by another n-tuple dxj, /dt]o, ..., dx} /dt]o, related to the first set by the chain rule
applied to the overlap functions (1.3), xy = xy (xy),

dxy | = [9x dxﬂ)
dt }O_Z(axj)(p0)< dt /

j=1 U

This suggests the following.

Definition: A tangent vector, or contravariant vector, or simply a vector at
po € M", callit X, assigns to each coordinate patch (U, x) holding py, an n-tuple
of real numbers

(XL) = (X} ooon X1

such that if py € U NV, then

. dxt .
Xy =Y [ o (m)]X{, (1.6)

j L%y
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Ifwelet Xy = (XL, ..., X"U)T be the column of vector “components” of X, we
can write this as a matrix equation

XV ZCVUXU (]7)

where the transition function cy is the n x n Jacobian matrix evaluated at the
point in question.

The term contravariant is traditional and is used throughout physics, and we shall use it
even though it conflicts with the modern mathematical terminology of “categories and
functors.”

1.3b. Vectors as Differential Operators

In euclidean space an important role is played by the notion of differentiating a function
f with respect to a vector at the point p

d
Dy(f) = E[f(P +1V)]=o (1.8)

and if (x) is any cartesian coordinate system we have

a )
D(f)=) [a—ﬂ (p)v’
J

This is the motivation for a similar operation on functions on any manifold M. A real-
valued function f defined on M" near p can be described in a local coordinate system
xinthe form f = f(x!,..., x"). (Recall, from Section 1.2c, that we are really dealing
with the function f o ¢;;' where ¢y is a coordinate map.) If X is a vector at p we define
the derivative of f with respect to the vector X by

af

X,(f) = Dx(f) =Y [@] (P)X (1.9)
J

This seems to depend on the coordinates used, although it should be apparent from
(1.8) that this is not the case in R"”. We must show that (1.9) defines an operation that is
independent of the local coordinates used. Let (U, xy) and (V, xy) be two coordinate
systems. From the chain rule we see

Dy(f)=) (i)va =23 (%) Z (gii)xu

j
7 axy I

:Z<3f. )fo = DY(f)

1
axy

This illustrates a basic point. Whenever we define something by use of local coordi-
nates, if we wish the definition to have intrinsic significance we must check that it has
the same meaning in all coordinate systems.
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Note then that there is a 1 : 1 correspondence between tangent vectors X to M" at
p and first-order differential operators (on differentiable functions defined near p) that
take the special form

.0
— J
X, = E X aij (1.10)
J

in a local coordinate system (x). From now on, we shall make no distinction between a
vector and its associated differential operator. Each one of the n operators 3/dx’ then
defines a vector, written 9/ Ox', at each p in the coordinate patch.

The i"™ component of 8/9x* is, from (1.9), given by 8, (where the Kronecker 8. is 1
ifi = aand 0ifi # a). On the other hand, consider the o™ coordinate curve through a
point, the curve being parameterized by x®. This curve is described by x'(t) = constant
for i # « and x*(¢) = t. The velocity vector for this curve at parameter value ¢ has
components dx'/dt = §.. The j™ coordinate vector 8/0x is the velocity vector to
the j™ coordinate curve parameterized by x/\ If M* c RY, andif r = (y', ..., y™)T
is the usual position vector from the origin, then 8/8x’ would be written classically
as dr/dx’,

1 NN\ T
o 2_(51 fl) (111

ﬁzaxf S\ oxdT T axd

A familiar example will be given in the next section.

1.3c. The Tangent Space to M" at a Point

It is evident from (1.6) that the sum of two vectors at a point, defined in terms of their
n-tuples, is again a vector at that point, and that the product of a vector by a scalar, that
is, a real number, is again a vector.

Definition: The tangent space to M" at the point p € M", written M, is the
real vector space consisting of all tangent vectors to M" at p. If (x) is a coordinate
system holding p, then the n vectors

i] i}
ax'], o],

form a basis of this n-dimensional vector space (as is evident from (1.10)) and
this basis is called a coordinate basis or coordinate frame.

If M" is a submanifold of RY, then M » is the usual n-dimensional affine subspace of
RY that is “tangent” to M" at p, and this is the picture to keep in mind.

A vector field on an open set U will be the differentiable assignment of a vector X
to each point of U; in terms of local coordinates

) o
X=) X055
J

where the components X/ are differentiable functions of (x). In particular, each 8/8x’
is a vector field in the coordinate patch.
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Example:

tangent space to S at p= S,%
Figure 1.17

We have drawn the unit 2-sphere M? = §2 in R? with the usual spherical coordinates 6
and ¢ (6 is colatitude and —¢ is longitude). The equations defining S2 are x = sin 6 cos ¢,
y = sinésin¢, and z = cos 8. The coordinate vector 9/96 = dr/d0 is the velocity
vector to a line of longitude, that is, keep ¢ constant and parameterize the meridian by
“time” t = 0. 8/0¢ has a similar description. Note that these two vectors at p do not
live in S?, but rather in the linear space SIZ, attached to S* at p. Vectors at g # p live
in a different vector space S;.

Warning: Because S? is a submanifold of R* and because R* carries a familiar
metric, it makes sense to talk about the length of tangent vectors to this particular S2;
for example, we would say that || @/860 || = 1 and || @/8¢ || = sinH. However, the
definition of a manifold given in 1.2c does not require that M" be given as some specific
subset of some RY; we do not have the notion of length of a tangent vector to a general
manifold. For example, the configuration space of a thermodynamical system might
have coordinates given by pressure p, volume v, and temperature 7', and the notions
of the lengths of /0 p, and so on, seem to have no physical significance. If we wish
to talk about the “length” of a vector on a manifold we shall be forced to introduce an
additional structure on the manifold in question. The most common structure so used
is called a Riemannian structure, or metric, which will be introduced in Chapter 2. See
Problem 1.3 (1) at this time.

1.3d. Mappings and Submanifolds of Manifolds

Let F : M" — V' be a map from one manifold to another. In terms of local coordinates
x near p € M" and y near F(p) on V" F is described by r functions of n variables
y* = F%(x!', ..., x"), which can be abbreviated to y = F(x) or y = y(x). If, as we
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shall assume, the functions F“ are differentiable functions of the x’s, we say that F is
differentiable. As usual, such functions are, in particular, continuous.

When n = r, we say that F is a diffeomorphism provided F is 1 : 1, onto, and if, in
addition, F~! is also differentiable. Thus such an F is a differentiable homeomorphism
(see 1.2a) with a differentiable inverse. (If F~! does exist and the Jacobian determinant
does not vanish, d(y', ... ,y")/d(x!, ..., x") # 0, then the inverse function theorem
of advanced calculus (see 1.3e) would assure us that the inverse is differentiable.)

The map F : R — R given by y = x? is a differentiable homeomorphism, but it is
not a diffeomorphism since the inverse x = y!/3 is not differentiable at x = 0.

We have already discussed submanifolds of R" but now we shall need to discuss
submanifolds of a manifold. A good example is the equator S! of S2.

Definition: W C M" is an (embedded) submanifold of the manifold M"
provided W is locally described as the common locus

F'h ..., xM)=0,...,F""(x',...,x") =0

of (n — r) differentiable functions that are independent in the sense that the
Jacobian matrix [d F*/0x'] has rank (n — r) at each point of the locus.

The implicit function theorem assures us that W can be locally described (after perhaps
permuting some of the x coordinates ) as a locus

X = G LX), L X = L))

It is not difficult to see from this (as we saw in the case S? C R?) that every embedded
submanifold of M" is itself a manifold!

Later on we shall have occasion to discuss submanifolds that are not “embedded,”
but for the present we shall assume “embedded” without explicit mention.

Definition: The differential F, of the map F : M" — V' has the same meaning
as in the case R" — R’ discussed in 1.1b. F, : M) — Vj, is the linear
transformation defined as follows. For X € M7, let p = p(¢) be a curve on M
with p(0) = p and with velocity vector p(0) = X. Then F,X s the velocity vector
d/dt{F(p(t))}=o of the image curve at F(p) on V. This vector is independent
of the curve p = p(¢) chosen (as long as p(0) = X). The matrix of this linear
transformation, in terms of the bases 8/9x at p and 3/8y at F (p), is the Jacobian
matrix

ay®

8F"‘( )=
P = ox!

F, oti:
(Fy) P

(p)

The main theorem on submanifolds is exactly as in euclidean space (Section 1.1c).

Theorem (1.12): Let F : M" — V' and suppose that for some q € V' the locus
F~Y(q) € M" is not empty. Suppose further that F, is onto, that is, F, is of rank
r, at each point of F~'(q). Then F~'(q) is an (n—r)-dimensional submanifold
of M".
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Example: Consider a 2-dimensional torus T2 (the surface of a doughnut), embedded

inR%.
b4
R T‘,2 = the tangent
[T PR space to T at d. This
is 2-dimensional
P/ [ affine subspace of R?

Figure 1.18

We have drawn it smooth with a flat top (which is supposed to join smoothly with
the rest of the torus). Define a differentiable map (function) F : T2 > R by F(p) = z,
the height of the point p € T2 above the z plane (R is being identified with the z axis).
Consider a point d € T and a tangent vector vto T atd. Let p = p(t) be acurve on T
such that p(0) = d and p(0) = v. The image curve in R is described in the coordinate
z for R by z(t) = z(p(t)), and it is clear from the geometry of T2 c R that z(0) is
simply the z component of the spatial vector v. In other words F,(v) is the projection
of v onto the z axis. Note then that F, will be onto at each point p € T? for which the
tangent plane 72 (p) is not horizontal, that is, at all points of 72 except a € F~'(0),
b e F71(2), c € F~'(4), and the entire flat top F~L(6).

From the main theorem, we may conclude that F~!(z) is a 1-dimensional subman-

ifold of the torus for 0 < z < 6 except for z = 0, 2,4, and 6, and this is indeed
“verified” in our picture. (We have drawn the inverse images of z = 0, 1, ..., 6.)
Notice that F~1(2), which looks like a figure 8, is not a submanifold; a neighborhood
of the point » on F~!(2) is topologically a cross + and thus no neighborhood of b is
topologically an open interval on R.

Definition: If F : M" — V" is a differentiable map between manifolds, we say
that

() x € M is a regular point if F, maps M} onto V. ; otherwise we say that
x is a critical point.

(i) y € V’ is a regular value provided either F~'(y) is empty, or F~!(y)
consists entirely of regular points. Otherwise y is a critical value.

Our main theorem on submanifolds can then be stated as follows.
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Theorem (1.13): Ify € V" is a regular value, then F~'(y) either is empty or is
a submanifold of M" of dimension (n — r).

Of course, if x is a critical point then F (x) is a critical value. In our toroidal example,
Figure 1.18, all values of z other than 0, 2, 4, and 6 are regular. The critical points on T2
consist of a, b, c, and the entire flat top of 72. These latter critical points thus fill up a
positive area (in the sense of elementary calculus) on 7. Note however, that the image
of this 2-dimensional set of critical points consists of the single critical value z = 6.
The following theorem assures us that the critical values of a map form a “small” subset
of V'; the critical values cannot fill up any open setin V" and they will have “measure”
0. We will not be precise in defining “almost all”’; roughly speaking we mean, in some
sense, “with probability 1.”

Sard’s Theorem (1.14): If F : M" — V' is sufficiently differentiable, then
almost all values of F are regular values, and thus for almost all points y € V',
F~(y) either is empty or is a submanifold of M" of dimension (n — r).

By sufficiently differentiable, we mean the following. If n < r, we demand that F be
of differentiability class C', whereas if n — r = k > 0, we demand that F be of class

C**1. The proof of Sard’s theorem is delicate, especially if n > r; see, for example,
[A, M, R].

1.3e. Change of Coordinates

The inverse function theorem is perhaps the most important theoretical result in all of
differential calculus.

The Inverse Function Theorem (1.15): If F : M" — V" is a differentiable
map between manifolds of the same dimension, and if at xo € M the differential
F, is an isomorphism, that is, it is 1 : 1 and onto, then F is a local diffeomorphism
near x.

This means that there is a neighborhood U of x such that F(U) is open in V and
F : U — F(U) is a diffeomorphism. This theorem is a powerful tool for introducing
new coordinates in a neighborhood of a point, for it has the following consequence.

Corollary (1.16): Let x', ..., x" be local coordinates in a neighborhood U of
the point p € M". Let y', ..., y" be any differentiable functions of the x’s ( thus
vielding a map:U — R") such that

A, ..y

T E——— 0

e, P

Then the y’s form a coordinate system in some (perhaps smaller) neighborhood
of p.
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For example, when we put x = rcos 6, y = r sin6, we have d(x, y)/d(r,0) = r, and
so d(r,0)/d(x,y) = 1/r. This shows that polar coordinates are good coordinates in a
neighborhood of any point of the plane other than the origin.

It is important to realize that this theorem is only local. Consider the map F : R* —
R? given by u = e* cosy, v = e* siny. This is of course the complex analytic map
w = e°. The real Jacobian d(u, v)/d(x, y) never vanishes (this is reflected in the
complex Jacobian dw/dz = e° never vanishing). Thus F is locally 1 : 1. It is not
globally so since e*™2™" = ¢ for all integers n. u, v form a coordinate system not in
the whole plane but rather in any stripa <y < a + 2.

The inverse function theorem and the implicit function theorem are essentially equiv-
alent, the proof of one following rather easily from that of the other. The proofs are
fairly delicate; see for example, [A, M, R].

Problems

1.3(1) What would be wrong in defining || X || in an M" by

IX12=" " (Xx})? 2
j
1.3(2) Lay a 2-dimensional torus flat on a table (the xy plane) rather than standing as
in Figure 1.18. By inspection, what are the critical points of the map T2 — R?
projecting T2 into the xy plane?

1.3(3) Let M" be a submanifold of R" that does not pass through the origin. Look at
the critical points of the function f: M — R that assigns to each point of M the
square of its distance from the origin. Show, using local coordinates u', ..., un,
that a point is a critical point for this distance function iff the position vector to
this point is normal to the submanifold.

1.4. Vector Fields and Flows

Can one solve dx' /dt = 8f/dx to find the curves of steepest ascent?

1.4a. Vector Fields and Flows on R”

A vector field on R" assigns in a differentiable manner a vector v, to each p in R". In
terms of cartesian coordinates x', ..., x"

) A 3
V=2 VW,
J

where the components v/ are differentiable functions. Classically this would be written
simply in terms of the cartesian components v = (v!(x), ..., v" (x))T.

Given a “stationary” (i.e., time-independent) flow of water in R?, we can construct
the 1-parameter family of maps

¢, R® > R
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where ¢, takes the molecule located at p when t = 0 to the position of the same
molecule ¢ seconds later. Since the flow is time-independent

&s(@:(P) = bs1(p) = ¢ ($5(p))
and (1.17)

i (Bi(p) =p, e, =¢ "

We say that this defines a 1-parameter group of maps. Furthermore, if each ¢, is
differentiable, then so is each ¢, ', and so each ¢, is a diffeomorphism. We shall call
such a family simply a flow. Associated with any such flow is a time-independent
velocity field

V. o= d¢t(p):|
P odr g

In terms of coordinates we have

: dx’
Vi = O (5’(’)))}
t =0
which will usually be written
vj(x) — dij
o dt
Thought of as a differential operator on functions f
; aof dx/ of
= J = - 2
vo(f) Z v (p) = G o
d
= Ef(d):(p))} L

is the derivative of f along the “streamline” through p.

‘We thus have the almost trivial observation that to each flow {¢;} we can associate the
velocity vector field. The converse result, perhaps the most important theorem relating
calculus to science, states, roughly speaking, that to each vector field v in R" one may
associate a flow {¢,} having v as its velocity field, and that ¢,(p) can be found by
solving the system of ordinary differential equations

dx! =v/(x' (1), ..., x"(1)) (1.18)
dt
with initial conditions

x(0)=p

Thus one finds the integral curves of the preceding system, and ¢, (p) says, “Move
along the integral curve through p (the ‘orbit’ of p) for time ¢.” We shall now give
a precise statement of this “fundamental theorem” on the existence of solutions of
ordinary differential equations. For details one can consult [A, M, R; chap. 4], where
this result is proved in the context of Banach spaces rather than R”. I recommend highly
chapters 4 and 5 of Arnold’s book [A2].
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The Fundamental Theorem on Vector Fields in R" (1.19): Let v be a C* vec-
tor field, k > 1 (each component v/ (x) is of differentiability class C*) on an open
subset U of R". This can be writtenv : U — R" since v associates to each x € U
a point v(x) € R". Then for each p € U there is a curve y mapping an interval
(=b, b) of the real line into U

y:(=b,b) > U

such that
dy (1)
prae v(y() and y0)=p
forallt € (—b, b). (This says that y is an integral curve of v starting at p.) Any
two such curves are equal on the intersection of their t-domains ( “uniqueness”).
Moreover, there is a neighborhood U, of p, a real number € > 0, and a C * map

®:U, x (—€,¢) > R”

such that the curve t € (—e€,€) — ¢,(q): = D(q,1t) satisfies the differential
equation

0
5@(61) = v(¢:(q))
forallt € (—e,€)and q € U,. Moreover, ift, s, and t + s are all in (—¢, €), then

i 0y = Gy = G50 Py

forall q € U,, and thus {¢,} defines a local 1- parameter “group” of diffeomor-
phisms, or local flow.

The term local refers to the fact that ¢, is defined only on a subset U, C U C R". The
word “group” has been put in quotes because this family of maps does not form a group
in the usual sense. In general (see Problem 1.4 (1)), the maps ¢, are only defined for
small 1, —e < t < €; that is, the integral curve through a point q need only exist for
a small time. Thus, for example, if € = 1, then although ¢, ,(g) exists neither ¢, (q)
nor ¢, o ¢y, need exist; the point is that ¢;,,(¢) need not be in the set U, on which
@12 is defined.

Example: R" = R, the real line, and v(x) = xd/dx. Thus v has a single component x
at the point with coordinate x. Let U = R. To find ¢, we simply solve the differential
equation

dx

i
to get x(¢) = €' p, that is, ¢;(p) = €' p. In this example the map ¢, is clearly defined on
all of M' = R and for all time ¢. It can be shown that this is true for any linear vector
field

X with initial condition x(0) = p

dx’

? = ;dizxk

defined on all of R".
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Note that if we solved the differential equation dx/dt = 1 on the real line with the
origin deleted, that is, on the manifold M' = R — 0, then the solution curve starting at
x = —1 at t = 0 would exist for all times less than 1 second, but ¢; would not exist;
the solution simply runs “off” the manifold because of the missing point. One might
think that if we avoid dealing with pathologies such as digging out a point from R,
then our solutions would exist for all time, but as you shall verify in Problem 1.4(1)
this is not the case. The growth of the vector field can cause a solution curve to “leave”
R' in a finite amount of time.

We have required that the vector field v be differentiable. Uniqueness can be lost if the
field v is only continuous. For example, again on the real line, consider the differential
equation dx /dt = 3x*3. The usual solutions are of the form x () = (t — ¢)>, but there
is also the “singular” solution x(¢#) = 0 identically. This is a reflection of the fact that
x?/3 is not differentiable when x = 0.

1.4b. Vector Fields on Manifolds

If X is a C* vector field on an open subset W of a manifold M" then we can again
recover a 1-parameter local group ¢, of diffeomorphisms for the following reasons. If
W is contained in a single coordinate patch (U, xy) we can proceed just as in the case
R" earlier since we can use the local coordinates xy;. Suppose that W is not contained
in a single patch. Let p € W be in a coordinate overlap, p € U N V.In U we can solve
the differential equations

dx,@

_ v/ 1 n
W _XU('XU"""XU

as before. In V we solve the equations

J
da'itv =X (xp, ..y X0)

Because of the transformation rule (1.6), the right-hand side of this last equation is
> [0xi,/0x51X% ; the left-hand side is, by the chain rule, >°, [dx, /dx} 1dx}, /dt. Thus,
because of the transformation rule for a contravariant vector, the two differential equa-
tions say exactly the same thing. Using uniqueness, we may then patch together the U
and the V solutions to give a local solution in W.

Warning: Let f : M" — R be a differentiable function on M”. In elementary
mathematics it is often said that the n-tuple

[ ae)

ax1’ 7 9xn

form the components of a vector field “grad f.” However, if we look at the transfor-
mation properties in U N V, by the chain rule

izzlﬁli

' ' x
axi, — | 0xy | 9xy
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and this is not the rule for a contravariant vector. One sees then that a proposed differ-
ential equation for “steepest ascent,” dx/dt =*“grad f,” that is,
J J
dﬂ = i inU and dﬂ = i
dt axljj dt axi/
would not say the same thing in two overlapping patches, and consequently would not
vield a flow ¢,! In the next chapter we shall see how to deal with n-tuples that transform
as “grad f.”

inV

1.4c. Straightening Flows

Our version of the fundamental theorem on the existence of solutions of differential
equations, as given in the previous section, is not the complete story; see [A, M, R,
theorem 4.1.14] or [A2, chap. 4] for details of the following. The map (p, ) — ¢:(p)
depends smoothly on the initial condition p and on the time of flow . This has the
following consequence. (Since our result will be local, it is no loss of generality to
replace M" by R".) Suppose that the vector field v does not vanish at the point p.
Then of course it doesn’t vanish in some neighborhood of p in M”". Let W"~! be a
hypersurface, that is, a submanifold of codimension 1, that passes through p. Assume
that W is transversal to v, that is, the vector field v is not tangent to W.

v

Figure 1.19

Let u!, ..., u"~! be local coordinates for W, and let p, be the point on W with
local coordinates u. Then ¢,(p,) is the point ¢ seconds along the orbit of v through
pu- This point can be described by the n-tuple (u, t). The fundamental theorem states
that if W is sufficiently small and if ¢ is also sufficiently small, then (u, t) can be
used as (curvilinear) coordinates for some n-dimensional neighborhood of p in M".
To see this we shall apply the inverse function theorem. We thus consider the map
L: W' x (—€,€) — M" given by L(u,t) = ¢,(p,). We compute the differential
of this map at the origin u = 0 of the coordinates on W"~!. Then by the geometric
meaning of L,, and since ¢y(p) = p

o 0 9P w.0.....0) o
L* b = — y 0, ey 0 = — = —
<8u1 ) ou Lo(u Mo ou u—o Ou!

Likewise L,(0/0u’) = 8/0u’, fori =1, ...,n — 1. Finally

B]
L.(v) = 5¢z(po) =v

Thus L, is the identity linear transformation, and by Corollary (1.16) we may use

u', ..., u""!, t as local coordinates for M" near p.
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It is then clear that in these new local coordinates near p, the flow defined by the
vector field v is simply ¢s : (4, t) — (u, s +1) and the vector field v in terms of 8/0u',
...,0/0u""',8/0t, is simply v = 8/0t. We have “straightened out” the flow!

Figure 1.20
This says that near a nonsingular point of v, that is, a point where v # 0, coordinates
u', ..., u" can be introduced such that the original system of differential equations
dx'/dt = v'(x),...,dx"/dt = v"(x) becomes
du' 0 du"™' 0 du" | (120)
R dt '

Thus all flows near a nonsingular point are qualitatively the same! In a sense this
result is of theoretical interest only, for in order to introduce the new coordinates u
one must solve the original system of differential equations. The theoretical interest
is, however, considerable. For example, u' = ¢y, ..., u"~' = ¢,_;, are (n — 1) “first
integrals,” that is, constants of the motion, for the system (1.20). We conclude that
near any nonsingular point of any system there are (n — 1) first integrals, u!(x) =
¢, ., u" ' (x) = c,_; (but of course, we might have to solve the original system to

write down explicitly the functions u/ in terms of the x’s).

Problems

1.4(1) Consider the quadratic vector field problem on R, v(x) = x2d/dx. You must
solve the differential equation

dx 2

E =X
Consider, as in the statement of the fundamental theorem, the case when Uy is
the set 1/2 < x < 3/2. Find the largest € so that ® : Up x (—¢, €) — R is defined,;
that is, find the largest t for which the integral curve ¢:(q) will be defined for all

1/2 < q < 3/2.

1.4(2) Inthe complex plane we can consider the differential equations dz/dt = 1, where
t is real. The integral curves are of course lines parallel to the real axis.This
can also be considered a differential equation on the z patch of the Riemann
sphere of Section 1.2d. Extend this differential equation to the entire sphere by
writing out the equivalent equation in the w patch. Write out the general solution
w = w(t) in the neighborhood of w = 0, and draw in particular the solutions
starting at i, 1, and —i.

and x(0)=p






CHAPTER 2

Tensors and Exterior Forms

IN Section 1.4b we considered the n-tuple of partial derivatives of a single function
0F/dx’ and we noticed that this n-tuple does not transform in the same way as the n-
tuple of components of a vector. These components 9 F /dx’/ transform as a new type of
“vector.” In this chapter we shall talk of the general notion of “tensor” that will include
both notions of vector and a whole class of objects characterized by a transformation
law generalizing 1.6. We shall, however, strive to define these objects and operations
on them “intrinsically,” that is, in a basis-free fashion. We shall also be very careful in
our use of sub- and superscripts when we express components in terms of bases; the
notation is designed to help us recognize intrinsic quantities when they are presented
in component form and to help prevent us from making blatant errors.

2.1. Covectors and Riemannian Metrics
How do we find the curves of steepest ascent?

2.1a. Linear Functionals and the Dual Space

Let E be areal vector space. Although for some purposes E may be infinite-dimensional,
we are mainly concerned with the finite-dimensional case. Although R", as the space

of real n-tuples (x!, ..., x"), comes equipped with a distinguished basis (1, 0, 0, ...,
0)T, ..., the general n-dimensional vector space E has no basis prescribed.
Choose a basis ey, ..., e, for the n-dimensional space E. Then a vector v € E has

a unique expansion
V= E ejv/ = E v'e;
J J

where the n real numbers v/ are the components of v with respect to the given basis. For
algebraic purposes, we prefer the first presentation, where we have put the “scalars”
v/ to the right of the basis elements. We do this for several reasons, but mainly so
that we can use matrix notation, as we shall see in the next paragraph. When dealing

37
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with calculus, however, this notation is awkward. For example, in R" (thought of as a
manifold), we can write the standard basis at the origin as e; = 8/8x’ (as in Section
1.3¢); then our favored presentation would say v = >, O0/0x’ v/, making it appear,
incorrectly, that we are differentiating the components v/. We shall employ the bold  to
remind us that we are not differentiating the components in this expression. Sometimes
we will simply use the traditional ), v’e;.

We shall use the matrices

e=(e,...,e,) and v=@...,v")"
The first is a symbolic row matrix since each entry is a vector rather than a scalar.
Note that in the matrix v we are preserving the traditional notation of representing
the components of a vector by a column matrix. We can then write our preferred
representation as a matrix product

v=ev 2.1

where vis a 1 x 1 matrix. As usual, we see that the n-dimensional vector space E, with a
choice of basis, is isomorphic to R" under the correspondence v — ', ...,v") eR",
but that this isomorphism is “unnatural,” that is, dependent on the choice of basis.

Definition: A (real) linear functional @ on E is a real-valued linear function «,
that is, a linear transformation o : £ — R from E to the 1-dimensional vector
space R. Thus

a(av + bw) = aa(v) + ba(w)

for real numbers a, b, and vectors v, w.

By induction, we have, for any basis e

a(ZeJ-vj) =Zo¢(e,)vj 2.2)

This is simply of the form Y a;v/ (where a; := «(e;)), and this is a linear function of
the components of v. Clearly if {a;} are any real numbers, then v — > a;v/ defines a
linear functional on all of E. Thus, after one has picked a basis, the most general linear
functional on the finite-dimensional vector space E is of the form

a(v) =Y ap/ wherea; :=a(e)) (2.3)

Warning: A linear functional « on E is not itself a member of E; that is, « is not
to be thought of as a vector in E. This is especially obvious in infinite-dimensional
cases. For example, let E be the vector space of all continuous real-valued functions
f : R — R of areal variable ¢. The Dirac functional § is the linear functional on E
defined by

So(f) = f(0)

You should convince yourself that £ is a vector space and that §, is a linear functional
on E. No one would confuse 8y, the Dirac § “function,” with a continuous function,
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that is, with an element of E. In fact §, is not a function on R at all. Where, then, do the
linear functionals live?

Definition: The collection of all linear functionals « on a vector space E form a
new vector space E*, the dual space to E, under the operations

(o + B)(V) := a(v) + B(v), a,BeE", ve E
(ca) (V) := ca(v), ceR

We shall see in a moment that if E is n-dimensional, then so is E*.
If e,...,e, is a basis of E, we define the dual basis o', ..., 0" of E* by first
putting

ai(ej) = (Sij

and then “extending o by linearity,” that is,
(S ) = Etepys = s
J J J

Thus o is the linear functional that reads off the i'" component (with respect to the
basis e) of each vector v.

Let us verify that the o ’s do form a basis. To show linear independence, assume that a
linear combination ) a;o/ is the O functional. Then 0 = 3~ a0/ (&) = Y-, a;8/; =
a; shows that all the coefficients a; vanish, as desired. To show that the o’s span E*,
we note that if « € E* then

a(v) = a(Zejvj) = Za(e,)vj
=Y aeo’® = (D ateno’) W

Thus the two linear functionals « and > a(e J-)af must be the same!

a=)Y ale)o’ 2.4)
J

This very important equation shows that the ¢’s do form a basis of E*.

In (2.3) we introduced the n-tuple a; = a(e;) for each o € E*. From (2.4) we see
o =Y ajo’.a; defines the j™ component of «.

If we introduce the matrices

o=@0"....,oM" and a=(a,...,a,)
then we can write

o= Zajaj =ao (2.5
J

Note that the components of a linear functional are written as a row matrix a.
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If B = (B;r) is a matrix of linear functionals and if f = (fz,) is a matrix of vectors,
then by Bf = B (f) we shall mean the matrix of scalars

ﬁ(f)is = Z ﬂiR (fRs)
R

Note then that oe is the identity n x n matrix, and then equation (2.3) says

a(v) = (ao)(ev) = a(oe)v = av

2.1b. The Differential of a Function

Definition: The dual space M}* to the tangent space M) at the point p of a
manifold is called the cotangent space.

Recall from (1.10) that on a manifold M", a vector v at p is a differential operator
on functions defined near p.

Definition: Let /' : M" — R. The differential of f at p, written df, is the
linear functional df : M, — R defined by

df(v) =v,(f) (2.6)

Note that we have defined df independent of any basis. In local coordinates, e; =
0/9x7], defines a basis for M/, and

.0
d v — v/ (p)——
f(Z W) > (p) (p)
is clearly a linear function of the components of v. In partlcular, we may consider the
differential of a coordinate function, say xt

di( ) )_ax"_(sl.
Y\oxi) T o T %Y
i j 8 j i 3 i
dx (ZUJ%> szjdx (E) =V
J J

Thus, for each i, the linear functional dx' reads off the i"" component of any vector v
(expressed in terms of the coordinate basis). In other words

and

o' =dx'

yields, fori = 1, ...,n, the dual basis to the coordinate basis. dx', ..., dx" form a
basis for the cotangent space M)*.
The most general linear functional is then expressed in coordinates, from (2.5) as

o= Z <8x1> dx’ = Zal dx’ 2.7)
J

Warning: We shall call an expression such as (2.7) adifferential form. In elementary
calculus it is called simply a “differential.” We shall not use this terminology since, as
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we learned in calculus, not every differential form is the differential of a function; that
is, it need not be “exact.” We shall discuss this later on in great detail.

The definition of the differential of a function reduces to the usual concept of dif-
ferential as introduced in elementary calculus. Consider for example R? with its usual
cartesian coordinates x = x!, y = x?,and z = x°. The differential is there traditionally
defined in two steps.

First, the differential of an “independent” variable, that is, a coordinate function, say
dx, is a function of ordered pairs of points. If P = (x, y,z) and Q = (x', y’, Z’) then
dx is defined to be (x" — x). Note that this is the same as our expression dx (Q — P),
where (Q — P) is now the vector from P to Q. The elementary definition in R? takes
advantage of the fact that a vector in the manifold R? is determined by its endpoints,
which again are in the manifold R®. This makes no sense in a general manifold; you
cannot subtract points on a manifold.

Second, the differential df of a “dependent” variable, that is, a function f, is defined
to be the function on pairs of points given by

af af af >
dx dy d
(ax> +<a ) +<az :
Note that this is exactly what we would get from (2.7)
o . of
d == d - d b=
r=Sdr (g Jar =X (55 )ax
Our definition makes no distinction between independent and dependent variables, and

makes sense in any manifold.
Our coordinate expression for df obtained previously holds in any manifold

df = Z( )dxf (2.8)

A linear functional « : M; — R is called a covariant vector, or covector, or
1-form. A differentiable assignment of a covector to each point of an open set in M”"
is locally of the form

o= Zaj (x) dx’
J

and would be called a covector field, and so on; df = ) ;@f/ dx/)dx’ is an example.
Thus the numbers 9f/0x!, ..., df/0x" form the components not of a vector field
but rather of a covector field, the differential of f. We remarked in our warning in
paragraph 1.4c that these numbers are called the components of the “gradient vector”
in elementary mathematics, but we shall never say this. It is important to realize that
the local expression (2.8) holds in any coordinate system; for example, in spherical
coordinates for R®, f = f(r, 6, ¢) and

= <af)d +(a£>d9+<a§>) @

and no one would call 3f/dr, af/d6, df/d¢ the components of the gradient vector
in spherical coordinates! They are the components of the covector or 1-form df. The
gradient vector grad f will be defined in the next section after an additional structure
is introduced.
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Under a change of local coordinates the chain rule yields
. 0 xvi ,
dxy' = - | dxy’ 29
v (3007) 29

and for a general covector >, a¥;dxy' =3
as > ; a¥;dxy’. We then must have

a’; =3 avi(axvl ) (2.10)

; BXUj

ja'i(@xy'/dxy’) dxy’ must be the same

But Zj (8XVi/3)CUj)(8XUj/8XVk) = 8)CVi/8XVk = Sik shows that 3XU/8XV is the
inverse matrix to dxy/dxy. Equation (2.10) is, in matrix form, a¥ = a" (9xy/dxy),
and this yields a” = aV (0xy /0xy), or

a" :Za’fj<8x”j> @11

- dxy!
T v

This is the transformation rule for the components of a covariant vector, and should
be compared with (1.6). In the notation of (1.7) we may write

a’ =a¥cyy =a? c;{, (2.12)
Warning: Equation (1.6) tells us how the components of a single contravariant
vector transform under a change of coordinates. Equation (2.11), likewise, tells us
how the components of a single 1-form « transform under a change of coordinates.
This should be compared with (2.9). This latter tells us how the n-coordinate 1-forms
dxy', ..., dxy" are related to the n-coordinate 1-forms dxy ', ..., dxy". In a sense we
could say that the n-tuple of covariant vectors (dx', ..., dx") transforms as do the
components of a single contravariant vector. We shall never use this terminology.
See Problem 2.1 (1) at this time.

2.1c. Scalar Products in Linear Algebra

Let E be an n-dimensional vector space with a given inner (or scalar) product (, ).
Thus, for each pair of vectors v, w of E, (v, w) is areal number, it is linear in each entry
when the other is held fixed (i.e., it is bilinear), and it is symmetric (v, w) = (W, v).
Furthermore (, ) is nondegenerate in the sense that if (v, w) = O for all w then v = 0;
that is, the only vector “orthogonal” to every vector is the zero vector. If, further,
| v ||?>:= (v, V) is positive when v # 0, we say that the inner product is positive
definite, but to accommodate relativity we shall not always demand this.
If e is a basis of E, then we may write v = ev and w = ew. Then

vow)y = e’ > ew)
i J
= Zvi(ei, Zejwj) = szi(ei, e;)w’
i j i
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If we define the matrix G = (g;;) with entries
gij = (e, ej)
then
(vow) = > v'gw (2.13)
or ]
(v, w) = vGw

The matrix (g;;) is briefly called the metric tensor. This nomenclature will be explained
in Section 2.3.

Note that when e is an orthonormal basis, that is, when g;; = 83. is the identity
matrix (and this can happen only if the inner product is positive definite), then (v, w) =
> v/ w/ takes the usual “euclidean” form. If one restricted oneself to the use of
orthonormal bases, one would never have to introduce the matrix (g;;), and this is what
is done in elementary linear algebra.

By hypothesis, (v, w) is a linear function of w when v is held fixed. Thus if v € E,
the function v defined by

v(w) = (v, w) (2.14)

is a linear functional, v € E*. Thus to each vector v in the inner product space E we
may associate a covector v; we shall call v the covariant version of the vector v. In
terms of any basis e of E and the dual basis o of E* we have from (2.4)

V= Z vjorf = Z v(ej)orj
j

J

= Z(V, ej>0'j
J

= Z(Z e,-vi, ej>0'j
J i

= Z(Z Uigij)Uj
J i

Thus the covariant version of the vector v has components v; = Y, v'g;; and it is
traditional in “tensor analysis” to use the same letter v rather than v. Thus we write
for the components of the covariant version

v;=> vigy=> giv (2.15)

since g;; = gji- The subscript j in v; tells us that we are dealing with the covariant
version; in tensor analysis one says that we have “lowered the upper index i, making
it a j, by means of the metric tensor g;;.” We shall also call the (v;), with abuse of
language, the covariant components of the contravariant vector v.

Note that if e is an orthonormal basis then v; = v/.
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In our finite-dimensional inner product space E, every linear functional v is the
covariant version of some vector v. Given v = ) jv ;o we shall find v such that
v(w) = (v, w) for all w. For this we need only solve (2.15) for v’ in terms of the given
v;.Since G = (g;;) is assumed nondegenerate, the inverse matrix G~' must exist and is
again symmetric. We shall denote the entries of this inverse matrix by the same letters
g but written with superscripts

G~ = (")
Then from (2.15) we have
v =gl (2.16)

J

yields the contravariant version v of the covector v = 3 ;
contravariant components of the covector v.

Let us now compare the contravariant and covariant components of a vector v in a
simple case. First of all, we have immediately

v;o’. Again we call (v') the

Vj = v(ej) = (V, ej) (217)
and then v’ = 3, g¥v; = 37, g"(v, e;). Thus although we always have v =", v" e;,
V= Z (Zgij(v, ej))e,‘
i J
replaces the euclidean v =), (v, e;)e; that holds when the basis is orthonormal. Con-

sider, for instance, the plane ]R2, where we use a basis e that consists of unit but not
orthogonal vectors.

»e
vl Vi

Figure 2.1

We must make some final remarks about linear functionals. It is important to realize
that given an n-dimensional vector space E, whether or not it has an inner product,
one can always construct the dual vector space E*, and the construction has nothing
to do with a basis in E. If a basis e is picked for E, then the dual basis o for E* is
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determined. There is then an isomorphism, that is, a 1:1 correspondence between E*
and E given by Y a;jo/ — > aje;, but this isomorphism is said to be “unnatural”
since if we change the basis in E the correspondence will change. We shall never use
this correspondence. Suppose now that an inner product has been introduced into E.
As we have seen, there is another correspondence E* — E that is independent of
basis; namely to v € E* we associate the unique vector v such that v(w) = (v, w); we
may write v = (v, +). In terms of a basis we are associating to v = >_ v;o’ the vector
> v'e;. Then we know that each o' can be represented as o = (f;, +); that is, there
is a unique vector f; such that o'(w) = (f;, w) for all w € E. Then f ={f;} is a new
basis of the original vector space E, sometimes called the basis of E dual to e, and we
have (f;, e;) = 8; Although this new basis is used in applied mathematics, we shall
not do so, for there is a very powerful calculus that has been developed for covectors,
a calculus that cannot be applied to vectors!

2.1d. Riemannian Manifolds and the Gradient Vector

A Riemannian metric on a manifold M" assigns, in a differentiable fashion, a positive
definite inner product (, ) in each tangent space M. If (, ) is only nondegenerate (i.e.,
(u, v) = O for all v only if u = 0) rather than positive definite, then we shall call the
resulting structure on M" a pseudo-Riemannian metric. A manifold with a (pseudo-)
Riemannian metric is called a (pseudo-) Riemannian manifold.

In terms of a coordinate basis ¢; = 8; := 8/8x' we then have the differentiable

matrices (the “metric tensor”)
15) 15)
ii(X) = —_—,
8 (x) <8x‘ Ox/ >

as in (2.13). In an overlap U N V we have

a
g = < > (2.18)

8.XVi ’ 8)CVj

Ber axUS
= _— BU, P 8U
S (G )2 2 (5)o
dxy” oxy’
vV _ Z Y u U
$i 7 2 <8xv">(8xv1> Ers

rs

This is the transformation rule for the components of the metric tensor.

Definition: If M" is a (pseudo-) Riemannian manifold and fis a differentiable
function, the gradient vector

grad f =V f
is the contravariant vector associated to the covector d f

df(w) =(Vf,w) (2.19)
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In coordinates
=Yg
N r § ax/
Note then that | Vf |>:= (Vf, Vf) =df(Vf) = Zij(af/axi)gij(af/axf). We
see that df and V f will have the same components if the metric is “euclidean,” that
is, if the coordinates are such that g = &'.

Example (special relativity): Minkowski space is, as we shall see in Chapter 7, R* but
endowed with the pseudo-Riemannian metric given in the so-called inertial coordinates

t=x x=x', y=x2 z=x3 by
o o e .
gl]=<$, %>=1 lfl—J—l,Z, or 3

=-c> ifi=j=0, where c is the speed of light

=0 otherwise

that is, (g;;) is the 4 x 4 diagonal matrix
(gij) = diag(—c*, 1, 1, 1)

3
af af .
df = — |dt — | dx’
/ <ar) 3 <ax-f> g
is classically written in terms of components

af ~ |20 o of of
! [Bt’ax’ ay’ 82}

Then

but
1 [df L/ of
Vi=-5 <5>8,+; ($> 9

e
c2 3t’ 9x 9y’ 93z
(It should be mentioned that the famous Lorentz transformations in general are simply
the changes of coordinates in R that leave the origin fixed and preserve the form —c*t> +
x2 4 y2 + 22, just as orthogonal transformations in R* are those transformations that

preserve x” 4 y2 4 z2!)

2.1e. Curves of Steepest Ascent

The gradient vector in a Riemannian manifold M" has much the same meaning as in
euclidean space. If v is a unit vector at p € M, then the derivative of f with respect to v
isv(f) =>_(af/dx/)v/ = df(v) = (V f, v). Then Schwarz’s inequality (which holds
for a positive definite inner product), |[v(f)| = (VL) <I VLI vI=I VfI,
shows that f has a maximum rate of change in the direction of V f. If f(p) = a, then
the level set of f through p is the subset defined by

M" (@) == {x € M"| f(x) = a)
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A good example to keep in mind is the torus of Figure 1.18. If df does not vanish
at p then M"~!(a) is a submanifold in a neighborhood of p. If x = x(¢) is a curve
in this level set through p then its velocity vector there, dx/dt, is “annihilated” by
df; df(dx/dt) = 0 since f(x(¢)) is constant. We are tempted to say that df is
“orthogonal” to the tangent space to M"~!(a) at p, but this makes no sense since df
is not a vector. Its contravariant version V [ is, however, orthogonal to this tangent
space since (V f, dx /dt) = df (dx/dt) = 0 for all tangents to M"~'(a) at p. We say
that V f is orthogonal to the level sets.

Finally recall that we showed in paragraph 1.4b that one does not get a well-defined
flow by considering the local differential equations dx'/dt = 9f/dx'; one simply
cannot equate a contravariant vector dx/dt with a covariant vector df. However it
makes good sense to write dx /dt = V f; thatis, the “correct” differential equations are

dx’ ([ Of
_ i 2
dr Zj:g (axf)

The integral curves are then tangent to V f, and so are orthogonal to the level sets f =
constant. How does f change along one of these “curves of steepest ascent”? Well,
df/dt =df(dx/dt) = (V f, V f). Note then that if we solve instead the differential
equations

dx Vf

dt IV fI?

(i.e., we move along the same curves of steepest ascent but at a different speed) then
df/dt = 1. The resulting flow has then the property that in time t it takes the level set
f = a into the level set f = a + t. Of course this result need only be true locally
and for small ¢ (see 1.4a). Such a motion of level sets into level sets is called a Morse
deformation. For more on such matters see [M, chap. 1].

Problems

2.1(1) Ifvisavectorand« is a covector, compute directly in coordinates that ) a,.V vl =
> aﬂv’v/J. What happens if w is another vector and one considers > v/w/?

2.1(2) Let x, y, and z be the usual cartesian coordinates in R® and let u’ =r, u?2 =6
(colatitude), and u® = ¢ be spherical coordinates.

(i) Compute the metric tensor components for the spherical coordinates
—gn={ 2 2\ et
9o =912 = 3> Bg '
(Note: Don’t fiddle with matrices; just use the chain rule 8/0r =
0x/0r)0/0x + --+)
(ii) Compute the coefficients (V f)/ in

b3) b) b3)
_ r 0 ¢
V=M1 ar+(VF) 89+(Vf) 0%
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(iii) Verify that 8/8r, 8/086, and 8/8¢ are orthogonal, but that not all are unit
vectors. Define the unit vectors e’j = (8/0ul)/ | 8/0u! | and write V fin
terms of this orthonormal set

Vi=vn'e +He,+vH,

These new components of grad f are the usual ones found in all physics
books (they are called the physical components); but we shall have little
use for such components; df, as given by the simple expression df =
(8f/ar) dr + - - -, frequently has all the information one needs!

2.2. The Tangent Bundle

What is the space of velocity vectors to the configuration space of a dynamical system?

2.2a. The Tangent Bundle

The tangent bundle, 7 M", to a differentiable manifold M" is, by definition, the
collection of all tangent vectors at all points of M.

Thus a “point” in this new space consists of a pair (p, v), where p is a point of M and v is
a tangent vector to M at the point p, thatis,v € M ’;. Introduce local coordinates in 7 M
as follows. Let (p, v) € TM". p lies in some local coordinate system U, x!, ..., x". At
p we have the coordinate basis (8; = 8/8x") for M". We may then write v =}, v'9;.
Then (p, v) is completely described by the 2n-tuple of real numbers

x'(p),....x"(p), vt .. "

The 2n-tuple (x,v) represents the vector j v/@; at p. In this manner we associate
2n local coordinates to each tangent vector to M" that is based in the coordinate patch
(U, x). Note that the first n-coordinates, the x’s, take their values in a portion U of R",
whereas the second set, the v’s, fill out an entire R” since there are no restrictions on
the components of a vector. This 2n-dimensional coordinate patch is then of the form
(U C R") x R" ¢ R*". Suppose now that the point p also lies in the coordinate patch
(U’, x"). Then the same point (p, v) would be described by the new 2n-tuple

1 1
xX(p),....x"(p),v,....0"
where

=X X (2.20)

and
. 8x/i )
1 — Jj
v §j [axj } ()

We see then that T M" is a 2n-dimensional differentiable manifold!
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We have a mapping
7:TM —- M n(p,v)=p

called projection that assigns to a vector tangent to M the point in M at which the
vector sits. In local coordinates,

It is clearly differentiable.

fiber 7 (x)
™
R" T !
: ¥ : point with local
: : coordinates (x,v)
1 1
1 1
1 1
v : ", : 0 section
BN 1
1 1
1, ! ! 4
1 1
| 1 1
1 1
1 1
1 T
X A\
[ \
t 7 M
I U I
Figure 2.2

We have drawn a schematic diagram of the tangent bundle T M.  ~'(x) represents
all vectors tangent to M at x, and so ' (x) = M" is a copy of the vector space R".
It is called “the fiber over x.” Our picture makes it seem that 7'M is the product space
M x R", but this is not so! Although we do have a global projection 7 : TM — M,
there is no projection map ©' : TM — R".

A point in TM represents a tangent vector to M at a point p but there is no way to
read off the components of this vector until a coordinate system (or basis for M ,) has
been designated at the point at which the vector is based!

Locally of course we may choose such a projection; if the point is in 7 ! (U) then by
using the coordinates in U we may read off the components of the vector. Since 7 =1 (U)
is topologically U x R" we say that the tangent bundle T M is locally a product.
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R”
/ \ Uy cT™
0 section
|
1
1
1
1
|
P 1
: section v
1
I
} ' } M"
U
v =0 here
Figure 2.3

A vector field v on M clearly assigns to each point x in M a point v(x) in 7! (x) C
T M that “lies over x.” Thus a vector field can be considered asamapv : M — TM
such that 7w ov is the identity map of M into M. As suchitis called a (cross) section of the
tangent bundle. In a patch 7 ~! (U) it is described by v/ = v’ (x!, ..., x") and the image
v(M) is then an n-dimensional submanifold of the 2n-dimensional manifold TM. A
special section, the O section (corresponding to the identically O vector field), always
exists. Although different coordinate systems will yield perhaps different components
for a given vector, they will all agree that the 0-vector will have all components 0.

Example: In mechanics, the configuration of a dynamical system with n degrees of
freedom is usually described as a point in an n-dimensional manifold, the configuration
space. The coordinates x are usually called ¢', ..., ¢", the “generalized coordinates.”
For example, if we are considering the motion of two mass points on the real line,
M? = R x R with coordinates g', g> (one for each particle). The configuration space
need not be euclidean space. For the planar double pendulum of paragraph 1.2b (v),
the configuration space is M> = S' x §' = T2. For the spatial single pendulum M?
is the 2-sphere S? (with center at the pin). A tangent vector to the configuration space
M" is thought of, in mechanics, as a velocity vector; its components with respect to the
coordinates g are written ¢, . .., g, rather than vl, ..., v". These are the generalized
velocities. Thus T M is the space of all generalized velocities, but there is no standard
name for this space in mechanics (it is not the phase space, to be considered shortly).

2.2b. The Unit Tangent Bundle

If M" is a Riemannian manifold (see 2.1d) then we may consider, in addition to 7 M,
the space of all unit tangent vectors to M”. Thus in T M we may restrict ourselves to
the subset TyM of points (x, v) such that || v ||>= 1. If we are in the coordinate patch
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(x',...,x",v', ..., v") of T M, then this unit tangent bundle is locally defined by
T()Mn : Z 8ij (x)vivj =1
ij
In other words, we are looking at the locus in T M defined locally by putting the single
function f(x,v) = >7;; &;(x)v'v’ equal to a constant. The local coordinates in T M
are (x, v). Note, using g;; = gj;, that

of 4

=2 gy

v 7

Since det(g;;) # 0, we conclude that not all 9f/d v* can vanish on the subset v # 0,
and thus ToM" is a (2n — 1)-dimensional submanifold of T M"! In particular ToM is

itself a manifold.
In the following figure, vo = v/ || v ||.

(e
>

Example: 7,5 is the space of unit vectors tangent to the unit 2-sphere in R*.

f3 €3
52
f
€
€]

Figure 2.5

0 section

|

.
[
\
\

- > M
v

Figure 2.4

Let v = f, be a unit tangent vector to the unit sphere S C R>. It is based at some point
on §2, described by a unit vector f;. Using the right-hand rule we may put f; = f; x f,.
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It is clear that by this association, there is a 1:1 correspondence between unit tangent
vectors v to S? (i.e., to a point in TpS?) and such orthonormal triples f;, f>, f3. Translate
these orthonormal vectors to the origin of R® and compare them with a fixed right-handed
orthonormal basis e of R*. Then f; = e : R/; for a unique rotation matrix R € SO(3).
In this way we have set up a 1:1 correspondence TpS? — SO(3). It also seems evident
that the topology of TpS? is the same as that of SO (3), meaning roughly that nearby
unit vectors tangent to S? will correspond to nearby rotation matrices; precisely, we
mean that TpS?> — SO(3) is a diffeomorphism. We have seen in 1.2b(vii) that SO (3) is
topologically projective space.

The unit tangent bundle TyS? to the 2-sphere is topologically the 3-dimensional real
projective 3-space TyS* ~ RP3 ~ SO(3).

2.3. The Cotangent Bundle and Phase Space

What is phase space?

2.3a. The Cotangent Bundle

The cotangent bundle to M" is by definition the space T*M" of all covectors at all
points of M. A pointin 7*M is a pair (x, @) where « is a covector at the point x. If x is
in a coordinate patch U, x', ..., x", thendx!, ..., dx", gives a basis for the cotangent
space M"*, and « can be expressed as & = Y a;(x)dx'. Then (x, @) is completely
described by the 2n-tuple

x ), X (), a (%), .., a,(x)

The 2n-tuple (x, a) represents the covector > a; dx' at the point x. If the point p also

lies in the coordinate patch U’, X't .., x", then

=X LX)

and (2.21)

J

d
=3 i |

J

T*M" is again a 2n-dimensional manifold. We shall see shortly that the phase space in
mechanics is the cotangent bundle to the configuration space.

2.3b. The Pull-Back of a Covector

Recall that the differential ¢, of a smooth map ¢ : M" — V' has as matrix the Jacobian
matrix dy/dx in terms of local coordinates (x', ..., x") near x and (y', ..., y") near
y = ¢ (x). Thus, in terms of the coordinate bases

o\ ayR\ 9
#(50) =2 (50) oy 2

R
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Note that if we think of vectors as differential operators, then for a function f near y

o ayR af
#(50) 0 =2 (557) (35%)
simply says, “Apply the chain rule to the composite function f o ¢, thatis, f(y(x)).”

Definition: Let ¢ : M" — V' be a smooth map of manifolds and let ¢ (x) = y.
Let ¢, : M, — V, be the differential of ¢. The pull-back ¢* is the linear
transformation taking covectors at y into covectors at x, ¢* : V(y)* — M (x)*,
defined by

" (B)(V) 1= B(¢:(V)) (2.23)

for all covectors B at y and vectors v at x.

Let (x') and (y*) be local coordinates near x and y, respectively. The bases for the
tangent vector spaces M, and V, are given by (8/0x/) and (8/0y*). Then

96 = Z¢(ﬂ)< )it = Zﬂ(@ oy )

_Zﬂ<z (axf)aiyR)dxj
-5 (5 )r (e ) o

= Z%( )dx’ where 8 = ZbkdyR
R
Thus
¢ By =) b (ﬁ}w (2.24)
I F\ ox '

In terms of matrices, the differential ¢, is given by the Jacobian matrix dy/dx acting
on columns v at x from the left, whereas the pull-back ¢* is given by the same matrix
acting on rows b at y from the right. (If we had insisted on writing covectors also as
columns, then ¢* acting on such columns from the left would be given by the transpose
of the Jacobian matrix.)

¢*(dy®) is given immediately from (2.24); since dy’ = Y, 85rdy®

ayS\
P*(dy®) = Z (%)dx’ (2.25)
J

This is again simply the chain rule applied to the composition yS o ¢!

Warning: Let ¢ : M" — V' and let v be a vector field on M. It may very well
be that there are two distinct points x and x’ that get mapped by ¢ to the same point
y = ¢(x) = ¢(x'). Usually we shall have ¢, (v(x)) # ¢.(v(x)) since the field v need
have no relation to the map ¢. In other words, ¢, (v) does not yield a well defined vector
field on V (does one pick ¢, (v(x)) or ¢, (v(x')) at y?). ¢, does not take vector fields



54 TENSORS AND EXTERIOR FORMS

into vector fields. (There is an exception if n = r and ¢ is 1:1.) On the other hand, if
B is a covector field on V', then ¢*B is always a well-defined covector field on M",
¢*(B(y)) yields a definite covector at each point x such that ¢(x) = y. As we shall
see, this fact makes covector fields easier to deal with than vector fields.

See Problem 2.3 (1) at this time.

2.3c. The Phase Space in Mechanics

In Chapter 4 we shall study Hamiltonian dynamics in a more systematic fashion. For the
present we wish merely to draw attention to certain basic aspects that seem mysterious
when treated in most physics texts, largely because they draw no distinction there
between vectors and covectors.

Let M" be the configuration space of a dynamical system and let¢', ..., g" be local
generalized coordinates. For simplicity, we shall restrict ourselves to time-independent
Lagrangians. The Lagrangian L is then a function of the generalized coordinates g
and the generalized velocities g, L = L(q, ¢g). It is important to realize that g and ¢
are 2n-independent coordinates. (Of course if we consider a specific path ¢ = g(¢) in
configuration space then the Lagrangian along this evolution of the system is computed
by putting ¢ = dg/dt.) Thus the Lagrangian L is to be considered as a function on
the space of generalized velocities, that is, L is a real-valued function on the tangent
bundle to M,

L:TM" — R
We shall be concerned here with the transition from the Lagrangian to the Hamiltonian
formulation of dynamics. Hamilton was led to define the functions
oL
g’
We shall only be interested in the case when det(dp; /dg’) # 0. In many books (2.26)
is looked upon merely as a change of coordinates in 7'M that is, one switches from
coordinates g, ¢,to g, p. Although this is technically acceptable, it has the disadvantage
that the p’s do not have the direct geometrical significance that the coordinates ¢ had.

Under a change of coordinates, say from gy to gy in configuration space, there is an
associated change in coordinates in T M

ri(q,q) = (2.26)

qv = qv(qu)
q =2 (3 ?)qv 2.27)
i CIV

This is the meaning of the tangent bundle! Let us see now how the p’s transform.

=g =G o)+ G G

J

However, gy does not depend on g ; likewise g, does not depend on gy, and therefore
the first term in this sum vanishes. Also, from (2.27),

34y _ dai)

= (2.28)
aqy aqy
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Thus

v v (99 [J]
Di =ij (3 i> (2.29)
; dv

and so the p’s represent then not the components of a vector on the configuration
space M" but rather a covector. The ¢’s and p’s then are to be thought of not as local
coordinates in the tangent bundle but as coordinates for the cotangent bundle. Equation
(2.26) is then to be considered not as a change of coordinates in 7 M but rather as the
local description of a map

p:TM"— T*M" (2.30)
from the tangent bundle to the cotangent bundle. We shall frequently call (¢', ..., g",
P1, ---, pp) the local coordinates for 7*M" (even when we are not dealing with me-

chanics). This space T*M of covectors to the configuration space is called in mechanics
the phase space of the dynamical system.

Recall that there is no natural way to identify vectors on a manifold M" with co-
vectors on M". We have managed to make such an identification, ) ; qG'9/9q’ —
>, (dL/347)dq’, by introducing an extra structure, a Lagrangian function. 7M and
T*M exist as soon as a manifold M is given. We may (locally) identify these spaces by
giving a Lagrangian function, but of course the identification changes with a change of
L, that is, a change of “dynamics.”

Whereas the ¢’s of T M are called generalized velocities, the p’s are called gener-
alized momenta. This terminology is suggested by the following situation. The La-
grangian is frequently of the form

L(q,q)=T(q,q)—V(g)

where T is the kinetic energy and V the potential energy. V is usually independent of
g and T is frequently a positive definite symmetric quadratic form in the velocities

1 )
T(q.9) =5 gn@)q’q" (2.31)
Jjk

For example, in the case of two masses m; and m; moving in one dimension, M =
R?, TM =R* and
T = 1ml(f?l)z + lm2(512)2
2 2
and the “mass matrix” (g;;) is the diagonal matrix diag(m,, m.).

In (2.31) we have generalized this simple case, allowing the “mass” terms to depend
on the positions. For example, for a single particle of mass m moving in the plane, we
have, using cartesian coordinates, T = (1/2)m[x* + y?], but if polar coordinates are
used we have T = (1/2)m[i-> + r26%] with the resulting mass matrix diag(m, mr?).In
the general case,

aL

P

dq

aT .
pi = ¢=Z&ww (2.32)
J

a
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Thus, if we think of 27 as defining a Riemannian metric on the configuration space M"

(@.4)=)_8i(@3d'q
ij
then the kinetic energy represents half the length squared of the velocity vector, and
the momentum p is by (2.32) simply the covariant version of the velocity vector q. In
the case of the two masses on R we have

Pl=mlé11 and P2=m242

are indeed what everyone calls the momenta of the two particles.

The tangent and cotangent bundles, T M and T*M, exist for any manifold M, in-
dependent of mechanics. They are distinct geometric objects. If, however, M is a Rie-
mannian manifold, we may define a diffeomorphism 7M" — T*M" that sends the
coordinate patch (g, ¢) to the coordinate patch (g, p) by

pi = Z gijé]j
J
with inverse
qg'=> g'p;
J

We did just this in mechanics, where the metric tensor was chosen to be that defined
by the kinetic energy quadratic form.

2.3d. The Poincaré 1-Form

Since T M and T*M are diffeomorphic, it might seem that there is no particular reason
for introducing the more abstract 7*M, but this is not so. There are certain geometrical
objects that live naturally on T*M, not TM. Of course these objects can be brought
back to TM by means of our identifications, but this is not only frequently awkward,
it would also depend, say, on the specific Lagrangian or metric tensor employed.

Recall that “l1-form” is simply another name for covector. We shall show, with
Poincaré, that there is a well-defined 1-form field on every cotangent bundle 7*M.
This will be a linear functional defined on each tangent vector to the 2n-dimensional
manifold T*M", not M.

Theorem (2.33): There is a globally defined 1-form on every cotangent bundle
T*M", the Poincaré 1-form ). In local coordinates (q, p) it is given by

A= Z pidq’

(Note that the most general 1-form on 7*M is locally of the form ", a;(q, p)dq' +
>-i bi(q, p)dp;, and also note that the expression given for A cannot be considered a
1-form on the manifold M since p; is not a function on M!)



THE COTANGENT BUNDLE AND PHASE SPACE 57

PROOF: We need only show that A is well defined on an overlap of local coordi-
nate patches of T*M. Let (¢’, p’) be a second patch. We may restrict ourselves to
coordinate changes of the form (2.21), for that is how the cotangent bundle was

defined. Then
) aq/i ) a /i
dqg' = —— |dq’ d
¢ =45 )+ (55, )}

J

But from (2.21), ¢’ is independent of p, and the second sum vanishes. Thus
> pldg" = Zp, Z (8(]1 >dq = Zp,dq 0

There is a simple intrinsic definition of the form A, that is, a definition not using
coordinates. Let A be a point in 7* M ; we shall define the 1-form A at A. A represents a
1-form o atapointx € M.Letw : T*M" — M" be the projection that takes a point A
in T*M, to the point x at which the form « is located. Then the pull-back 7 *« defines
a 1-form at each point of 77 ~!(x), in particular at A. A at A is precisely this form 7 *o!

Let us check that these two definitions are indeed the same. In terms of local coor-
dinates (¢) for M and (g, p) for T*M the map = is simply (g, p) = (g). The point
A with local coordinates (g, p) represents the form Z_,' pjdg’ at the point g in M.
Compute the pull-back (i.e., use the chain rule)

w ( > pidq’) =Y pim*(dq)
aqi ) aqi
= i — |dq’ + dp;
2o+ (55, )0y
=D _pi) 8idg’ =) pidg' =i O
i j i
As we shall see when we discuss mechanics, the presence of the Poincaré 1-form field

on T*M and the capability of pulling back 1-form fields under mappings endow T* M
with a powerful tool that is not available on T M.

Problems

2.3(1) Let F: M" — W' and G: W' — VS be smooth maps. Let x, y, and z be local
coordinates near p € M, F(p) € W, and G(F(p)) € V, respectively. We may
consider the composite map Go F: M — V.

(i) Show, by using bases 8/98x, 8/8y, and 8/0z, that
(Go F)y =G0 F,
(ii) Show, by using bases dx, dy, and dz, that
(Go FY*=F"o G*
2.3(2) Consider the tangent bundle to a manifold M.
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(i) Show that under a change of coordinates in M, 8/8q depends on both
8/8q and 8/8¢'.

(ii) Is the locally defined vector field qu/a/aq/ well defined on all of TM?

(iii) Is qu/a/aq/ well defined?

(iv) If any of the above in (ii), (iii) is well defined, can you produce an intrinsic
definition?

2.4. Tensors

How does one construct a field strength from a vector potential?

2.4a. Covariant Tensors

In this paragraph we shall again be concerned with linear algebra of a vector space
E. Almost all of our applications will involve the vector space E = M. of tangent
vectors to a manifold at a point x € E. Consequently we shall denote a basis e of
Eby 8 = (8,...,0,), with dual basis 0 = dx = (dx',...,dx™)T. It should be
remembered, however, that most of our constructions are simply linear algebra.

Definition: A covariant tensor of rank r is a multilinear real-valued function
QOQ:EXEx---xE—>R

of r-tuples of vectors, multilinear meaning that the function Q(vy,...,Vv,) is
linear in each entry provided that the remaining entries are held fixed.

We emphasize that the values of this function must be independent of the basis in which
the components of the vectors are expressed.

A covariant vector is a covariant tensor of rank 1. When r = 2, a multilinear function
is called bilinear, and so forth. Probably the most important covariant second-rank tensor
is the metric tensor G, introduced in 2.1c:

Gv,w) =(v,w) =Y gijv'w
ij

is clearly bilinear (and is assumed independent of basis).

We need a systematic notation for indices. Instead of writing i, j, ..., k, we shall
write iy, ..., 1,.

In components, we have, by multilinearity,

OV, ...,v,) = Q(Zvll] i]""vzv,l;rair>
:ZU?Q(&“...,ZU;’@”) =

= v .0 08..... ;)
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That is,
Oy, ...,V = Z Qi iV -

where (2.34)
Qi,...i, '=0(@0,...,0;)

We now introduce a very useful notational device, the Einstein summation conven-
tion. In any single term involving indices, a summation is implied over any index that
appears as both an upper (contravariant) and a lower (covariant) index. For example,
inamatrix A = (a';),a’; = Y, a'; is the trace of the matrix. With this convention we
can write

QWi V) = Qi i) ... V) (2.35)

The collection of all covariant tensors of rank r forms a vector space under the usual
operations of addition of functions and multiplication of functions by real numbers.
These simply correspond to addition of their components Q; . ; and multiplication of
the components by real numbers. The number of components in such a tensor is clearly
n". This vector space is the space of covariant 7" rank tensors and will be denoted by

E*®E*®"®E*=®VE*

If « and B are covectors, that is, elements of E*, we can form the second-rank
covariant tensor, the tensor product of « and §, as follows. We need only tell how
@B ExE—>R

a® B(v,w) :=a(v) (W)
In components, « = a;dx’ and B = b;dx’, and from (2.34)
(@ ®PB)ij =a®pP(0;,0;) =a(0:)B(0;) = ab;

(a;ib;), where i, j =1, ..., n, form the components of o« ® 8. See Problem 2.4 (1) at
this time.

2.4b. Contravariant Tensors

Note first that a contravariant vector, that is, an element of E, can be considered as a
linear functional on covectors by defining

v(a) == a(v)

In components v(a) = a;v' is clearly linear in the components of «.

Definition: A contravariant tensor of rank s is a multilinear real valued func-
tion T on s-tuples of covectors

T:E*xXE*x---xE"—>R
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As for covariant tensors, we can show immediately that for an s-tuple of 1-forms
o,y ..., O
T(ay,...,a5) =apj, -..as ,-A_T""“i‘
where (2.36)
Th-% = T(dx", ..., dx")
We write for this space of contravariant tensors
EQE®---QFE:=QE

Contravariant vectors are of course contravariant tensors of rank 1. An example
of a second-rank contravariant tensor is the inverse to the metric tensor G~!, with
components (g"/),

G (o, B) = g7 a;ib;

(see 2.1c). Does the matrix g/ really define a tensor G~'? The local expression for
G~! (a, B) given is certainly bilinear, but are the values really independent of the
coordinate expressions of & and 8? Note that the vector b associated to 8 is coordinate-
independent since B(v) = (v, b), and the metric (, ) is coordinate-independent. But
then G™'(e, B) = g”a;b; = a;b' = a(b) is indeed independent of coordinates, and
G~ is a tensor.

Given a pair v, w of contravariant vectors, we can form their tensor product v ®@ w
in the same manner as we did for covariant vectors. It is the second-rank contravariant
tensor with components (v ® w)”/ = v'w/. As in Problem 2.4 (1) we may then write

G=yg;dx"®dx’ and G '=g"8,®29; (2.37)

2.4c. Mixed Tensors

The following definition in fact includes that of covariant and contravariant tensors as
special cases when r or s = 0.

Definition: A mixed tensor, r times covariant and s times contravariant, is a
real multilinear function W

W:E*XE*X - XE"XEXEx---xE—->R

on s-tuples of covectors and r-tuples of vectors.
By multilinearity

iy J i
W(ozl,‘..,as,vl,...,vr):alil...asilW‘ T A U}{
where (2.38)

Wi]“'ile...j,- = W(dxil ey 8_,-,.)
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A second-rank mixed tensor arises from a linear transformation A : E — E. Define
Wi E* X E — Rby Wy(a, V) = a(Av). LetA = (A;) be the matrix of A, that is,
A(9)) = 3;143-- The components of W, are given by

W' = Wa(dx', 8;) = dx'(A(9;)) = dx' (8, A")) = 81 A*; = A7

The matrix of the mixed tensor W 4 is simply the matrix of A! Conversely, given a mixed
tensor W, once covariant and once contravariant, we can define a linear transformation
A by saying A is that unique linear transformation such that W(«, v) = a(Av). Such
an A exists since W(«, v) is linear in v. We shall not distinguish between a linear
transformation A and its associated mixed tensor Wy; a linear transformation A is a
mixed tensor with components (A’ ;).

Note that in components the bilinear form has a pleasant matrix expression

W, v) =a;A" v/ =aAv
The tensor product w ® B of a vector and a covector is the mixed tensor defined by
(W® B)(a, v) = a(W)B(V)
As in Problem 2.4 (1)
A=A"0,®dx’ =8, ® A"; dx’
In particular, the identity linear transformation is
[ =08, ®dx' (2.38)

and its components are of course 8‘1
Note that we have written matrices A in three different ways, A;;, AY,and A’;. The
first two define bilinear forms (on E and E*, respectively)

Aijviwj and Aija,'bj

and only the last is the matrix of a linear transformation A : E — E. A point of
confusion in elementary linear algebra arises since the matrix of a linear transformation
there is usually written A;; and they make no distinction between linear transformations
and bilinear forms. We must make the distinction. In the case of an inner product space
E, (,) we may relate these different tensors as follows. Given a linear transformation
A : E — E, thatis, a mixed tensor, we may associate a covariant bilinear form A’ by

A (v, w) == (v, Aw) = V' g;; AT w*

Thus A, = g;;A/;. Note that we have “lowered the index j, making it a k, by means
of the metric tensor.” In tensor analysis one uses the same letter; that is, instead of A’
one merely writes A,

Aiy = gij Ay (2.39)

It is clear from the placement of the indices that we now have a covariant tensor. This
is the matrix of the covariant bilinear form associated to the linear transformation A. In
general its components differ from those of the mixed tensor, but they coincide when
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the basis is orthonormal, g;; = 5; Since orthonormal bases are almost always used in
elementary linear algebra, they may dispense with the distinction.

In a similar manner one may associate to the linear transformation A a contravariant
bilinear form

A, B) = a; Al ;g by
whose matrix of components would be written
AR = AT gl (2.40)

Recall that the components of a second-rank tensor always form a matrix such that
the left-most index denotes the row and the right-most index the column, independent
of whether the index is up or down.

A final remark. The metric tensor {g;;}, being a covariant tensor, does not represent a
linear transformation of E into itself. However, it does represent a linear transformation
from E to E*, sending the vector with components v/ into the covector with components

8ijv’.

2.4d. Transformation Properties of Tensors

As we have seen, a mixed tensor W has components (with respect to a basis @ of E
and the dual basis dx of E*) given by

Wid,=Wdx',...,dx), 8, ...,9).

Under a change of bases, 8, = 8,(dx*/9x") and dx" = (Bx’i/axc) dx‘ we have, by
multilinearity,

Wi = WX, ... dx", 8, ..., 8) (2.41a)

(ax/i> (ax/j>(axr> (axs) od
— e[ —/—— ) ... W, s
dx¢ axd ) \ ax* ax"!

Similarly, for covariant Q and contravariant 7 we have

, dxk ax!
Q.= <8x”) (W) Ok..1 (2.41b)

P ax" ax'
e _ k...l
T/ = (—axk> (_axl )T (2.41¢)

Classical tensor analysts dealt not with multilinear functions, but rather with their
components. They would say that a mixed tensor assigns, to each basis of E, a collection
of “components” W/, ; such that under a change of basis the components transform
by the law (2.41a). This is a convenient terminology generalizing (2.1).

Warning: A linear transformation (mixed tensor) A has eigenvalues A determined
by the equation Av = Av, that is, A;vj = Av', but a covariant second-rank tensor Q
does not. This is evident just from our notation; Q;; v/ = Av' makes no sense since
i 1s a covariant index on the left whereas it is a contravariant index on the right. Of
course we can solve the linear equations Q;; v/ = AV as in linear algebra; that is,
we solve the secular equation det(Q — AI) = 0, but the point is that the solutions A

and



TENSORS 63

depend on the basis used. Under a change of basis, the transformation rule (2.41b) says
Q';; = (0x*/0x") O (dx' /3x'"). Thus we have

, ax\" 0x
o-(52) e (iv)
and the solutions of det{ Q' — AI] = 0 in general differ from those of det[Q — A/1] = 0.
(In the case of a mixed tensor W, the transpose T is replaced by the inverse, yielding
an invariant equation det(W' — A1) = det(W — A[I).) It thus makes no intrinsic sense
to talk about the eigenvalues or eigenvectors of a quadratic form. Of course if we

have a metric tensor g given, to a covariant matrix  we may form the mixed version
2" Qjx = W'y and then find the eigenvalues of this W. This is equivalent to solving

Qijv’ = rgijv’

and this requires
det(Q —Ag) =0

It is easy to see that this equation is independent of basis, as is clear also from our
notation. We may call these eigenvalues X the eigenvalues of the quadratic form with
respect to the given metric g. This situation arises in the problems of small oscillations
of a mechanical system; see Problem 2.4(4).

2.4e. Tensor Fields on Manifolds

A (differentiable) tensor field on a manifold has components that vary differentiably.
A Riemannian metric (g;;) is a very important second-rank covariant tensor field.

Tensors are important on manifolds because we are frequently required to construct
expressions by using local coordinates, yet we wish our expressions to have an intrinsic
meaning that all coordinate systems will agree upon.

Tensors in physics usually describe physical fields. For example, Einstein discovered
that the metric tensor (g;;) in 4-dimensional space—time describes the gravitational field,
to be discussed in Chapter 11. (This is similar to describing the Newtonian gravitational
field by the scalar Newtonian potential function ¢.) Different observers will usually
use different local coordinates in 4-space. By making measurements with “rulers and
clocks,” each observer can in principle measure the components g;; for their coordi-
nate system. Since the metric of space—time is assumed to have physical significance
(Einstein’s discovery), although two observers will find different components in their
systems, the two sets of components g;; and g;; will be related by the transformation
law for a covariant tensor of the second rank. The observers will then want to describe
and agree on the strength of the gravitational field, and this will involve derivatives
of their metric components, just as the Newtonian strength is measured by grad ¢. By
“agree,” we mean, presumably, that the strengths will again be components of some
tensor, perhaps of higher rank. In the Newtonian case the field is described by a scalar
¢ and the strength is a vector, grad(¢). We shall see that this is not at all a trivial task.
‘We shall illustrate this point with a far simpler example; this example will be dealt with
more extensively later on, after we have developed the appropriate tools.
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Space—time is some manifold M, perhaps not R*. Electromagnetism is described
locally by a “vector potential,” that is, by some vector field. It is not usually clear in
the texts whether the vector is contravariant or covariant; recall that even in Minkowski
space there are differences in the components of the covariant and contravariant versions
of a vector field (see 2.1d). As you will learn in Problem 2.4(3), there is good reason
to assume that the vector potential is a covector « = A ;dx’.

In the following we shall use the popular notations 9;,¢p := 9d¢/dx’, and 9';¢p =
dgp/ox".

The electromagnetic field strength will involve derivatives of the A’s, but it will be
clear from the following calculation that the expressions

A,

do not form the components of a second-rank tensor!

Theorem (2.42): If A; are the components of a covariant vector on any manifold,
then

Ej = 8,'AJ' — 8in

form the components of a second-rank covariant tensor.

PROOF: We need only verify the transformation law in (2.42). Since« = A dx/
is a covector, we have A/i = (B}x’)AZ and so

Fjy = 0{A} — 0, A} = 8{{(0}x) A} — /{(3x") A}
= (3x") (0] A)) + [(9]0/x) Al — (9]x') (3} A)) — (3;0/x") A,
= (3}x") (3, A))(3/x") — (8/x") (8, A (2ix")

(and since r and / are dummy summation indices)
= (9}x)(@’x") (A, — 8,A)
— (XY@ xNF, O

Note that the term in brackets [ ] is what prevents 9; A; itself from defining a ten-
sor. Note also that if our manifold were R" and if we restricted ourselves to linear
changes of coordinates, x" = Lj-xj , then 9; A; would transform as a tensor. One can
talk about objects that transform as tensors with respect to some restricted class of
coordinate systems; a cartesian tensor is one based on cartesian coordinate systems,
that is, on orthogonal changes of coordinates. For the present we shall allow all changes
of coordinates. In our electromagnetic case, (F;;) is the field strength tensor.

Our next immediate task will be the construction of a mathematical machine, the
“exterior calculus,” that will allow us systematically to generate “field strengths” gen-
eralizing (2.42).
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Problems

2.4(1) Show that the second-rank tensor given in components by afbjdx’ ® dx/ has
the same values as « ® g on any pair of vectors, and so

a®pB=a b,-dx’@dxf
2.4(2) Let A: E — E be alinear transformation.

(i) Show by the transformation properties of a mixed tensor that the trace tr(A) =
A’ is indeed a scalar, that is, is independent of basis.

(ii) Investigate >, A;;.
2.4(3) Let v = v/9; be a contravariant vector field on M".

(i) Show by the transformation properties that v; = g,-,-v’ yields a covariant
vector.
For the following you will need to use the chain rule

3 [ox 3°x' ax"
o (w) =2 (axfaxk> <8x>
(i) Does 9; v/ yield a tensor?
(iii) Does (3; v/ — 9, v') yield a tensor?

2.4(4) Let (g = 0,4 = 0) be an equilibrium point for a dynamical system, that is, a
solution of Lagrange’s equations d/dt(dL/ag*) = dL/ag* for which g and g are
identically 0. Here L = T — V where V = V(g) and where 2T = g;(9)§'¢’ is
assumed positive definite. Assume that g = 0 is a nondegenerate minimum for
V; thus aV/agk = 0 and the Hessian matrix Qi = (3% V/3q/3g)(0) is positive
definite. For an approximation of small motions near the equilibrium point one
assumes g and g are small and one discards all cubic and higher terms in these
quantities.

(i) Using Taylor expansions, show that Lagrange’ s equations in our quadratic
approximation become

k(0§ = —Qud

One may then find the eigenvalues of Q with respect to the kinetic energy
metric g; that is, we may solve det(Q—1g) = 0. Let y = (y', ..., y") be an
(constant) eigenvector for eigenvalue A, and put ¢’ (t) = sin (tVA) y'.

(ii) Show that q(f) satisfies Lagrange’s equation in the quadratic approximation,
and hence the eigendirection y yields a small harmonic oscillation with
frequency o = +/2. The direction y yields a normal mode of vibration.

(iii) Consider the double planar pendulum of Figure 1.10, with coordinates g' =
6 and g2 = ¢, arm lengths /; = I, = /, and masses m; = 3, my = 1. Write
down T and V and show that in our quadratic approximation we have

_p |41 _ 40
g=1 [11] and Q_QI{OJ

Show that the normal mode frequencies are w1 = (2g/3/)'/? and w, =
(2g/ hV/2 with directions (y', y) = (0, ¢) = (1,2) and (1, —2).
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2.5. The Grassmann or Exterior Algebra

How can we define an oriented area spanned by two vectors in R"?

2.5a. The Tensor Product of Covariant Tensors

Before the middle of the nineteenth century, Grassmann introduced a new “algebra”
whose product is a vast generalization of the scalar and vector products in use today
in vector analysis. In particular it is applicable in space of any dimension. Before
discussing this “Grassmann product” it is helpful to consider a simpler product, special
cases of which we have used earlier. In 2.4 we defined the vector space ®”E* of
covariant p-tensors (i.e., tensors of rank p) over the vector space E; these covariant
tensors were simply p-linear maps « : E X --- x E — R. We now define the “tensor”
product of a covariant p-tensor and a covariant g-tensor.

Definition: If « € ®” E* and B € ®?E*, then their tensor product o ® £ is the
covariant (p + g)-tensor defined by

aQ@B(Vi, oy Vprg) i=a(Vi, .o, V) B(Vptt, ooy Vpgg)

2.5b. The Grassmann or Exterior Algebra

Definition: An (exterior) p-form is a covariant p-tensor ¢ € ®?E* that is
antisymmetric (= skew symmetric = alternating)

(.. Voo, Ve, o) = —a(L . Vg, L,V L)

in each pair of entries.

In particular, the value of o will be 0 if the same vector appears in two different entries.
The collection of all p-forms is a vector space

p
/\E*:E*/\E*/\.../\E*C®pE*

By definition, /\1 E* = E* is simply the space of 1-forms. It is convenient to make the
special definition /\0 E* := R, that is, O-forms are simply scalars. A 0-form field on a
manifold is a differentiable function.

We need again to simplify the notation. We shall use the notion of a “multiindex,”
I = (iy,...,1,); the number p of indices appearing will usually be clear from the
context. Furthermore, we shall denote the p-tuple of vectors (v;, ..., v; ) simply by v;.

Let « € A’ E* be a p-form, and let & be a basis of E. Then by (2.34) (i.e.,
multilinearity) « is determined by its n” components

=a(0;,...,0;) =a(d)
By skew symmetry

— _a11 ..... Tgyenny Tryeeey ip
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Thus « is completely determined by its values a(9;,, ... 9;,) where the indices are in
strictly increasing order. When the indices in [ are in increasing order, i} < iy < ..., <
i, we shall write £

I=(>0<...<ip)

The number of distinct / = (i; < ... < i,) is the combinatorial symbol, that is,

p
dim A\ E* = n!/p!(n — p)!

In particular, the dimension of the space of n-forms, where n = dim£E, is 1; any n-form
is determined by its value on (34, . .., 8,). Furthermore, since a repeated 9; will give
0, A” E* is O-dimensional if p > n. There are no nontrivial p-forms on an n-manifold
when p > n.

We now wish to define a product of exterior forms. Clearly, if « is a p-form and
B is a g-form then o ® B is a (p + q) tensor that is skew symmetric in the first p
and last g entries, but need not be skew symmetric in all entities; that is, it need not
be a (p + ¢g) form. Grassmann defined a new product o A g that is indeed a form. To
motivate the definition, consider the case of 1-forms o' and B! (the superscripts are not
tensor indices; they are merely to remind us that the forms are 1-forms). If we put

' ABli=a®@B-BRa
that is,
a A BV, W) =a)p(w) — B(V)a(w)

then @ A B is then not only a tensor, it is a 2-form. In a sense, we have taken the tensor
product of « and 8 and skew-symmetrized it. Define a “generalized Kronecker delta”
symbol as follows

85 =1 if J = (ji, ..., Jj,) is an even permutation of I = (i1, ..., 1i,)
= —1 if J is an odd permutation of /
=0 if J is not a permutation of /
For examples, §33° = —1, 8835 = 0, 8415 = 1.

We can then define the usual permutation symbols

describing whether the n indices iy, . . ., i, form an even or odd permutationof 1, . . ., n.
This appears in the definition of the determinant of a matrix

detA = E]AillAizz ce Ai"n

(From this one can see that the € symbol does not define a tensor. For in R?, if ¢;; defined
a covariant tensor, we would have 1 = €/, = €,,(9x"/3x"")(3x*/dx"?) = det(dx/dx"),
which is only equal to €, = 1 if det(dx/dx") = 1.)

We now define the exterior or wedge or Grassmann product

p q ptq

/\:/\E*X/\E*—) /\E*
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of forms. Let «” and 8¢ be forms. We define o” A B¢ to be the (p + ¢)-form with
values on (p + gq)-tuples of vectors v;, I = (i1,...,i(p+4) given as follows. Let
J=(1<...<jpand K = (k; < ... < k,) be subsets of /. Then

aABvy):= ZZSIJK(X(VJ),B(VK)
7

K J
or (2.43)
@AB)r=Y_> 8 apx
K J
For example, if dim £ = 5, and if ey, ..., e5 is a basis for E
@ ARz =0’ ABl(es, €2, €3) =D > s B
r<s t

235 253 352
= 8553 a3 fs + 8553 o5 B3 + 83553 a3 Bo
= a3f5 — x5 B3 + azs o

In general, one checks easily that @ A g is multilinear. Also, since 8% ; , | =
=88 ;.. wesee that A f is again skew symmetric. The wedge product, however, is
not commutative in general.

BIAnal) = 85 Bray
I K

= (=D™M> > 5%,k
LK

since KJ — JK requires pq transpositions. Thus,
a? A BT = (=P A af (2.44)
In particular, for forms of odd degree, o??*! A ¢?P*! = 0. Thus
dx ANdy = —dyAdx and dxAdx =0 (2.45)

We may consider the vector space of all forms of all degrees over E*

/*\E*:z (;\E*:R)@(/\E*:E*)@...@(;\E*)

This is the Grassmann or exterior algebra over E£*, and

dim/*\E*z<g>+<?>+...+<z>:2n

It is crucial for computational purposes that the Grassmann algebra is distributive
and associative. It is trivial to show distributivity; associativity will follow from the
following very useful result.

Lemma (2.46):

Z(S[JSKL_alkL
MY — "M
J



THE GRASSMANN OR EXTERIOR ALGEBRA 69

PROOF: I, K, L, and M are all fixed. Since J is in increasing order, there is at
most one term on the left-hand side, namely when J is some permutation of K L.
One then simply verifies that the preceding formula is correct in the cases when
J is an even and an odd permutation of K L. O

One can now verify that the exterior product is associative. Let M be any (p+¢q +r)
multiindex. Look at the component [a” A (87 A y")]y. Then

[” ABIAY =D 1jai(BAY),
1)

= Z (Slluj()[] Z CSfL,B[(')/L
1J KL

= Z 81Kl BryL

1KL

It is clear that one would get the same expression for [(«¢ A 8) A Y 1.

The same type of computation would show that if «t(y, . .., () are all 1-forms and
if vayy, ..., V() is any r-tuple of vectors, then
1
A A A (Vay V) = Y8 e (Vi) - - gy (Vig)
1
— detla; (V)] (2.47)
Leto!, ..., 0" be the basis of 1-forms dual to ey, . .., e,. If we write

ol fore" A...AO"

then we have
o'(e;) =8 (2.48)

since this is certainly true, from (2.47), when / and J are increasing.
The reader should see Problem 2.5 (1) at this time. This problem says that

af = g ayo’!
1

where (2.49)
ar = aj, i, == a(er)

is skew symmetric in iy, ..., i,,. The a; are the “components of the covariant tensor o
with respect to the basis ol,..., 0" of E*” Thus the most general 2-form in R3 is of
the form
B> = bjdx' Adx) =bpdx' Adx® + bizdx' Adx® + bydx® Adx’
i<j

= byydx® Adx® + by dx® Adx' + bpdx' A dx? (2.50)

We shall see in a moment why we prefer this expression. The reader should see Problem
2.5 (2) at this point.
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2.5¢c. The Geometric Meaning of Forms in R"

Let us look at the geometrical meaning of exterior forms in E = R" in the special case
when the coordinates x', ..., x" are cartesian; that is, we shall employ the euclidean
metric of R”. The coordinate vectors {8;} form an orthonormal basis of E, with dual
basis {dx'} for E*. We already know that for these 1-forms dx’(v) = v', that is, dx’
reads off the i"™ component of v. Next,
dx' Adx! (v, w) = dx' (v)dx’/ (w) — dx’ (v)dx' (w)

vl w!
v w’

= = the area of the parallelogram spanned by the projections 7 (v), 7 (w) of the vectors
v, w into the x’x/ plane; the + sign is used if these projections determine the same
orientation of the plane as do 8; and @;. (We shall discuss the notion of orientation
more thoroughly in Section 2.8.)

Z

(W) ()

Figure 2.6
In the figure, dx A dy(v, w) is the negative of the area of the parallelogram spanned
by 7 (v) and 7 (w). Likewise, from (2.47),

dx" A .. oANdX"T (Vi Lo, V)p)

= = the p-dimensional volume of the parallelopiped spanned by the projections of
these vectors into the x'' ... x'r coordinate plane; the + sign is used only if these

projected vectors define the same orientation as does 9;,, . . ., 8,-p.

2.5d. Special Cases of the Exterior Product

Let t!, ..., " be any n-tuple of 1-forms, and expand each in terms of a basis (we are
not assuming any scalar product)

=T 0
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1 n __ 1, n Ji Jn
Thent' A...AT'=3, T, ... T";, 6" N...NC

N

_ 1 nooQteedn 1 n
= E le"'TjnalZ...zg N...NO
J

that is,

AL AT =WetT)o! AL AG" (2.51)

Exterior products yield a coordinate-free expression for the determinant! For this reason
the wedge product is very convenient for discussing linear dependence.

Theorem (2.52): The p I-forms t', ...t are linearly dependent iff

AL ATP =0

PROOF: Ift" =37, a;t' thent'A.. .AT"A...AT” will be a sum of terms, each
having arepeated t', and so the product will vanish. On the other hand, if the t’s are
linearly independent we may complete them to a basis !, ..., ". Letf, ..., f,
be the dual basis. From (2.47) wehave t' A ... ATP A AT, ..., £) =1,

showing that ' A ... A TP #0. O

2.5e. Computations and Vector Analysis

For computations using forms we may use the usual rules of arithmetic except that
the commutative law is replaced by (2.44). In particular dx A dy = —dy A dx and
dx A dx = 0. Consider R? as a 3-manifold with any (perhaps curvilinear) coordinate
system x!, x2, x3. Let f be a O-form, that is, a function of x, and let g;, b;, and cij be
functions. Then

o' = ajdx' + ardx® + azdx® and ,B1 = bidx" + bydx® + bydx’
are 1-forms
)/2 = cpdx® Adx® + c31dx® Adx' + cppdx' A dx?
= c1dx?* Adx? + crdx® Adx' + czdx! A dx?
is a 2-form, and
w® =dx' Adx* A dx?

is a 3-form.

(In cartesian coordinates ® is the “volume form,” but note that, for example, in
spherical coordinates 7> sin@dr A df A d¢ is the volume form; these matters will be
discussed later.)

As we shall see, these are familiar expressions used in vector analysis in the case
when the coordinates are cartesian, involving line, surface, and volume integrals, where



72 TENSORS AND EXTERIOR FORMS

they are usually written, for example, aso = a+dxandy =c+dS,and w =dV. We
then have

al A B = (ardx! + ardx® + azdx®) A (bydx' + bydx® + bydx?)
=a\bdx' Adx' + -+ arbzdx* Adx® + - - - + azhydx® A dx?
=0+ + (b3 — azby)dx* A dx®
= (aybs — azby)dx* A dx® + (asb) — ayb3)dx® A dx!
+ (a1by — azb))dx" A dx?

In cartesian coordinates this says
(@a«dx) A(bedx) =(aXxXb).dS

but note that the three components of @ A 8, which make sense in any coordinate
system, are not the components of the cross product in curvilinear coordinates! The
exterior product replaces the notion of X product (which is not associative;i X (i X j)
# (i X i) X j). We shall see the exact correspondence between exterior forms and
vector analysis in Section 2.9b.

Problems

2.5(1) Show that if «” is any p-form, we have the expansion
aP = Zap(e/)al
|

= Za(eh ...,e,'p)(fl1 A...Ao'P
/

(Hint: Check values of both sides one,.)
2.5(2) Show thatin R”,if i < j < k, then

(@' A BP)ijk = aibjk + akbij + ajbxi

that is, one writes down a;b  and then one cyclically permutes the indices i, j, k.
Investigate o' A 871 in R”, paying special care to the parity of n.

2.5(3) InR3, compute o' Ay2 and ' A B! A p!, where p is a 1-form, and relate these
results to vector analysis.
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2.6. Exterior Differentiation

Does one ever need to write out curl A in curvilinear coordinates?

2.6a. The Exterior Differential

In Section 2.4e we saw that if A = A;(x)dx' is a covariant vector field on a manifold,
thatis, a 1-form, then F;; = 9; A; —0; A; are the components of a covariant second-order
tensor that is clearly skew symmetric. Thus
F:=) (0;A; — 9;A)dx" Adx’
<j

is an exterior 2-form. We then have a way of “differentiating” a 1-form, obtaining a
2-form. We also showed that the expressions {0; A ;} themselves do not form the compo-
nents of a tensor. Problem 2.4 (3) indicated that it does not seem to be possible to differ-
entiate a contravariant vector field and obtain a tensor field. In this chapter we shall de-
fine a differential operator d that will always take exterior p-form fields into exterior (p+
1)-form fields. In a sense then, covariant skew symmetric tensors have a richer structure
than tensors in general, and this richer structure plays an essential role in physics.

Recall that if f is a function, that is, a O-form, then its differential df = (9; f )dx!
is a 1-form. Also, equation (2.44) says that «® A B7 = B” A «°. For this reason one
ordinarily does not put a wedge A in a product involving a O-form.

Theorem (2.53): There is a unique operator, exterior differentiation,
P p+l1
d: /\M " /\ M"

satisfying

(i) d is additive, d(o + B) = da + dB.

(ii) do® is the usual differential of the function o°.
(iii) d(a? A B7) =da? A BT+ (—1)Pa? Adpi.
(iv) d’a :=d(da) = 0, for all forms a.

PROOF: We shall first define an operator d,, using a local coordinate system x,
and then show that this operator is in fact independent of the coordinate system.
Step 1. If fis a O-form, define d, f = df = (0; f)dx'. We know in fact that
df is independent of coordinates: Its coordinate-free definition is df (v) = v(f);
see (2.6). Condition (ii) has been satisfied.
Step I1. If a is a function, define, for I = (i, ...,i,)

d.la(x)dx"] = da Andx" = (3;a)dx’ A dx'
We then define d, on any p-form in the coordinate patch x by additivity
d. > aj(x)dx' =Y da; Adx'
1z 1
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Condition (i) is automatically satisfied. Consider condition (iii). Let J = (ji, ..., j,).
Then

d[> aidx' A bjdx’1=d,» ajbdx’ Adx’
1 g

1J

=Y (dasb; +a;db;) Adx' Adx’

1
=Y da; ndx' N bydx’
L J
+> agdx" A (=1)Pdby A dx’
L 4

since db; A dx! = (—1)?dx" A db; involves p interchanges. (iii) is satisfied.
To verify (iv), note that if f is a function, then

do(d() =di Y @ frdx" = di(@ f) Adx' =) (3 fHdx’ Adx'
i i ij

% f 0% f
= ... dx" NdxS--- dx>ANdx"+---=0
+(8x’8x“) x x t <8x“8x’) * o

J

(It is a general and very useful fact that if A~/ is symmetric in /, j and skew

symmetric in r, s then the contraction A"} = 0.)

Then from (iii), for any functions f, g, not simply for coordinate functions,
we have

di(df ndg) =0
and by induction
di(df NndgAN---ANdh)=0 (2.54)
Then, for any p-form o

dio =d} Y aidx' =d,» da; ndx' =0
L I

We have now defined an operator d, in each coordinate patch x and it satisfies
(1), (i1), (iii), and (iv). Let y be another coordinate patch that overlaps x, and let
d be the corresponding differential. Then, since d, again coincides with d, on
functions, in particular coordinate functions, we have, from (iii) and (2.54),

dy» aj(x)ydx' = dya;[x(y)] Adx'
1 I

= Zda, Adx!
1
=d, Y aj(x)dx’
i

Thus d := d, = d, is well defined, independent of coordinates.
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As to uniqueness, any operator d’ satisfying (i), (ii), (iii), and (iv) must satisfy

d'> aj(x)ydx' =) daj ndx' =d aj(x)dx’ O
1 1 1

2.6b. Examples in R?

Let X = x, y, z be any (perhaps curvilinear) coordinate system in R*. Then the differ-
ential of a function f = fis

a a 0
df’ = (—f>dx + (—f>dy + <—f>dz

dax ay 9z
If the coordinates are cartesian, then the components are the components of the gradient
of f,

df =V f «dx
If, in general coordinates
o' = ay(X)dx + a,(X)dy + a3(xX)dz

then

da' =da; Adx +da, Ady +daz Adz
da; da; da,
=1||{—)d — |d — )dz| nd
(G Jae (55 Jare (G2 Joe]
d d d
+ [(Ch)dx + (az>dy + (az>dz} Ady
0x ay 0z
Rl a d
+ [(ﬁ>dx + (£>dy + (ﬁ>dz} ANdz
0x dy 0z

= (0yaz — d;a2)dy ANdz + (0.a) — dyvaz)dz A dx
+ (0yar — 0yay)dx Ady
In cartesian coordinates the components are the components of the curl of the vector A,
d(A « dx) = (curlA) - dS
Finally, for a 2-form 8 (writing by; = by, b3y = by, by = b3)
dp* = d[bydy A dz + bydz Adx + bydx A dy]

=dby ANdy Ndz+dby ANdz Adx +dbs Adx Ndy

= [0:b1 + 9yby + 9,b3]ldx ANdy ANdz
whose single component in cartesian coordinates is the divergence of the vector B,

dB - dS)=divBdV

d*> = 0 in any coordinate system; in cartesian coordinates this yields the famous
curl grad = 0 and div curl = 0.
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It is important to realize that it is no more difficult to compute d in a curvilinear
coordinate system than in a cartesian one. For example, in spherical coordinates, for
I-form o« = Pdr 4+ Qd6 + Rd¢

d[Pdr + QdO + Rd¢] = dP Adr +dQ Adf +dR A de
= (3R — 9,0)d0 A d + (3, P — 3, R)dp A dr
+ (8,0 — 8 P)dr A db

Note that (P, Q, R) form the components of a covariant vector, «, and that the three
components of da! do not form the components of the curl of a vector; they are the
components of a second-rank covariant skew symmetric tensor. We shall see in Section
2.9 that it is possible to identify 2-forms in R® (with a given metric) with contravariant
vectors and then the vector identified with do is the curl of the contravariant version
of «. This is not only an extremely awkward procedure, it serves no purpose, for we
maintain that there is never any reason to take the curl of a contravariant vector. In
situations where the “curl” of a “vector” is required, the “vector” will most naturally
appear in covariant form (i.e., it will be a 1-form o), and then da is all that is required.
For example, the electric field measures the force on a unit charge that is at rest. Force,
being the time rate of change of momentum, appears naturally as a covector (see (2.29))
and so the electric field is a 1-form &'. Then Faraday’s law really states that d&!' is the
negative of the time rate of change of the magnetic field 2-form %2. These matters will
be discussed in Section 3.5.

2.6¢. A Coordinate Expression for d

Let a? = >, ardx" be a p-form; then da? = >op(dag) A dx™. Now da; is the 1-

form whose j™ component is (da;); = d;ar. Also dx* is the p-form with components
(dx"™)x = 8%. Then from (2.43) we get

(da); =) (day ndx") =) 87" (3a0)8%
L L j.K

that is,

(da); =Y 815 (3;ax) (2.55)

JK
Thus for / increasing

ik,

p — E . .
(da )l - 8i1...i<p+1)8]akl---kp
iK

= ailaiz~~~i(p+1> - aizai1i3~~i(p+1> + e

Hence

P iy

(da?); =Y (=1)"'3,a, ~ (2.56)
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where the hat ~ over i, means omit i.. We can also write

da”); =3 (=18, [a" @, ... 0, ... ;)] (2.57)

If, for example, @ = Y, a;dx’ is a 1-form on M", from (2.55)
(da')iy = da; — 3;a (2.58)

and this of course was the procedure used for defining the field strength in (2.42).
If B> = 3, _; bijdx" A dx’ is a 2-form in an M", from (2.56)

(dB?)i<jax = (b + dbi; + 3;bii) (2.59)

Problem

2.6(1) Relabel the components of a 3-form 3 in R* (as we did for a 2-form in R3, by, =
bs, ...) to get a divergencelike expression for dg®. Guess what should be done
for g7~1 in R". Watch for the parity of n.

2.7. Pull-Backs

What are the deformation tensors that arise in elasticity theory?

2.7a. The Pull-Back of a Covariant Tensor

Let F : M" — W’ be a differentiable map. Sometimes we shall write M L W.In
local coordinates x for M and y for W we have y/ = F/(x), or briefly y = y(x).
If f: W — Ris asmooth function (0-form) on W we define its pull-back to M,

written F* f, to be the composition f o F : M — R, thatis, M Ew LR
(F*)(x) = (fo F)(x) = f(y(x))

This is a real-valued function on M, M L R. One can always pull back a function
on W.If F has an inverse G = F~! then one can “push forward” a function & on M to
yield a function h o F “Tonw,w —G> M5 R, but it should be clear that one cannot
in general expect to push forward a function on M to get a function on W, unless F~!
exists.

For future needs, we exhibit here how a vector v at x of M, as a differential operator,
acts on the pull-back of a function.

.0
V') = VI @l = v o
X

() ()
= - —
ax! ay/

V(F* ) = (Fv)(f) = df (F.v) (2.60)

[f{y(x)}]
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Now let a” be a covariant tensor at y in W. We have just defined the pull-back of
a” when p = 0. When p = 1, that is, when « is a 1-form, its pull-back was defined in
(2.23). We now define in general the pull-back of a covariant tensor by

Fra?(vi,...,v,) = ol (Fuvy, ..., F,vp) (2.61)

It is clear that F*« is alternating if « is; that is, the pull-back of a p-form on W is a
p-form on M

P P
FFe AW—> AM

Unless otherwise indicated, by pull-back we shall mean the pull-back of an exterior

form.

In our warning following (2.25) we pointed out that one cannot push forward a
contravariant vector field on M to yield a vector field on W. The ability to pull back
covariant tensors endows these tensors with a crucial operation that is not available to
the contravariant ones. It is difficult to overemphasize the importance of this advantage.

It is clear from (2.61) that F* is additive; that is, F'* of a sum is the sum of the F*’s.
This is further enhanced by the following two properties: The pull-back of a product
of forms is the product of the pull-backs, and the pull-back of the exterior derivative
of a form is the derivative of the pull-back. We proceed to these matters, for they are
crucial to writing down coordinate expressions economically.

Theorem (2.62): F* is an algebra homomorphism, that is,
F*(a A B) = (F*a) A (F*B)
For proof see Problem 2.7(1).

It is even simpler to prove that for any tensor product of covariant tensors

Filla®p)=(Fa)® (F'p) (2.63)

Theorem (2.64): F* commutes with exterior differentiation, d o F* = F* o d,

F*(da) = d(F*a)

PROOF: When o = «” is a function f on W near F(x) and v is tangent vector
to M at x, we have from (2.60) and (2.23)

d(F*f)(v) =Vv(F" ) = df (F.(v)) = (F*(df) (V)
Thus (2.64) has been proved when « is a O-form. When « is a p-form, we have

doF*> a;(y)dy" A--- Ady”, which from (2.62)
J

=d Y (Fra;(y))(F*dy") A+ A (F*dy'r) =
J
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(since (2.64) has been proved for O-forms)

=d» (F'a;(y))d(F*y") A... Ad(F*y')
J

=Y (dF*a;(y)) Nd(F*y") A... Ad(F*y))

= Z(F*da,) A (F*dy")y A ... A (F*dy'r)

= F*Y (daj) Ady" n...Ady

=F*od> a;(y)dy’" A...Ady"
J

as desired. 0O

Explicitly, with I = (i1, ..., i,), F*d(y’) = F*(dy) A ... Adylr) =, (dy7 /ax™)
.. (0y7r Jaxr)dx". Butdx! =Y, 8! dx" (we are merely putting the dx’s in increasing
order; for each given I there is only one nonzero term in the sum on the right). Then

8yj1 8yjp
Frd(y') =" {§ < >< i>5’}de
— \ gl axir ) *

L

_ (»y’")
Zdt{a( L>}

Thus we have

Ay
F*d(y )_Zd t{a( L)}dx

and so
Fraf = F*Zajdyj = Za*L(x)de
4 L
where (2.65)
9 J
a*r(x) = zj:aj(y(x)) det { ach; }

Let, for example, M? be a surface in R3, that is, a 2-dimensional submanifold. We
have the inclusion map, i : M — R?, which is a fancy way of saying that any point of
M is also a point in R*. If v is a tangent vector to M, then i, v is simply the same vector
v, considered as a vector in R?. If B2 is a 2-form on R’, then the pull-back of 8 to M
is the 2-form i* 8 whose value on the pair v, w of tangent vectors to M is given simply
by i*B(v, w) = B(i,v, i,w) = B(v, w). In other words, i*8 in this case of inclusion is
the same form B, but we restrict its domain to vectors that are tangent to M. This same
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situation holds whenever M" is a submanifold of another manifold. If u = (u, v) are
local coordinates in M? and x = (x, y, z) are coordinates for R?, then

i*B =1i*[by(x)dy Adz 4+ by(X)dz A dx + b3(X)dx A dy]
a(y, 2) d(z, x) d(x, y)
b b b
1(x(w)) ETORD + b2 (x(w)) . v) + b3 (x(w)) TR
See Problem 2.7(2) at this time.
Another way to get this coordinate expression for i * 8 is to compute directly, using the
fact that i* commutes with exterior products and differentiation. For example, putting
X =(x,y,z)andu = (u, v)

du A dv

_ DY g (2 Nt (52

= bl(x(u))Kau)du + <av>dv] A [(au)du + (8v>dv}
) ay) (92 _ (v (02
—bl(x(u))|:<8u>(3v> (8v)<8u>:|du/\dv

Two final remarks. First, if ' : M" — M" is the identity map but expressed in
different coordinates, that is, if y = y(x) is simply a change of coordinates, then
o = F*a is simply expressing the form « in the two coordinate systems. For example,
if u, v, w are curvilinear coordinates in R* then from either (2.65) or from (2.51) we
see

0(x,y,2)

dx Ndy ANdz =
rAdyad [a(u,v,u»

}du/\dv/\dw

Finally, we have defined the Poincaré 1-form A = p;dq’ in phase space T*M" (see
(2.33)). We then define the Poincaré 2-form by

o’ =dr =dp; Ndq' (2.66)

This form, as we shall see, plays a most important role in Hamiltonian mechanics. If
F : R* - T*M" is a 2-dimensional surface in phase space, then the pull back of e to
R? (whose coordinates are u, v) is the 2-form

F'o = {u,vidu Adv

where

Apin g’
fu, v} :=>" % (2.67)

i

defines the Lagrange bracket of the functions u and v.

2.7b. The Pull-Back in Elasticity

Consider an elastic body % in R* and a deformation %’ = F (%) of this body. To describe
this we shall let X, X5, X3 be cartesian coordinates in R? and the deformation will be
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described by functions x’ = x’(X). We may think of X and x as being two identical
Cartesian coordinate systems in R*. A point with coordinates X in % will be sent into the
point with coordinates x in %’. We shall try to follow a common practice of denoting
quantities associated with the undeformed body by capital letters, and those of the
deformed body with lower case.

Figure 2.7

Under the deformation, the orthonormal pair 84, 9 at X is sent, by the differential
of F at X, into a pair of vectors F,0,, F,0p at x.

The metric tensor of R® can be written dS? = G(X)dX* ® dX®, meaning
dS*(V, W) = G,zVAWE. It is traditional to omit the tensor product sign @ when
dealing with symmetric tensors. Thus at X, since the coordinates are cartesian,

dS* = GpdX*dX" = 8,pd X dX® = (dX")
A

and this is the usual expression for “arc length” in elementary calculus, ds> = dx” +
dy? + dz*. This will be discussed at great length in Part Two.

We may also write this same tensor, at the point x, as ds> = >, (dx*)>. For the
pull-back under F' we have, from (2.63),

ax® x4
* AN A B
F*(ds?) = Z lz; (axA)dX ® § (8X3>dX
9x* \ [ ax*
=y (LA) (%)dXAdXB
= \ox+)\oax
This tensor,
ox 0x
* 2y A B
F*ds’) =) <8XA> . <8X3>dx dx (2.68)

AB
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when applied to the pair d¢, 8p, reads off the scalar product of the pair F,0¢, F,0p,
and is called the right Cauchy—Green tensor C

C := F*(ds”)
One measure of the deformation taking place is given by the Lagrange deformation
tensor
1 1 ox ox
~[F*(ds*) —dS*] = = . —8ap|dX*dX"®  (2.69
SLF*(ds?) ] 2[%(8}“) (BXB) AB (2.69)

A more general discussion of deformations in continuum mechanics will be found
in the Appendix to this book.

Problems

2.7(1) Prove (2.62). [Hint: Use (2.43)].

2.7(2) Letx be cartesian coordinates for R®. Then the 2-form g is of the form g = b « dS.
Show that in the coordinate patch (u, v) of the surface M2 c R® we have

i*B=bendundv (2.70)

where n = x; X X, := (x/9u) x(dx/3v) is a (nonunit) normal to M.

2.8. Orientation and Pseudoforms

Leave your shoes, labeled R and L, and take a long trip around the universe. Is it possible that
your right foot will only fit into your left shoe when you return?

2.8a. Orientation of a Vector Space

Lete = (ey,...,e,) and f = (f}, ..., f,) be two bases of a vector space E; we can
then write f = eP, that is, f; = e; P/, for a unique nonsingular matrix P. We say that
e and f have the same (resp. opposite) orientation if det P is positive (resp. negative).
(It is easy to see, from the continuity of the function P — det(P), that if a basis e is
continuously deformed into a basis f while remaining a basis at each stage, then both
bases have the same orientation.)

The collection of all bases of E then falls naturally into two equivalence classes of
bases. (For example, the tangent space to our physical 3-space at a given point is a 3-
dimensional vector space, and we have the two classes of bases defined by using either
the right- or the left-hand rule.) We orient a vector space by declaring one of the two
classes of bases to be positive; the other class then consists of negatively oriented bases.
In our 3-space it is usual to declare the right-handed bases to be positively oriented,
but we could just as well have the left-handed bases as positive. It should be clear that
except for our prejudices about right and left, neither choice is any more “natural” than
the other. This is especially clear if we consider a 2-dimensional case instead. If we
draw a “positive” basis for a sheet of paper by using an xy coordinate system where,
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as is usual, we rotate through a right angle counterclockwise from x to y, then if we
view the sheet of paper from the reverse side we see that this basis requires us to rotate
clockwise from x to y.

To orient a 2-dimensional vector space is to declare one of the two possible senses
of rotation about the origin to be positive. Given an oriented plane and a positively
oriented basis ey, e,, the positive sense of rotation goes from the first basis vector to
the second through the unique angle that is less than a straight angle.

IR", as a space of n-tuples, comes equipped with a natural basis ¢; = (1,0, ...,0)7,
and so on, but it is important to realize that most vector spaces we shall encounter do not
have distinguished bases and consequently do not have a natural choice of orientation!

2.8b. Orientation of a Manifold

Now consider a manifold M". Of course we may orient each tangent space M hap-
hazardly, but for many purposes it would help if we could do this in a “continuous”
or “coherent” fashion. For example, let U, be a coordinate patch with coordinates x.
Then we may orient each tangent space at each point of U, by declaring the bases
0 = (04,...,0,) to be positively oriented. We have then oriented all the tangent
spaces at all points of the patch U, . If a point lies in an overlap U, N U, of two patches,
the two bases are related by 8, = 8,(dx/dy), and thus the two orientations agree if
and only if the Jacobian determinant is positive.

We shall say that a manifold M" is orientable if we can cover M by coordinate
patches having positive Jacobians in each overlap. We can then declare the given co-
ordinate bases to be positively oriented, and we then say that we have oriented the
manifold. Briefly speaking, if a manifold is orientable it is then possible to pick out, in
a continuous fashion, an orientation for each tangent space M to M". Conversely, if
it is possible to pick out continuously an orientation in each tangent space, we can (by
permuting x, and x, if necessary) assume that the coordinate frames in each coordinate
patch have the chosen orientation and M" must be orientable.

It should be clear that if M is connected and orientable, then there are exactly two
different ways to orient it. Of course if M can be covered by a single coordinate patch
it is then orientable. Mobius discovered that there are manifolds that are not orientable
and we shall consider this in a moment.

Let p and g be two points of a manifold M". Let C be any curve joining these two
points, p = C(0) and ¢ = C(1). Given a frame e(0) at C(0) we can extend this frame,
in many ways, to yield a frame e(z) at C(¢) for all 0 < ¢t < 1 such that the assignment
t — e;(¢) is continuous (we do not ask that e(t;) = e(t,) whenever C(t;) = C(1,)).
For example, if C(¢) lies in a coordinate patch U, for 0 <t < a, we can insist that the
components of the fields e; () with respect to the coordinate basis 3 be constant. We
can extend past t = a by using perhaps a different patch that holds the next portion
of the curve, and so forth. In this way we can, in a continuous fashion, transport a
frame at p to a frame at g. Although this process is in no sense unique, it is easy to
see that the orientation of the frame e(1) at the end ¢ = C(1) of the curve is uniquely
determined by the orientation e(0) at the beginining p = C(0), and the reader should
verify this. In other words, we have unique transport of orientation along a curve. We
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do not claim that the resulting orientation at ¢ is independent of the curve C joining
it to p. If, however, M is orientable, we may cover M with coordinate patches having
positive Jacobians in their overlaps; it is then clear that if e(0) is positively oriented
then e(1) will also be positively oriented, independent of the curve C. It follows that
if, in a manifold, transport of orientation can lead to opposing results when applied to
two different curves joining p and g, then M cannot be orientable. Thus if transport of
orientation about some closed curve leads to a reversal of orientation on return to the
starting point, then M" must be nonorientable!
The Mo6bius band is thus clearly nonorientable.

92(0) 82(1)
A A

(1) Y C(l) f— ey(1)

Figure 2.8

In this figure we have transported a frame along the midcircle of the Mobius band.
By the identifications defining the Mobius band we see that e; (1) = e;(0) and e;(1) =
—e,(0), and thus orientation is reversed on going around the midcircle.

This example of the Mobius band is but a special case of a very general situation
involving “identifications.” An accurate treatment of this subject would take us too
long; we hope to convey the ideas by means of an example. Before this, we must
discuss an important criterion for orientability of a hypersurface (i.e., a submanifold of
codimension 1) of an orientable manifold.

2.8c. Orientability and 2-Sided Hypersurfaces

Let M" be a submanifold of W”. A vector field along M is a continuous tangent vector
field to W that is defined at all points of M (it need not be defined at other points). A
vector field N along M is transverse to M if it is never tangent to M; in particular it is
never O on M.

We say that a hypersurface M™ in W"*! is 2-sided in W if there is a (continuous)
transverse vector field N defined along M.

A surface M? in R’ has at each point a pair of oppositely pointing unit normals.
Suppose that it is possible to make a continuous choice N for the entire surface. N
is then a transversal field to M? and M? is 2-sided in R®. For example, the 2-sphere
§? is the complete boundary of a solid ball, and consequently it makes sense to talk
of the outward pointing unit normal. On the other hand, it is a famous fact that the
Mobius band is “1-sided”; that is, there is no way to make a continuous selection of
unit normal field. (If we choose a normal at a point of the midcircle of the band and



ORIENTATION AND PSEUDOFORMS 85

transport it continuously once around the circle, we find on returning to the starting
point that the normal has returned to its negative.) If one can define continuously a
unit normal field to a surface in R? then the surface must be orientable, for we could
then make a continuous choice of orientation in each tangent space as follows. R? is
orientable and so we can choose an orientation of R?, say the right-handed one. We can
then declare a basis e, e, of tangent vectors to M? to be positively oriented if N, e;, e,
forms a positively oriented basis in R>.

More generally, if M" is a 2-sided hypersurface of an orientable manifold W"*!,
then M" is itself orientable!

‘We must emphasize the difference between orientability and 2-sidedness. Orientabil-
ity is an intrinsic property of a manifold M"; whether M" is 2-sided in W"*! depends
on W and on how M is embedded in W. For example, if M" is any manifold, orientable
or not, consider the product manifold W"*! = M" x R, with local coordinates (x) from
M and a global coordinate ¢ from R. Then M" considered as the submanifold defined
by ¢ = 0 is automatically a 2-sided hypersurface of W"*! with transverse vector field
d/0t. Thus the Mobius band M6 is 1-sided in R® but it is a 2-sided hypersurface of
M6 x R.

2.8d. Projective Spaces

We have seen in Section 1.2b(vi) that the real projective plane R P? is the 2-sphere S*
with antipodal points identified. Since S? is 2-sided in R? it is orientable; we declare
a basis e, e, of tangent vectors to S? to be positively oriented provided N, e, e, is a
right-handed basis of R*, where N is the outward pointing normal to the sphere. Note
that the antipodal map a : S* — S is simply the restriction to S? of the reversal map
r:R* > R® r(x) = —x, and in 3 dimensions the reversal map reverses orientation of
space. Thus if N, ey, e,, is right-handed at the north pole n then —e;, —e,, —N is left-
handed at the south pole s. But —N is the outward pointing normal at s, and so —e;, —e;
is negatively oriented at the south pole of S2. This means, since S? is orientable, that if
the basis e, e, at n is transported along a curve C on S? to s (the pair remaining tangent
to S and independent) then the resulting basis f;, f, has the opposite orientation as
—e,, —e, there. But the basis —e;, —e, at s represents, on R P2, exactly the same basis
e, e; atn, and the arc C on S? becomes a closed curve C’ on R P? that starts and stops at
n. This means that on transporting the basis e, e, at n along C’ on R P2, one returns to
an oppositely oriented basis. Thus R P? is not orientable! Note that the crucial point in
the preceding argument was that R P? is obtained from the orientable S* by identifying
points by means of the antipodal map, and this map reverses orientation on S>.

In Problem 2.8(1) you are asked to show that RP" is not orientable if n is even. We
shall see later on that odd-dimensional projective spaces are in fact orientable.

2.8e. Pseudoforms and the Volume Form

The differential forms and vectors considered so far have not involved the notion of
orientation of space. However, roughly half of the “forms,” “vectors,” and “scalars” that
occur in physics are in fact “pseudo-objects” that make sense only when an orientation
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is prescribed. The magnetic field pseudovector B is perhaps the most famous example,
and we shall discuss this later.

Consider ordinary 3-space R? with its euclidean metric. We would like to define the
“volume 3-form” vol® to be the form that assigns to any triple of vectors the volume of
the parallelopiped spanned by the vectors; in particular vol(X, Y, Z) shouldbe 1if X, Y,
and Z are orthonormal. But if vol is to be a form we must then have vol(Y, X, Z) = —1,
and yet Y, X, and Z are orthonormal. We have asked too much of vol. In some books
they get around this by taking absolute value | vol(Y, X, Z)|, but this does great harm
to the machinery of forms that we have labored to develop. What we could do is require
that vol(X, Y, Z) = 1 if the triple is an orthonormal right-handed system. This makes
the volume form orientation-dependent. There is a serious drawback to this definition;
what if we are dealing with a space that is not orientable? The physical space in which
we live is, according to general relativity, curved and perhaps not orientable. If you
leave your shoes (labeled “right” and “left””) at home and take a very long trip, it may
very well be that on returning home your right foot will fit only into your shoe labeled
“left.” The term “right- handed” might not have an unambiguous meaning in the large,
just as rotation in “the clockwise sense” has no meaning on the Mobius band.

We compromise by defining a new type of form (called “form of odd kind” by its
inventor Georges de Rham) differing from our usual forms (of “even kind”) in a way
that will not seriously harm our machinery.

First note that the assignment of an orientation to a vector space E is the same as
the assignment of a function o on bases of E whose values are the two integers £1;
o(e) = +1 iff the basis e has the given orientation. If (x) is a coordinate system, we
shall write o(x) rather than 0(9,).

Definition: A pseudo-p-form « on a vector space E assigns, for each orientation
o of E, an exterior p-form «, such that if the orientation is reversed the exterior
form is replaced by its negative

o_, = —0,

A pseudo- p-form on a manifold M" assigns a pseudo- p-form « to each tangent
space M in a smooth fashion; that is, if (x) is a coordinate system in a patch then
if we take the orientation o in this patch defined by 0(9,) = +1, we demand that
the (ordinary) exterior form o, be smooth.

For example, let us write down a volume form for R? (we shall give a general definition
later on). Let x, y, z, be a cartesian coordinate system in R* (it may be right- or left-
handed). Then the volume (pseudo) form is

vol® := 0(8,, 9,,0.)dx Ndy Ndz

Thus if o is the right-handed orientation of R?, and if the coordinate system is right-
handed then vol, = dx A dy A dz, whereas if the coordinate system is left-handed
vol, = —dx Ady Adz =dy Ndx Adz.

Similarly we can define pseudovectors, pseudoscalars, and so on, pseudo always
referring to a change of sign with a change of orientation. For example, the magnetic
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field about a current carrying infinite straight wire circulates about the wire, but the
sense of circulation is undetermined! If we employ the usual right-handed orientation
of R?, then the field (by definition) circulates about the wire in the sense of a right-hand
screw, whereas if we use the left-handed orientation the direction is in the sense of a
left-hand screw. This indecisiveness cannot be avoided, it stems from the definition
of the magnetic field, (see (3.36)), and the fact that a “sense” can be assigned to a
X product of vectors v X w only after an orientation is chosen. Thus B is not a true
vector, but rather changes into its negative when the orientation of R? is reversed; B is
a pseudovector.

Warning: We have defined vectors, forms, orientation and pseudoforms in a manner
that is independent of coordinate systems. For example, in R? we may assign the right-
hand orientation and still employ a left-handed cartesian coordinate system. This is
usually not done in physics books. In physics one usually does not talk about the
orientation of R’ but rather the orientation of a particular coordinate system being
employed. Where in this book we would say that a vector is unchanged under a change
of orientation and a pseudovector B changes into —B if the orientation of R? is reversed,
a physicist would usually say, for example, that if A’ and B’ are the components of
a vector A and a pseudovector B in a cartesian coordinate system x, y, z, then the
components of A and B in the reversed system —x, —y, —z, are —A’ and B'. This is
saying the same thing as in our definition.

2.8f. The Volume Form in a Riemannian Manifold

Let p be a point in the Riemannian manifold M”. The volume (pseudo)-r-form vol"
is by definition the unique n-form that assigns to an orientation o of the tangent space
M7 and a positively oriented orthonormal basis e the value +1. (Recall that an n-form
is determined by its value on a single basis.) Let us find the coordinate expression for
vol”.

Clearly, if (x) is a coordinate system that is orthonormal at p, that is, (9;) are
orthonormal, then

vol = o(x)dx' A ... Adx"

is the volume form at p, since this form, when applied to (9,), yields o(x).

Let (y) be any coordinate system holding p. Choose any coordinate system (x) that
is orthonormal at p. (This can be done as follows. Let e be an orthonormal basis at p
and let (z) be any coordinate system near p. Then e = 9, P for a unique nonsingular
P. Now define coordinates x by z/ = P/;x’. We then have

9 _ <3Z‘i)i _ (i)pj. e
xi \oxi ) 9z/  \9z/ T

at p, as desired.) Then, at p

n 1 n a(x) 1 n
vol" =o(x)dx" A...ANdx" =o0(x)—=dy A...Ady

3(y)
a(x)

= o( )’—‘d AL AdY!
Plaon ™ ’
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Now at p we have (in the notation of Section 2.7b) ds? = §,,dx"dx* = 8ij (y)dy'dy’,

where
ax" ox* ox" ox"
ij == D 5rs b = N N
8 (Y) (3y’> <8yf) Z(ay’)<8yf)

Thus if we define, for each Riemannian metric tensor g;;(y),

g(y) :=det[g;; (y)] 2.71)

o= [£(5) )
o[ (5) )] = [ ()]

and consequently [d(x)/9(y)| = \/g(y) and

we have

vol" = o(y)/g(Mdy' A ... Ady" (2.72)

is the coordinate expression for the volume form. Since the coordinates (x) do not
appear anywhere in this expression, (2.72) gives the volume form at each point of the
(y) coordinate patch. If we write, as we do for any form, vol" = vol}, , dy' A...Ady",
we see that

voli, ;= 0(¥)/8Y)€i ..., (2.73)

It is traditional to omit the orientation function o(y), and we shall do so when no
confusion can arise.
Note that since vol” is a pseudo-n-form, we conclude that

\/g(y)el'] in...0p

are the components of an n™ rank covariant pseudotensor, but, as we noticed in Section
2.5 b, the permutation symbol itself is not a tensor!

Problems

2.8(1) Show that even dimensional projective spaces are not orientable.

2.8(2) Show that a 1-sided hypersurface M" of an orientable manifold W"+' is not
orientable. (Hint: Transport of a normal about some closed curve on M must
reverse this normal (why?). Now transport a basis of W about this same curve.)

2.8(3) Use Problem 2.1(2) to compute the volume 3-form of R® in spherical coordinates.
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2.9. Interior Products and Vector Analysis

What is the precise relationship between exterior forms and vector analysis in R>?

2.9a. Interior Products and Contractions

We know that if & is a covariant vector and v is a contravariant vector then «(v) = a;v’
is a scalar. Also, if A is a linear transformation, that is, a mixed tensor that is once
covariant and once contravariant, then the trace tr(A) = A’; is also a scalar. In fact we
have a general remark, whose proof is requested in Problem 2.9(1).

Theorem (2.74): If Tj‘ are the components of a mixed tensor, p times con-

and (q — 1) times covariant.

If v is a vector and « is a p-form, then their tensor product has components v/ Qiy..i,
and consequently the contraction v/ aji,..i, defines a covariant tensor, and it is clearly a

(p — 1)-form. There is, however, a special machinery for contracting vectors and forms,
and we turn now to this “interior product.”

Definition: If visa vector and « is a p-form, their interior product (p —1)-form
iya is defined by

iva® =0 if o is a O-form
ival = a(v) if o is a 1-form
ivoP(Wa, ..., Wp) = aP(v, Wy, ..., wp) if ¢ is a p-form

Clearly iy p = ia + ip and i,po = aia. Sometimes we shall write i (v).

Theorem (2.75): iy : \® — AP~ is an antiderivation, that is,

iv(ap A ﬂq) = [ivap] A ﬂq + (_l)pap A [lv,Bq]
(Note that exterior differentiation is also an antiderivation.)

PROOF: Let us write v= wj. Then

i@ ABY(Wa, oo, W) =0 AB(Wi,Wa, .o, Wyiy)
1J
= Z(Sl...(erq)a(wl),B(WJ) = Z + Z
1J 1Jlel 1JleJ
lig..ipJ

= Z 251...(p+q)05(W1,Wi2,---Wi,,),B(WJ)

<..<ip J

jooj
+Z Z 51...](2p+jf,>05(W1),3(W1,Wj2,...qu)

1 p<.<jg
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= 3 3 Sl el ... W) B(W)

1#iy<...<ip J—{1}

+3° Y nre e Wl B W, W)

I—{1} 12 <...<J,

= [(va) A B+ (=D a A GAI(W2, ..., Wpiy) O

Theorem (2.76): In components we have

iyo = E E vaji, <. <i,dx® AL A dx"

i<..<ip |

that is,
(lva)i2<...<i,, = § U]aji2<...<i,,
J
or

[ivalx = UjOle

Thus the interior product of v and o is simply the contraction with the first index of !
For proof of (2.76) see Problem 2.10(2).

We also have the very easy iyca = ciya = i.yo for a real number c.

Before proceeding, we should mention that exterior algebra and calculus and interior
products, and so on, all can be applied to pseudoforms as well. It should be clear, for
example, if « is a pseudoform, then so is da. Also, if B is also a pseudoform then o A 8
is a (true) form, and if v is a vector then i S is a pseudoform, and so on.

2.9b. Interior Product in R3

In 2.5¢ we mentioned that in R?® with cartesian coordinates one can associate to a vector
val-form ), v'dx’ and also a 2-form v'dx> Adx® +v2d x> Adx' +v3dx! Adx?. These
correspondences do not make sense in general coordinates; for instance, two different
coordinate systems will yield different 1-forms associated to a given vector v (not just
different coordinate expressions). We wish to give a correct correspondence that works
in any coordinates. We have already done this for 1-forms in a Riemannian manifold;
associated to the vector v = v'9; is the covector v = v;dx’, where v; = g;;v/. (We will
write v = ( ,v) since v(w) = (w, v).) We shall indicate this correspondence simply by

v & v = vdx! 4 vadx? 4 vydx’

What is the 2-form corresponding to v? We claim v < the pseudo-2-form v? :=
iy vol’. Let us look at the coordinate expression for this interior product. In curvilinear
coordinates u (with 8; = 8/8u', and omitting the orientation function o) we have the
volume form (2.72) and

iw/g(u)du1 Adu* Adu® = \/gz vjiaj (du' A du® A du?)
J
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Repeated use of (2.75) then gives
i(0,)(du' Adu* Adu’)
=i(9;)(du")du® A du® — du' Ni(9;)(du?) Adu’ +du' Adu*i(9;)(du’)
= dul((‘?j)a'u2 Adu® — duz(aj)dul Adu® + du3(6]~)du1 A du?®
= Sljduz Adu® — 82_,-du1 Adu® + 53jdu1 A du?
Thus to the vector v we associate the pseudo-2-form
v & 12 i=i, vol®
where .77)
iyvol’ = Jg(v'du® A du® + v2du’ A du' + v3du' A du?)
is the correct replacement for v'dx* A dx? + v2dx® A dx! + vidx' A dx®. Note,
conversely, that if
B = bysdu® A du® + byidu® A du' + biodu' A du?
is a pseudo-2-form, then we may associate to it a vector B with components
— @ B2 = ﬁ B3 = 2
Ve Ve V8
Two things should be noted about (2.77). First, of course iy vol® does not use the
full Riemannian structure of ]RS; rather only the volume form is used. Second, the same

procedure will work in any manifold M" having some distinguished volume form (not
necessarily coming from a Riemannian metric)

B! (2.78)

vol" = p(u)du' A ... Adu" (2.79)

where p # 0. To the vector v we may associate the pseudo-(n — 1)-form

1

v& Vv =i, vol" (2.80)

One can easily work out the coordinate expression for this form, as in (2.77).
Back now to R>. Given a pair of vectors v, w, with associated covectors v! = ( , v)
and o' = ( , w), we know that

(v, w) = iyo' 2.81)

We can also associate to our vectors their pseudo-2-forms v? and w?. In cartesian

coordinates we know that v! A @? is a 3-form whose coefficient is again (v, w). We
claim that in general we have

1

VA @?

= (v, w) vol* (2.82)

We give two proofs. For the first we simply notice that both sides are pseudo-3-forms.
Since they are equal in cartesian coordinates they are always equal.
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Our second proof illustrates the machinery of interior products.
vIAw? = v Ady vol? = iy (vol?) A v!
= iw(vol> AvY) 4 vol® Aiyv!
=iy(v') vol® (Why?)
What about the X product of the vectors? We know that in cartesian coordinates,
the 2-form v! A @' has as coefficients the three components of v X w. We should like
then to say that v! A ! is the 2-form associated to the vector v X w, but we only have a

pseudo-2-form associated to a vector. Thus we should say that the pseudovector v.x w
is associated to the 2-form v! A @'

fvsew VOI = 1! A ! (2.83)

This makes sense when we recall that the direction of v X w is given usually by the
right-hand rule; that is, it uses the orientation of R*. Although not usually mentioned in
elementary books, the vector product is defined in R* as follows: v X w is the unique
pseudovector such that

(v X W), ¢) = vol’(v, w, ¢) (2.84)

for each vector c.
We may ask now for the 1-form version of v X w, that is, the pseudo-1-form asso-
ciated to the vector product. We claim

—iyw? is the covariant version of v X w (2.85)

This follows from (2.84)

(v X w,¢) =vol’(v,w, ¢) = —vol’(w, v, ¢)
= —[iy(vol))](v,¢) = —w*(v, ¢)
= [—iy»’](c)

2.9c. Vector Analysis in R®

Vector algebra in R? is easily handled by use of interior and exterior products; the
only question is, should one associate to a vector B its 1-form B! = (,B) or its 2-
form A% = ig vol’? For example, consider an expansion of the vector triple product
A x (B x C). The following works. Let B & B!, C < y!. Then

AX B XxC) & —ia(B'AyH =[-iaBHIy" + B'liay']
< —(A,B)C+ (A, C)B

the familiar vector identity.
So much for vector algebra! Now for calculus. We already know that

df =(,Vf)
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We define curl A by using A < «! and then curl A & da!
da' = icua vol® (2.86)
and define div B by using B < 2 and
dg* = (divB) vol® (2.87)

for these are surely identities when expressed in cartesian coordinates. Note that in
(2.87), since B is a vector, A2 is a pseudoform. Since vol® is a pseudoform we conclude
that div B is a (true) scalar. On the other hand, if A is a vector then curl A must be a
pseudovector!

Warning: Given a vector field A, one can write out the components of the vector
curl A in a curvilinear coordinate system; one takes A, one converts it to a 1-form o'
using the metric tensor g;; (this is generally complicated), then takes da', and then
uses (2.78). To my knowledge, however, there is no reason for ever writing out the
components of the vector curl A in curvilinear coordinates; if the expression curl A
appears, it is a sure sign that the vector in question was not the contravariant A but
rather the covariant vector o' < A! But then da' is as simple to write down in
curvilinear coordinates as in cartesian. A similar remark applies to the components of
grad f in curvilinear coordinates; df is all that is needed.

It is a different story with div B. div B is the scalar coefficient of vol® in (2.87),
and its expression in coordinates u is needed. Since B < ig vol® (and omitting the
orientation function o)

dlig vol’] = d[\/gb'du® A du® + Jgb*du® A du' + Jgb’du' A du?]

—[—(f D+ 82(«/§b2)+13(\/§b3)]du1/\duz/\du3

1
[a z[fb’]fdu Adu® A du’
Thus

divB =

1
2.88
AT O 1 ab] (2.88)
Note again that only the volume form appears, not the full metric tensor.
We define the Laplacian of a function f by

V2 f = Af := div(grad f)
19 S Of
o5 R

To continue with vector identities it is useful to associate a pseudo-3-form to each
scalar f, namely

f & fvol®
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Then, for example, from (2.82)
div(A X B) < div(A X B)vol> =d(a' A B =da' A B! —a! A dB!
= (curl A, B) vol® —(A, curl B) vol®
& (curl A, B) — (A, curl B)

2.10. Dictionary

Let

vol> = dx Ady A dz = volume form
O-form f = function f
1-form &' = covariant expression for a vector A
1-form y' = covariant expression for a vector C
2-form B2 be associated to a vector B through
B* = igvol
Then we may make the following rough, symbolic identifications
a' Ayl = iscvolP © A X C
a'Ap>=A+Bvol’ < A-B
ica'! =C-A
icB* & —CxB
df & grad f
do' = igma vol® & curl A
dp* = divBvol® & divB
digay vol> = (V2f)vol® & V2 f

Problems

2.10(1) Prove (2.74).
2.10(2) Prove (2.76).
2.10(3) Compute V2 f in spherical coordinates.
2.10(4) Derive the following identities using forms
(i) grad(fg) = fgradg + ggrad f
(i) div(fB) = fdivB + (grad f. B)
(iii) curl(fA) = fcurlA+grad f x A
(iv) (AxB,CxD)=...7?
2.10(5) Use (2.73) and invoke (2.76) twice to show

vxB<s @Z ViBjE,'jkka
k



CHAPTER 3

Integration of Differential Forms

ExTERIOR differential forms occur implicitly in all aspects of physics and engineering
because they are the natural objects appearing as integrands of line, surface, and
volume integrals as well as the n-dimensional generalizations required in, for example,
Hamiltonian mechanics, relativity, and string theories. We shall see in this chapter that
one does not integrate vectors; one integrates forms. If there is extra structure available,
for example, a Riemannian metric, then it is possible to rephrase an integration, say of
exterior 1-forms or 2-forms, in terms of a vector integrations involving “arc lengths” or
“surface areas,” but we shall see that even in this case we are complicating a basically
simple situation. If a line integral of a vector occurs in a problem, then usually a deeper
look at the situation will show that the vector in question was in fact a covector, that is, a
1-form! For example (and this will be discussed in more detail later), the strength of the
electric field can be determined by the work done in moving a unit charge very slowly
along a small path, that is, by a line integral. The electric field strength is a 1-form.

Integration of a pseudoform proceeds in a way that differs slightly from that for a
(true) form. We shall consider pseudoforms later on.

3.1. Integration over a Parameterized Subset
How does one integrate the Poincaré 2-form w over a surface in phase space?

3.1a. Integration of a p-Form in R?

We are familiar with the notion of a multiple integral of a function f over a region in R”

/ fadu' ... du?
U

(Of course we shall assume that the integral makes sense; for example, this will be the
case if U is a closed ball and f is continuous on U.) This integral does not involve any
notion of orientation, and it is immaterial in which order the du'’s appear.

95
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We now define the integral of a p-form a” = a(u)du' A ... Adu” over an oriented
region (U, 0) C R?.

/ oe:/ a(@)du' A ... Adu” (3.1)
(U,0) (U,0)

= o(u) /U a()du' ...du?

where the last integral is the ordinary multiple integral of the function a over the region
U, disregarding the orientation, and where o(u) = %1, the 4+ sign being chosen if and

only if the coordinate basis
(5 o)
oul’ " Bur

has the same orientation as given by o. Clearly the integral of a p-form changes into
its negative if the orientation of U is reversed

/ o= —/ o 3.2)
(U,—o0) (U,0)

We shall see shortly that the definition (3.1), in spite of its appearance, is in fact
independent of the coordinates u used in R?.

3.1b. Integration over Parameterized Subsets

We define an oriented parameterized p-subset of a manifold M" to be a pair (U, o; F)
consisting of an oriented region (U, o) in R” and a differentiable map

F:U—-M"

We shall also call the point set F'(U) C M" a p-subset.

When p = 1 we simply have a curve on M" with a specific parameterization,
expressed locally by x' = x'(¢), and when p = 2 we have a surface on M" again with
a specific parameterization x' = x'(u, v).

It should be noted that we make no requirements on the rank of the differential
of the map F’; for example, it may be that the curve has a vanishing tangent vector,
dx/dt = 0, at some or perhaps all parameter values ¢. Consequently, the p-subset
F(U) need not have dimension p everywhere (that is why we do not use the term
p-dimensional subset, rather than p-subset). In the most important cases, F, will have
rank p “almost everywhere.” For example, the map R* — R defined by F(0, ¢) =
(sin6 cos ¢, sin 6 sin ¢, cos B) defines a parameterized 2-subset of R? that covers the
unit sphere an infinity of times, and with F, of rank 2 everywhere except at the poles,
that is, the lines & = nx of R>.

If a” is a p-form on M", defined at least in some neighborhood of the image F (U)
of U, we define the integral of o” over the oriented parameterized p-subset by

/ al = / Fra? 3.3)
(U,0;F) (U,0)
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Thus we pull the form «” back to the oriented region (U, 0) and integrate there by
means of (3.1). In all detail

/ af = / F*a?
(U,0;F) (U,0)

:/ (F*a?) [i i]a’ul A...A"du?
(U,0) Oul” " Bur
(3.4
=0(u)/(F*ap){a 8}dul du”
, 90 Dur
Note that we can also write this as
o o
P = P\Fo—, ..., F.—|du'...du” 3.5
/(U’D;F)oz o(u)/Ua [ 0 Bul’} u u (3.5)
3.1c. Line Integrals

Consider acurve C : x = F(¢), fora <t < b, in R? (with x any coordinates), oriented
so that d /dt defines the positive orientationin U = RLIfo! = ay(x)dx" +a(x)dx*+
az(x)dx? is a 1-form on R? then its integral or line integral over C becomes

/Ca' :/CZa,-(x)dxi
:/abF* Zai(x)dx"]
:/ah ,Za,-(x(t))ci;i

Thus (3.3) is the usual rule for evaluating a line integral over an oriented parameterized

curve! We may write this as
b d
/al :/ a1<x)dz 3.7)
C a dt

and so the integral of a 1-form over an oriented parameterized curve C is simply the
ordinary integral of the function that assigns to the parameter ¢ the value of the 1-form
on the velocity vector at x(¢). This of course is simply (3.5), since F,(d/dt) = dx/dt.

Note that there is no mention of arc length nor dot product. If we wish to use a
Riemannian metric in R?, for example, if the x’s are cartesian coordinates, then to the
1-form o! is associated the contravariant vector A and (3.6) or (3.7) says

/Cal = /abA. <Z’;)dz (3.8)

If the coordinates are not cartesian, then although (3.7) remains the same,

] dt (3.6)
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fab a; (dx'/dt)dt, (3.8) becomes the more complicated

b ) d i
/a [gijAf](d—’;)dt

Thus if one insists on integrating a vector over a curve, rather than a 1-form, one is going
toneed a Riemannian metric to convert the contravariant vector first into a covariant one,
that is, a 1-form. Line integrals of 1-forms do not involve a metric, whereas integrals
of vectors must involve one!

dx/dt=F,(d/d1)

Figure 3.1

Use of a Riemannian metric allows us to write a line integral in the more usual form

/al =/A-dx (3.9)
C C
b d
=/ A-<—X>dt
g dt
b dx
=/ 1A HE
L
=/ A.ds
0

where A, is the tangential component of A, ds :=|| dx/dt || dt is the element of arc
length, and L is the length of the curve. Although this appears simpler than (3.6), to
compute using (3.9) one would have to introduce a parameterization, leading effectively
back to (3.6)! There are times when one needs to compute the arc length of a curve,
but, usually, it is completely irrelevant to either the computation or the concept of a line
integral! Line (and, as we shall see, surface) integrals are independent of any metric
notions in space. This is one case where the usual elementary treatment given in many
calculus texts is harmful and misleading and should have been discarded long ago.

cos £ (A, d—X)dt
dt
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3.1d. Surface Integrals

Consider now an oriented parameterized surface in R®, with x any coordinate system.

B
N
MZ

Fi(@/u")

/ = 9x/du
3/du? = (9x You', ax¥ou’ ax3/auh)”

Fo(3/3u?
o/dut = 9x/du?
ul = (0xYou? ax%/012 ax/au®)
Figure 3.2

Suppose that 8/8u', 8/8u® has the given orientation o. Let 8> be a 2-form on R’
and pllt bl = b23, b2 = b31, b3 = b12- Then, as in (265)

B* = / bidx* A dx® 4 bydx® Adx" + bydx' A dx?
FU) FU)

/ 3 by ))2?1 x; du' du’ (3.10)

i<j

or, as in (3.5),

/ _/ (3_"1,3>du i G.11)
F(U) a

Suppose that one insists on writing this in terms of the vector, or rather the pseudovector

B, associated to 82
0 d
522/[iBV013]< = X)duldu
FU) U du'” du?

ax 0
- / vol? (B, ox X)duldu2 (3.12)
U ou'’ du?

Recall that an orientation of U C R? has already been given (it is inherent in the
definition of the surface integral), but not one for R*. Since both vol® and B change sign
under a change of orientation of R?, it is clear that (3.12) is independent of the choice
of orientation of R>.
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We now proceed to the usual expression of (3.12). Choose an orientation of R* and
let x be a positively oriented cartesian coordinate system for this chosen orientation.
(In our Figure 3.2 we have perversely chosen a left-handed orientation.)

Inthe “classical” case discussed in elementary texts, the surface is regular; that is, the
map F has maximal rank and thus the coordinate vectors dx/du', 9x/du? are linearly
independent. In this case we can transfer the orientation o from the “parameter plane”
U c R to the surface F(U); since 8/8u', 8/0u? are positively oriented in U we
declare dx/du', 0x/0u? to define the positive orientation for F(U). We then pick the
unique unit normal N such that N, 9x/du', 8x/0u? is positively oriented in R*. We then
have a unique decomposition B =(B « N)N + T, where T is tangent to the surface (and
consequently is a linear combination of dx/du' and 9x/du?). From (3.12)

ax 0
,32=/v013 <(B-N)N,—X —X2>duldu2
FU) U

ou'’ du
—/(B N)[i vol3]<a—x 8—X>du‘du2
“Ju N du'’ u?
Now
ix vol? (3.13)

is simply the area 2-form for the surface, for its value on the (positively oriented) pair
of tangent vectors dx/du', dx/du” is simply the area of the parallelogram spanned by
them, || (9x/0u') X (3x/du?) ||. We shall write (with a classical abuse of notation
since d S is not the differential of a form)

ox 0x
S 3 172
= | n| du'du®
wheren = (9x/du') X (9x/du?) is the (non-unit) normal to the surface. B, := B« Nis
the normal component of B. Thus we have the usual expression for the surface integral
B =/ B,dS (3.15)
F(U) U

This can all be said as follows. Given a pseudovector B and an oriented parameterized
surface in R?, choosing an orientation of R? simultaneously picks out a specific vector
field B and a definite unit normal N. Then |, v BadS is the desired surface integral.

Surface integrals arise in higher dimensional manifolds. For example, in Hamiltonian
mechanics, one sometimes needs to integrate the Poincaré 2-form w over an arbitrary
parameterized surface ¢ = g(u, v), p = p(u, v) in phase space.

[ ff i = J] [ o na

=/ {u, vidudv

becomes an integral of the Lagrange bracket of u and v (see (2.67)). Note that there is
no mention of a Riemannian metric, dot products, nor area elements!
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3.1e. Independence of Parameterization

We have defined our integral in terms of a parameterized subset of an M". What if we
decide to consider the same subset (i.e., point setin M") but parameterized in a different
fashion. We claim that if, in a sense to be prescribed later, the orientations are the same
then the integrals will be the same; that is, the integral is independent of the parameteri-
zation. This is “clear” in the case of line or surface integrals in R3, forin R? with the stan-
dard metric our integrals have been put in the geometric form [ A,ds or [ B,dS. These
involve length or area integrations, and so the original parameterizations have “disap-
peared.” It is not easy to make this proof “honest” in the case of surface or higher dimen-
sional integrals. We shall instead give a general proof relying directly on the famous
Jacobi formula for change of variables in a multiple integral (whose proof is not trivial).

First, what do we mean by an orientation preserving reparameterization? Let F :
(U c R?”) — M" be an oriented parameterized p-subset of a manifold M". We say
that G : (V C R”) — M" is a reparameterization of this subset if there is an
orientation preserving diffeomorphism H : U — V such that F = G o H, that is,
F(u) = G[H (u)], or, in terms of local coordinates x for M", F(u) = x(v(u)).

P

u P

Figure 3.3

Since H is orientation preserving, H is of the form v = H(u) = v(u) where
av) AW, ...,vP)
au)  ol,...,ur)

provided u and v are positively oriented coordinates for U and V, respectively.

Recall now Jacobi’s formula. If H : U — V is a diffeomorphism of unoriented
regions then

>0

a(v)
dv'...dv’ = —\du'...du? 3.16
/V L J@ /U f[H(u)]’a(u) W' du (3.16)

(note the absolute value of the Jacobian determinant).
Now we can consider our integrals of forms. If G is a reparameterization of F
(with positively oriented coordinates u and v in U and V, respectively) and x are local
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coordinates on M"

/ apz/G*apz/G*[al(x)dxl]
(V,G) 1% Vv

_/a,[x(v)]{a( ))] L L

B 2610
a(x’)
— F . P — F*a? = p
= [atFan e a v = [ Far= |

which shows that the integral is independent of the parameterization.

3.1f. Integrals and Pull-Backs

Let ¢ : M" — W’ be a smooth map of manifolds, and let F : U — M" be an
oriented parameterized p-subset of M". Then clearly v = ¢ o F : U — W' is an
oriented parameterized p-subset of W”. Then if «” is a p-form on W', we have, from
Problem 2.3(1)

/ af = / Yral = /(¢ o F)*al = / F*og¢*al = ¢ a”
,v) U U U (U,F)

We shall write briefly o for the oriented subset (U, F) of M" and then (U, ) =
(U, ¢ o F) will be written simply as ¢ (o), a subset of W’. We then have the general
pull-back formula (generalizing (3.3))

¢ M — W

/¢(U> al = /{r¢*a" (3.17)

In words, the integral of a form over the image ¢ (o) C W’ of a subset o C M" is the
integral of the pull-back of the form over o.

3.1g. Concluding Remarks

Again I must remark that (3.10) is ordinarily much simpler than (3.15). Of course
there are very special situations when (3.15) is simpler. For example, let our surface
be the unit sphere. Consider the vector B = x, the position vector. Then (3.15) gives
immediately [x « NdS = [ 1dS = 4. This is “simpler” because we already know
the area of S2.

Finally, note that we have only defined the integral of a form over an oriented param-
eterized subset of a manifold M”, and these subsets are basically covered by a single
coordinate system. We would ideally like to integrate p-forms over p-dimensional
submanifolds of M". We shall discuss this in our next section.



INTEGRATION OVER A PARAMETERIZED SUBSET 103

Problems

3.1(1) Let us say that a parameterized p-subset (U, F) of M is “irregular” at g if rank
F < pat ug. Show that if P is a form at such a ug then F*aP = 0.

3.1(2) We know that dS =| n || du'du?. Show that in cartesian coordinates x for R®
_ax2,x3) A ax3, x1 KA ax!, x2) KA
Tawt,u?) axt o', u?) ax2 g, u?) ax8

andso | n 2= Z,<j[8(x’, xhy/at, u?)R
Show that when the surface is simply the graph of a function, that is,

= u?, x3 = f(x', x?)

we recover the classical expression for the area element. What do we get for
the area element when the surface is given in the form F(x, y, z) = 0 and we
assume that we can solve for z in terms of x, y?

The following problem investigates the area element for a hypersurface and
may be omitted.

3.1(3) The formula dS =|| n || du'du? followed from the fact that the area spanned by
ax/9u' and ax/9u2isthelength ofthe x product (ax/au') x (9x/3du?). Although
we cannot define a vector A; x A, for a pair of vectors in R” we can define a
generalized x product of (n — 1) vectors in R” as follows (see (2.84)):

A; x ... x A,_q1 isthe unique (pseudo) vector B such that
C+.B=vol"(C,A;y,...,A,_y) foreach vector C

(i) Show that B is orthogonal to A;, ..., Ay

Suppose we consider a hypersurface of R" parameterized by u’, ...,
u™1 Let n = 3x/9u’) x --- x (9x/9u™') where the x's are cartesian
coordinates for R", and let N be the unit vector in the direction of n.

(ii) Show that we can then express the (n — 1)-dimensional area element
dsm1 = [iyvol"ax/aut, ..., ax/au"Hdu' ... du™ " as
dsS"™ ' =|n|du'...du""

(iii) Let i(v) := iy. Show that we can also say that the covariant versionin R" of
the vector n is the 1-form

[ 0X [ 90X n
(,M =i ——=|o...0i| — | vol
aun—1 au

(It is interesting that this 1-form uses only the volume form, not the metric
of R”, and it vanishes on vectors tangent to the hypersurface.)

(iv) Now in cartesian coordinates, vol” has components given by the permuta-
tion symbol (see 2.73). Use (2.73) repeatedly to show that

axn g xin-v
(,n)j:€j1“/(n_1)/' W auT

axt, x2, ... x4, .. x™
a, ..., um1

= D/'
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where D; is the determinant of the Jacobian matrix with the jt row omitted.
We conclude

n—1 __ 211/2 1 n—1
ds"™ " =[>  D#'"2du’ ...du
J
(v) Show that if the x coordinates are not necessarily cartesian, with metric
tensor (g;j), then the correct formula for || n || is given by
In 2= g(x)g" D; D;

(this is also the correct expression in a Riemannian manifold).

3.2. Integration over Manifolds with Boundary

Does every manifold carry a Riemannian metric?

In 3.1 we defined how one integrates a (true) p-form over an oriented parameterized
subset of a manifold. We would like to be able to integrate over objects that cannot
be covered by a single parameterized subset, for example p-dimensional oriented sub-
manifolds. A common way of doing this is indicated in the following figure.

Figure 3.4

We have indicated a submanifold W? of R together with its boundary. It is oriented
and we have indicated its orientation by giving the positive sense of rotation. We wish
to integrate a 2-form B2 of R® over this object. We first restrict the form B to the
submanifold W: thus if i : W — R’ is the inclusion map, we consider the pull-back
i*B instead of B. This restricted form i*8 has the same values on tangent vectors to
W as the original form B. We then break up W? into a finite union of coordinate
patches that overlap only at edges or vertices. A theorem (whose proof is difficult)
on “triangulations” shows that this can always be done. We have indicated two of the
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patches (as drawn, we can use y and z as local coordinates in each). We can assume
that the coordinates u in U, v in V, and so forth, are such that the orientation of the
patches agrees with the given orientation of W? (in our drawing, y, z, in that order yield
the given orientation). We know how to integrate i*8> over each of these patches, for
if ¢y : U — R? is the coordinate map for U, as in 1.2c, (b(}l t ¢u(U) — W?is our
parameterized map. We then compute these integrals and add the results. This is the
integral of B2 over W2.

We emphasize that this is a perfectly acceptable way, and in fact the usual way to
evaluate the integral. For theoretical purposes, however, we wish to define the integral
in a different way. Instead of breaking the object W up into nonoverlapping coordinate
regions, we shall rather write the form i* as a sum i*B =Y, By of differential forms
Bu, each of which vanishes outside its associated coordinate patch U (this requires a
“partition of unity”; see 3.2b). This is simpler than triangulating W since we no longer
demand that the patches fit together carefully. We know how to integrate 8y over the
oriented patch U. The integral of 8, over W should then be the same as the integral of
Bu over U, since By is zero outside U. Then we shall define the integral of 8 over W
to be the sum of the integrals of the By over their patches U.

We now proceed with this program. Our first step is to generalize the notion of
manifold so as to be able to include, as in Figure 3.4, the boundary of the object.

3.2a. Manifolds with Boundary

The closed 3-ball || x ||< 1 in R? is not a 3-manifold, for although interior points,
(i.e., points for which || x ||< 1) do have neighborhoods diffeomorphic to open balls
in R, | u ||< 1, points on the boundary 2-sphere have neighborhoods that resemble
half open balls, || v ||< 1 and v* > 0.

interior point

st
3
u2

u! v2
open ball

lhull<1 vl half open ball

b, loll <1
0320

boundary point

Figure 3.5
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We shall check that boundary points do have such neighborhoods, as this illustrates a
typical use of the inverse function theorem. For simplicity we consider the south pole on
the boundary 2-sphere. This sphere, near the pole, can be described as z + f(x, y) = 0,
where f(x, y) = v/ (1 — x2 — y?2). Thus a neighborhood of the south pole in the closed
unit ball is given, say, by x> + y? < € together with 0 < z + f(x, y) < 8 where € and
8 are positive. The “bottom” boundary consists of a curved disc, a portion of the unit
sphere. We would like to straighten this into a flat disc. Consider the three functions
vl =x,v =y,and v’ = z+ f(x, y). Fromdv' Adv> Adv® = dx Ady Adz, thatis,
a(v!, v?,v%))/d(x, y,z) = 1 # 0, we conclude (see Corollary (1.16)) that the v’s form
a smooth coordinate system for R near the south pole. Thus the above neighborhood of
the south pole described can be described by (v!)? + (v?)? < € and 0 < v* < §, which
is a cylindrical “can” (with sides and top removed) in a v', v?, v® space (see the figure).
By then removing the points in the can with || v ||> € we have the desired half open ball.

Briefly speaking, an n-manifold with boundary M" has an interior that is a genuine
n-manifold, and a boundary or edge, usually written

oM

Points on the boundary have neighborhoods diffeomorphic not to open sets in R" but
rather to half open sets, that is, sets of the form || v ||< € and 0 < v" < §. We still
call such a neighborhood a coordinate patch. For more details the reader may consult
[G, P,p. 57] or [A, M, R, p. 406]. It is an important fact that the boundary or edge d M
is itself always an (n — 1)-dimensional manifold without boundary, although it need
not be connected; that is, it may consist of several disjoint manifolds, as in Figure 3.4.
Local coordinates for d M are given by the v', ..., v"~!. In the example of the closed
ball, v! = x and v?> = y are local coordinates for 9M = S? near the south pole.

Of course if the boundary is empty, M = ¢, M is a genuine manifold.

Concepts such as orientability and 1-sidedness apply to manifolds with boundary
as well. An actual Mobius band constructed from a sheet of paper is a surface with
boundary, the boundary in this case consisting of a single closed curve diffeomorphic
to a circle S'.

3.2b. Partitions of Unity

We discussed some elementary point set topology in Section 1.2a. Some further notions
will, I hope, be helpful even if only lightly touched upon. If you find this discussion
too brief to follow, you should consider the special familiar case of R" rather than an
abstract manifold. In R" an open ball (i.e., a ball without its boundary sphere) centered
at a point x is the most important example of a neighborhood of x. Given a point p in an
M",let {U, x'} be a coordinate patch with origin at p. Then the set where > (x')? < €2
is an open €-ball neighborhood of p on M".

A point x in M" is an accumulation point of a subset A of M" provided every
neighborhood of x contains at least one point in A other than x itself. It is a fact that if
one adjoins to A all of its accumulation points, then the resulting set, called the closure
of A, is a closed subset; its complement is open. (It is a fact that a subset of a topological
space is closed if and only if it contains all of its accumulation points.)
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Recall that a real-valued function f : M — R is continuous if the inverse image
of every open set in R is itself open in M. The nonzero real numbers clearly form an
open subset of R, and so the subset of M where f # 0 is an open subset of M, being
F~'(R — 0). The closure of this set is called the support of f. Note that f may be 0
at some points of the support of f. For example, for the function whose graph is given

1 1 1
1 1 1 1 1 t

—€/2 —€/4 0 €/4 €/2

Figure 3.6

in Figure 3.6, the support is all # with | ¢ |< €/2. Similarly, we can define the support
of any tensor field on M as the closure of the set of points on M where the tensor is
different from O.

Given a point p € M", it is easy to construct an n-form on M" whose support is
contained in an e-ball neighborhood of p. Let p be the origin of local coordinates x,
and let f = f(¢) be the function whose graph is depicted in Figure 3.6. This is an
example of a bump function. We can then define an n-form " on M", a bump form,
by putting || x [|>= >_(x")? and

o" = f(| x Ddx' A...Adx", forxintheball || x ||<e€
and
o" =0 for x outside the ball

Now for the notion of a partition of unity. We shall restrict ourselves to manifolds
(perhaps with boundary) that can be covered by a finite number of coordinate patches.
In fact this restriction is not necessary, but we would have to be more careful (see [G,
P, p. 52]).

Given a finite covering {U,},« = 1,..., N, of M" by coordinate patches U,, a
partition of unity subordinate to this covering will exhibit N real-valued differentiable
functions f, : M" — R having the following properties.

1. fo,(x) >0, all ® and all x

2. the support of f, is a (closed) subset of the patch U, (in particular f, vanishes outside
Uy).

3. >, fo(x) =1forall x in M".

Such partitions always exist (it is clear that only the third condition is going to be
difficult); they are constructed in the general case in [G, P]. We shall, instead, illustrate
the construction in the simplest possible case. Let M ! be the closed unit interval [0, 1]
on R. This is a 1-dimensional manifold with boundary consisting of the two endpoints.
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Consider the covering given by the two patches Uy = {x | 0 < x < 3/4} and
Uy={x|1/2<x <1}

R

81 82

Figure 3.7

We first construct two bump functions g, and g, whose supports are in U; and U,,
respectively, and such that they do not vanish simultaneously. We have indicated their
graphs in the figure. Since g (x) + g2(x) > 0 everywhere on M' we may define

fy = —8S
[81(x) + &(x)]
yielding the desired partition, ), f,(x) = L. Itis evident that keeping the g’s from all
vanishing simultaneously might be difficult in a general covering of an M”, but it can
be done.

3.2c. Integration over a Compact Oriented Submanifold

Recall from Section 1.2a that a topological space is compact if from every open cover
one may extract a finite subcover. This means in particular that every compact manifold
can be covered by a finite number of coordinate patches. If it is a subset of R", then it
is compact iff it is closed (as a point set) and bounded. Thus M' = R is not compact
since it is not bounded. M' = (0, 1], the half open interval {x | 0 < x < 1}, is not
compact; see 1.2a. On the other hand, the closed interval [0, 1] is a compact manifold
with boundary, being a closed, bounded subset of R.

The Mabius band in R? including its edge is compact, but without its edge it is not
a closed subset and is thus not compact. The 2-sphere S? is a compact manifold. The
closed ball in R? is a compact 3-manifold with boundary.

Warning: The Mobius band without its edge, when considered as a subset of R3, is
not a closed subset of R*, and is thus not compact. The same set, but considered as a
manifold or a fopological space in its own right (with the induced topology), is closed,
as are all topological spaces (this is because its complement is the empty set, which is
open; see 1.2a). In this topology, however, the strip is not compact.
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We first define the integral of a p-form 87 over a compact p-dimensional oriented
manifold (with or without boundary) V7, that is, the integral of a form of maximal
degree. Let {U(x)}, @ = 1,..., N, be a finite covering of V? by coordinate patches,
each positively oriented. Let { f,} be a partition of unity subordinate to this covering.
Since each such chart is an oriented parameterized p-subset we then know how to
evaluate [, foB?. We then define

/V gr=%"[ rp (3.18)

U(a)

It is easy to show then that the integral so defined is independent of the coordinate cover
and partition of unity employed (see [B, T, p. 30]). Of course the crucial ingredient is
Za f a = L.

Finally, if M" is any manifold and if 87 is a p-form on M", we define the integral
of 87 over any compact oriented p-dimensional submanifold V¥ C M" (perhaps with

boundary) by
/ﬂ” :=/i*,3p (3.19)
v v

where i : V” — M" is the inclusion map (note that i*3?” is a p-form on the oriented
manifold V7).

We emphasize again that one does not really evaluate integrals by means of a partition
of unity; it is merely a powerful theoretical tool, as we shall see.

3.2d. Partitions and Riemannian Metrics

If a manifold M” is a submanifold of some R" we may leti : M" — R" be the
inclusion map. If we let ds® = 3", (dy")* be the usual Riemannian metric of RY, then
the pull-back or “restriction” i*ds? will be a Riemannian metric on M", the “induced”
metric. For example, if a surface M 2inR’is given in the form z = z(x, y), then we
may use x, y as coordinates for M 2 and then

i*(dx* +dy* +d7%) = dx* +dy* + [z,dx + z,dyT (3.20)
= [1 4 2}1dx* + 2z,z,dxdy + [1 + z]1dy’

How can we assign a Riemannian metric to a manifold that is not sitting in RV ? Let
{Uy,, x.} be a coordinate cover for M" (again assumed finite for simplicity). In each
patch U, we may (artificially) introduce a metric ds2 = Y, (dx")?, but of course ds?
need not be the same as ds/% in U, N Ug. If, however, we introduce a partition of unity
{ f»} subordinate to the cover we may define a Riemannian metric for M" by

ds’ = fuds,

(Note that fadsi makes sense on all of M" since f, = 0 outside U,.) Although this
metric is again highly artificial, it does show that any manifold admits some Riemannian
metric. This is a typical example of how a partition of unity is used to splice together
local objects to form a global one.
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3.3. Stokes’s Theorem

/dwp71=/ wP™!
|4 v

3.3a. Orienting the Boundary

Let M" be an oriented manifold with nonempty boundary d M ; we state again that o M
is an (n — 1)-dimensional manifold without boundary. A triangle is not a 2-manifold
with boundary since its boundary is only piecewise differentiable.

oM

2-manifold with boundary not a manifold with boundary

Figure 3.8

Given the orientation of M" we can orient the boundary d M" as follows. Let
ey, ..., e, span the tangent space to dM" at x. Let N be a tangent vector to M" at

€

N
N
N
Figure 3.9
x that is transverse to dM" and points out of M". We then declare that e,, ..., e, is
positively oriented for dM" provided N, e,, . . ., e, is positively oriented with respect to

the given orientation of M". In Figure 3.9, we have indicated the positive orientation for
M? by the basis v, v,; then the indicated e is positively oriented for the 1-dimensional
manifold dM. In the right-hand figure we indicate the orientation of M? by describing
the positive sense of rotation and the orientations of the boundary curves by simply
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giving arrows. Although this works only for 2-manifolds we shall use the same sort of
symbolic picture even for n-manifolds.

3.3b. Stokes’s Theorem

Theorem (3.21): Let VP C M" be a compact oriented submanifold with bound-
ary 3V in a manifold M". Let =" be a continuously differentiable (p — 1)-form

on M". Then
/da)pfl = wP™!
v av

Versions of this for p = 2 and 3 in R® were proved in the first half of the eighteenth
century by Ampere, Lord Kelvin, Green, Gauss and others. (Unfortunately Kelvin’s
theorem is traditionally attributed to Stokes.) The general theorem stated previously is
again called Stokes’s theorem.

PrOOF OF STOKES’S THEOREM: Leti : V7 — M" be the inclusion map.
Then from (3.19) and (2.64) we have

/da)”_l =/i*da)”_1 =/a’i*a)”_1
1% v v
p—1 __ ~x  p—1
o’ = )
av av

Thus to prove (3.21) we need only prove the same formula where w is replaced
by i*w. In other words, it is sufficient to prove

/ d‘Bpfl — ﬁpfl
1% A%

for any continuously differentiable form 7! on V7, forgetting M" altogether!
Since V* is compact we may choose a finite cover of V? by coordinate patches
{V(a)}. Let 1 =, f, be the associated partition of unity; we may then write

B =3, B« Ba= fuB. Then

[aprt=[a¥p =% [ ap

AL

and also

and

/av pr = ; /av 'Bg_l

We see then that we need only prove

/vm) ape = /av B (3.22)

for the form 87~ whose support lies in V (). There are two cases.
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Case (i): V(a) is a full coordinate patch lying in the interior of V, that is,
disjoint from the boundary of V.

¢
ul .

Figure 3.10

u?

Then, when everything is expressed in terms of the parameterization ¢ :
U) - V()

/ dpy = / $°dp, = / d(¢°Ba)
V(e)=¢U (a) U(a) U(a)
Denote ¢*B, by y7 1.

O Bu=y" =D (=D yidu' AL Adu A ... Adu”

Then
dy?™' = Z(—l)"‘1 d(yidu' A ... Adui A ... AduP)
U(a) i U(a)
i—1 i i 1 o
=Y (=D du' ndu' A...Adul A ... A du?
; U(a) 81/!

Y
:Z/ ( i )du Ao Adu? (3.23)
; U(a) 3I/tl

We may assume that the coordinate patch V («) carries the positive orientation
of V. Then the last integral becomes an ordinary multiple integral and since the

support of d¢* B, lies entirely in U (o), we may replace U («) in the right-hand
integral by all of R”.

Vi
dy?~! / ( ) Lo du?
U) Y Z re \ U’
o0 9 ; )
-3 i [ (2w o

RP! ou'
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since y; vanishes outside U («). Thus the left-hand side of (3.22) vanishes. But
the right-hand side of (3.22) vanishes since 9V does not meet the support of 3,
in the case considered. This finishes Case (i).

Case (ii): V(«) is a “half patch” that meets the boundary.

u?

U(w)
u 1
% W(e)

Figure 3.11

We proceed exactly as in case (i), reaching (3.23). The only nonvanishing term
here is i = p since the other terms will involve [ (dy;/0u’)du’, which again
vanishes if i < p. Thus

0
ap. = | (—Zﬁ>du1“.dup
V(@) U \Ou?
1 o [T 97
= du' ...du? —= \du?
RP-! 0 oub

- /R,,,, [y,(00) — y,(O)]du’ . ..du""

= —/ ypu', o uP7 0)du' .. duP™! (3.24)
R

If we restrict ¢ : U(x) — V to the subset Y of U(w) defined by u? = 0 we
get a (p — 1)-dimensional coordinate patch W(«) for dV; ¢ (Y) = W; see the
preceding figure. Then the support of 8, meets dV in W, and so

Am=ﬁ@mm=ﬂwm=ﬂy

=/2:(—1)"_1)/,-(u1,...u"’)a’ul AoAddl AL A du?
L
But u” = 0on Y and so du” = 0 and the only surviving term is

/ ,30,z/(—1)P-1y,,(ul,...uf'-l,O)dulA...Aduf'—l

v Y

Now since 8/0u', ..., 8/8u? is positively oriented on V (by assumption), and
—0/0u? is the outward pointing normal to 9V we conclude from Section 3.3a
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that@/8u', ..., 8/0u”" carries the orientation (—1)” on 3 V (there is one minus
sign for —@/8u? and p — 1 minus signs to get @/0u? into the first position).
Consequently

Bu = (—1)”/(—1)”—‘yp(u‘, P 0)dut L duPT!
A% Y

Since this coincides with (3.24) we are finished.

Finally a note about the case p = 1. An oriented 1-manifold with boundary is
simply acurve C starting atsome P = x(a) € M" andendingat Q = x(b) € M".
The fundamental theorem of calculus says that

_ af i _ b i i
/Cdf_/c<axi)dx _/a (3f/ax")(dx' /dt)dt

_ don],
=[5  ar = 1o - e

If we define the oriented boundary of C to be 9C = Q — P and define f(3C) =
f(Q) — f(P), then formally Stokes’s theorem holds even when p = 1. Itis then
simply the fundamental theorem of calculus! O

Problems

3.3(1) Write out in full in coordinates what (3.21) says in R® for p =2 and 3.
3.3(2) Write out in full in coordinates what (3.21) says in R* for p=2, 3, and 4.

3.4. Integration of Pseudoforms

How do we measure “flux”?

We would like to integrate pseudo- p-forms 8” of M" over parameterized subsets F :
U —- M", U C RP. If we orient U, we would like F*8 to be a well-defined p-
form on U, but B is really a pair of forms £8 on M" and we would have to have a
prescription for picking out one of the 8’s to pull back. In general there is no way of
accomplishing this; we would need, somehow, a way of picking out an orientation of
M" near F(u) whenever we pick an orientation of U, and if M" is nonorientable this
might be impossible. If one can associate an orientation on M" near F(u) whenever
one assigns an orientation to U, the map is said to be oriented (de Rham). This is a
restriction on the map F and in general one cannot pull back a pseudoform! We are
not going to be able to integrate a pseudoform over an oriented submanifold, as we did
with a true form.
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3.4a. Integrating Pseudo-n-Forms on an n-Manifold

We claim that any pseudo-n-form " can be integrated over any compact n-dimensional
manifold M”, orientable or not! First note that if U is a coordinate patch on such an
M", then we can define fU " as follows. Pick an orientation of U; this picks out a
specific choice for " and then the integral of the form " over the oriented region U
is performed just as in the case of a true form. Note that if we had chosen the opposite
orientation of U, then the integral would be unchanged since although the region of
integration would have its orientation reversed we would also automatically have picked
out the negative —®" of the previous form. One can then define the integral of w" over
all of M" by use again of a partition of unity as in (3.18).

This should not be surprising. Certainly the Mobius band has an area and this can
be computed using its area pseudo-2-form.

3.4b. Submanifolds with Transverse Orientation

Let V? be a p-dimensional submanifold of a manifold M". At each point x of V? the
tangent space to M" is of the form M} = V/? @ N"~7, where the vectors in N are
transverse to V7. Let us say that V? is transverse orientable if each transversal N"~7
can be oriented continuously as a function of the point x in V7. If V7 is a framed
submanifold, that is, if one can find (n — p) continuous linearly independent vector
fields on V7 that are transverse to V7, then clearly V? is transverse orientable.

Since every manifold carries a Riemannian metric (see 3.2d) one can always replace
“transverse” by “normal” in some Riemannian metric.

Note that if V"~! is a hypersurface, then V is framed if and only if V is 2-sided
(see 2.8c). It is also clear that in the case of a hypersurface, transverse orientability is
equivalent to being framed by a normal vector field; in particular, the Mébius band in R
is not transverse orientable. For V? C M”" for p < n, however, transverse orientability
is a weaker condition than being framed.

Given a point x on V? we may (since V7 is an embedded submanifold, see 1.3d)
introduce coordinates x', ..., x" near this point x = 0 on M" (in a patch W) such that
VPNW isdefined by x* = f"’(xl, ..., xP),a = p+1,...,n. Thenthe n— p coordinate
vectors N, = 0/09x“ are defined in W and are transverse to V? at V” NW. A sufficiently
small piece of a submanifold can always be framed and is thus transverse orientable.
VPNW is a coordinate patch for V?;infactx!, ..., x” could be used as local coordinates
there. In particular, given an orientation for V”N W, we can always find p tangent vector
fields X, ..., X, that are positively oriented in this patch and these vector fields can
be extended to all of W by keeping their components constant as we move off V. We
may then define an orientation of W by insisting that N,,, ..., N,, X, ..., X, define
the positive orientation. Thus fo an orientation of VP N WonV? we may associate an
orientation of W on M", and thus if B” is a pseudo- p-form on W, we may pull it back
to a pseudo-p-form i*B” on V7 N W. To say that V7 is transverse orientable is to say
that we can patch these local constructions together in a coherent or continuous fashion.
(We shall certainly fail in the case of a Mobius band in R*.) In summary, if 87 is a
pseudoform in W, we may pull back this form via the inclusion map i : VZ — M" to
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yield a pseudo- p-form i*B” on VP N W and if V? is transverse orientable we may pull
back a pseudo-p-form B? of M" to i*B? on all of V7.

3.4c. Integration over a Submanifold with Transverse Orientation

Leti:V? — M" be a submanifold of the compact manifold M" (perhaps with bound-
ary) with transverse orientation, and let 87 be a pseudo- p-form on M". We have seen
in the previous section that we may pull this pseudo-p-form back to i*8” on V7. Let
{U (o)} be a finite coordinate cover of V7 with associated partition of unity { f,}. Then
we define (since i*8 is a p-form on V7)

P P
/V pr=3 /U LGB, (3.25)

In summary, we have the following contrast.

A true p-form on M" is always integrated over an oriented submanifold V7, whereas
a pseudo-p-form B? is always integrated over a submanifold V7 with transverse
orientation.

Consider, for example, the Mobius band & sitting in R? and one also in M6 xR. If
B2 is a true 2-form on R? or Mo xR, then we cannot define the integral of 82 over either
Mobius band since the Mbius band is not orientable. If 82 is a pseudo-2-form then we
cannot integrate 82 over the strip in R? since this strip is 1-sided, and we cannot pull
B2 back to the strip. On the other hand M& is 2-sided in Mo xR (see 2.8c), and thus
we can integrate 82 over M6 C Mo x R once we have chosen one of the two possible
normals 8/8¢ or —8/8¢, where ¢ is the coordinate in R.

In the case of a surface integral of a pseudo-2-form 82 in R® we have the following
simple prescription. Let F(U) be an unoriented parameterized surface in R* with a
prescribed unit normal N. We know that 82 is of the form 2 = ig vol® for a unique
(true) vector B. Then B « N is a true scalar and from (3.25) and (3.15)

/ ,82=/B-NdS=/BndS (3.26)
F(U),N U U

This is sometimes called the flux of B through the surface with given normal N. This
result is independent of any choice of orientation of R? or of orientation of the surface.
Only the normal was prescribed.

Let o' be a pseudo-1-form and F (1) an unoriented curve with framing in R?; thus
there are two mutually orthogonal unit normals N; and N, defined along the curve
F(I). (We shall see in Section 16.1d that such a framing exists for any curve in R?.) Let
A be the contravariant pseudovector associated to the pseudoform o!. If we pick out
arbitrarily an orientation, that is, a direction, for the curve F'(/), then a specific vector
A is chosen through the orientation of R? determined by the triple Ny, N,, T, where T
is the unit tangent vector to the directed curve. We then have for a line integral

/ ol = /A « Tds (3.27)
F(I),N;,N; 1

and this is again independent of the orientation chosen for the curve.
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3.4d. Stokes’s Theorem for Pseudoforms

Letw"~! be apseudo-(n— 1)-form on a compact unoriented manifold M" with boundary.
Then dw"™" is a pseudo-n-form on M" and we may compute the integral |, ydwasin
3.4a. Now OM has a natural transverse orientation in M" since there is clearly an
outward pointing transversal N; if M" has a Riemannian metric we may even choose
N to be a unit normal. In any case we may then form the integral [,,, w”~! (we have
omitted indicating the transversal since it will always be assumed to be the outward
one). The proof of Stokes’s theorem in the previous section carries over to yield again
Jyy do = [,, @P~", but we emphasize that no orientation has been assumed for M!

If you are used to proving Stokes’s theorem by breaking up M" into nonoverlap-
ping patches U, V, ..., you are familiar with the cancellations in [ @ over boundaries
common to two adjacent patches. This still happens with pseudoforms in spite of the
arbitrariness in picking orientations in the patches.

C .

Figure 3.12

In Figure 3.12 we have given opposite orientations to the patches U, V for the
evaluations of [, d " "and [, vd "~ Tt appears as if the boundary integrals along the
common part of their boundaries would not cancel, but this is not so since the w’s used
in U and V would be negatives of each other!

Suppose now that V7 is a compact submanifold with boundary of M", and suppose
that V is tranverse oriented in M: for simplicity we shall assume that V has a normal
framing Ny, ..., N,,_,. Let n be the unit vector that is tangent to V, normal to 9V, and
points out of V. Then we may frame 9V by using Ny, ..., N,_,, n. Thus a transverse
orientation of V leads in a natural way to a transverse orientation for its boundary 0V'!
With this understood we may state

Stokes’s Theorem (3.28): Let B7~! be a pseudo-(p — 1)-form on any manifold
M?". Let VP be a compact transverse oriented submanifold (with boundary) of

M". Then
/dﬁpfl — 131)*1
14 av

The proof is similar to that given for true forms. We emphasize that no orientation is
required for V? or M".



118 INTEGRATION OF DIFFERENTIAL FORMS

3.5. Maxwell’s Equations

Suppose that our space is really a 3-torus 7. How does the electric field behave when a constant
current is sent through a wire loop?

3.5a. Charge and Current in Classical Electromagnetism

We accept as a primitive notion the charge Q on a particle and we assume that there
is a 3-form o® defined in R® whose integral over any region U will yield the charge
contained in the region

o) = /Uo—3 (3.29)

We shall assume that Q (U) is a scalar independent of the orientation of R3. This means
that o3 is a pseudoform. Note that (3.29) does not require and is independent of the use
of any Riemannian metric in space. If we do introduce a Riemannian metric, say the
standard euclidean one, then we have

o’ = p(x) vol® (3.30)

where p is the charge density O-form (a scalar). Note that to define p only a volume
form is required, not a full metric. In the following, whenever vol® or some object
constructed from a Riemannian metric appears, it will be assumed that a choice of
volume form or metric has been made, but it is intriguing to note which objects (such
as 0%) do not require these extraneous structures.

Let W? be a 2-sided surface. If we prescribe one of the two sides, that is, if W
is transverse oriented by, say, a transverse vector field N, then we shall also assume
that the rate at which charge is crossing W (in the sense indicated by N) is given by
integrating a (necessarily pseudo-) 2-form f, the current 2-form

/W(j/z (3.31)

We assume that charge is conserved, thus if W? = 9U? is the boundary of a fixed
compact region U (with outward pointing transversal N), then the rate at which charge
is leaving U, [, (}2 must equal the rate of decrease of charge inside U,

d do?
__/03=_ i:/J;
dt Ju v ot U
This must be true for each region U. If (-yz is continuously differentiable we have
Jow 7 = Jydj?, and so
— + d}/ = (3.32)
We have introduced here two notational devices. First

We have used a bold d to emphasize that this exterior derivative is spatial, not using
differentiation with respect to time; this distinction will be important when considering
space—time later on.
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Second

We have defined the time derivative of an exterior form by simply differentiating
each component
9 day
— ,Ddx'] = — )dx’ 3.33
at[al(x)x] (3t>x (3.33)

Since j? is a pseudo-2-form we can associate a current vector J such that JZ = iy vol’.
We can then write (3.32), using (2.87), as the “equation of continuity”

ap .
m +div] =0 (3.34)
In many cases the current is a convective current, meaning that J is of the form
J=pv (3.35)
where v is the velocity of a charged fluid. In this case, in cartesian coordinates,
{j,? = p[v'dy Adz 4+ v?dz Adx 4+ vidx Ady]

and by inserting a factor ,/g we have the correct expression in any coordinates (see
(2.77)).

3.5b. The Electric and Magnetic Fields

We isolate the effects of the electromagnetic field by assuming that no other external
forces, such as gravity, are present. The electric and magnetic fields are defined opera-
tionally. In the following we shall use the euclidean metric and cartesian coordinates of
R? (where there is no blatant distinction between covariant and contravariant vectors)
and then we shall put the results in a form independent of the metric.

We suppose units chosen so that the velocity of light is unity, c = 1. The electro-
magnetic force on a point mass of charge ¢ moving with velocity v is given by the
(Heaviside—) Lorentz force law

F =g[E +v X B] (3.36)

Thus to determine the electric field E at a point x and instant ¢, we measure the force on
a unit charge at rest at the point x. To get B, we then measure immediately the forces on
unit charges at x that are moving with velocity vectors i, j, and k. This information will
determine B since E has already been determined. Thus the Lorentz force law serves
to define the fields B and E! It is interesting that the “correct” magnetic force gv x B
was first written down by Heaviside only in 1889! (For a history of electromagnetism
I recommend Whittaker’s book [W].)

The force F has a direction that is independent of orientation of R* and so must be
a true vector. Since ¢ is a scalar both E and v X B must be vectors. But the velocity
v is certainly a vector, and so B must be a pseudovector whose sense is orientation-
dependent (agreeing with our discussion in 2.8e)!

We shall now redefine the electric and magnetic fields to free them from cartesian
analysis and orientation. First note that force naturally enters in line integrals when
computing work, and in fact force can be measured by looking at the work expended. We
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then prefer to consider force as a 1-form f!. This is in agreement with our considering
force as the time derivative of momentum and the fact that momentum is to be considered
as covariant; see (2.32). From (3.35) we are then to consider the covariant versions of E
and v X B. We think then of the electric field as again a 1-form &'. To the pseudovector
B in euclidean R? we may associate the true 2-form %? defined by

@% = iB vol®

and then the magnetic force covector is —gi,%>; see (2.85). We consider the magnetic
2-form %* as being more basic than the pseudovector B, since % is independent of the
choice of volume form. We then have for the Lorentz force covector

=g —iy,%%) (3.37)

and this equation is independent of any metric or orientation.
Our view is then that the electric field intensity is given by a 1-form &' and the
magnetic field intensity is given by a 2-form %*. In any coordinates

&l = Eldxl + Egdxz + E3dx3
and (3.38)
B% = Bosdx* Adx® + Bydx® Adx' + Bpdx' A dx?

If we introduce a metric, then we may consider the associated vector field E and the
pseudovector B. The pseudovector B has components B' = By;/ /&, and so on. See
Problem 3.5(1) at this time.

3.5¢c. Maxwell’s Equations
First some terminology.
A closed manifold is a compact manifold without boundary.

The 2-sphere and torus are familiar examples in R®. We have the 2:1 continuous map
§? — RP? of the 2-sphere onto the projective plane, and so R P? is compact. R P? is
a closed manifold that is not a submanifold of R?.

We accept the following empirical laws governing the electromagnetic field in R>.
The name given to the first law is traditional and will be better understood after Gauss’s
law is given.

The Absence of Magnetic Charges. For each compact oriented region U? in R we

have
// B2 =0 (3.39)
U

Assume that the field %* has continuous first partial derivatives. Then [[f,, d%* =
[J5 #* = 0. Since this is true for arbitrarily small regions U we conclude that

ds’> =0 (3.39)

which is simply the familiar vector analysis statement div B = 0 (see (2.87)).
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Faraday’s law. Let V2 be a compact oriented surface with boundary 3 V2. Then

B2
f sl = —// o (3.40)
A% |4

If 6! has continuous first partial derivatives we may conclude that [[;, d&' +9%*/9t = 0
for all such surfaces V2. By applying this to small rectangles parallel to the xy, xz, and
vz planes we may conclude

%B?
ds' = — 3.40'
¢ ” ( )
which is the vector statement curl E = —9B/0dt.

Warning: Equation (3.40) holds for any surface, moving or not. However, the right-
hand side can be written —d /dt f fv @2, that is, as a time rate of change of flux of R2,
only if the surface is fixed in space. We shall see (Problem 4.3(4)) that in the case of a
moving surface we may write §,,,[&' — iy®*] = —d/dt [[,, $*.(3.40") of course holds
under all circumstances.

For the remaining equations we must assume a Riemannian metric in R*. (We shall
see later on that our 3-space does inherit a Riemannian metric, the one we use in daily
life, from the space—time structure of general relativity.)

We may then introduce two pseudoforms

*6 1= ig vol’ = (Jg(E'dx* Adx’ + E*dx’ Adx' + E’dx' A dx?) (3.41)
and
*® := (,B) = Bidx' + Bydx* + Bsdx®
Note that *¢ is a 2-form and *$ is the 1-form version of B.
Gauss’s law. If U? is any compact region
// *6 = 47 /// o} =470Q(U) (3.42)
U U
measures the charge contained in U'.

We again conclude, when & is continuously differentiable, that

dxs = 4no° (3.42)
ordiv E = 4mp.
Ampere-Maxwell law. If M? is a compact 2-sided surface with prescribed normal,
then
0*&
*PB = AP+ — (3.43)
ng / /M J ot
Thus

0%6
ot

d*% = 47 f + (3.43)
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(assuming % continuously differentiable) with vector expression curl B = 4w J+-0E/dz.

Note that the integral versions of Maxwell’s equations are more general than the
partial differential equation versions since spatial derivatives do not appear in the
equations. In particular, their continuity is of no concern!

3.5d. Forms and Pseudoforms

There is a general rule of thumb concerning forms versus pseudoforms; a form measures
an intensity whereas a pseudoform measures a quantity. & and 8 measure the intensities
of the electric and magnetic fields (they are “field strengths”). o3 measures the quantity
of charge, as does *& through (3.42). Jz measures essentially the quantity of charge
passing through a (transverse oriented) surface in unit time. In Ampere’s law, d*3 =
47rd'/2, d+%® measures again this flux of charge.

Our conclusions, however, about intensities and quantities must be reversed when
dealing with a pseudo-quantity, i.e., a quantity whose sign reverses when the orientation
of space is reversed. If this quantity is represented by integrating a 3-form over an
oriented region, then the form must, by our definition of integration, be a true form. For
example, in section 16.4e we shall discuss the hypothetical Dirac magnetic monopole.
When such magnetic charge distributions are allowed, the Maxwell equation d8 = 0
should be replaced by d8 = ¢ vol3, where q is the magnetic charge density, d%
is a true 3-form, g is a pseudo-scalar, and the total magnetic charge in a region, a
pseudo-quantity, is given by the integral of this true 3-form over the oriented region.
Furthermore, the classical “definition” of the magnetic field strength B(x), before the
Heaviside-Lorentz force law was known, was the force acting on a “magnetic pole” of
unit charge at the point x. Thus the work done against the magnetic field in transporting
a magnetic pole of charge ¢ along a curve is the true scalar given by the line integral
J g#*%. In terms of these hypothetical poles, the magnetic field strength is measured
by the pseudo-form *% or contravariantly by the pseudo-vector B. Thus magnetic field
strength, when measured by a (true) electric charge, is given by the true 2-form %, but
when measured by a magnetic pseudo-charge it is given by the pseudo-1-form *<.

Problems

3.5(1) If the magnetic field is a 2-form, not a vector, how do you explain the curves
generated by iron filings near a bar magnet (i.e., the B lines) when we have not
informed the magnet of which metric we are using?

3.5(2) Assume that Maxwell’s equations (3.39), (3.40), (3.42'), and (3.43) for ® and
& hold in every 3-manifold M3, not just R2. This will be discussed in more detail
in Chapter 14.

The 3-dimensional torus T2 is obtained from the solid unit cube in R® by iden-
tifying opposite faces pairwise; for example, top and bottom faces are identified
by identifying (x, y, 0) with (x, y, 1), and so on. Note then that each face has its
opposite edges also identified; thus on the bottom face, (x, 0, 0) is identified with
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(x,1,0). In this way we see that each face of the cube becomes a 2-torus. We
have indicated the top (= bottom) 72 = Top.

1
1
1 p T2
1
1
1
1
I I
' -
1
1
1
1
T
7
rd
7
e P
bd
7
Figure 3.13

Consider a current flux of magnitude j through the top torus for all times
t>0; ffTopJ/Z = j. We can realize this by attaching a battery (delivering a current
j) attime t = 0 to a closed wire loop that pierces the top face. Show that for t > 0

ff,~
Top

and thus, unlike the case of a wire loop carrying a constant current in R3, the
electric field must tend to infinity, with time, at some points of the torus!

(Warning: The top torus T2 is not the boundary of any 3-dimensional region!)

On the other hand, it can be shown, though it is more difficult, that if one has a
loop that yields no net flux of current through the top, side, or back toroidal faces,
for example, if the loop lies in the interior of the cube or if it can be “contracted to
a point” in the torus, then a constant current will lead to an electric field that must
remain bounded for all time. Thus the behavior of the electric field is dependent
on the “topological position” of the loop. (It can be shown that the magnetic field
remains bounded in all cases.) In a sense, given a closed 2-sided mathematical
surface such as Top, and a closed wire loop that pierces it exactly once, the
surface will increasingly resist a current through the wire by forcing an electric
field to be generated, via Ampere-Maxwell, that will oppose the e.m.f. in the wire.
On the other hand, an ordinary closed surface, one that bounds a 3-dimensional
region U, can never be pierced exactly once by a wire loop; if the loop pierces
the surface and enters the region U then it must eventually leave the region,
resulting in a zero net flow of current through the surface. For this and other
strange behavior in spaces other than R3, see [D, F]. We shall have more to say
about topology in Chapters 13 and 14.

=4gxjt







CHAPTER 4

The Lie Derivative

4.1. The Lie Derivative of a Vector Field

Walk one mile east, then north, then west, then south. Have you really returned?

4.1a. The Lie Bracket

Let X and Y be a pair of vector fields on a manifold M" and let ¢(¢) = ¢, be the
local flow generated by the field X (see 1.4a). Then ¢, x is the point ¢ seconds along
the integral curve of X, the “orbit” of x, that starts at time O at the point x. We shall
compare the vector Yy, at that point with the result of pushing Y, to the point ¢,x by
means of the differential ¢,,. The Lie derivative of Y with respect to X is defined to

Y (1)x)

@(1)+Y(x) X

Y(x) X

P D«Y(@(1)x) X > X
P(0)x

Figure 4.1

be the vector field £xY whose value at x is

[Y@x - ¢I*Yx]
t

[ex Y], := lim 4.1)

125



126 THE LIE DERIVATIVE

[¢71*Y¢,x - Yx]

= lim
lim Dix .

— lim [¢—I*Y¢,x - Yx]

lim ” 4.2)

since ¢y, is the identity. We must first show that the limit exists. In the process we shall
discover an important alternative interpretation of the Lie derivative. First we shall
need a very useful version of the mean value theorem in our context. In a sense this is
a replacement for a Taylor expansion along the orbit of x.

Hadamard’s Lemma (4.3): Let f be a continuously differentiable function de-
fined in a neighborhood U of x. Then for sufficiently small t, there is a function
g:, continuously differentiable in t and points near x, such that

go(x) = X, (f)

and

f(px) = fx) +18:(x)

that is,

fod, = f+1g

If we accept this for the moment we may proceed with the existence of the limit. At x
[Y¢,x - ¢t*Yx]

[exY1(f) = lim —=#*— =22 ()
which from (2.60) is
oY) = Ya(f 0 9)]
- t—0 t
i o () = Ya(f +13)
TS0 t
ELCEEIES 28] BT

= X (Y(f)} = Y.(limg,)

=X AY()} — Y AX(N)}

Thus not only have we shown that the limit exists, but also we have the alternative
expression

Y =[X,Y] 4.4)

where the Lie bracket [X, Y] = —[Y, X] is the vector field whose differential operator
is the commutator of the operators for X and Y

[X, Yo f =X {Y ()} = YAX(N} 4.5)
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In particular, for any two coordinates x,y we have
] o
Lo0x=— =0
Oy

In Problem 4.1(1) you are asked to show that by expressing the right-hand side of (4.5)
in local coordinates one gets

P (YN aX
X,Y] _Z{Xj(axf) Y’(axj>} (4.6)

J
We remark that (4.2) can be written

d
EXY): = {dl(¢t)*Y¢tx} (47)

t=0

Note that (¢_,). Yy, is a vector that is always based at the point x.

Proor oF HapaMARD’S LEMMA: Define F (¢, x) = (f o ¢,)(x). Fix ¢t and
x and put 5(s) = F(st, x). Then

1
(f o d)(x) = f(x) =:5(1) —5(0) =/0 §'(s)ds

= / —F(st x)ds = /01 tFi(st, x)ds
where F| denotes derivative with respect to the first variable. Thus if we define
g (x) = /01 Fi(st, x)ds
then

(fod)(x) = f(x) =18:/(x)

Furthermore
1
go(x) = / Fi(0, x)ds = F1(0, x)
0

[F(t7 .X) - F(O» x)]

= lim
t—0 t
i 12 @)(a:) “fO_y 4 o

4.1b. Jacobi’s Variational Equation

If, in (4.6), we use the fact that X/ = dx/ /dt along the orbit, we can write

o dyi
[exY] = - Z ( P > Y/ (4.8)

We then notice that this makes sense even when Y is a vector field that is defined only
along the orbit ¢ (¢)x of the vector field X! (4.1) and (4.7) also make sense in this case.
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The same derivation that yielded (4.5) will yield (4.8) and we shall accept (4.8) in this
extended sense.

This equation thus even applies in the case when the vector field X vanishes at the
point x. In this case the vector Y,,, is a time-dependent vector based forever at the
point x; note then that £xY need not vanish at x. For example, consider the vector field
X = —y8/0x + x8/0y in R?, vanishing at the origin. The flow ¢, generated by X
satisfies dx/dt = —y and dy/dt = x

x(t)| _|cost —sint | [x]| ® X

y()| ~ |sint cost||y| |y
Since ¢ is linear, ¢, = ¢,. Let Y = 3/0x sit at the origin; then £xY is the vector at
the origin given by d/dt{¢_,,0/0x};—o. In components

O 1]t} _[O
—-10] 0] |-1
and so £x0/9x = —0/0y.

In the case when Y is defined only along an orbit of X, it makes no sense to consider
£yX, since Y has no integral curves. We shall reserve the notation [X, Y] = —[Y, X]
for the case in which both X and Y are vector fields defined in an open subset in M".

We shall say that a vector field Y defined along an orbit of X is invariant (under the
flow generated by X) provided

Yq),x - (pt*Yx
From (4.1) we see that Y then satisfies the Jacobi variational equations
. dY! X' ,
Y] = — — )Y/ =0 4.9
[ex YT = — ij (ax] ) (4.9)

The reason for this classical terminology is the following. Classically one worked only
in R". Consider a solution curve x = x(¢) to the differential equation dx/dt = X,
that starts at the initial point x(0). To discuss the stability of solutions, one would
then, in classical language, consider a second integral curve y = y(¢) that starts at
an “infinitesimally nearby” y(0) = x(0) + §x(0). One would then write this solution
in the form y(#) = x(¢) 4+ éx(¢). The solution curve y is called a variation of the
solution x, and §x is called an infinitesimal variation vector. Now dx /dt = X(x) and
d(x + éx)/dt = X(x + éx) are both satisfied.

() X

<>

Sx X

X —<>

x(1)
X
ROT &Y

x(0)

Figure 4.2
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Subtracting, §(dx/dt) := d(x + éx)/dt — dx/dt = d(8x)/dt becomes

d(8x") ; X' 4 .
Y o x, —X = ) s 4 A
dt x+8x x z]: (axf )x(t) X+

where A’ contains terms of higher order in §x. This is a nonlinear system of ordinary
differential equations for the infinitesimal variation vector §x; it is assumed that the
base solution x = x(¢) is known. If we linearize this system, that is, throw away the
high-order terms A, we obtain the “infinitesimal” variational equations. Finally if we
denote éx by Y we return to the equations (4.9). In our development of (4.9) the vector
field Y replaces the obscure notion of infinitesimally near points. Instead of seeing how
two nearby points are pushed along by the flow, we observe how a vector Y at x(0) is
pushed by the differential ¢,,. This differential, being the linear approximation to ¢y,
leads to a linear equation for Y along the orbit x (¢).

If x = x(¢) is a given solution to the system dx/dt = X,, and if Y, is a vector at
the point x (0), then there is a unique solution to the variational equations

dy’ X! .
= Z Y/
ox/
with (4.10)
Y'(0) =Y,

and, since this system is linear, this solution exists for all # for which the integral curve
x(t) is defined. Y is sometimes called a Jacobi field along the solution x.

We can also reinterpret (4.1) as follows. Let %, := ¢..Y, be the Jacobi field along
the orbit with initial value Y,. Then

d
&Y = %[Y@x — Yp,xli=0 (4.11)

Warning: Neither side of (4.10) has intrinsic meaning, independent of coordinates;
for instance, we know that dX'/dx/ do not form the components of a tensor. Never-
theless, (4.10) has intrinsic meaning since it expresses £xY = 0, and £xY is a vector
field (defined without the use of coordinates).

4.1c. The Flow Generated by [X, Y]
Let X and Y be vector fields on M". Let ¢(¢) and v (¢) be the flows generated by X

and Y. [X, Y] is also a vector field; what is its flow? We claim that the flow generated
by [X, Y] is in the following sense the commutator of the two flows. Let x € M".

Theorem (4.12): Let o be the curve

o) =vY_,0¢p_, oY, 0o¢x
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Then for any smooth function f

flo (VD] = flo(0)]

[X, Y], f = lim
t—0

t

ARG Ve

/ % =900

[X,Y](x) is tangent to this curve

Figure 4.3

PROOF (Richard Faber): As in the preceding figure, let0, 1, 2, 3, 4 be the vertices
of the broken integral curves of X and Y. Let f be a smooth function. Form

fle@®)—fO)=[f@—-fOI+1f3) — f(2)]
+[f2) = I+ LD = f0)]
By Taylor’s theorem, letting X, denote X(0), and so on,
)

F() = £0) = Xo(f) + (E)Xo{x(f)} +00) (i)

where O(3)(t)/t> — 0ast — 0. Also

2

FO — F) = 1Y1(F) + <t2)Y1{Y(f)} +003)

Note Yi{Y(/)} = Yo{Y(/)} + tXo[YAY ()} + O(2), where Y {Y(f)} is the
function t — Y,0{Y(f)}. Thus

f@) = fA) =Y. (f) + <§>Y0{Y(f)} +003) (i)
Likewise

fB) = f@2) =-1X(f) + (;)XO{X(f)} +00) (iii)
and

2

f@) = f3) =—-1Ys(f) + (%)Yo{Y(f)} +00) (iv)
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Adding (i) through (iv) we get

f@) = £0) = 1[Xo(f) + Yi(f) = Xo(f) — Y3(S)]
+ Xl X(N} + Yo YN+ 03)

But
Xo(f) = Xo(f) = Xa(f) = X (f) + X (f) — Xo(f)
= 1Y {X()} + 02) + Xo{X(f)} + 0(2)
= tYo{X(f)} + X {X()} + 0(2) )
Also
Y3(f) = Yi(f) = Y3(f) = Yo () + Yo () = Y ()
= —1Xo{Y(H} + 02) + 1Y {Y ()} + 0O(2)
= —tXo{Y ()} + 1Yo{Y(/)} + O2) (from (v))
Thus
F@ = f0) = 2[XofY()) = Yo{X(NH + 03)
and then

flo(@®} — flo(0)}

12

= Xo{Y(f)} = YofX(N)}

as t — 0. This concludes the proof. O

We may write, in terms of a right-handed derivative,

d
&Y =[X,Y]l = —o /1)l (4.13)
dt,

Corollary (4.14): Suppose that the vector fields X and Y on M" are tangent to a
submanifold V? of M" at all points of V. Then since the orbits of X and Y that
start at x € VP will remain on V?, we conclude that the curve t — o (t), starting
at x, also lies on V¥ and therefore the vector [X, Y] is also tangent to V7.

Warning: Many books use a sign convention opposite to ours for the bracket [X, Y].

Problems

4.1(1) Prove (4.6).

4.1(2) Prove Corollary (4.14) by introducing coordinates for M such that VP is locally
defined by xPt' =0, ..., x" =0, and then using (4.6).
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4.1(3) Consider the unit 2-sphere with the usual coordinates and metric ds? = d§? +
sin? 6d¢?. The two coordinate vector fields 8, and 8, have, of course, a vanishing
Lie bracket. Give a graphical verification of this by examining the “closure” of the
“rectangle” of orbits used in the Theorem (4.12). Now consider the unit vector
fields ey and e, associated to the coordinate vectors. Compute [ey, e4] and
illustrate this misclosure graphically. Verify Theorem (4.12) in this case.

4.2. The Lie Derivative of a Form

If a flow deforms some attribute, say volume, how does one measure the deformation?

4.2a. Lie Derivatives of Forms

If X is a vector field with local flow ¢ (¢) and if f is a function, we shall define the
Lie derivative of f with respect to X by & f = X(f) = >, X'df/0x". Thus at x,
from 2.7a,

d
&f = Ef[(l)zx]t:O = d/df[(ﬁ,*f]z:o (4.15)

This simply describes how f changes along the orbits of X.
If «? is a p-form we define, putting o, = a(x)

o, p . d * P
xo’ = E[@Ol li=o (4.16)
= Jim 1 %0x — %
t—0 t
By this we mean the following. Let Yy,..., Y, be vectors at x. Then

d * d *

[E d)la"} XY1,...,Y,) = E[qﬁ,a”(Yl,. e Yl “4.17)
d p

= E{a [(PZ*YI, cees (pf*Yp]}

In particular, if we extend the vectors Y; to be invariant fields along the orbit through
X, ¢ Y = Yg,., then we can write

d
exal (Y, ..., Y,) = E[Olg,x(Yly oY)l (4.18)
that is
Lxa(Yy, ..., Y,) measures the derivative (as one moves along the orbit of X) of the

value of & evaluated on a p-tuple of vector fields Y that are invariant under the flow
generated by X.

The reader should note that although one cannot pull back a pseudoform by means
of a general map, one can do so if the map is a diffeomorphism, or a 1-parameter
group of such, that is, a flow. Thus it makes sense to talk about the Lie derivative of a
pseudoform. For example, if

a" = vol" = Jgdx' Adx* A ... Adx"
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is the volume form for a Riemannian M" and if X is a vector field on M", then £x vol”
is the n-form that reads off the rate of change of volume of a parallelopiped spanned
by n vectors that are pushed forward by the flow ¢,. Schematically

X

Y3

Y,

Y
Y, !

Figure 4.4

In other words, £x vol" measures how volumes are changing under the flow ¢,
generated by X. One usually thinks of vol” as a given form; then £x vol” is “really”

describing a property of the vector field X, namely, how the flow generated by X is
distorting volumes!

We need convenient methods for computing Lie derivatives. First note that for a
(p + g)-tuple Y, and their “push-forwards” ¢,.Y,

d
x(a? A BH(Y ;) = d_t[ap A B P Y1) =0
d
= d_ Z Z (SIJK(X(¢I*YJ):B(¢I*YK)1=0
! K J

d
=3 o T la@ Y )B(Y )
J

K

d
SO I BLIATTV HEAICH FI

K J

and so & is a “derivation” (to be discussed shortly),
ex(@? A B9 = (&xa?) A B + P A (£xB) (4.19)
Theorem (4.20): £x commutes with exterior differentiation d

xod=do ¥

PROOF: We first verify this for O-forms, that is, functions f. In our computations
we shall omit indications of location, such as, x or ¢, x. Also, all derivatives with
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respect to time will be evaluated at + = 0. Let Y be a fixed vector at x € M".
From (2.60)

d d
Ox (df)(Y) = E{[dh*df](Y)} = E{df[%Y]}
d *
= E{YW’ Al
= Y{ %[ fo@ (t)]} (since Y is time-independent)

= Y{X()} = Y{& ()} = [dex(HIY)
and we have verified (4.20) for O-forms. When applied to p-forms
xda? = oxd Za,dxl = & Zdal AdxVA LA dx

> (exdap) Adx" AL Adx"
+ Zda, A (Exdx")Y A AdXT -
= d(exap) Adx" AL Adx"

+ Zda, AdE@xx")Y A AdxTT -
=d > (¢xap)dx" A...Adx"

+dZa,d(£’Xx"‘) A Adx 4
=d > (¢xa)dx" A...Adx"

+d ) a(exdx") AL Adx + .
=d¥% Za,dx' =d¢af O

In particular, we have
exdx’ = dexx' = d{X(x")} =dX’ 4.21)

Thus if 7 is any one of the coordinate functions x/ we have £5/5,dx’ = 0. Hence if o”
is any p-form and if ¢ is a coordinate function
Cojaat’ = Lo/pra;dx" = <%)dx’ _ da? (4.22)
- ot at
simply differentiates the coefficients with respect to the coordinate!
See Problem 4.2(1) at this time.

4.2b. Formulas Involving the Lie Derivative

Let A” M" be the space of p-forms on M". This is an infinite dimensional vector space
since the components are functions. A linear map A: A” M"* — AP M" is said to be
a derivation if r is even and

A(@? A BY) = (Aa?) A BT+ o A (ABT)  (e.g., £x)
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and is said to be an antiderivation if r is odd and
Ala? A BT) = (AaP) A BT+ (—1)Pa? A (ABT) (e.g., d and ix)

Suppose we know the value of a derivation or antiderivation on any function and on d
of any function. Since the general p-form is of the forma? = Y a;(x)dx"' A. .. Adx'?,
we then know the value of A on any form:

If A and B are both derivations or antiderivations, then to prove Aa” = Ba? for all
forms we need only prove this for « a function and for « = d (a function).

See Problem 4.2(2).
The following is perhaps the most often used formula involving Lie derivatives.

H. Cartan’s Formula (4.23): When acting on exterior forms

x =ixod+doix

PROOF: Both sides are derivations, by Problem 4.2(2). We need only verify
(4.23) on functions and differentials of functions.

On functions, ix f = 0 and ixdf = X(f) = £(f); we have verified the
function case. On differentials of functions

lixd +dixldf = dix(df) = dlix(df)] = d[X(f)]

= dex(f) = exdf O

Theorem (4.24): When applied to forms
éfX O iY - iY o) $X = i[X,Y]
The reader is asked to supply the proof in Problem 4.2(3).

The following is an intrinsic (i.e., coordinate-free) expression for the exterior deriva-
tive of a 1-form. It is extremely useful.

Theorem (4.25): Let o' be a I-form and let X, and Y, be vectors at x. Extend
these vectors in any smooth way to be fields near x. Then

da' (X, Yo) = Xfe' (V) = Yofo' (X)) — o' (X, YD)

PROOF: We shall use (4.23) and (4.24)
da(X,Y) = {ixda}(Y) = {¢xa — dixa}(Y) = iyexa — Y{a(X)}
= iya — ixyje — Y{a(X)}
= exa(Y) — a([X, Y]) — Y{a(X)}

= X{a(Y)} — (X, Y]) = Y{a(X)} D
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See Problem 4.2(4) at this time.

The following proposition says that if Y’s are vector fields, one can differentiate
the function a”(Yy,...,Y,) = a,(x)Yil' ...Yl,ﬁ’ by using a “Leibniz” rule for Lie
derivative.

Theorem (4.26): For a form a? and vector fields X, Y, ..., Y, we have
X{a” (Y1, ..., Yy} = {&a”} (Y1, ..., Y))

+Y o (Yi o (&Y, . Yy)

PROOF: For 1-forms we have
{&xa}(Y) = iyexa = &iya — a([X, Y])
= X{a(Y)} — a(Y)
as desired. By induction, assuming true for (p — 1)-forms,
{exa}(Yi,...,Y)) =iy {&a} (Y, ..., Y))
= {&iv,0 —ixy o} (Y2, ..., Y))

Butiy,aisa(p—1)-formand so we may apply (4.26) to compute {&xiy, o} (Y2, . ..,
Y, ). This will complete the proof. O

Finally, we have a formula that generalizes (4.25) to p-forms. For vector fields
Yo,.... Y,
da’ (Yo, ..., Y,) = Z(—l)’Y,{a”(Yo, T AR Y,)}

4.27)

+) D (YL YL Y YY)

r<s

This can again be proved by induction. Note that from the left-hand side we see that
this result depends only on the values of the Y’s at the given point!

4.2c. Vector Analysis Again

Let vol” be a volume form for an M", that is, a pseudo-n-form that never vanishes on
any basis of tangent vectors. If X is a vector field on M", the divergence of X is the
scalar div X defined by the formula

£x vol" = (div X) vol” (4.28)
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IfY,,..., Y, are fields invariant under the flow generated by X then from (4.17)

d
S}X(VOI)”(Y] PR Yn) = E VOI"(YI P Yn)r:()

and so div X measures the logarithmic rate of change of volumes along the flow. In
local coordinates vol” = pdx! A ... Adx", p(x) > 0, and by Cartan’s formula

ex(vol)" =dfix vol'} =d Z(—l)’_l/odx1 A.ixdx" AL oA dX"
=d Y (~1)'(pX")dx' A...dxT AL Adx"

. 0 ) —
= Z(—l)'_l{a—(pX’)dxs} Adx" A LodxT AL A dX"
xS

d
:Z{a (pXr)}dxl/\.../\dx’/\.../\dx”
xr

and thus

1 d
divX = — X" 4.29
iv p;ax,<p ) (4.29)

generalizing (2.88) of R>.
Note also that to the vector X and the volume form vol" we may associate the
(n — 1) form

B! = ix vol” (4.30)
and then Cartan’s formula gives
dp"" = (divX) vol” 4.31)

generalizing (2.87) of R®.
We now use the Lie derivative formalism to complete our discussion of classical
vector analysis in R3. Consider, for example, the vector identity for curl(A X B).

curl(AXB) & diga® = £pa® — igda’®

= ¢ga’® — igdivA vol® = £ga? — div A ig vol®

Now use (4.24).
g’ = Lyia vol® = i\ g vol? +i[B.A| vol?
= divB is vol’ +ijp a; voI’
& (divB)A 4 [B, A]
Thus

curl(AxB) = (divB)A + [B, A] — (divA)B (4.32)
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In vector analysis books the term £5A = [B, A] is written differently. We can write,
in cartesian coordinates,

(B.A] = B <8A') Y (83 ) — (DgA)' — (DB

ox/ dox/

where (DgA)': =B « grad A'. Thus they write the term [B,A] as B « grad A —
A . gradB as if it made sense to talk about the gradient of a vector! This makes
sense only in cartesian coordinates.

Problems

4.2(1) Show thatif o' =, a;dx’ is a 1-form then

[ da; ax/ ;
o, 1 _ ] / . /
e _Z {X <8xl)+aj(8x’)}dx

1

which should be compared with (4.6).
4.2(2) Show that if 6 is a derivation and A an antiderivation then

foA— Aoh
is an antiderivation. If A and B are antiderivations then
AoB+Bo A

is a derivation.
4.2(3) Prove (4.24).
4.2(4) Prove (4.25) by expressing both sides in coordinates and using (2.58) and (2.35).

4.3. Differentiation of Integrals

How does one compute the rate of change of an integral when the domain of integration is also
changing?

4.3a. The Autonomous (Time-Independent) Case

Let «” be a p-form and V? an oriented compact submanifold (perhaps with boundary
dV) of amanifold M". We consider a “variation” of V'? arising as follows. We suppose
that there is a flow ¢, : M" — M", that is, a 1-parameter “group” of diffeomorphisms
¢;, defined in a neighborhood of V? for small times ¢, and we define the submanifold
VP(t) = ¢, VPE.
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Figure 4.5

Let X, = d¢,(x)/dt];—o be the resulting velocity field. We are interested in the time

variation of the integral
I(t):/ a”:/qﬁ,*oz
40) v

[L(+h)—1@)]
h

{fv ot — fv ¢t*0‘}

(see (3.17)). Differentiating

I'(r) = %13})

h
L ¢ {ppo —a}
= lim {/v B ]

L {pja —a)
_%I_I)%L/V(t) h :|

=/ fim i
Vv

0 h—0 h
Thus
d
— af = / exar? (4.33)
dr Jva V()
a remarkably simple and powerful formula! From Cartan’s formula

d
—/ ol =/ ixda? + dixa?
dt Jvu V)

:/ lxdap—‘—% ixOlp
V() av(r)

When « is the volume form and V" is a compact region in M" we have

d
/ vol" = dix vol" = / divX vol” 4.35)
V() V() V()

dt
= / iX vol”
A%

(4.34)
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a form of the divergence theorem. Let the volume form come from a Riemannian
metric. Then, as in the derivation of (3.15) in the 2-dimensional case, letting N be the
outward pointing normal to the boundary of V" and X, the projection of X into the
tangent space to dV

/ iX vol" = / i(X,N)N+X, vol" = / <X, N)lN vol”
v A% A%

On 9V, the form iy vol”, when applied to n — 1 tangent vectors to dV, reads off the
(n — 1)-dimensional “volume” of the parallelopiped spanned, that is,

voli,! := iy vol” (4.36)

is the area form for the boundary. We then have the usual form of the divergence theorem
/ div X vol" = / (X, N) vol?,! 4.37)
Vv A%

We emphasize that the divergence theorem, being a theorem about pseudo-n-forms,
holds whether M" is orientable or not.

4.3b. Time-Dependent Fields

Consider a nonautonomous flow of water in R>, that is, a flow where the velocity field
v(t,X) = dx/dt depends on time. We define a map ¢, : R> — R as follows. If we
observe a molecule at x when ¢ = 0, we let ¢,x be the position of this same molecule
t seconds after 0. Consider ¢;[¢,x]. If we put y = ¢,x then ¢,y is the point where the
flow would take y s seconds after time 0. This is usually not the same point as ¢,;,X
since the flow is time-dependent. A time-dependent flow of water is not a flow in the
sense of 1.4a since it does not satisfy the 1-parameter group property. A time-dependent
vector field on a manifold M" does not generate a flow!

Consider for example the contractions of R defined by x - x(¢) = ¢,x := (1 —1)x,
each of which is a diffeomorphism if # # 1. This does not define a flow, because it does
not have the group property. The velocity vector at x () and time ¢ are determined from

il QN 0, 438)
dt 1-1
Thus v(t, y) = —y/(1 —t) is a time-dependent velocity field.

Suppose then that v = v(¢, x) is a time-dependent vector field on M". We apply a
simple classical trick; any tensor field A(t,x) on M" that is time-dependent should be
considered as a tensor field on the product manifold R x M", where t is the coordinate
for R. R x M" has local coordinates (+ = x°, x',..., x"). A time-dependent vector
field on M" is now an ordinary vector field v = v(¢, x) on R x M" since ¢ is now a

coordinate on R x M. By solving the system of ordinary differential equations

i

- = v'(t, x), X(s=0=x), i=1,...,n s
d_ . s=0) =i |
— =1, S = =

ds 0

we getaflow ¢, : Rx M" — Rx M".If v(t, x) is the velocity field of a time-dependent
flow of fluid in M", then the integral curves s + ¢, (%, xo) on R x M" project down
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to yield the time-dependent “flow” on M"; ¢,(#y, xo) is the position of the molecule at
time s + £, that had been located at the point x, at time ¢,.
In our example (4.38) we need to solve the s-independent system

d_x =—x/(1—1) x(s =0) =xg (4.38")
ds
dt =1 ts=0)=1
ds
The solution is
x(s) = {%}xo 4.38)
t(s) =ty+s

and one verifies that ¢ (s) : R> — R? given by
@5 (1, x) = (1(s), x(5))

is indeed a flow. To see the path in R of a point that starts at x, at time 0, we merely
put 7o = 0, getting x(s) = (1 — 5)xo, and forget the ¢ equation.

We now return to the general discussion. Note that the curves s +— ¢;(ty, xo) of
(4.39) are integral curves of the s-independent vector field

o
X = —
V+8t

To discuss a time-dependent vector field v on M" we introduce the vector field
X =v+ 9/t on R x M" and look at the flow on R x M" generated by this field.
The path in M" traced out by a point that starts at 7 = 0 at x( consists of the projection
into M" of the solution curve on R x M" starting at (0, xo).

We now recall an important space—time notation introduced in Section 3.5a. First
note that in any manifold the operation of exterior differentiation
4

; ab A ,
dbidx') = | —= |dx’ ANdx
- ax.l

can be written symbolically as d = dx’ A 3/dx’; the operator 3/dx/ acts only on the

coefficients. In a space—time R x M" with local coordinates (t = x°, ..., x") we have,
for any form on R x M" (which may contain terms involving dr)
ab A ab
db;dx" =dt A <—l>dx1 +dx’ A (—%)dx’
- at ax/
which we write symbolically as
a
d:dt/\§+d (4.40)
where d is the spatial exterior derivative. We shall also write
a
X = — 441
vt (4.41)

using a boldfaced v to remind us that v is a spatial vector.
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4.3c. Differentiating Integrals

Let ¢, : M" — M" be a l-parameter family of diffeomorphisms of M; we do not
assume that they form a flow (i.e., they might not have the group property), but we do
assume that ¢y is the identity and that (¢, X) — ¢,X is smooth as a function of (¢, X) on
R x M. (In our previous example, ¢;x = (1 — 1)x.)

Let of (x) = a”(t,x) be a 1-parameter family of forms on M and let V? be a p-
dimensional submanifold of M. We wish to consider the ¢ derivative of fv(l) o where
V) =¢V.

d¢,x/dt is some t-dependent vector function w(z, x) = w(t, ¢, ¢,x) =: v(t, $;X)
on M. This yields a time-dependent velocity field dy/dt = v(¢, y) on M. We consider
this as a field on R x M and we let a(¢, x) be considered as a p-form on R x M (with
no dt term).

Solving dx/ds = v(t,x),dt/ds = 1 on R x M (i.e., finding the integral curves of
X = v+40/0t) yields aflow @, on R x M and the curves ¢, (x) on M are simply the pro-
jections of the curves &, (0, x) on R x M. The 1-parameter family of submanifolds V7 (s)
of M is the projection of the 1-parameter family @, (0, V?) of submanifolds of R x M.

Theorem (4.42): Let ¢, : M" — M" be a I-parameter family of diffeomor-
phisms of M; we do not assume that they form a flow. Let af (X) = a”(t, X) be

a 1-parameter family of forms on M, let VP be a p-dimensional submanifold of
M, and put V(t) := ¢, V. Then

d a . .

— oz”:/ — + i, da + diyx

dt Jva vy 0t
where v(t, ¢, X) = d¢,x/dt is the t-dependent velocity field on M.

PROOF: We again form R x M". o? is now a p-formon R x M". V(¢) is now
the projection of the submanifold W (z) := ®,(0, V) of R x M" that lies in the
“spatial section” {t} x M". Then dt = 0 when restricted to W (t). The flow &,
on R x M is generated by X = v + 9/d¢. We then have, from (4.33),

d d
- oaf = — o? Z/ ngtp Z/ $v+3/3t()lp (443)
dt Jyva dt Jwa W) W)

We now write out (4.43) in the case at hand. Using (4.22) andd = dt A d/0t +d

d ) o
£ / o = / Coramal = / el + —
dt Jw 20 W) ot

oa . .
= / — +iyda + diyo
W(t) ot

(since v does not involve d/d¢ and dt = 0 on W(t))

0
=/ % ida+die O
V() at

(Note that £,« is the Lie derivative of o with respect to the vector field v “frozen” at
time ¢, that is, we look at both « and v as fields fixed forever at time ¢!)
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Corollary (4.44):

a ., L0 .
5¢,a=¢t{¥+zvda+dlva}

L0
= ¢t E + &vOl

This follows from d/dt [, ¢7a? = [, ¢;{dc/dt + iyda + diya} with V arbitrary.

Problems

Let A and B be time-dependent vector fields on R and let p(t, x) be a function. Show
that (4.43) yields the following classical expressions for the time derivatives of line,
surface, and volume integrals over moving domains.

4.3(1) d/dt [A«dx = [,[0A/dt — Vv x curl A +grad(v « A)] « dx

4.3(2) d/dt [[4B+dS = [[[0B/at + (divB)v — curl(v x B)] + dS

4.3(3) dydt [[f, pvol® = [[f lop/dt + div(o)] vol®

4.3(4) Show Faraday’s law says d/dt [[¢B + dS = — ¢, J[E + v x B] » dx for a moving
surface. E + vxB is the electromotive force.

Additional Problems on Fluid Flow

Consider a fluid flow in R® with density p(t, x) and velocity vector v(t, x). Problem 4.3(3)
says conservation of mass is equivalent to
83—'(; +div(pv) =0
or
Lx(p vol®) =0

These two expressions are equivalent since ix(opP) = i, xBP.

In this section we shall use cartesian coordinates, but we shall still make an attempt
to use the correct “variance” of the tensors involved.

Consider the linear momentum of a small region U. If v is the velocity covector, v =
vidx', the density of momentum is pv. InR® with cartesian coordinates we attribute phys-
ical significance to the individual components of the momentum P of the moving region

P,-:/ vip vol®
U

Since £x(p vol®) = 0, we get (v; being a function)

@:/S’,X(V/,Ovop):/X(V/),OV0|3=/ vil (vj)p vol®
a ~ J, U g T ot

=/ %+v/ v pvol®
u L 9t ax/
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dP/dt must equal the total force acting on U. (Newton’s second law applies to parti-
cle mechanics. The generalization to continuum mechanics is due to Euler; see [T,T,
footnote, p. 531].) Under the assumption of a “perfect” fluid, this consists of a body
force (e.g., gravity) with mass density f, and the pressure forces arising from the part
of the fluid outside U. This latter is a vector integral w = — fau pNdS. Vector integrals
make no sense on general manifolds (how could we add two vectors located at different
points?) but they can be defined in cartesian coordinates componentwise, that is, by
putting w' = — Lsu pNidS. If the surface has local coordinates u, v, then, as in (3.14),
dS = ./gdundv=||n| dundv. Thus NdS = n'du A dv. For example, from Prob-
lem 3.1(2) we have that N'dS = a(y, z)/8(u, v)du A dv = dy A dz. Thus in cartesian
coordinates we may consider the symbolic vector 2-form dS with “components”

dS=NdS=(dyrdz dzadx dxady’
and then we could write — [, , PNdS = — [, , pdS. The first component of [, , pdSis
/ pdyAdZ:/dpAdy/\dz:/deX/\dy/\dz
U U u

and likewise for the other components. Thus

/ pdsS =/ grad pvol® (4.45)

U u

We conclude from Euler’s version of the second law, applied to the arbitrarily small U
av; if Vi 1\ ap
— — === )=+ f 4.46
3t +v (axl) (p>ax’+ i ( )

where fis the force density (per unit mass). These are Euler’s equations.

4.3(5) Assume that the body force density is derivable from a potential f = grad ¢.
Assume that the pressure is functionally related to the density, p = p(p). (This
is an “equation of state.”) Then let G (p) be a specific antiderivative of dp/p; we
write this symbolically as G (p) = [ dp/p = f,o_1(dp/dp)dp. Then aG/ax' =
G (p)dp/3x" = p~'(dp/dp)dp/dx" = p~"dp/dx".

(i) Show that Euler’'s equations can then be written

ov 5 _ 1 2 . d_l)
a—t+§v(V)—d{2||V|| +é /p}

or (4.47)

1 d
Lvrasor(v) = d{é v 2 + ¢—/—p}
P

where now &y (v) is the Lie derivative of the 1-formv (we are no longer taking
the Lie derivative of a function). Note that (4.47) makes sense in any Rie-
mannian manifold, unlike (4.46) where v/(3v;/3x/) are not the components
of a covector.

(ii) Conclude with Lord Kelvin that if C(t) is a closed curve that follows the
motion of the fluid, then the circulation fcu) v is constant in time.
A time-dependent form «P on M" is said to be invariant under the flow
of the time-dependent vector field v provided

) o ) da .
Lyty/at(a) = I + &a = I + iyda +diva =0
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(iii) The vorticity 2-form for a flow in R® is defined by
? =dv
Show (using d 0 3/9t = 3/dt o d) that for a perfect fluid with p = p(p) that
the vorticity form «? is invariant under the flow (Helmholtz).

(iv) Warning: The vorticity vector w = curlv, defined as usual by »? = i, vol®,
is not usually invariant since the flow need not conserve the volume form.
The mass form, ,ovol3, however, is conserved. From v = i(w/p)p vol® we
see that the vector w/p should be invariant; that is, £y15,5t(w/p) = 0. Show
that this follows from (4.24). Note that the direction of w is invariant under
the flow; physicists say that the “lines of w ” are “frozen” into the fluid.

(v) Let V3(t) be a compact region moving with the fluid. Assume that att = 0
the vorticity 2-form »? vanishes when restricted to the boundary 9 V3(0);
that is, i*w? = 0, where i is the inclusion of 3 V in R3. (This does not say that
w? itself vanishes, rather only that w(u, w) = 0 for u, w tangent to 4 V3(0).)
Show that the helicity integral

/ VewdxAndyndz
. o vt
is constant in time.

4.3(6) Magnetohydrodynamics. Define a perfectly conducting fluid as one with van-
ishing “electromotive intensity” &' — iy %2 = 0 (otherwise there would be an infinite
current flow).

(i) Show that %2 is invariant under the flow, £y5/5:%2 = 0 (and thus the lines
of B are frozen into the fluid).
We are concerned with the case when the charge density o vanishes.
Then the Lorentz force density (per unit volume) on the fluid is —i;%? and
so the external force density (per unit mass) is f = —iy%2/p. This is not
derivable from a potential, and so Euler’'s equations become

v | v 2 dp iy B2
4@ — v ZEV
ot + &) d{ 5 / o P

(ii) Consider then a blob U of perfectly conducting fluid with (moving) boundary
aU (e.g., the interface between the fluid and vacuum). Frequently one takes
as boundary condition that %2 restricted to the boundary vanishes (i.e.,
B, = 0). Show then that

— AB=0
at J,"

This resultis due to Woltjer. See and compare with Moffat’s treatment in [Mo].

4.4. A Problem Set on Hamiltonian Mechanics
Why phase space?

In Section 10.2 we shall talk about Lagrangian (i.e., tangent bundle) mechanics from
first principles. In the present section we shall simply assume Lagrange’s equations,
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and proceed to the Hamiltonian formulation in phase space. The following problems
involve much of the machinery of forms and Lie derivatives that we have developed,
and should be worked by the readers even if Hamiltonian mechanics is not their primary
interest.

Let M" be the configuration space of a mechanical system; M has local coordi-

nates ¢', ..., g". The phase space is the cotangent bundle 7*M with local coordinates
q',....q", pi, ..., p.. Introduce the notation
x' =4, X" = p;, i=1,...,n

On T*M we have the Poincaré 1-form (see 2.3d)
A= pidg’
and the resulting Poincaré 2-form

w? :=d) =dp; Ndq'

Warning: Many books call this form —o?!

Definition: A 2-form w? on an even dimensional manifold M?" is called sym-
plectic (and then M is called a symplectic manifold) provided it satisfies
(i)do=0
(ii) w is nondegenerate that is, the linear transformation associating to a vector
X the 1-form ixe? is nonsingular. In local coordinates x, since [ixw]; = X'w;j,
this merely says det (w;;) # 0.

As we shall see, every cotangent bundle is a symplectic manifold.

If M? is an orientable Riemannian surface, then an area 2-form vol? = w? is a
symplectic form! The plane R* = R x R and the cylinder S' x R are the cotangent
bundles, respectively, of the line R and the circle S'. Closed (compact) orientable
surfaces are symplectic but are never cotangent bundles since the vector space fibers
of a cotangent bundle are never compact.

(Note that we demand that » be a true form, not a pseudoform. On an orientable
manifold, a pseudoform defines a true form by using a coordinate cover with positive
Jacobians in each overlap.)

Warning: A symplectic form w? allows us to associate to each contravariant vec-
tor X a covariant vector ixw with components X L ;» and in this sense is similar to a
Riemannian metric. This similarity is very misleading since the matrix w is skew sym-
metric rather than symmetric. The remark (ixw)(X) = o (X, X) = 0 shows in fact that
in any Riemannian metric that one imposes on a symplectic manifold, the contravariant
version of ixw is orthogonal to X!

2

4.4(1) Show that the Poincaré 2-form is symplectic. (You need only show that the
1-forms ig,9,i w are linearly independent.)

44(2) Showthatw" :=wA...Aw=*nldg' A...Adq" Ndp, A ...dp,
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Since w is a well-defined 2-form on any cotangent bundle, this 2n-form is actu-
ally independent of the local coordinates g used on M". We call " the Liouville or
symplectic volume form for the phase space.

4.4(3) Clearly 0" never vanishes. Show why this implies that T*M is always ori-
entable, whether or not M itself is orientable.

Since phase space is orientable we need not distinguish between forms and pseudo-
forms.

4.4a. Time-Independent Hamiltonians
Let L = L(q, ¢) be atime-independent Lagrangian, a function on the tangent bundle.
We have a map (see 2.3c) P : TM — T*M given by ¢' = ¢' and
oL
= 5
For our purposes we shall insist that this map is a diffeomorphism. Locally this means
the following. Since for the pull-back

P*d —( CL )d'f+< CL )df
"= \ogiagr ) " \agrag )™

we have, from (2.51),

Di

P*dg' A...Adq" Adpy A ... Adpy)

aZL 1 n -1 - n
=det| ———)dg N...ANdq" ANdg  N... A Ndq
dq’94'

Locally then, we have a diffeomorphism if the Lagrangian is “regular,” that is,
det(d°L/ 3g79¢") # 0.

Lagrange’s equations, L /dq' — d/dt(0L/dg") = 0 in T M, translate to Hamil-
ton’s equations in the phase space T*M

dq' 0H dpi  0H

= =—— 4.48
dt ap; dt aq’ ( )

where the Hamiltonian function is defined by
H(q, p) :=pi4' — L(q,q) (4.49)

It is assumed in this expression that ¢ is expressed in terms of g and p by means
of the inverse T*M — T M. For a proof one proceeds as follows, with an obvious
notation. d H = H,dq + H,dp. But from (4.49) dH = pdq + qdp — L,dq — pdq.
From Lagrange’s equations, L, = dp/dt. Comparing the two expressions for d H
yields Hamilton’s equations. (The same proof works also when L and H are time
dependent.) O

Let X be a time-independent vector field on 7*M,

X = Xi a +Xi+n a
B aq' ap;
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4.4(4) Show that the integral curves of X, that is, the solutions to

dq’ . dp; .
T _x and L xien
dt dt
satisfy Hamilton’s equations if and only if the vector field X satisfies
ixw=—dH (4.50)

We shall refer to (4.50) again as Hamilton’s equations and X will be called a Hamil-
tonian vector field. The flow ¢, : T*M — T*M generated by X will be called a
Hamiltonian flow.

4.4(5) Show that if X is Hamiltonian then
xw =0 = " 4.51)

The right-hand side shows that volumes in phase space are invariant under a Hamilto-
nian flow; this is Liouville’s theorem.
Under this time-independent Hamiltonian flow, H is a constant of the motion, that is,

dH . ..
o =X(H) =ixdH = ix(i_xw) =0

This is merely a fancy way of saying

dH <8H>dqi n <8H>dp,- B
dt — \dq') dt ap; ) dt
from (4.48). H is also called the total energy.

Look now at the “level sets” of the function H in T*M

ngnfl = {x — (q’ p) € T*M | H(q’ p) == E}

If dH # 0 on Vg, then we know that Vg is a (2n — 1) dimensional submanifold of
T*M; it is called the hypersurface of constant energy E. By Sard’s theorem of 1.3d,
we know that for almost all E, E is a regular value. In the following we shall assume
that Vg is a hypersurface of constant energy with d H # 0.

Since d H/dt = 0 along the flow lines of X, we conclude that X is tangent to V.

/ X
T*M

Figure 4.6
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We know that &xw = d/dt[¢; w],—o = 0. Then, for small ¢
d * : —1 * *
Tlprol = lmh'1g7,0 — ¢o]
= ¢; limh ™[0 — o]

that is,
d * * o
E [¢t a)] = ¢[ *S:Xw

(and this is true for any form, any vector field). This also follows directly from Corollary
(4.44). In our case then ¢; @, ;) = @y (), and so

do=w (4.52)

holds for all small ¢ in any Hamiltonian flow.

Definition: A map ¢ : M — M of a symplectic manifold is canonical if ¢
preserves w, that is, ¢*w = w.

Thus

A Hamiltonian vector field X generates a local 1-parameter group of canonical trans-
formations of phase space.

Since X is tangent to Vg, the integral curves of X that start on Vg remain on Vg.
Consequently

(Z),ZVE—)VE

We know that ¢, preserves Liouville volume on 7*M. We claim that there is a (2n—1)-
formt = ty on Vg that is nonzero and is also invariant under ¢,! We see this as follows.

dH # 0 on Vg, and so dH # 0 in some T*M neighborhood of x € V. We shall
first construct a form o2*~! in a neighborhood of x so that

" =dH Ao®! (4.53)

Since dH # 0, some dH/dx' # 0. For simplicity we shall assume dH /dg' # 0.
Introduce a local change of coordinates y! = H, y' = x' fori > 1. Then

dH ANdg*> A...Adq" ANdpy A ... Adp,

oH 1 2 n
= 871 dg' Ndg=N...ANdq" ANdpy AN ... Adp, #0

shows that this is an admissible change of coordinates. Put then

AH\ !
o1 — <F> dg* A...~ndg" Adpy A ... Ndp, (4.54)
q



150 THE LIE DERIVATIVE

Multipying by +n! we shall get the desired form o. Since we are not concerned at all
with this factor £n! we shall simply omit all mention of it.

The form o so constructed is a form on 7*M defined near x € V. Its construction
was highly arbitrary. In an overlap of coordinate patches for 7*M there is no hope for
agreement. Problem 4.4(6) shows, however, that this defect is not serious.

4.4(6) Leti : Vg — T*M be the inclusion map. Let 6>"~! be any form satisfying
(4.53). Show that the restriction (pull-back)

2l = g2t (4.55)

of o to Vg is independent of the choice of o. (Hint: Let ¢’ be another choice. Show
i*o = i*o’ by evaluating dH A (0 — ¢’) on a 2n-tuple of vectors (N, T, ..., Tz,)
where N is transverse to Vg and the T’s are tangent to Vg.)

To show that 7 is invariant under the flow generated by X on Vg, we need only
show that 7(T,, ..., T,,) is constant when the T’s are tangent vectors to Vg that are
invariant under the flow. Let N be an invariant vector field that is transverse to V.
Let T denote the (2n — 1)-tuple (T», ..., Ty,). Then w(N, T) is constant under the
flow and so (dH A 0)(N,T) = dH(N)o(T) = dH(N)t(T) is constant. Since H
is invariant, &xH = X(H) = 0,dH is also invariant. Thus 7(T) = constant, as
desired.

We now write down an expression for t that is found in books on statistical
mechanics. In a coordinate patch (g, p) of T*M near x € Vg we consider any Rie-
mannian metric whose volume form is " (modulo £n!). For example we can choose
ds* = >{(dq")* + (dp;)*}; since /g = 1 we have

2n—1

vol* =dg' A...Adq" Ndpy A .. .dp,

Of course these local metrics do not agree on overlaps, but from Problem 4.4(6) our final
result will be independent of such choices. In any Riemannian metric, grad H = VH
is normal to the level sets H = constant, and so VH/ || VH || is a unit normal field to
these submanifolds. Then the (2 — 1) forms dSy" " = iy yvu @" on T*M have the
property that they restrict to the (2n — 1) area forms on each H = constant. Whereas
dH is an invariant 1-form, the unit normal VH/ || VH || is not invariant since the
metric ds? is not invariant (why should it be?). We claim, however, that the restriction
.L,2n71 of

o i=|| VH |71 dS" ! =iy, v, 0" (4.56)

to Vg is an invariant form for Vg.

4.4(7) Show this. (Evaluate dH Ao on (VH/ || VH ||, T), for T orthonormal and
tangent to Vg.)
The expression (4.56) can be “understood” heuristically as follows.
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)
T*

M

VH/IIVH |

Ve

Figure 4.7

To flow from the level set Vi to Vi, along the gradient lines of H, in 1 second, we
solve the differential equations dx/dt = VH/ | VH |?; see 2.1e. The right-hand side
is a vector field of length || VH |~!. The region between these level sets is invariant
under the Hamiltonian flow. A cylinder of gradient lines will have base area A S**~! and
altitude || VH ||~!. This will be sent by the Hamiltonian flow into an oblique cylinder
of the same volume. Thus AS?~!' | VH |~! is constant under the Hamiltonian flow,
as required.

4.4b. Time-Dependent Hamiltonians and Hamilton’s Principle

When H = H(q, p,t) depends explicitly on time we consider H as a function on the
extended phase space 7*M x R. It is sometimes convenient to call the coordinates

i+n 2n+1

q' =x', pi =x""", r=x
Hamilton’s equations are still (4.48) but note now that
dH  (d0H dq' dH\dp; ~0H 0H
ar <aqf> dr <ap,.> ar Tor T o
and H is no longer a constant of the motion. Introduce new Poincaré forms on 7*M xR
(for interpretation see section 16.4b) by

A' = p;dq' — Hdt 4.57)

and
Q*=dA =dp; Ndq' —dH Ndt (4.58)
where now df = (3f/9q")dq’ + (3f/dp;)dp; + (3f/dt)dt, and so on.
Consider a vector field on T*M x R of the type
X = Xi d + Xi-H’l d + 0
I P ap; ot
and thus along the integral curves of X we have

(dq’) a (dp,) ad d
X = -+ + =
dt ) dq' dt ) op; 0t
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4.4(8) Show that Hamilton’s equations together with d H/dt = dH/dt are equiva-
lent to

ixQ2=0 (4.59)

Such an X will again be called a Hamiltonian vector field. It is

OH\ 0 0H\ 0 0
X = - — - + — (4.60)
ap; ) g’ aq' ) dp; ot

Letopy : T*"M x R — T*M x R be the Hamiltonian flow generated by the field X
given by (4.60).

4.4(9) Show that
exQ2 =0 (4.61)
for X Hamiltonian.

4.4(10) Let C be a closed curve in T*M x R. (C need not be the boundary of
any surface.)

Figure 4.8

Let C’, as shown, be another closed curve that meets each orbit through C once and
only once (it need not be the push-forward of C). Show that

f{ pidq' — Hdt = 7{ pidq' — Hdt (4.62)
C c’

(Hint: Look at the indicated surface with boundary swept out by the orbits through C)

Definition: Let C be any oriented compact curve in 7*M x R. The action
associated to C is the line integral

S(C):/A:/pidqi — Hdt (4.63)
C C
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Remark: As all physics students know, and as we shall see in Section 10.2, La-
grange’s equations result from Hamilton’s principle, namely that the first variation of
the “action” [ L(q, ¢, t)dt vanishes for the actual dynamical path ¢ = ¢(¢) in config-
uration space. This integral should be thought of as being the integral of the Lagrangian
function L(q, ¢, t) in T M x R and where the curve C in TM x R is the lift of a curve
q = q(t) obtained by putting ¢ = dg/dt. Since we are restricting g to be dg/dt in
TM x R, L(q, g, t)dt, though a 1-form on the lifted curve, is not to be considered
a 1-form on TM x R. On the other hand, along this lifted curve we do have, from
(4.49), Ldt = (pg — H)dt = pdq — Hdt. This is the reason for calling the integral
[ pdg — Hdr the action integral in 7*M x R. We shall not restrict our curves in
T*M x R to be lifted from M. Lagrange’s equations are simply the Euler-Lagrange
equations for | Ldr, and we are now going to look at the result of putting the first vari-
ation of [ pdq — Hdt equal to 0. It is not necessary to consider the Euler— Lagrange
equations for this since pdg — Hdt is a 1-form on T*M x R and we already know how
to differentiate integrals of forms from (4.33). We proceed to the details.

Consider a curve Cy = Co(u),a <u < b,in T*M x R parameterized by u = ¢ (in
particular it is not a closed curve).

Definition: A variation of C, is amap C of a rectangle in a (1, «) plane R into
T*M x R such that C(u, 0) = Cy(u).

! C( @)
u
Co
ot

b /C—_ .

B/BMA p
/0o p
a
o
q
o
Figure 4.9

u need not be ¢+ when o # 0. Denote the curves u — C(u, o), « fixed, by C,,.

The vectors
C*(g) _ ox(u, a)
ou ou
are tangent to the varied curves and the vector field
o ox(u, o)
¢ <%> - da
at o = 0 is called the variation field. We denote it by J.
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We may compute the action along the varied curve C,; call it S(a). Suppose now
we restrict ourselves to variations that change neither q nor time t at the endpoints
(as indicated in our diagram). Thus J has no 8/8¢ nor 8/8t component at t = a and
att = b.

The first variation of action is by definition

d )
S'(0) := [ / pidg’ —Hdz] - / o s A (4.64)
da Co a=0 Co

4.4(11) Show that §'(0) = fCo i;Q.

4.4(12) Suppose that §'(0) = 0 for all such variation fields J. Cy is parameterized by
t. Show then that the tangent vector T to Cy must satisfy iz €2 = 0 and thus Cy must be
a solution to Hamilton’s equations. This is Hamilton’s principle of stationary action
as formulated by Poincaré. (Hint: You may use the “fundamental lemma of the calculus
of variations”; if f is continuous and if fab f@®)a(t)dt = 0 for all smooth functions «
that vanish at a and b, then f(t) = O for all a <t < b.) Classically one writes

(S/pdq—Hdtzo

iff Cy satisfies Hamilton’s equations.

4.4c. Poisson brackets

Given a time-independent function F on T*M we may associate a unique vector field
X F by

dF = —iXFCL)

(when F = H is the Hamiltonian, X = X is the Hamiltonian vector field). This
simply means that along the integral curves of X we have dq'/dt = 9F/dp; and
dp;/dt = —9F/dq". Suppose that G, X is another pair, dG = —ix, . We define the
Poisson bracket of the functions F' and G, written (F, G), by taking the derivative of
F as we move along the integral curves of G, (F, G) := X¢(F). In particular, the rate
of change of a function F along a Hamiltonian flow is

dF

—o = (F.H)

4.4(13) Show that X generates canonical transformations, and

(F,G) = —o(Xp, Xg) = —(G, F)

and in coordinates

a(F, G)
(F.G)=)» ———
i a(q ) pz)
4.4(14) Show, using Theorem (4.24), that i|x, x, @ = d(F, G), and thus the vector
field associated to (F, G) is —[Xr, Xg].



CHAPTER 5§

The Poincaré Lemma and
Potentials

5.1. A More General Stokes’s Theorem

We shall accept the following technical generalizations of results already proven.

Let V? be a compact oriented submanifold (perhaps with boundary) of M" and let
F : M" — W™ be a smooth map into a manifold W™. The image F (V) in W need not
be a submanifold. It might have self-intersections and all sorts of pathologies. Still, if
B? is a form on W, it makes sense to talk of the integral of 8 over F (V) and in fact

P = F*BP 5.1
[P /Vﬂ 5.1)

which generalizes (3.17). In a sense, the right-hand side is the definition of the left-hand
side. Then

dﬂp_l=/F*dﬂp_l=/dF*ﬂp_l
\% 14

=/ F*IBp—l =/ IBp_l
A% F@V)

Then if we define 0 F (V) = F(dV), we have the generalized Stokes’s theorem

dpr! = / pr-! (52)
F(V) AF(V)

Actually one needs to integrate over manifolds with only “piecewise smooth” bound-
aries, such as a triangle, and also manifolds such as a solid cone. It is not easy to give
a careful description of these objects. It is important that Stokes’s theorem holds for
very general objects, basically by approximating the object and its boundary by, say,
manifolds with piecewise smooth boundaries ([A, M, R, box 7.2B]).

F(V)
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5.2. Closed Forms and Exact Forms
A form B? is closed if df = 0. Thus

dp’ =0 < B° is a constant function
dB' =0 (b, —d;b) =0 inR’curlB=0
dp* =04 3bji + by + b)) =0 inR*divB =0

A form B7 is exact if B? = da”~!, for some form a”~!.
The following observations are easy and important consequences of these definitions,
d* = 0, and Stokes’s theorem.

1. Every exact form is closed.

The product of two closed forms is closed.

3. The product of a closed form and an exact form is exact. (You are asked to prove this in
Problem 5(1).)

4. The integral of an exact form over an orientable closed manifold (i.e., compact without
boundary) is O.

5. The integral of a closed form over the boundary of an oriented compact manifold is 0.

L

Although every exact form is closed, 8 = da = df = d*a = 0, it is not true that
every closed form is exact. A most important example is given by the 1-form

B'= (" +y) ' (xdy — ydx)

in IR?. First note that this form is not defined in all of R?; certainly we must omit the
origin. Thus the manifold in question is R? — 0. One easily checks directly that 8' is
closed but it is easier to note that

X

,31 — d “aI'CtaIl (X)n — d“e”

This makes it seem as though 8 is in fact exact, but this is not so; the O-form “6” is not
a single-valued function, and that is why we have introduced the quotation marks! It is
single-valued if one introduces a “branch cut,” say the positive x axis. Thus B! is exact
on the portion R*—(positive x axis). In particular f is closed here. Clearly by choosing
a different branch cut we can see that d8' = 0 on all of R*> — 0. But ' cannot be
exact on all of R? — 0, for if we consider the closed curve C = x2 + y? = 1, oriented
counterclockwise, then (dropping “ )

iﬁ:ﬁw:m

and then observation 4 shows that 8! is not exact. Note that there is no contradiction
with observation 5 since the circle C is not the boundary of any compact surface in
R? —0. It is true that C = 9 (unit disc) in R? but the unit disc has had its origin removed
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in R* — 0. Thus the crucial point is that C is a closed curve in R* — 0 but it is not the
boundary of a compact surface in R* — 0!

Let us say that a manifold M" has first Betti number 0, written »; = 0, if, basi-
cally, every closed oriented piecewise smooth curve C is the boundary of some com-
pact oriented “surface”; that is, there is some piecewise smooth oriented surface (with
boundary) V2 and a map F:V? — M" such that 9 F (V) = C. This concept, and its
higher dimensional analogues (to be discussed more thoroughly in Chapter 13) was
first introduced by Riemann. (The Italian mathematician Betti was a close friend of
Riemann’s.)

Theorem (5.3): Let M" be a manifold with first Betti number 0. Then every closed
1-form B' on M" is exact.

PROOF: The proof is essentially found in every calculus book in the case M" =
IR?. We give a proof that uses our previously developed machinery for differenti-
ating integrals.

We wish to exhibit a function f such that df = B'. Let x € M and let y be a
fixed point in M. Fix an oriented curve C(y, x) that starts at y and ends at x and

define
— I
£ /C L

We note first that f is in fact independent of the curve chosen to join y to x, for
if C’(y, x) is another, then C — C’, that is, C followed by C’ with orientation
reversed, is a closed oriented curve. By hypothesis there is an oriented compact
surface F (V) such that 9 F(V) = C and so

y

Figure 5.1

/Cﬂ_/crﬂ=/cC,ﬂ=j€F(v)ﬂ=/F(V)dﬂ=o

We can now compute df at the variable point x. Let v, be a vector at x. Take
any vector field v that coincides with v, at x, is defined in some neighborhood of
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the curve C(y, x) and which vanishes at y. If ¢, is the flow generated by v then
¢;C(y, x) is a curve joining y to ¢,x, and we also have that d¢,x/dt];—y = V;.
Then

d d
df(v) = Ef{@x}z:o = {E /@CW) ﬂ],_o

_ / op = ivdp + diyp = divp
C(y,x) C(y,x)

C(y.x)
= iyBx — iyBy = iyPs, since v, = 0.

Thus df(v) = B(v),andsodf = 8. O
The following was the crucial ingredient of the proof.

Corollary (5.4): In any manifold M", if B' is a I-form whose integral over all
closed curves vanishes, then ,B1 is exact, ,Bl =df.

If a p-form B” is exact, B” = daP~', we say that 87 is derivable from the potential
al~!.

5.3. Complex Analysis

In the complex plane M? = C, we introduce the complex coordinate z = x +iy. Then
dz = dx + idy is a complex valued 1-form with values 1 and i, respectively on 8/0x
and 8/0y. We may also consider the complex conjugate 1-form dz = dx — idy, and
then

dz ANd7Z = —=2idx Ndy

Let f(z,2) = a(x,y) +ib(x,y) be a complex valued function on some open subset
U of C. Then we can consider the 1-form

f(z,2)dz = (a +ib)(dx + idy) = (adx — bdy) + i(ady + bdx)

(This is not the most general 1-form since we have not included a term involving dz.)
If C, z = z(1), is a curve, we may form the integral

/ fdz = /(adx —bdy) +i /(ady + bdx)
c c c
For exterior differential we get
dlfdz]l = (dandx —dbAdy)+i(dandy+dbAdx)
= (—a, — b )dx Ndy +i(a, — by,)dx ANdy
Thus

fdz is closed iff a and b satisfy the Cauchy—Riemann equations, in U, that is, iff f
is complex analytic or holomorphic.
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This can also be seen by the following formal calculation. By the chain rule we have

the two differential operators
0 1 ( g .0 >
—_— = — _— = —
0z 2\ dx ay

0 1<8+,8>
—_— = = — 1 —
a9z 2\ ox ay

Then d[ fdz] = (f/9z)dz Adz + (38f/02)dZ A dz = (3f/0Z)dZ A dz,and so fdzis
closed iff 0f/dz = 0, that is, ““ f does not depend on Z,” and so f is complex analytic.

af
0z
is another form of the Cauchy—Riemann equations.

If fdz is closed and we put a(z) = [* fdz, the integral from a fixed point to z
along an arbitrary path, then « is the potential, do = fdz, provided it is single-valued,
that is, provided the integral is independent of the path chosen. From (5.3 ) this will be
the case provided U has first Betti number 0. We shall see in Section 13.3 that asking
b, = 0 for amanifold is a weaker condition than demanding that the manifold be simply
connected. Simple connectivity is the usual condition imposed in complex analysis to
ensure single-valuedness of the potential .

Note that to consider the behavior of f at infinity we should consider f as being
defined on the Riemann sphere (see Section 1.2d) except perhaps at oo itself, that is,
except at w = 1/z = 0. Since z is a complex analytic function of w, dz/dw = 0, and
since dz/dw # 0 for our change of coordinates, we see from

9 _<az)a+(az>a
ow  \ow/ oz ow ) 07

% =0 iff % =

07 ow
This means that the notion of a function being complex analytic is well defined on the
Riemann sphere, independent of which coordinate z or w is used.

In the complex plane C, the residue of a function f plays an important role in
evaluating line integrals of f, but in the Riemann sphere it is the 1-form fdz that is
important, not its component f. For example, the function f(z) = 1/z has residue 1
at the simple pole z = 0, and so fc dz/z = 2mi for any closed curve C circling once
z = 0 in the positive sense. But this curve also circles z = oo on the Riemann sphere,
and the function f = 1/z is described near oo by f(z) = 1/z = w near w = 0. Thus
the function f = 1/z has a simple zero at z = oo; its “residue” there is 0. One might
then be mistakenly led to the contradiction that §.dz/z = 0. The resolution lies with
the 1-forms, not the functions:

f o= ) = £ (=)= f (5o

which is again 2ri since C circles oo in the negative sense. We associate a residue to
a I-form, not a function!

0

that
0
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5.4. The Converse to the Poincaré Lemma
A closed 1-form 8 I on M" is exact if the first Betti number of M" vanishes, that

is, if every closed oriented curve is the boundary of an oriented surface. On the 2
dimensional torus, neither closed curve C nor C’ bounds a surface and thus we may

” >

21

Figure 5.2

not expect that every closed 1-form is exact. In fact d“0” and d*“¢” are closed and
§d<0” =21 = §d“¢”.

The fact that exact forms are closed, that is, dd = 0, is usually called Poincaré’s
lemma. It should be appreciated that Poincaré utilized this result before the machin-
ery of exterior calculus had been developed! There is a partial converse to this result,
namely, every closed form is locally exact. Precisely

Theorem (5.5): IfdB? =0, p > 1, in a neighborhood U of x € M", then there
is some perhaps smaller neighborhood U’ of x and a (p — 1) form a?~" such that
BP =da? inU'.

The following proof is basically a simple application of Cartan’s formula for Lie deri-
vatives. We give this proof because the same method is useful for other purposes.
The reader might enjoy more an older proof, as is given, for example, in the book by
Flanders [FI].

PROOF: Itis sufficient to prove this result in the case M" = R". This is because
a sufficiently small neighborhood U” of x € M" is diffeomorphic to an open
ball V in R" under a coordinate map ¢ : U” — V. Since ¢ : U" — Vis a
diffeomorphism, ¢! exists and B” = (¢! 0 9)*B? = ¢* 0 ¢~ *BP. Then if B is
closed on M, ¢~'*B is closed on V C R”". If we have the converse of Poincaré
on V C R" then ¢ '*B = da shows B = ¢*da = d¢*a as desired.

We may assume then that 87 is a closed form on an open ball U of R". Consider
(as in 4.3b) the deformation ¢,x = (1 — ¢)x; this time-dependent “flow” has ¢y =
the identity and ¢ is the map that sends every x to the origin. The velocity field
isv(t,y) = —y/(1 —t), fort # 1. First note that ¢ is the identity map and ¢ is
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the O map. Then considering 8 = §(x) as a time-independent p-form on R”, we
have

B(X) = ¢ B(X) = ¢ B(hox) — ¢y B(P1X)
d

0
- /1 191G Xds

To avoid subscripts upon subscripts upon. . ., let us introduce the following nota-
tion in this proof. We shall denote the vector v at x by v(x) and we shall sometimes
replace ¢, by ¢ (¢). Also, for interior product we put iy, = i{v}. Then the previous
expression for B(x) becomes, using (4.44), dg = 0 and 98/dt = 0

0 0
/1¢>§d[1'{V(<15sX)}ﬁ(¢sX)]ds=/1 d[¢i{v(¢;x)}B(¢sx)]ds

We should remark that this is not quite true. The vector field v(z, x) blows up at
t = 1 (but note that ¢7 = 0). We should take the integral froms = ctos = 0
and then let ¢ — 1. It will be apparent in our final formula (5.6) that the factor
(1 — ¢)~! disappears. We proceed as if this difficulty were not present.

We may take the operator d outside the s integral, yielding

0
fodar',  arli= /1 Sl V)G D1ds O

Let us now write out the expression for « in detail. Puty = ¢,(x) = (1 — s)x. Then
(in coordinates y for R")

yj
(1—1s)
To take ¢F of this (p — 1)-form we must put everywhere y/ = (1 — s)x’/. We get
—x/bjk (1 — $)x)dx® (1 — s)P~'. Putting T = (1 — s) gives

HV(@X)B(s, ) = v/ (b (Vdy" = — bk (y)dy"

|
aP! :/ [t7~'x/b g (rx)dx X 1d7 (5.6)
0

Note that the essential ingredient of the proof of the existence of a potential was
the fact that at any point 0 of a manifold M" there is a neighborhood of 0 that can be
contracted to the point 0; that is, there is a deformation x — 1 (f)x = (1 — ¢)x that
collapses the neighborhood to the point 0 in 1 unit of time.

Note also that since all of R" can be contracted to the origin, the result in R" is
global; if dBP = 0 in all of R" then 87 is globally exact (if p > 0).

Corollary (5.7): Ifdiv B = 0 in R? then B = curl A for some A.
(See Problem 5.5(2) at this time.)

Corollary (5.8): In M", a necessary and sufficient condition that one can solve
locally the system of partial differential equations

(0;aj — 9a;) = b;j (with bj; (x) = —b;;(x) given)
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is that

aibjk + E)kbij + ijki =0

5.5. Finding Potentials

In some simple situations one may exhibit potentials with very little effort. For ex-
ample, consider the simplest case of the electric field due to a charge ¢ at the origin.
In spherical coordinates E = (g/r?)8/8r forr > 0. Using the euclidean metric in
spherical coordinates in R — 0,

ds® = dr* + r*(d6* + sin® 0d¢?)

we see that & = (¢/r?)dr = d(—q/r), for r > 0, exhibiting the scalar potential. The
2-form associated to E is the pseudoform

*& = ig vol’

From Gauss’s law dx& = 47p vol® we see that & is closed for r > 0 since the charge
density vanishes outside the origin. We compute directly a vector potential for E as
follows. In spherical coordinates,

vol> = r?sin@dr A dO A dg
and so
(g9 9\ ,. .
*6 =i = sinfdr ANdO Nd¢p = gsinfdb A d¢
r? or

Thus, for example, *& = d(—g cos 8d¢) and G' = —g cos 8d¢ is a possible choice for
potential. Note that spherical coordinates are badly behaved not only at the origin but
at® = 0 and § = 7 also, that is, along the entire z axis. Hence @' is a well-defined

potential everywhere except the entire z axis. Note however that we can also write
%6 = d[g(1 — cos0)d¢], and since 1 — cosf = 0 when § = 0, this expression

@' =q(l —cosH)dg (5.9

is a well-defined potential everywhere except along the negative z axis!
We certainly do not expect to find a potential @' in the entire region R*> — 0, for if
such an @' existed we would have

//*&://d(‘ﬁ':% @'=0
Vv 14 v

for any closed surface V? in R* — 0. But if we choose V? to be the unit sphere about
the origin we must have, by Gauss’s law, that [[, *6 = 47 ¢! The singularities of '
prevent us from applying Stokes’s theorem to V.

We get the same result when we consider the magnetic field % due to a hypothetical
magnetic monopole at the origin. This will be used when we discuss gauge fields in
Section 16.4. The vector potential has a Dirac string of singularities along the negative
Z axis.



FINDING POTENTIALS 163

Problems

5.5(1) Prove that the product of a closed and an exact form is exact.
5.5(2) Write out what (5.6) says in terms of vectors, for g2 in R3.

5.5(3) Consider the law of Ampere—Maxwell in the case of an infinitely long straight
wire carrying a current j.

Al

Figure 5.3

The steady state has 9+6/dt = 0 and we are reduced to Ampere’s law § $ =
47 j for a curve as indicated, and d? = 0. An immediate solution is suggested,
*B = 2 jd¢ . Introduce appropriate coordinates, show that d%? = 0, and exhibit
directly the vector potential ¢! in R3—wire. (You might wish to compare this with
the usual treatments in textbooks.)

5.5(4) The unit 3-sphere S® c R* can be parameterized by three angles «, 6, and ¢,
where 6 and ¢ are the usual spherical coordinates on the 2-sphere S2(«) of
radius sina.

Figure 5.4
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The Riemannian metric on S8 is “clearly”
ds? = da? + sin® a(d6? + sin® 0d¢?)

Put a charge g at the pole N of S8. E will certainly have the form E = E(«)8/8a.
Write down the resulting =6 = ig vol®. What form mustthe function E = E(x) have
in order that d+& = 0 for « # 0, 7 ? Finish the determination of & by computing
f3(a) *6 (note that essentially no integration is needed if you know the area of the
unit 2-sphere). Write down the electric covector & and verify dé = 0 and exhibit
the scalar potential for &, all for « # 0, 7. Put %% = 0. You have just verified
Maxwell’'s equations in the region outside the two poles. Note that a “ghost”
charge of —q has appeared at the south pole!

One could consider placing a charge + g at the “north pole” of the projective
space R P3.

Figure 5.5

Since the “south pole” is now the same point, we have indicated the same
charge there. The “equator” is really a projective plane R P2, since RP3 is S°
with antipodal points identified. A 3-dimensional e-neighborhood of R P?, thatis,
points on R P3 that have distance < ¢ from R P2, has the indicated 2-sphere S? as
boundary. (It is a 2-sphere since it is also the boundary of a 3-disc neighborhood
of the north pole.) Gauss’s theorem, applied to this neighborhood with boundary
S? , shows that there is a total charge of —g inside S2. Note that there is a jump
discontinuity of E on RP2. This shows that a ghost surface charge —q must
be distributed on the “equator’ R P?!

5.5(5) Show that in any closed manifold M8, the total charge vanishes!



CHAPTER 6

Holonomic and Nonholonomic
Constraints

6.1. The Frobenius Integrability Condition

Can one always find a surface orthogonal to a family of curves in R3?

6.1a. Planes in R3

Given a smooth nonvanishing vector field in R?, by solving a system of ordinary differ-
ential equations one can always locally find a smooth family of integral curves, that is,
nonintersecting curves that fill up a region and are always tangent to the vector field.

Given a smooth family of 2-planes A in R?, can one always find a smooth family of
integral surfaces, that is, nonintersecting surfaces that fill up aregion and are everywhere
tangent to the planes? It is rather surprising that this is not always so! Suppose that one
could find such integral surfaces.

x(ty)

f=n

n

Figure 6.1

f=1n

Let C, x = x(¢) be a parameterized curve that is transverse to the family of supposed
integral surfaces (we can certainly find such a curve locally). Then locally we can define

165
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a function f = f(x) whose level surfaces are surfaces of the family, namely, the level
surface where f = #; consists of the supposed integral surface that is pierced by the
transversal curve at parameter value ¢t = f,. But then V f must be along the given
normal n to the planes, n = AV f for some function A (an “integrating factor”). In
cartesian coordinates, the “normal” covector v = n;dx’ must satisfy v = Adf and then
dv =dr Andf = (dlog)) A v, and we then recover Euler’s integrability condition;
if such integral surfaces exist, then

vAdy =0, i.e, necurl n=20

This condition, given entirely in terms of the field of normals, must be satisfied if
integral surfaces are to exist.
Of courseif dv = 0, v = dg locally, and so n is normal to the surfaces g = constant.
Consider the planes A normal to the vectors

Then v = ydx —xdy +dzand sov Adv = —2dx Ady A dz # 0; the vectors n are
not the normals to a family of surfaces!

Classically, in cartesian coordinates, the planes A orthogonal to the vector n would
be written

v=ydx —xdy+dz=0

meaning not that the form v is the form O but rather that at each point (xg, Yo, 20) We

are looking at all vectors A = (a', a?, a®)7 that satisfy

0=v(A) =isv = yoa' — xoa’ +a’

clearly a 2-dimensional plane at (xo, yo, zo). The collection of all these planes at all
points x in R? is called the distribution associated to the 1-form v. (This is not to be
confused with the generalized functions also called distributions.)

In general in R* one would describe a family of planes by writing

v = Pdx' + Pydx>+ Pydx’ =0 (6.1)

where Py, P>, and P; are smooth functions. To “solve the total differential equation”
(6.1) means to find surfaces x = x(u', u*) such that the pull-back of v to these surfaces
vanishes identically, that is, P;dx’/du® = O fora = 1, 2. We have seen that v Adv = 0
is anecessary condition for this system of partial differential equations forx = x(u', u?)
to possess a 1-parameter family of solutions. (We shall see shortly that this condition
is also sufficient.) If we are given such a family of solutions, by taking a transversal
curve X = X(t) as earlier, this family of solutions can be described as the level sets
t = constant.

Definition: A k-dimensional distribution A; on M" assigns in a smooth fashion
to each x € M" a k-dimensional subspace A (x) of the tangent space to M" at x.
An r-dimensional integral manifold of A, is an r-dimensional submanifold of
M" that is everywhere tangent to the distribution. The distribution A; is said to be
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(completely) integrable if locally there are coordinates x', ..., x*, y!, ..., y*7*
for M" such that the “coordinate slices” y' = constant, ..., y" ¥ = constant are
k-dimensional integral manifolds of Aj. Such a coordinate system (x, y) will be

called a Frobenius chart for M.

The fundamental question is clear. When is A; completely integrable?

6.1b. Distributions and Vector Fields

Suppose that we are given a distribution A, and a pair of vector fields X and Y on M”
that are in the distribution X € A and Y € A at each point in an open set. Suppose now
that the distribution is integrable. Then the two vector fields are always tangent to the
integral manifolds. By the Corollary in 4.1c we conclude that the Lie bracket [X, Y]
is also in the distribution. We can describe this symbolically by saying that if A is
integrable then

[A,A]C A

It will turn out that this condition is also sufficient for showing integrability!

6.1c. Distributions and 1-Forms

Let 0! be a 1-form that does not vanish at a point x € M". The annihilator or null
space of 6 at x is the (n — 1)-dimensional subspace of M defined by those vectors
X € M such that 8(X) = 0. Classically one writes & = 0 for this null space. (When
discussing distributions it is common to call a 1-form 6 a Pfaffian; 6 = 0 is then called
a Pfaffian equation.) If 9y, ..., 6, are r = n — k linearly independent 1-forms at each
point of an open subset of M", 0; A ... A6, # 0, then at each point the intersection of
their null spaces forms an n — r = k dimensional distribution A;. Thus

X e A; iff 06X)=...=6,X)=0

We may again write this distribution locally as §; = 0, ..., 6, = 0. We do not claim
that every distribution can be globally defined by r Pfaffians.

Definition: The distribution A is in involution if [A, A] C A, that is, if the
distribution is “closed under brackets.”

We know that an integrable distribution is in involution.
If A is in involution, then for@ = 1, ..., r we must have that for any pair of vector
fields X, Y that are in the distribution (see (4.25))

db, (X, Y) = X{0 ()} — Y{0,(X)} — 6 (X, Y]) =0

We say then that if A is in involution, then “d6, = 0 when restricted to the distribution,”
that is, when we allow d6, to be evaluated only on vectors of the distribution.

Conversely, suppose that d6, = 0 when restricted to A, = 1,...,r. Then 0 =
do,(X,Y) = X(0) — Y(0) — 6,([X, Y]) shows that [X, Y] € A, and so [A, A] C A.
We now give several rewordings of this result, all of which are important.
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Theorem (6.2): The following conditions are locally equivalent.
(i) A is in involution, that is, [A, A] C A.
(ii) dO, is the zero 2-form when restricted to A.
(iii) There are 1-forms Aqp such that dfy = 5 hap A Op.
@iv) d6, A Q2 =0, where Q =0, A...N0,.

PROOF: We have already proved (i) < (ii). (iii) = (ii) since

d0,(X,Y) = hop A 05X, Y)
B

= hapX)0p(Y) = D hap(Y)Bp(X) =0
B B

Conversely, suppose that all d6, = 0 when restricted to A. Complete 6y, ..., 6,
locally to a basis for 1-forms by adjoining 6,4, ..., 6,. Letey, ..., e, be the dual
basis for vector fields. Then 6,(e;) = Ofora =1,...,randi =r +1,...,n
shows thate,,, ..., e, spans A. Now expand d6, in terms of the basis 0y, . .., 0.
A9y = Y dap O+ D 1o A0, (6.3)

1<B=<r r<i<j

for some coefficients A and . Thus forr < i < j we have 0 = df,(e;, ;) = W
and so df,, = Zlfﬁsr Agp A Bg. This shows (ii) = (iii) and so (ii) < (iii).
It is immediate that (iii) = (iv). Assume (iv). From (6.3)

0=dO, AQ= Y o A0 AQ=> uio; A0 AOIA... N0,

r<i<j r<i<j
But the 6’s are independent; hence p'/ = 0 for r < i < j. Thus (iv) = (iii) and
we are finished. O
In summary, we have seen that a distribution A can locally be described by either
exhibiting k linearly independent vector fields

X, X

that span A, at each point in a region, or by exhibiting r = n — k linearly independent
1-forms

01,...,0,
whose common null space is A;. The system is in involution if either
[A,A]lC A
ordfy = 3 5 Aap A O for some 1-forms Ayg. In this case we write
df, = 0 mod 0

meaning that d6, becomes 0 when all of the 6, are put = 0.
We know that an integrable distribution is in involution. We now sketch a proof of
the converse (usually attributed to Frobenius).
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6.1d. The Frobenius Theorem

Let Ay be any smooth distribution of k-planes in M" and let (locally) {X4}, A =
I, ..., k be smooth vector fields that span the distribution in some open set U of M".
Let ¢4 be the local flow generated by the field X,. Given x € U, we construct a
k-dimensional submanifold of M" passing through x as follows.

Let D¥ C R* be a small disc about the origin of R¥ and let 1, ..., ty be coordinates
for R¥ (for simplicity, we write indices on the #’s as subscripts). Define

®: D> M"
by
D(1) = (1) o Pr—1(tx—1) © - - - 0 P1 (1) (x)

This is certainly defined if #7 4 ... + #7 is small enough. We illustrate this for k = 2

X

$2(t2) o py(t1)x
/ _—>X1/
A(x)

®(D?) pi(tn)x

D? (t1,12)

Figure 6.2

It should be clear (see Problem 6.1) that for the differential of ® at ¢t = 0, we have
O, : Ry — M"
o
O — | =X, atx =P(0) (6.4)
I
and thus CD*RS = A;(x). Thus ®(D*) is tangent to A, at the single point x.

Definition: A smooth map of manifolds F : W — M" is an immersion and
F (W) is an immersed submanifold provided

k 7
F.:W, — M;(w)

is 1:1 (i.e., ker F, = 0) ateach w € W*.
In our case ®, is 1:1 at 0 € R* and consequently 1:1 in some neighborhood of 0. Thus

the map ® : D¥ — M" defines an immersed submanifold & (D*) of M" provided D*
is small enough.
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Frobenius Theorem: (6.5): If the distribution Ay is in involution
[A, Al C A

then each such immersed disc ® (DY) is an integral manifold of A and this dis-
tribution is completely integrable.

PROOF: In the following computation we shall denote the vector X at x € M"
by X(x) rather than X, . Since we are not using X as a differential operator there
should be no confusion.

The essential point is to show that if A is in involution then A; is tangent
to ® (DY) at each point of this immersed disc. We already know, without any
assumption, that A is tangent to the disc ® (D) at x = ®(0). From the definition
of @ (and again denoting ¢, by ¢ (7))

D(1) = ¢ (tx) o Pr—1(tx—1) © - - - 0 P1(11) (x)

we see that @, takes the tangent vector 9/014 at t into the vector

0
E[‘pk(tk) o rogulta+h)o---o0d(t)(x)]h=o
= @p(ti)s 0 -+ 0 Pa(ta) X4 (at the point ¢y (fx_1) o - - - 0 @ (21)(x))

Xa(¢2(12) 0 P1(11)x)

$2(12): X1(P1(11)x)

Xi(p1(t)x)
o1t +h)x

Figure 6.3

But this simply says that the tangent space to ® (D) at ® (¢) has a basis given by

G (1) 0 -+ 0 Pa(12): X (@1 (£1)X)
Or(ti)« 0 -+ 0 P3(13). Xo (P2 (F2) 0 @y (£1)x)

Xy (@ (tx) o+ - o1 (t1)x)

Thus we need only show that each flow ¢4 (t) sends (via its differential) the distri-
bution Ay into itself! This will follow from [A, A] C A in the following manner.
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Let Y € A(y). We must show that [¢4(?).Y] € A(¢pa(?)y). Let A be defined
by the Pfaffians 6, =0, ..., 6, = 0. We know that 6,(Y) =0, =1,...,r.Let
Y, := ¢4(¢),Y and put X := X,. By construction, Y, is invariant under the flow
¢a(t), and so

(YY) =0 along the orbit ¢4 (¢)y
Consider the real-valued functions
fo () = 60,(Y;) = iy,6,, a=1,...,r
Then, differentiating with respect to ¢
fu(t) = X{iy,0} = £x{iy,0,}, which by (4.24)
= iy, {ixd6, + dix0,} = iy,ixd6,

since ix0, = 0. Since A is in involution, from part (iii) of (6.2) we have
£ = iY,ix(Z s A 9,3) =iy, (Z Aaﬁ(X)eﬁ)
B B
=) hapX)Os(Y) =D Aep(X) f5(1)
B B

Thus the functions f, satisfy the linear system
[2@) = hap(X) f5(0)
B

fa(0) = 6,(Y) =0

By the uniqueness theorem for such systems f,,(#) = 0 and so 6,(Y,) = 0. Thus
Y, € A for all ¢, as desired. Then A, is tangent to ®(D¥) at each point of this
immersed disc.

To show complete integrability we must introduce coordinates for which our
immersed discs are “slices” y! = ¢!, ..., y"* = ¢"*. The procedure is very
much like that followed in our introductory section (6.1a), where we introduced
a coordinate f = ¢ by considering a curve transverse to the distribution. Here
we must introduce a transverse (n — k)-dimensional manifold W”—* and we can
let y!, ..., y" ¥ be local coordinates on W. It can be shown, just as with integral
curves of a smooth vector field, that the integral discs, through distinct points of
W, will be disjoint if they are sufficiently small. This will be discussed more in
Section 6.2. We shall not go into details. O

Problems

6.1(1) Verify (6.4).

6.1(2) Show that a 1-dimensional distribution in M" is integrable. Why is this evident
without using Frobenius?
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6.2. Integrability and Constraints

Given a point on one curve of a family of curves, can one reach a nearby point on the same
curve by a short path that is always perpendicular to the family?

6.2a. Foliations and Maximal Leaves

We know that if a distribution A; on M” is in involution, [A, A] C A, then the
distribution is integrable; in the neighborhood of any point of M one may introduce
“Frobenius coordinates” x', ..., x* y' ..., y"7* for M" such that the “coordinate
slices”

y! = constant, ..., y" ™% = constant

are k-dimensional integral manifolds of A,. The integral manifold through a given
point (xo, yo), of course, also exists outside the given coordinate system and might

< >

Figure 6.4

even return to the coordinate patch. If so, it will either reappear as the same slice or
appear as a different one. For example, in the usual model of the torus 72 as a rectangle
in the plane (this time with sides of length 1) with periodic identifications, consider the

Figure 6.5

distribution A defined by d¢ —kd6 = 0, where k is a constant. The integral manifolds
in this case are the straight lines in the rectangle with slope k. If k = p/q is a rational
number (we have illustrated the case k = 1/2) then the slice through (0, 0) is a closed
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curve winding g times around the torus in the 6 direction and p times around in the
¢ direction. On the other hand, if k is irrational, then the integral curve leaving (0, 0)
will never return to this point, but, it turns out, will lie dense on the torus. The integral
curve will leave and reenter each Frobenius chart an infinite number of times, never
returning to the same slice.

Figure 6.6

If adistribution A, C M" is integrable, then the integral manifolds define a foliation
of M" and each connected integral manifold is called a leaf of the foliation. A leaf that
is not properly contained in another leaf is called a maximal leaf. It seems clear from
the preceding example with irrational slope that the maximal leaf through (0, 0) is not
an embedded submanifold (see 1.3d); this is because the part of a maximal leaf that lies
in a Frobenius chart consists of an infinite number of “parallel” line segments. There
is no chance that we can describe all of these segments by a single equation y = f(x).
However, each “piece” of the leaf does look like a submanifold. The leaf through (0, 0)
is the image of the real line under the map F : R — T2 given by 8 — (0, k6); this is
clearly an immersion since F, is 1:1 (see 6.1d).

We have just indicated one way in which an immersed submanifold can fail to be an
embedded submanifold. There are two other commonly occurring instances.

F(0)

Figure 6.7

Both illustrated curves are immersions of the line R into the plane R?. In the first
curve the map F is not 1 : 1 (even though F, is if the curve is parameterized so that
the speed is never 0), whereas in the second curve, F is 1 : 1 but F(0) is the limit of
points F(z) for t — oo. In neither case can one introduce local coordinates x, y in R?
near the troublesome point so that the locus is defined by y = y(x).

As we have seen in the case of 72, a maximal leaf need not be an embedded sub-
manifold. Chevalley, however, has proved the following.
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Theorem (6.6): A maximal leaf of a foliated manifold M" is a 1 : 1 immersed
submanifold; that is, there is a 1

1 immersion F : V¥ — M" of some V* that
realizes the given leaf globally.

6.2b. Systems of Mayer-Lie

Classically the Frobenius theorem arose in the study of partial differential equations.
An important system of such equations is the “system of Mayer—Lie”’; we are to find
functions y# = yf(x), B =1, ..., r, satisfying
9 — by,  i=1,... 6.7)
ax!
with initial conditions

¥ (x0) = y§

where b is a given matrix of functions. By equating mixed partial derivatives
02yP/0x/dx! = 3%2yP/9x'9x/ and using (6.7) we get the immediate integrability
conditions

ab’  ob’ [/ 3b" ab!
5] -G - Gl
oxJ/  oxi = [\dy” oy* )/
We wish to show that (6.8) is also a sufficient condition for a solution to exist
Let x', ..., x* be coordinates in R and y',

(6.8)

., ¥" be coordinates in R". Then in
R* x R” we consider the distribution A; defined by the Pfaffians

0 == dy" = bl (x, y)dx' =0

In Problem 6.2(1) you are asked to show that these 1-forms are independent

The Frobenius integrability condition dfs = 0 mod 6 is simply the statement that
d0s becomes 0 when all of the 6’s are put equal to 0. In our case

dby =

(6.9)

—d Y bl (x,y)dx' = =" dbl Adx’

=_Z[Z< >a’x’/\dx +Z( bﬁ)dy“/\dxi]

To put 6, = 0 is to put dy* = 3", b¥dx*, and so, mod 6

ab:g j i ab:s o J i
d@:—Z oy Jax ndxt = S ) bjdxd A dx
ij

o,i,j ay

ab! an? . .

—Z{ ( )b‘?‘}dxf Adyx'
ox/ J

and thus dfg = 0 mod 6 is simply the statement that the 2-form dfs above must be 0.
This means that the coefficients of dx/ A dx', made skew symmetric in i and j, must
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vanish. This gives exactly the naive integrability condition (6.8). Hence the distribution
in R¥ x R” defined by (6.9) is completely integrable.

Rr

maximal leaf through (x¢, ()

Yo

Figure 6.8

Let V¥ be the maximal leaf through (x,, o). One can easily see from (6.9) that the
distribution is never “vertical”’: No nonzero vector of the form a?8/8y” is ever in the
distribution. It seems clear from the picture (and it is not difficult to prove) that this
implies that the leaf through (x, yo) can be written in the form y# = y#(x). For these
functions we have that 5 = 0 when restricted to the leaf. Thus dy? = > bf (x, y)dx'
and then 9y?/0x’ = b’ (x, y) as desired.

6.2c. Holonomic and Nonholonomic Constraints

Consider a dynamical system with configuration space M" and local coordinates
q',...,q". It may be that the configurations of the system may be constrained to
lie on a submanifold of M". For example, a particle moving in R* = M> may be
constrained to move only on the unit sphere. In this case we have a single constraining
equation F(x,y, z) = x> + y? + z2> = 1. We may write this constraint in differential
form dF = 0 = xdx + ydy + zdz. More generally we may impose constraints given
by r exact 1-forms, dFy, =0, ..., dF, = 0, constraining the configuration to lie on an
n — r-dimensional submanifold V"~ of M", atleastifdFy A ... AdF, #0on V"',
The constraints have reduced the number of “degrees of freedom” from n to n — r.
Still more generally, we may consider constraints given by r independent Pfaffians that
need not be exact

6,=0,...,6,=0 (6.10)

Definition: The constraints (6.10) are said to be holonomic or integrable if the
distribution is integrable; otherwise they are nonholonomic or nonintegrable.
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Of course, if the constraints are holonomic, then by the Frobenius theorem we may
introduce local coordinates x, y so that the system is constrained to the submanifolds
y1 = const.,..., y" = const., and then the constraints can be equivalently written as
dy' = 0,...,dy" = 0. Nonholonomic constraints are more puzzling. Consider the

classic example of a vertical unit disc rolling on a horizontal plane “without slipping.”

~ e

)~

Figure 6.9

To describe the configuration of the disc completely we engrave an orthonormal pair
of vectors ey, e, in the disc and consider the endpoint of e; as a distinguished point on
the disc. The configuration is then completely described by

('x7y’ w7¢)

where (x, y) are the coordinates of the center of the disc, ¢ is the angle that e; makes
with the vertical (positive rotations go from e; to e;), and v is the angle that the plane
of the disc makes with the x axis. (The line of intersection of the disc and the xy plane
is directed such that an increase of the angle ¢ will roll the disc in the positive direction
along this line.) It is then clear that the configuration space of the disc is

M =R*>x §' x S' =R? x T?

The condition that the disc roll without slipping is expressed by looking at the motion
of the center of the disc. It is

6, :=dx —cosydep =0 (6.11)
6):=dy —sinypd¢p =0
It would seem that the constraints would reduce the degrees of freedom by 2, but in a
certain sense this is not so. We can see that the constraints are nonholonomic as follows:
do, = sinyrdyr A d¢ yields
doy A (B) A 6y) =sinyrdy Addp Adx ANdy #0

By (6.2), part (iv), the distribution is not integrable. Recall that in the case of integrable
constraints we have integral manifolds, the leaves V*, on which the system must remain.
If we move (from a configuration point p) a small distance in a direction that violates
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the constraints, that is, along a curve whose tangent vector is not annihilated by all of
the constraint Pfaffians 6y, . . ., 6,, then we automatically end at a point g on a different
leaf. There is no way that one can move from p to g while obeying the constraints and

Figure 6.10

remaining in the given Frobenius coordinate patch. It is possible that an endpoint ¢’
lies on the same maximal leaf as p, but to go from p to ¢’ while obeying the constraints
requires a “long” path, that is, a path that leaves the coordinate patch. This is the
meaning of the statement that in a holonomic system one has locally only n — r degrees
of freedom; we must stay on the (n — r)-dimensional leaf. It is also a fact that although
a maximal leaf can return to an infinite number of different slices globally (as in T
with irrational slope) it cannot return to every slice in the coordinate patch. Some points
in the patch cannot be reached from p while obeying the constraints.

This is not the case in our nonholonomic disc! Recall that the constraints demand
rolling without sliding. Consider the disc in an initial state at the origin and lined up
along the x axis. Now violate the constraints by sliding the disc in the y direction for
an arbitrarily small distance. If the system were holonomic we could not roll the disc
along a small path from the initial to the final configuration. But here we can!

z

Figure 6.11

We have indicated a path in Fig. 6.11. You should convince yourself that you can obey
the constraints and end up at a configuration that differs from the initial configuration by
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an increment in only one of the coordinates. We have illustrated the case when only y has
been changed. (A change in ¥ only is very easy since dx = dy = d¢ = 0 satisfies the
constraints; this is simply revolving the disc about the vertical axis.) Thus, although the
two constraints limit us “infinitesimally” to 2 degrees of freedom, we see that actually
all neighboring states in a 4-dimensional region are “accessible” (by means of piecewise
smooth curves) while obeying the constraints. In the general case of » nonholonomic
constraints in an M", there will be a set of states of dimension greater than n — r that
will be accessible from an initial state via short piecewise smooth paths obeying the
constraints. The actual dimension is given by “Chow’s theorem,” to be discussed in
Section 6.3g. We shall discuss a very important special case in thermodynamics in our
next section.

For an application of holonomy to the problem of parking a car in a tight spot, see
Nelson’s book [N, p. 34]

Problem

6.2(1) Show that the Pfaffians in (6.7) are linearly independent.

6.3. Heuristic Thermodynamics via Caratheodory

Can one go adiabatically from some state to any nearby state?

6.3a. Introduction

In this section we shall look at some elements of thermodynamics from the viewpoint
of Frobenius’s theorem and foliations. This was first done in 1909 by Caratheodory,
who attempted (at the urging of Max Born) an axiomatic treatment of thermodynamics.
His treatment had shortcomings; some were purely mathematical, stemming from the
local nature of Frobenius’s theorem. A careful axiomatic treatment of Caratheodory’s
approach has been given by J. B. Boyling [Boy]. My goal here is much more limited. I
only wish to exhibit the geometrical setup that gives, in my view, the simplest heuristic
picture for the construction of a global entropy, using the mathematical machinery
that we have already developed. (My first introduction to the geometrical approach
for a local entropy was from Bob Hermann; see his book [H].) I restrict myself to
systems of a very simple type; I employ strong restrictions, which, however, are not
uncommon in other treatments. I will use very specific constructions, for example, I
will make use of familiar processes such as “stirring” and “heating at constant volume.”
We will accept Kelvin’s version of the second law. This leads, through Caratheodory’s
mathematical characterization of a nonholonomic constraint, to the existence of the
global entropy.

For supplementary reading I suggest chapter 22 of the book of Bamberg and Stern-
berg [B, S], but it should be remarked that their thermodynamic entropy is again only
locally defined.
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6.3b. The First Law of Thermodynamics

Consider, for example, a system of regions of fluids separated by “diathermous” mem-
branes: membranes that allow only the passage of heat, not fluids. We assume the
system to be connected.

Figure 6.12

We assume that each state of the system is a thermal equilibrium state. Let p;, v;
be the (uniform) pressure and volume of the i region. The “equations of state” (e.g.,
piv; = n; RT;) at thermal equilibrium will allow us to eliminate all but one pressure,
say pi; thus a state, instead of being described by py, vy, ..., p,, v,, can be described
by the (n 4 1)-tuple py, vy, vy, ..., v,. It is important to assume that there is a global
internal energy function U of the system that can be used instead of p;. Our states
then have n + 1 coordinates

vo:=U,v,vp,...,0,

More generally, the state space is assumed to be an n + 1-dimensional manifold M"+!
with local coordinates of this type; U, however, is a globally defined energy function.
In Section 6.3c we shall define the state space M"*! more carefully, but for the present
we shall only be concerned with local behavior.

A path in M"*! represents a sequence of states, each in equilibrium. Physically, we
are thus assuming very slow changes in time, that is, quasi-static transitions. We shall
also need to consider non-quasi-static transitions, such as, “stirring.” Such transitions
start at some state x and end at some state y, but since the intermediate states are not
equilibrium states there is no path in M"*! joining x to y that represents the transition.
These are “irreversible” processes. Schematically, we shall indicate such transitions by
a dashed line curve joining x to y.

On M"*! we assume the existence of a work 1-form W! describing the work done
by the system during a quasi-static process.

W= Zpidvi = Zpi(U, Vi, V2, .., Ug)d Y
i=1 i=1

Since we do not assume that W' is closed, the line integral of W' is in general dependent
upon the path joining the endpoint states.
We also assume the existence of a heat 1-form

0'=) " 0iU. v v, ..., v,)dy;

i=0
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(with again vy = U) representing heat added or removed from the system (quasi-
statically). Again Q! is not assumed closed. We shall assume that Q' never vanishes.
(In [B, S], Q! is derived, rather than postulated as here.)

We remark that in many books the 1-forms Q! and W! would be denoted by dQ
and W, respectively. We shall never use this misleading and unnecessary notation; Q'
and W' are in no sense exact.

The first law of thermodynamics

dU = Q' — W!

associates a “mechanical equivalent energy” to heat and expresses conservation of
energy.

6.3c. Some Elementary Changes of State

1. Heating at constant volume

U=y i
S & Y stir at constant

. -~_ ' volume y

W(y) =0, and so

dU = Q along ¥,

"
state space M
oy =0
adiabatic dU=—W along VIl
Vi
Figure 6.13
If y; is a path representing heating at constant volume, then dv; =0, ..., dv, = 0,

and thus the work 1-form W vanishes when evaluated on the tangent y;. From conser-
vation of energy dU = Q along y;.

2. Quasi-static adiabatic process. Since no heat is added or removed in such a process we
have Q(y;;) =0andsodU = —W.

3. Stirring at constant volume. This is an adiabatic process but since it is not quasi-static
we cannot represent it by a curve in state space. We schematically indicate it by a dashed
curve y;;; joining the two end states x and y’. @ and W make no sense for this process,
but work is being done by (or on) the system, the amount of work being the difference
of the internal energy U (y') — U (x).

The preceding considerations suggest the following structure of the state space. We
shall assume that there is a connected n-manifold, the mechanical manifold V", and
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a differentiable map 7= of M"*! onto V" having the property that the differential 7, is
always onto. (Such a map is called a submersion.) Schematically

M 77 ()

v

Figure 6.14

By the main theorem on submanifolds of Section 1.3d, if v € V" then 7' (v) is a
1-dimensional embedded submanifold of M"*!'. We shall assume that each 7' (v) is
connected. The manifold V" will be covered by a collection of local coordinate systems,
typically denoted by v', ..., v". V" takes the place of the volume coordinates used
before. The curves 7~ (v) are the processes “heating and cooling at constant volume”
employed previously. Since we have assumed that each such curve is connected, we
are assuming that given any pair of states lying on 7 ~!(v), one of them can be obtained
from the other by “heating at constant volume.” It is again assumed that the work 1-form
W' on M™"*! is 0 when restricted to 7 ~!(v). On the other hand, the heat 1-form Q' is
not O when restricted to these curves. The first law then requires that dU = Q # 0
for such processes. In particular it would be possible to parameterize each 7~ (v) by
internal energy U. Then U, v', ..., v" forms a local coordinate system for M"*! (with
U a global coordinate).

6.3d. The Second Law of Thermodynamics

A cyclic process is one that starts and ends at the same state. The second law of
thermodynamics, according to Lord Kelvin, can be stated as follows.

In no quasi-static cyclic process can a quantity of heat be converted entirely into its
mechanical equivalent of work.

The second law of thermodynamics, according to Caratheodory (1909), says

In every neighborhood of every state x there are states y that are not accessible from
x via quasi-static adiabatic paths, that is, paths along which Q = 0.

Caratheodory’s assumption is weaker than Kelvin’s:

Theorem (6.12): Kelvin’s version implies Caratheodory’s.
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PROOF:

X

cool at constant volume
W=0

y

Figure 6.15

Given a state x, take a process of type I by cooling at constant volume, W = 0,
ending at a state y. We claim that there is no quasi-static adiabatic process II going
from x to y. Suppose that there were. We would then have

Jw=[o-aw--[a=] av=[a-][ o

But this would say that the heat energy pumped into the system by going from y
to x along —1, that is, by heating at constant volume, has been converted entirely
into its mechanical equivalent of work [,, W by the hypothetical process 1,
contradicting Kelvin. O

Note in fact that no state on I between x and y is quasi-statically adiabatically
accessible from x.

An adiabatic quasi-static process is a curve characterized by the constraint Q! = 0.
We know that if Q@ = 0 were a holonomic constraint then of course there would exist, in
any neighborhood of a state x, other states y not accessible from x along such adiabatic
paths, because the accessible points would all lie on the maximal leaf (integral manifold
of codimension 1) through x. Does the existence of inaccessible points (i.e., the second
law of thermodynamics) conversely imply that the distribution Q = 0 (the “adiabatic”
distribution) must be integrable? Caratheodory showed that this is indeed the case by
proving the following purely mathematical result.

Caratheodory’s Theorem (6.13): Let 6! be a continuously differentiable non-
vanishing 1-form on an M", and suppose that 6 = 0 is not integrable; thus at
some xo € M" we have

0 ANdO #0

Then there is a neighborhood U of xy such that any y € U can be joined to xy by
a piecewise smooth path that is always tangent to the distribution.

Proor SKETCH: An indication of why this should be is easily given. Since
6 = 0is not integrable near x(, we know that there is a pair of vector fields X and
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Y defined near x(, always tangent to the distribution & = 0 but such that [X, Y]
is not in the distribution.

Figure 6.16

Let ¢ and i be the flows generated by X and Y respectively. From 4.1c we
know that the piecewise smooth integral curves

Y (=v1) 0 $(=/1) 0 Y (V1) 0 p(V1)xg

have smooth segments tangent to the distribution # = 0, and have final endpoints
lying on a curve whose tangent is [X, Y]. This direction is transverse to the
distribution. Thus, not only are points “along” 0 = 0 accessible from x,, but a
curve of points transverse to 0 = 0 is accessible also. It is not difficult to show
(using the machinery of the proof of the Frobenius theorem) that in fact all points
in some neighborhood of x( are accessible (see [H]). O

We thus conclude from Caratheodory’s mathematical theorem together with his
version of the second law that

Theorem (6.14): The adiabatic distribution Q' = 0 is integrable.

Note that when the state space is 2-dimensional (with coordinates, say, p; and v)
this is a tautology since every I-form in a 2-manifold defines an integrable distribution
of curves.

6.3e. Entropy

Since Q' = 0 is integrable, we know from 6.1a that there are locally defined functions
S, called a local entropy, and A # 0, on the state space M"*! such that Q! = AdS.
Since

g:dS
A

we say that Q' admits a local integrating factor X (since d S is exact, [ Q/A is locally
path-independent, that is, “integrable”). For thermodynamic purposes it is imperative
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that A and the entropy S be globally defined, but the Frobenius theorem only yields local
functions. If, for example, the foliation defined by Q = 0 has leaves that wind densely
(as in a torus) then there is no way that a global function S can exist, since such an S must
be constant on each maximal leaf. It is easy to see, however, that Kelvin’s second law
of thermodynamics rules out the possibility of not only dense adiabatic leaves, but even
leaves that “double back”! For in the proof that “Kelvin implies Caratheodory,” we saw
that two states related by heating at constant volume cannot be joined by a quasi-static
adiabatic. This says that no 7 ~'(v) can meet a maximal adiabatic leaf twice.

It might be thought that the space M"*! and the adiabatic foliation must then be of a
completely trivial nature. The following foliation of R? by curves Q' = 0 gives some
indication of the complications that could arise.

/
.
‘
;
'
'
:
T
:

Figure 6.17

We have exhibited an “adiabatic” foliation of the plane M? = R? consisting of two
horizontal bands of leaves separated by a nested sequence of “paraboliclike” leaves
asymptotic to two of the horizontal ones. The processes “heating at constant volume”
are the orthogonal trajectories of these leaves. We have depicted a particular leaf L, and
a particular transversal curve y. We consider V! = L, with projection 7 : M?> — V!
defined as follows: Move each point in the plane along the orthogonal trajectory through
that point until you strike the leaf L. In particular, if we parameterize L( by a coordinate
v and if we let v be constant on each orthogonal trajectory, then v becomes a global
“mechanical” coordinate on the state space M>.

Return now to our quest for a global entropy. We attempt to construct a function
S such that S is constant on each maximal adiabatic leaf Q = 0, as follows. As in
6.1a, we need a curve that is transverse to the leaves. Let xq be a given point in M"*+!,
fixed once and for all, and let y = y(U) be the curve 7w ~! (7 (x)) obtained from x
by heating and cooling at constant volume, parameterized by internal energy U. Since
QO # 0 along this curve (we are heating or cooling), it is transverse to the adiabatic
leaves. This is our transversal! Let L be a leaf that strikes y at the point y (U). We then
define S(x) = U for all x in this leaf. This definition makes sense since we have already
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seen that the leaf L cannot strike ¢ a second time. We have defined S for all states that
lie on adiabatic leaves that strike the basic transversal y. If every maximal adiabatic
leaf on M"*" met the basic transversal y then the function S would be globally defined.
A general foliation will not have this property. For example, in our illustrated foliation
of R?, we have exhibited the basic transversal y through x, and it is clear that this
transversal does not meet any of the horizontal leaves at the top! Consequently, no state
y on one of these top leaves can be adiabatically deformed to have the same volume
coordinate as xg!

Sufficiently simple thermodynamical systems do not exhibit this behavior. Given two
states x¢ and y, consisting of collections of contiguous bags of fluids, as in Fig. 6.12, we
ought to be able to “massage” the bags in state y, quasi-statically and adiabatically, so
that the final state y’ has the same volume coordinates as the state x,. Thus the adiabatic
leaf through y would indeed strike the transversal through x at the state y’.

|X() LO

Figure 6.18

Furthermore, if, for instance, U (y’) > U (xy), then by stirring at constant volume
we could go adiabatically (but not quasi-statically) from xy to y'. If U (¥") < U (xg) we
could stir from y’ to xo. This would say that given any pair of states x and y, either y
is adiabatically accessible from x or x is adiabatically accessible from y, though not
necessarily in quasi-static transitions.

Thus we shall assume that a basic transversal will strike every adiabatic leaf; we are
then assured of the existence of a global entropy function S, which we assume smooth.
By construction, then, Q! = Ad S for some globally defined integrating factor A. A % 0
since Q never vanishes. Since S = U on y and dU = Q along y, we see L > (. As
we shall see, S is non-decreasing for each adiabatic process. S is called an empirical
entropy.

6.3f. Increasing Entropy

Experience shows that if we start at a state y and “stir” the system adiabatically at
constant volume (this cannot be done quasi-statically) we shall arrive at a state x
having the property that no adiabatic process (quasi-static or not) can return us to y;
we cannot “unstir” the system.
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=

~<

Figure 6.19

In Figure 6.19 we have stirred from y to x. U(x) > U (y). Note that x can also be
reached from y by heating at constant volume.

We assume that if x and y are on 7~!(v) and if U(x) > U(y), then there is no
adiabatic process, quasi-static or not, that will take us from x to y.

Theorem (6.15): Ifa state y results from x by any adiabatic process (quasi-static
or not), then S(y) > S(x).

(Of course if the process is quasi-static then dS = Q /X = 0 in the process.)

PROOF: Suppose that S(x) > S(y) and that there is some adiabatic process
x — y leading from x to y.

assumed

/ adiabatic
AY

Figure 6.20

By deforming adiabatically we may move x and y quasi-statically to x" and y’
on the basic transversal y through x,. Then

S(x') = 8(x) > S = SO

But along the basic transversal y we have S = U, and so U(x’) > U(y’). We
could then stir adiabatically from y’ to x’. But then we could “unstir” by the
adiabatic going from x’ to x to y to y’, a contradiction! Thus the adiabatic from
X to y cannot exist. O



HEURISTIC THERMODYNAMICS VIA CARATHEODORY 187

By assuming the existence of an empirical temperature and by combining simple
systems into a single compound system (while introducing no “adiabatic”’ membranes)
one can show that there is a specific universal choice for the integrating factor A, called
the absolute temperature 7', that depends only on the empirical temperature. The
resulting empirical entropy function S is then the entropy

2 _us
T
This is indicated in most books dealing with thermodynamics, for example, [B, S]. A

careful mathematical treatment is given in Boyling’s paper [Boy].

6.3g. Chow’s Theorem on Accessibility

LetY,,a = 1,...,n, be vector fields on an M" that are linearly independent in the
neighborhood of a point P. Then any point on M sufficiently close to P is accessible
from P by a sequence of broken integral curves of the fields Y, ; this was the significance
of the computation (6.5), when coupled with the inverse function theorem.

In our sketch of Caratheodory’s theorem (6.13) we have indicated a proof of the
following: If vector fields X; and X, are tangent to a distribution A on an M", but
[X1, X;] is not, then by moving along a sequence of broken integral curves of X; and
X, the endpoints trace out a curve tangent to [X;, X;], which is transverse to A. Thus

points on integral curves of [X, X;] are accessible by broken integral curves of X,
and X,.

Let vector fields X,, @ = 1, ..., r span an r-dimensional distribution A on some
neighborhood of P on an n-manifold M". Suppose that A is not closed under brackets.
Adjoin to the vector fields X, the vector fields [X,, Xg] obtained from all the brackets.
It may be that the new system of vector fields is still not closed under taking brackets;
adjoin then all brackets of the new system, yielding a still larger system. Suppose that
after a finite number of such adjoinings one is left with a distribution D(A) that has
constant dimension s < n and is closed under brackets, that is, is in involution. By
Frobenius there is an immersed integral leaf V* of this distribution passing through P.
From Caratheodory’s theorem (6.13), points of this submanifold that are sufficiently
close to P are accessible from P by broken integral curves of the original system X,.
Further, no points off the maximal leaf V are accessible. This is the essential content
of Chow’s theorem. See [H] for more details.
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CHAPTER 7

R3 and Minkowski Space

7.1. Curvature and Special Relativity

What does the curvature of a world line signify in space—time?

7.1a. Curvature of a Space Curve in R?

We associate to a parameterized curve C, x = x(¢) in R?, its tangent vector X(¢) =
(%, y,2)T. When t is considered time, this tangent is the velocity vector v, with speed
|| v ||= v. Introduce the arc length parameter s by means of

ds\*> ., A
(E) =|| % |?= %, s(t)—/o I %) || du

We then have the unit tangent vector T := dx/ds = xdt/ds = v/v, thatis, v = vT.
For acceleration a we have
a=v=iT+v o 71290
dt ds
Since T has constant length, d'T/ds is orthogonal to T and so is normal to the curve
C.IfdT/ds # 0, then its direction defines a unique unit normal to the curve called the

principal normal n

dT
— =k (s)n(s) (7.1)
ds

where the function «(s) > 0 is the curvature of C at (parameter value) s. Then the
acceleration

a= 10T+ v’k (s)n (7.2)

lies in the osculating plane, the plane spanned by T and n. To compute « in terms of
the original parameter ¢ rather than s, note that

vxa=vT x 0T + v’k (s)n)
=v’xT xn

191
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and so
Clvxal
=0
See Problems 7.1(1) and (2).
We define the curvature vector by
dT
K=—=kKn
ds

We remark that when dealing with a plane curve, that is, a curve in R, a slightly
different definition that allows the curvature to be a signed quantity is usually used. If
T = (cosa, sina)” is the unit tangent (where « is the angle from the x axis to the
tangent) then T+ = (— sina, cosa)? is the unit normal resulting from a counterclock-
wise rotation of the tangent. Then dT/ds = & T+ defines a signed curvature ¥ = *«.
But then

ﬂ = i(cos «, sinw)” = (—sina, cos a)Td—a
ds ds ds

gives the familiar
do

ds

It is shown in books on differential geometry that « and the osculating plane have
the following geometric interpretations. To compute « (s) we consider the three nearby
points X(s —€), X(s), and X(s + €) on C. If these points are not colinear (and generically
they aren’t) they determine a circle of some radius p, passing through x(s) and lying in
some plane P.. Under mild conditions, it is shown that lim,_,( P, is the osculating plane
and p(s) = lim._,¢ p. = 1/x(s) is the radius of curvature of C at s. (If dT/ds = 0
at s, we say k(s) = 0, p = oo, and the osculating plane at s is undefined.) Then (7.2)

becomes
02
a=0T+ (—)n
0

the classical expression for the tangential and normal components of the acceleration
vector.

K =

7.1b. Minkowski Space and Special Relativity

Minkowski space M is R* but endowed with the “pseudo-Riemannian” or “Lorentzian”
metric or “arc length” (as discussed in Section 2.1d)

ds® = —c*dt* + dx* + dy* + dz7* (7.3)

0 3

Here c is the speed of light, and the coordinates t = x%, x = x!',y = x%,z = x
for which ds? assumes the form (7.3) form an inertial coordinate system. (For phys-
ical motivation and further details see, for example, [Fr].) The metric tensor g;; =
(0/0x', 8/0x7) is then

(gij) = diag(—c*, 1, 1, 1) (7.4)

Warning: Many books use the negative of this metric!
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Let x = (¢, x) and let dx « dx be the usual dot product in R3. Then
ds® = —c*dt* + dxdx
Then a 4-vector, that is, a tangent vector to M, 4
v= 0%V =1°9/0t +v°9/9x* = "9/t + v

is said to be

spacelike if (v, v)
timelike if (v, v)
lightlike  if (v, v) =

AV
o oo

The path x = x(7) of a mass point in M is called its world line. Its tangent vector
dx/dt = (1,dx/dt)T = (1, v)T is timelike since

dx d
<d—);, d_)tc> =—?4vev=—*+0°

and, as we shall see, v < ¢. Thus the tangent vector to the world line of a mass particle
lies inside the light cone x«x = ¢*%.

We shall call v =dx/dt the classical velocity vector.

The analogue of the arc length parameter in R for the world line of a particle in
Mg is the proper time parameter T defined by pulling back the tensor —c~2ds? to the
curve

dt’ = —c?ds* =dt* — ¢ *dx-dx (7.5)
v\ L,
=(1- 2 dt
Define the Lorentz factor y by
._ (1 v2>1/2 _dt a6
V= c? T dt '
An analogue of the unit tangent in R? is the velocity 4-vector u
dx dt dx\" (w7 an
u=—=——1] = ,V .
dt dt dt 4
Note that
(u,u) = y*(=c* +v*) = =¢? (7.8)

We define, as usual, | A ||*:= (A, A) even though this may be negative! (When it
is negative we shall never use its square root | A ||.) A is said to be a unit vector if
| A ||>= %c?; u is a unit vector in the sense that one usually uses units in which the
speed of light ¢ = 1. The physical interpretation of the proper time parameter t along
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N Z light cone

s
N
- — 242
AN X =
V,

Figure 7.1

a world line C is as follows (see [Fr, p. 18]):

2N 172
r=/<1—v—2) dt
c

is the time kept by an “atomic clock” moving with the particle along the world line C.
In particular, coordinate time t is the proper time kept by an atomic clock fixed at the
spatial origin x = 0 of the inertial coordinate system.

Associated with any particle is its rest mass m; this is an invariant (independent of
coordinates, i.e., observers).

The (linear) momentum P of the particle is the 4-vector

P = mou = (moy, mv)" (7.9)

1)2 —-1/2
m = moyy =m0(l — —2)
C

is sometimes called the relativistic mass; m is interpreted as the mass of the moving
particle as viewed from the “fixed” inertial coordinate system. Note that m — oo as
v — ¢, and, as we shall see in (7.15), an infinite classical force would be required to
accelerate a mass to the speed of light. This is the justification for the assumption that
v < c for all massive particles.

Note that the momentum 4-vector has constant “length”

| P |*= (P, P) = —mdc*

where

If we define the classical momentum by p := mv (with a variable mass!) then we can
write P = (m, p)” and then (P, P) = —c*m® + p?, and so

m?c* = méc2 +p? (7.10)

The analogue of the curvature vector dT/ds in R’ is the curvature or acceleration
4-vector

du

dt
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The Minkowski force is the 4-vector defined by

dP d
= 4P _ dlmou) (7.11)
dt dt
Thus
d ;,  (dm dp\" o er
_ 4 (22 ,%P) - £, 7.12
f 77 P) (dr,;/dt> (f°, vt (7.12)

where f, := dp/dt is the classical force in R* and where f° is the = x° component
of f. Since (P, P) is a constant, f = d P/dt must be orthogonal to P (and thus to u)
in the Minkowski metric

0= (fiu)==fy +yf.eyv

that is,
£ = (%)fﬁf-v (7.13)
C

The time component of the Minkowski 4-force is, except for a factor, the classical
power (rate of doing work). Finally

f=y v, f)" (7.14)
Note that f® = dm/dt = ydm/dt shows that
d
d—';’ — .y (7.15)

and so
d(c*m) = £, «dx

is the element of work done by the classical force. Classically this is the energy imparted
to the particle. This leads us to associate to a mass m an energy E = mc? and a rest
energy moc>. (7.10) becomes

E2:E§—|-c2p2 (7.16)

E T
P= ()

Since E /c? appears as the time component of the momentum 4-vector, we see that spe-
cial relativity unites the energy and classical momentum into a 4-vector, the momentum
4-vector.

The familiar startling effects of special relativity, such as length contraction and time
dilation, are consequences of the geometry of Minkowski space. Their explanation rests
on Einstein’s simple analysis of the concept of time and simultaneity. This analysis was
Einstein’s monumental contribution to special relativity, and gave meaning to the ad hoc
assumptions put forth previously by Lorentz, Poincaré, Larmor, and Fitzgerald; see [Fr].

and we have
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7.1c. Hamiltonian Formulation

Consider a mass particle moving in R* and suppose that the classical force is derivable
from a time-independent potential f¢ = —V V. From (7.15),dm/dt = —c >V V ev =
—c2dV /dt along the world line, and consequently

H:=mc+V
is a constant of the motion and deserves the name total energy. In the phase space R°,
V is a function of X = ¢ alone, and from (7.10) mc? = (m}c* + p*c*)'/? is a function

of p alone. From (7.10) we have 2mc*dm/dp, = 2p., showing that d(mc?)/dp, =
Po/M = vy, Wwhere o = 1, 2, 3. Then

dx® . 0(mc?  dmc*+V) 0OH
=1V = = =
dt Py Py 0Py
and
dpa .. AV  , 9H
= = — = — V = —
dr T T T T e TV = T

and thus we are able to put the equations of motion in Hamiltonian form provided we
define the Hamiltonian H to be the total energy.

Problems

7.1(1) Compute the curvature of the helix x = coswt, y = sinwt, z = kt, where » and
k are constants.

7.1(2) Assume « # 0; then n is well defined and we can define the binormal vector B
to be the normal to the osculating plane, B = T x n. Show that dB/ds lies along
n, and hence the torsion t is well defined by dB/ds = t(s)n. Then show that
dn/ds = —«(s)T — =(s)B. (The equations for the arc length derivatives of T, n,
and B constitute the Serret—Frenet formulas.)

7.1(3) Show that the action for a particle with H = mc? + V is

/padx"‘—Hdtz—mocz/dr—/th

7.2. Electromagnetism in Minkowski Space
How can &' and %7 be united to yield a 2-form in space-time?

7.2a. Minkowski’s Electromagnetic Field Tensor

The Heaviside-Lorentz force law (3.36) becomes f = g[E + (v/c) x B] when we use
units for which the speed of light ¢ is not necessarily 1. This spatial force vector can
be completed to a Minkowski force 4-vector by using the prescription (7.14)

T
f=y v, D =yq (czE-v, E + (g) X B)
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The covariant expression for f, that is, the associated 1-form f!, is, from (7.4),
f'=—yalise"ldi + yql&' —iye(5)]

Recall that the velocity 4-vector is u = yd/dt + yv. In Problem 7.2(1) you are asked
to show that f! can be written

fl=—qi,F?
where (7.17)
Fr:=¢&"Adt +c'@?

is the electromagnetic field strength 2-form.

The velocity 4-vector u is intrinsic to the world line; since it is constructed using
proper time 7 rather than coordinate time ¢, all inertial coordinate systems will agree on
the vector u even though their local coordinate expressions for it will differ. The Lorentz
force covector is intrinsic; this is a consequence of the assumption that g[E+ (v/c) x B]
is an accurate discription of the classical force f. acting on a charged particle even when
moving at relativistic speeds! It follows then, from (7.17), that F? is intrinsic; that is,
F? is a covariant second-rank tensor! This skew symmetric tensor was first introduced
in 1907 by Minkowski.

From this point on we shall revert to units in which the speed of light is unity

c=1
Written in full
F? = (Eidx + E»dy + Exdz) Adt (7.18)
+ Bidy ANdz + Bydz Adx + Bzdx ANdy

(Since the spatial part of the metric is euclidean we have E, = E“, etc.) If we write,
asusual, F? =), . F;dx' Adx’, we see

0 —-E —-E, —-E;

El 0 B3 _BZ

E2 —B3 0 Bl

E; B, —-B 0

The Lorentz force law (7.17) can then be written (from (2.76))

fi = qFyu (7.19)

(Fij) =

Consider a second inertial coordinate system ¢, X’ (with identical orientation), repre-
senting an observer moving along the x axis of the first observer with constant speed v.
We assume that their spatial origins coincide when t = ¢’ = 0. Elementary arguments
(asin [Fr]) show that y = y’ and z = z’. We shall then only be concerned with the rela-
tions between ¢, x and ¢, x’. The basis vectors for the unprimed system are ey = (1, 0)”
and e; = (0, 1)7. The basis vector e is of the form (z, x)T in the unprimed system; it
must satisfy —t24+x? = —1, and soitis of the form (cosh «, sinh ). Likewise, to main-
tain Lorentz orthogonality, €| must be (sinh e, cosha)”. Thus, assuming a linear coor-
dinate change, the coordinate systems are related by t = ¢’ cosha + x’ sinh o and x =
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t' sinh o 4+ x’ cosh . The spatial origin of the primed system, x” = 0, is moving so that
x = vt. Thus tanh«a = v. This allows us to express sinh« and cosh « in terms of v,
yielding the usual expressions for the Lorentz transformations (with constant v and y)

t =y +vx) x =y +vt) (7.20)
y=y =7
One can check immediately that under such a coordinate change the volume form

vol' =dt Adx ndy Adz =dt' Adx' Ady AdZ
is unchanged.
I wish to emphasize that Lorentz transformations in general are simply the changes
of coordinates in R* that leave the origin fixed and preserve the form —t> 4+ x> +y> +z2.
If we make a Lorentz transformation (7.20), the local expression for the form F? in
(7.18) will pull back to an expression F? := &' Adt’ + &2, In Problem 7.2(2) you are
asked to compute that

E| =E, B} = B,
E; =y(E;—vB3) By =y (B, + vE3) (7.21)
Ey=y(Es+vB) By =y(B;—vE)
showing, for example, that a pure electric field in a “fixed” system will yield both an
electric and a magnetic field when viewed from a moving system. Since (see Problem

7.2(3))
F AF = —2E.Bvol* (7.22)

we see that E « B is an invariant of such Lorentz transformations! (If, however, we had
allowed a change of orientation, then E +«B would be replaced by its negative since
F A F is a true 4-form and vol* is a pseudoform.)

7.2b. Maxwell’s Equations
In Minkowski space we have (see (4.40))

d
d=d+dt N —
ot
Then, for F? = &!(t, x) A dt + $*(t, X), we have
- 0B 09
dF:dta/\dt+d.CB+dt/\§: d@>+§ Adt +ds (7.23)
and so
0%
dé = —
dF =0 &% and (7.24)
ds =0

Thus d F = 0 is equivalent to the first pair of Maxwell’s equations.
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If there are no singularities in the field F2, then, since Minkowski space is simply
R*, the converse to the Poincaré lemma assures us that F2 = d A' for some 1-form A.
(Away from singularities, such an A' will exist locally.) Write

F?=dA' (7.25)
Al = ¢pdt + @
where @' = A, (¢, X)dx* and where Greek indices run from 1 to 3. Then &' Adt + %% =
(d+dt A3/3t)(¢pdt + @') = dg A dt +da' + dt A @' /3t yields
& — do aa!
ST ot
and (7.26)
@ = da'
This yields the vector expressions E = V¢ — dA /0t and B = curl A. ¢ is the scalar
and A the vector potential. (In most physics books V¢ occurs with a negative sign.)
Consider a charged fluid (with charge density p) moving in R* with local velocity
vector v. The current vector is j = pv; p is the charge density as measured in the inertial

system x. If pg = po(z, X) is the rest charge density, that is, the density as measured by
an observer moving instantaneously with the fluid, then

P = pPoY

since the charge contained in a moving region must be independent of the observer and
yet volumes are decreased by a factor 1/y when viewed from a system in (relative)
motion with speed v (see [Fr], p. 112). Thus j = poyv. Since p, is, by definition,
independent of observer, we may construct an intrinsic 4-vector, the current 4-vector

J = pou = (poy, poyV)" = (o, pV)" = (p. )" (7.27)

We may then construct the associated current 3-form

o
§3=ijvol4=i<pat+j>dt/\dx/\dy/\dz (7.28)

= pdx ANdy Ndz — (jidy ANdz + jodz Adx + jzdx Ady) Adt
¥ =o' P ads
In an important sense, &° is more basic than J (see Section (14.1c)).
We may now consider the second set of Maxwell equations. Define the pseudo-2-

form xF (where the star is not bold) as follows (the reason for this notation will be
explained in Chapter 14):

*F? = —%B A df + %6

(see (3.41)). Then, as in (7.23)

) N 0*&
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Gauss’s law and the law of Ampere—Maxwell then give
d* F? =4n(0° — P Ad1) = 4n§’ (7.29)
In particular
ds’ =0 (7.30)

and this is a reflection of conservation of charge (see [F, p. 111]).

We wish to make two final remarks.

1. Maxwell’s equations are traditionally thought of as four independent axioms, but,
remarkably, special relativity says that this is not so. Consider (7.23). Suppose, for
instance, that every inertial observer notes that d8 = 0. Then every inertial observer
will see the 3-form d F = (dé+ 0%/0¢t) Adt, which is of the form iy, vol*, where the 4-
vector W can have no time component, W° = 0. But under a Lorentz transformation we
will have W = W*(3x"°/9x%), and thus unless W = 0, some Lorentz transformation
will yield a W™ = 0. Thus, if every inertial observer sees d% = 0, then d F = 0 and so
Faraday’s law holds! Likewise, if Gauss’s law is observed by every inertial observer,
then so is Ampere—Maxwell. This is comforting, since Gauss’s law, for example, seems
less sophisticated than Ampere—Maxwell.

2. We wish to emphasize the Maxwell’s equations dF = 0 and d x F = 41§ hold
universally, in all materials. Physicists and engineers usually introduce two material
dependent fields, in our language a pseudo-1-form (! and a pseudo-2-form 92, together
with a material dependent current pseudo-3-form ¢, and then write for Maxwell’s
equations dF = 0 and d(—3C A dt + 9) = 4xmC. In the case of a “noninductive
material,” for example the vacuum, we have 3¢ = %% and 9 = %¢& and ¢ = §, but
in general the macroscopic fields JC and 9 are related to the true microscopic fields
® and & by complicated “constitutive relations.” We shall have no need for these new
fields.

Problems

7.2(1) Derive (7.17).

7.2(2) Derive (7.21).

7.2(3) Show (7.22) and show that F2 A xF2 = (|B|2 — |E|?) vol*.
7.2(4) Show that (3.32) is equivalent to ds% = 0.

7.2(5) All Lorentz transformations leave the 3 dimensional “unit hyperboloid” t2 — x 2 —
y? — z2 =1 of Minkowski space invariant. Show that

dx ndyAndz
[ £]
is a volume form on this hyperboloid that is invariant under Lorentz transforma-

tions. (Hint: H = t2 — x2 — y2 — 22 is an invariant function. Use the method
expressed by equation (4.53) of Hamiltonian mechanics.)



CHAPTER 8

The Geometry of Surfaces in R3

The geometry or kinematics of this subject is a great contrast to that of the flexible line, and, in
its merest elements, presents ideas not very easily apprehended, and subjects of investigation
that have exercised, and perhaps overtasked, the powers of some of the greatest mathematicians.

Kelvin and Tait, Elements of Natural Philosophy

8.1. The First and Second Fundamental Forms
What is the length of a curve that leaves the north pole, ends at the south pole, and makes a
constant angle with each meridian of longitude?
8.1a. The First Fundamental Form, or Metric Tensor

Let M?> C R? be a parameterized surface in space, M> = F(U), where U C R* and
F, has rank 2. Frequently we shall write u' = u and u®> = v.

u? x3
Fi(d/0ub)
= Ox/ou!
3/ou? u / = (0x/au, axYau', ax3/puly’
Fi(0/3u?)
d/u! = ox /02
= (0x"/9u? ax*/ou?, ax3/ou®)T
Lll
2

X
x!

Figure 8.1

A curve x = x(¢) that lies on M? is the image of some curve u* = u®(t) and so
x = x[u(t)]. For velocity vector we have

R KA
dt  \ou*) dt "% dt
201
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where
ox
X[l = 5 o = 19 27
u®
form a basis for the tangent space to M? at each point. A pair of tangent vectors has a
euclidean scalar product

(A’ B) = (XaAas XﬁBﬁ> = gaﬁAaBﬁ

where, as usual,

3./ axi ax!
8up = (Xar Xg) = o )\ 5.7 (8.1)
We can then write, as in Section 2.7b,
ds* = (dx, dx) = (X,du®, xgdu®) = g,sdu®du® (8.2)

and this quadratic form associated to the metric tensor is called the first fundamental
form. Note that we are, as usual, considering the coordinates u® as functions on M2,
and du® are 1-forms on M with du®(xzA?) = A%, and ds? is simply another name for
the metric tensor ds® = g,sdu® ® du® since

Zupdu® @ du’ (A, B) = g,sA“B?

The reason for this notation will become clear in a moment when we shall use a picture
and ordinary arc length ds to write down, with no computations, the metric tensor for
the 2-sphere. But first, you must do it the hard way, from the definition (8.1).

The sphere of radius a can be parameterized (except at the poles) by colatitude
0 = u; and the negative of the longitude, ¢ = u?. You are asked to show, in Problem
8.1(1), that for the sphere of radius a we have

ds® = a*(d6* + sin® 0d¢p?) (8.3)

We define the length of a parameterized curve u = u(t) on M? by

du®\ [ duf\7"?
L= [1axar| dt=/[gaﬁ(u(t>)( - )(W)} dr

The cosine of the angle between tangent vectors A and B is given by
(A,B)
I AIB ]
and the angle between intersecting curves is the angle between their tangents. Thus the

coordinate curves v = constant and u = constant are orthogonal iff g,, := g1» = 0; in
general they intersect at an angle

(8.4)

1 8uv

(8uugu]'?
When the coordinate curves are orthogonal we interpret ds> = g,,du® + g,,dv* as
an “infinitesimal” version of Pythagoras’s rule. On the sphere of radius a, for exam-
ple, we see immediately that (8.3) is the Pythagoras rule applied to the infinitesimal
curved triangle.

cos™
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asin@ d¢

<
1
1
/
K\

/

Figure 8.2
See Problem 8.1(2) at this time.
For element of area, from (2.72),
dS = /gdu N dv

See Problem 8.1(3).

Finally, we would like to make a remark on the classical notation dx appearing
in (8.2). Classically dx is the “infinitesimal vector” with components (dx, dy, dz)”,
joining two infinitesimally distant points, and when we restrict the position vector X to
end on the surface M? this vector dx is tangent to the surface. In our language, dx is a
mixed tensor; in local coordinates for M2,

dx =X, ® du®

(classically the tensor product sign is omitted). We shall think of this mixed tensor
(linear transformation) as a vector-valued 1-form, that is, a 1-form whose value on
any tangent vector v is a vector, rather than a scalar. For this particular vector valued
1-form, the value is again the vector v,

dx(V) = (Xo @ du®)(v) := X, (du®(v)) = x,0* =v

8.1b. The Second Fundamental Form

Whenever we discuss the normal to a surface we shall assume that one of the two
possible local normal fields has been chosen.

Let N =x, x X,/ || X, X X, || be the unit normal to M? at a point (u', u?). Given
any tangent vector X = X, X% at (u', u?), let u* = u®(¢) be a curve on M? having
X as tangent at u* = 0; X* = du®/dt. Then the derivative of N with respect to X is
dN/dt = (ON/ou*)(du®/dt) = N,du®/dt = N,X* (where again N, := oN/du®)
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and this vector is a tangent vector to M? since N is a unit vector. The assignment (the
minus sign being traditional)

oN
X~ —N X% = —X* =: b(X)
ou?
defines then a linear transformation
b:M?>  — M?

(u,v) (u,v)

(Note that under b, x,, is sent into —N,, and that if we reverse the choice of normal field,
b will be sent into its negative.) Let (b*g) be its matrix with respect to the basis {X,}

b(Xﬁ) = Xabaﬁ = —Nﬂ (85)

These are called the Weingarten equations.

The bilinear form B associated to the linear transformation b is (as usual) defined
by BX,Y) = (X, b(Y)) = (X, =Ng¥¥f) = —(x, X", NgY*). Thus, as a tensor, B is
given by the second fundamental form

—(dx, dN) = —(x,,, Ng)du” ® du”

and the tensor product sign is usually omitted. Weingarten’s equation can be written in
terms of the vector-valued 1-form

N
dN = | — | ® duf = —x,b"4 ® du” (8.6)
ouf

Thus, along any curve u = u(t¢) on the surface,

dN . (duﬁ>
[E— _Xab s\ ——
dt dt

We may write for the second fundamental form, as in (2.39),
B = bypdu®du”
where b,g = g4, b g is the covariant tensor associated to the linear transformation b.
Then by = B(Xy,Xp) = (X4, b(Xp)) = — (X4, Np), that is,
bep = —(Xo, Np) (8.7)
This expression is inconvenient for computations since it involves the derivative of the

unit vector N (which usually involves a complicated expression with square roots); we
shall exhibit now a more useful formula. Put

‘ 9%x
Xap = e auP
Since N is a normal vector, 0 = 3/9u” (x,, N) = (X4, N) + (X4, Ng) = (X4, N) — byg,
that is,
byg = (Xap, N) (8.8)

which is the formula for computing B. In full, we have

92 92 92
bug = ( X y z

du*dub’ du*dub’ du*dub

The linear transformation » may then be computed from b%g = g*" b, 4.

)(N‘, N%, NHT
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Problems

8.1(1) Compute the metric for the sphere of radius a.

8.1(2) A “loxodrome” on a sphere of radius ais a curve that makes a constant angle «
with each meridian of longitude. Usually it eventually winds around each pole.
Compute the length of such a loxodrome by using 0 as a parameter. (The tangent
vector then has components (1, d¢/dd) and you may use (8.4) to determine
d¢/do).)

8.1(3) Compute the area of the region on the Earth’s surface bounded by latitudes 0°
and 30° and longitude 0° and 45°.

8.1(4) Consider the surface z = x2 — 2y? near the origin. Use x = u',y = u? for
local coordinates. Compute the matrices (gus) and (b%g) at (0, 0). Save your
computations for problem 8.2(2).

8.1(5) Let M? be a surface in R® and let x; be a point on this surface. Choose new
cartesian coordinates for R® having xg as origin and such that the new x', x2
plane is the tangent plane to M at xq. Use x' = u' and x? = u? as local
coordinates near xy. Show that M near xq is described by the equations

x3=z(x',x%) =1/2) Z byp (0)x* xP
a,f=1,2

+ higher order in x', x?

exhibiting another geometric aspect of the second fundamental form.

8.2. Gaussian and Mean Curvatures

What do we mean by the curvature of a surface?

8.2a. Symmetry and Self-Adjointness

We recall from linear algebra that if @ is a linear transformation in a vector space
with scalar product, then the adjoint @* of @ is the linear transformation defined by
(@X,Y) = (X, @Y), and @ is self-adjoint if @ = @*. In terms of the bilinear form A
associated to @, @ is self-adjoint provided

AX,Y) = (X, QY) = (X, Y) = (Y, AX) = A(Y, X)

that is, a linear transformation Q is self-adjoint iff the associated bilinear form A is
symmetric. In components, @ is self-adjoint iff (Ayg) is symmetric, Aqg = Agy. (You
should convince yourself from the transformation laws for covariant and mixed tensors
that such an equality is in fact independent of basis, whereas A% 5 = A”, might hold in
some basis but not another; it makes no sense to say that a mixed tensor is symmetric.)

From (8.8) we see that the second fundamental form B is symmetric and thus the
linear transformation b : M> — M? is self-adjoint! As we shall now see, the special
eigenvalue behavior of a self-adjoint transformation will have remarkable geometric
consequences in the case of the linear transformation b.
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8.2b. Principal Normal Curvatures

Let x = x(s) define a curve C, parameterized by arc length, on the surface M? in R®.
The unit tangent at x(0) is then T = dx/ds = x,du®/ds. The curvature vector for C,
as a space curve, at x(0) is

dT <du°‘) <duﬁ> n d*u®
K=kn=—=Xu| — || — Xy ——
ds P\ ds ds ds?

where n is the principal normal to C. The component of the curvature vector £ = xn
in the direction of the unit surface normal N is then

du® du®
(km, N) = (Xaﬁ,N>< 15 >(K>

o B
(e, N) = bys (di) (di> — B(T,T) (8.9)

that is,

ds ds

There are, of course, an infinity of curves on M? that pass through x(0) with tangent T,
but (8.9) tells us that although these curves may have very different curvatures as space
curves, the component of the curvature vectors normal to the surface depends only on
the tangent T and is the value of the second fundamental quadratic form B on T

In particular, let T be a unit tangent vector to M at a point p.

center of curvature

Figure 8.3
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Let P be the plane spanned by T and N at p. P cuts out a curve C on M, whose
unit tangent is T. C is a normal section of M and of course it is a plane curve, lying
as it does in P. Its curvature vector kK = kn (as a space curve) points from p towards
the center of curvature (at a distance «~!). Thus, for this normal section, from (8.9)

B(T,T) = +«

where the 4+ sign is used only if the curve C is “curving” toward the chosen surface
normal; for the indicated normal in our figure B(T, T) = —« is negative.

Now keep p € M fixed but rotate T in the tangent plane Mf,; the curvatures B(T, T)
will change in general. We define the principal (normal) curvatures of M at p by

k1(p) = max B(T,T) (8.10)
K2(p) = min B(T, T)
forunit T € Mﬁ. The two directions T, @« = 1, 2, yielding these extrema are called

the principal directions for M at p. But b is self-adjoint (i.e., B is symmetric), and
linear algebra (see Problem 8.2(1)) tells us the following:

Theorem (8.11): k| and «, are the eigenvalues of b and the corresponding prin-
cipal directions T, are the eigenvectors

b(Ty) =k, Ty, a=1,2

If k| # Kk, then automatically the principal directions are orthogonal.

(The orthogonality of the principal directions was known to Euler!)
Of course if k1 = k then all the normal curvatures at p coincide; p is then called
an “umbilic” point. The usual round 2-sphere consists entirely of umbilic points.

8.2¢. Gauss and Mean Curvatures: The Gauss Normal Map
We now define two measures of curvature of a surface M? at p.
det(byp)
det(gap)
Mean curvature = H :=trb = Zbo‘a =K1+ K3

Gauss curvature = K :=detb =

K1K2

Note that since b is sent into —b under a change of normal, H will be sent into its
negative but K is invariant under choice of normal!

Warning: Many authors define H to be the true average (k1 + «2)/2.

Before discussing the significance of these quantities, we need some experience with
computing them. See Problems 8.2(2), 8.2(3), and 8.2(4) at this time.

Note now the following. If A : R" — R" is a linear transformation and " is any
n-form, then

A*w = det(A)w (8.12)
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This follows from (2.65), or directly

w(Aey, ..., Ae,) = w(e;A'y, ..., e;A,)
= a)(ei, . .,ej)Ail . ..Ajn
=w(er,...,e)e A ... A, =w(e,...,e)detA

If M? C R is a surface with given normal field, we define the Gauss (normal) map

n : M* — unit sphere S>
by
n(p) = N(p), the unit normal to M at P

N

Figure 8.4

Define the positive orientation of S?> by using the outward pointing normal. Let
vol2, = ix vol® and @? = vol% = i, vol® be the area forms for M? and S respectively.
Let u, v, be local coordinates for M. We wish to compute the pull-back of w? under the
Gauss normal map. Note that the tangent plane to M? at p is parallel to the tangent plane
to S? at n(p) and we shall identify these two 2-dimensional vector spaces by parallel
translation in R?. (Note that under this identification, w? at n( p) is the same as VOI?W at
p!) Thus, for example, dx/du and b(9x/0u) may be identified with tangent vectors to
§2, and b at p can be considered as a linear transformation of the tangent plane to S>
at n(p). By the geometric meaning of the differential of the map n : M?> — S?

n( ax) = Ny =X (8.13)
ou

ou ou

and so, using (8.12),

ox d d 0
(n*wZ) <_X’ _X) = (U2 (n*_xa n*_X)
du ov ou av
_ wz(ﬁ ﬁ) :wz(_b<§), _b<§>>
du Jv ou dv
,(0x 0x , (90X 0x
= (detb)w"| —, — | =K voly, | —, —
du dv du ov
Thus
n*vol; = K volj, (8.14)

This tells us that the Gauss map is a local diffeomorphism in the neighborhood U of
any pe M* at which K (p) # 0, and furthermore, if U is positively oriented then n(U)
will be positively oriented on S? iff K > 0.
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N@4) N@2)
n3)

' O

Figure 8.5

(8.14) exhibits the Gauss curvature as a “magnification factor” for areas under the
normal map n : M?> — §?, provided we consider area “signed” by the orientation.
“signed” area of n(U) : = /

V01§=/n* vol
n(U) U

:/Kvoljzw
U

Ll/im [signed area of n(U)/area of U] = K (p)
—)]7

and thus

as the region U shrinks down to the point p. This was Gauss’s original definition of
K. Note that n reverses orientation iff the principal curvatures x; and «, at p are of
opposite sign, that is, iff M? is “saddle-shaped” at p.

Problems

8.2(1) This problem gives a proof of the fundamental theorem on symmetric matrices.
Let b: R" — R" be any self-adjoint linear transformation with symmetric bilinear
form B. Let S"~' be the unit sphere in R" and let f: R" — R be the quadratic
function f(x) = B(x, x) = (x, bx) but restricted to the unit sphere S"~'. Since
8" is compact (for this it is important that the metric on R” is positive defi-
nite; we could not use a Minkowski metric where the “unit sphere” is in fact a
hyperboloid), ftakes on its minimum value at some e € S"~'. Let x = x(t) be
a curve on 8™ starting at x(0) = e4. Let x denote the derivative with respect
totatt=0.

(i) Show that (X, be;) = 0. Since any tangent vector to S"~! at ey is of the form
x, this shows that be; is normal to ™! at e, that is, be; = A4e4 for some
real number A¢. Thus Ay = f(ey). This argument shows in fact that every
critical point of f on S"~ is an eigenvector of b with a real eigenvalue and the
eigenvalue is simply the value of f.

Let E; be the subspace of R” spanned by e and let E;- be the orthogonal
subspace to E;.
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(ii) Show that b : £ — E:* and thus the restriction of b to E; is again a self-
adjoint linear transformation (which we shall again call b). Then frestricted to
the unit sphere S"-2 := 8"~' n E;- will again have a minimum value i, > 1
attained at an eigenvector e, € E;-. Proceed then to the subspace orthogonal
to both e4 and e,, and so on. Induction will then show that b has a basis of
orthonormal eigenvectors.
8.2(2) Compute K and H at the origin for the surface in Problem 8.1(4).

8.2(3) What is the normal curvature for the direction y = x at the origin for the surface
z = x? — 2y? of Problem 8.1(4)?

8.2(4) Show that the normal curvature for a direction on an M? that makes an angle 6
with the principal direction T is given by

K (0) = k1 C0S% 0 + Ko SIN° 0

8.2(5) For a surface M2 given in “nonparametric form” z = f(x, y) we can, of course,
introduce x = u and y = v as coordinates. Show that

det( f5)

K= W2

and
H= W[+ £) fix =2 fy iy + (1 + 12) fyy]

where W:=1+ fZ + f?

8.3. The Brouwer Degree of a Map: A Problem Set

Can you map a closed ball into itself so that every point is moved?

8.3a. The Brouwer Degree

In our previous section we discussed the Gauss normal map n : M? — S%. The
situation of mapping a compact oriented manifold into another of the same dimension
plays an important and recurring role in mathematics and its applications. We shall
discuss the topological implications of this situation, first studied in detail by the Dutch
mathematician L. E. J. Brouw