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5.5. Finding Potentials 162

6 Holonomic and Nonholonomic Constraints 165
6.1. The Frobenius Integrability Condition 165

6.1a. Planes in R
3 165

6.1b. Distributions and Vector Fields 167

6.1c. Distributions and 1-Forms 167

6.1d. The Frobenius Theorem 169

6.2. Integrability and Constraints 172

6.2a. Foliations and Maximal Leaves 172

6.2b. Systems of Mayer–Lie 174

6.2c. Holonomic and Nonholonomic Constraints 175



CONTENTS xi

6.3. Heuristic Thermodynamics via Caratheodory 178

6.3a. Introduction 178

6.3b. The First Law of Thermodynamics 179

6.3c. Some Elementary Changes of State 180

6.3d. The Second Law of Thermodynamics 181

6.3e. Entropy 183

6.3f. Increasing Entropy 185

6.3g. Chow’s Theorem on Accessibility 187

II Geometry and Topology

7 R
3 and Minkowski Space 191

7.1. Curvature and Special Relativity 191

7.1a. Curvature of a Space Curve in R
3 191

7.1b. Minkowski Space and Special Relativity 192

7.1c. Hamiltonian Formulation 196

7.2. Electromagnetism in Minkowski Space 196

7.2a. Minkowski’s Electromagnetic Field Tensor 196

7.2b. Maxwell’s Equations 198

8 The Geometry of Surfaces in R
3 201

8.1. The First and Second Fundamental Forms 201

8.1a. The First Fundamental Form, or Metric Tensor 201

8.1b. The Second Fundamental Form 203

8.2. Gaussian and Mean Curvatures 205

8.2a. Symmetry and Self-Adjointness 205

8.2b. Principal Normal Curvatures 206

8.2c. Gauss and Mean Curvatures: The Gauss Normal Map 207

8.3. The Brouwer Degree of a Map: A Problem Set 210

8.3a. The Brouwer Degree 210

8.3b. Complex Analytic (Holomorphic) Maps 214

8.3c. The Gauss Normal Map Revisited: The Gauss–Bonnet

Theorem 215

8.3d. The Kronecker Index of a Vector Field 215

8.3e. The Gauss Looping Integral 218

8.4. Area, Mean Curvature, and Soap Bubbles 221

8.4a. The First Variation of Area 221

8.4b. Soap Bubbles and Minimal Surfaces 226

8.5. Gauss’s Theorema Egregium 228

8.5a. The Equations of Gauss and Codazzi 228

8.5b. The Theorema Egregium 230

8.6. Geodesics 232

8.6a. The First Variation of Arc Length 232

8.6b. The Intrinsic Derivative and the Geodesic Equation 234

8.7. The Parallel Displacement of Levi-Civita 236



xii CONTENTS

9 Covariant Differentiation and Curvature 241
9.1. Covariant Differentiation 241

9.1a. Covariant Derivative 241

9.1b. Curvature of an Affine Connection 244

9.1c. Torsion and Symmetry 245

9.2. The Riemannian Connection 246

9.3. Cartan’s Exterior Covariant Differential 247

9.3a. Vector-Valued Forms 247

9.3b. The Covariant Differential of a Vector Field 248

9.3c. Cartan’s Structural Equations 249

9.3d. The Exterior Covariant Differential of a Vector-Valued

Form 250

9.3e. The Curvature 2-Forms 251

9.4. Change of Basis and Gauge Transformations 253

9.4a. Symmetric Connections Only 253

9.4b. Change of Frame 253

9.5. The Curvature Forms in a Riemannian Manifold 255

9.5a. The Riemannian Connection 255

9.5b. Riemannian Surfaces M2 257

9.5c. An Example 257

9.6. Parallel Displacement and Curvature on a Surface 259

9.7. Riemann’s Theorem and the Horizontal Distribution 263

9.7a. Flat metrics 263

9.7b. The Horizontal Distribution of an Affine Connection 263

9.7c. Riemann’s Theorem 266

10 Geodesics 269
10.1. Geodesics and Jacobi Fields 269

10.1a. Vector Fields Along a Surface in Mn 269

10.1b. Geodesics 271

10.1c. Jacobi Fields 272

10.1d. Energy 274

10.2. Variational Principles in Mechanics 275

10.2a. Hamilton’s Principle in the Tangent Bundle 275

10.2b. Hamilton’s Principle in Phase Space 277

10.2c. Jacobi’s Principle of “Least” Action 278

10.2d. Closed Geodesics and Periodic Motions 281

10.3. Geodesics, Spiders, and the Universe 284

10.3a. Gaussian Coordinates 284

10.3b. Normal Coordinates on a Surface 287

10.3c. Spiders and the Universe 288

11 Relativity, Tensors, and Curvature 291
11.1. Heuristics of Einstein’s Theory 291

11.1a. The Metric Potentials 291

11.1b. Einstein’s Field Equations 293

11.1c. Remarks on Static Metrics 296



CONTENTS xiii

11.2. Tensor Analysis 298

11.2a. Covariant Differentiation of Tensors 298

11.2b. Riemannian Connections and the Bianchi

Identities 299

11.2c. Second Covariant Derivatives: The Ricci

Identities 301

11.3. Hilbert’s Action Principle 303

11.3a. Geodesics in a Pseudo-Riemannian Manifold 303

11.3b. Normal Coordinates, the Divergence and Laplacian 303

11.3c. Hilbert’s Variational Approach to General

Relativity 305

11.4. The Second Fundamental Form in the Riemannian Case 309

11.4a. The Induced Connection and the Second Fundamental

Form 309

11.4b. The Equations of Gauss and Codazzi 311

11.4c. The Interpretation of the Sectional Curvature 313

11.4d. Fixed Points of Isometries 314

11.5. The Geometry of Einstein’s Equations 315

11.5a. The Einstein Tensor in a (Pseudo-)Riemannian

Space–Time 315

11.5b. The Relativistic Meaning of Gauss’s Equation 316

11.5c. The Second Fundamental Form of a Spatial Slice 318

11.5d. The Codazzi Equations 319

11.5e. Some Remarks on the Schwarzschild Solution 320

12 Curvature and Topology: Synge’s Theorem 323
12.1. Synge’s Formula for Second Variation 324

12.1a. The Second Variation of Arc Length 324

12.1b. Jacobi Fields 326

12.2. Curvature and Simple Connectivity 329

12.2a. Synge’s Theorem 329

12.2b. Orientability Revisited 331

13 Betti Numbers and De Rham’s Theorem 333
13.1. Singular Chains and Their Boundaries 333

13.1a. Singular Chains 333

13.1b. Some 2-Dimensional Examples 338

13.2. The Singular Homology Groups 342

13.2a. Coefficient Fields 342

13.2b. Finite Simplicial Complexes 343

13.2c. Cycles, Boundaries, Homology and Betti Numbers 344

13.3. Homology Groups of Familiar Manifolds 347

13.3a. Some Computational Tools 347

13.3b. Familiar Examples 350

13.4. De Rham’s Theorem 355

13.4a. The Statement of de Rham’s Theorem 355

13.4b. Two Examples 357



xiv CONTENTS

14 Harmonic Forms 361
14.1. The Hodge Operators 361

14.1a. The ∗ Operator 361

14.1b. The Codifferential Operator δ = d* 364

14.1c. Maxwell’s Equations in Curved Space–Time M4 366

14.1d. The Hilbert Lagrangian 367

14.2. Harmonic Forms 368

14.2a. The Laplace Operator on Forms 368

14.2b. The Laplacian of a 1-Form 369

14.2c. Harmonic Forms on Closed Manifolds 370

14.2d. Harmonic Forms and de Rham’s Theorem 372

14.2e. Bochner’s Theorem 374

14.3. Boundary Values, Relative Homology, and Morse Theory 375

14.3a. Tangential and Normal Differential Forms 376

14.3b. Hodge’s Theorem for Tangential Forms 377

14.3c. Relative Homology Groups 379

14.3d. Hodge’s Theorem for Normal Forms 381

14.3e. Morse’s Theory of Critical Points 382

III Lie Groups, Bundles, and Chern Forms

15 Lie Groups 391
15.1. Lie Groups, Invariant Vector Fields and Forms 391

15.1a. Lie Groups 391

15.1b. Invariant Vector Fields and Forms 395

15.2. One Parameter Subgroups 398

15.3. The Lie Algebra of a Lie Group 402

15.3a. The Lie Algebra 402

15.3b. The Exponential Map 403

15.3c. Examples of Lie Algebras 404

15.3d. Do the 1-Parameter Subgroups Cover G? 405

15.4. Subgroups and Subalgebras 407

15.4a. Left Invariant Fields Generate Right Translations 407

15.4b. Commutators of Matrices 408

15.4c. Right Invariant Fields 409

15.4d. Subgroups and Subalgebras 410

16 Vector Bundles in Geometry and Physics 413
16.1. Vector Bundles 413

16.1a. Motivation by Two Examples 413

16.1b. Vector Bundles 415

16.1c. Local Trivializations 417

16.1d. The Normal Bundle to a Submanifold 419
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17.3a. A Connection in the Frame Bundle of a Surface 460

17.3b. The Gauss–Bonnet–Poincaré Theorem 462
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Preface to the Third Edition

A main addition introduced in this third edition is the inclusion of an Overview

An Informal Overview of Cartan’s Exterior Differential Forms,
Illustrated with an Application to Cauchy’s Stress Tensor

which can be read before starting the text. This appears at the beginning of the text,

before Chapter 1. The only prerequisites for reading this overview are sophomore

courses in calculus and basic linear algebra. Many of the geometric concepts developed

in the text are previewed here and these are illustrated by their applications to a single

extended problem in engineering, namely the study of the Cauchy stresses created by

a small twist of an elastic cylindrical rod about its axis.

The new shortened version of Appendix A, dealing with elasticity, requires the

discussion of Cauchy stresses dealt with in the Overview. The author believes that

the use of Cartan’s vector valued exterior forms in elasticity is more suitable (both in

principle and in computations) than the classical tensor analysis usually employed in

engineering (which is also developed in the text.)

The new version of Appendix A also contains contributions by my engineering

colleague Professor Hidenori Murakami, including his treatment of the Truesdell stress

rate. I am also very grateful to Professor Murakami for many very helpful conversations.

xix





Preface to the Second Edition

This second edition differs mainly in the addition of three new appendices: C, D, and

E. Appendices C and D are applications of the elements of representation theory of

compact Lie groups.

Appendix C deals with applications to the flavored quark model that revolutionized

particle physics. We illustrate how certain observed mesons (pions, kaons, and etas)

are described in terms of quarks and how one can “derive” the mass formula of Gell-

Mann/Okubo of 1962. This can be read after Section 20.3b.

Appendix D is concerned with isotropic hyperelastic bodies. Here the main result

has been used by engineers since the 1850s. My purpose for presenting proofs is that

the hypotheses of the Frobenius–Schur theorems of group representations are exactly

met here, and so this affords a compelling excuse for developing representation theory,

which had not been addressed in the earlier edition. An added bonus is that the group

theoretical material is applied to the three-dimensional rotation group SO(3), where

these generalities can be pictured explicitly. This material can essentially be read after

Appendix A, but some brief excursion into Appendix C might be helpful.

Appendix E delves deeper into the geometry and topology of compact Lie groups.

Bott’s extension of the presentation of Morse theory that was given in Section 14.3c is

sketched and the example of the topology of the Lie group U (3) is worked out in some

detail.

xxi





Preface to the Revised Printing

In this reprinting I have introduced a new appendix, Appendix B, Harmonic Chains

and Kirchhoff’s Circuit Laws. This appendix deals with a finite-dimensional version

of Hodge’s theory, the subject of Chapter 14, and can be read at any time after Chapter

13. It includes a more geometrical view of cohomology, dealt with entirely by matrices

and elementary linear algebra. A bonus of this viewpoint is a systematic “geometrical”

description of the Kirchhoff laws and their applications to direct current circuits, first

considered from roughly this viewpoint by Hermann Weyl in 1923.

I have corrected a number of errors and misprints, many of which were kindly

brought to my attention by Professor Friedrich Heyl.

Finally, I would like to take this opportunity to express my great appreciation to my

editor, Dr. Alan Harvey of Cambridge University Press.





Preface to the First Edition

The basic ideas at the foundations of point and continuum mechanics, electromag-

netism, thermodynamics, special and general relativity, and gauge theories are geomet-

rical, and, I believe, should be approached, by both mathematics and physics students,

from this point of view.

This is a textbook that develops some of the geometrical concepts and tools that

are helpful in understanding classical and modern physics and engineering. The math-

ematical subject material is essentially that found in a first-year graduate course in

differential geometry. This is not coincidental, for the founders of this part of geom-

etry, among them Euler, Gauss, Jacobi, Riemann and Poincaré, were also profoundly

interested in “natural philosophy.”

Electromagnetism and fluid flow involve line, surface, and volume integrals. An-

alytical dynamics brings in multidimensional versions of these objects. In this book

these topics are discussed in terms of exterior differential forms. One also needs

to differentiate such integrals with respect to time, especially when the domains of

integration are changing (circulation, vorticity, helicity, Faraday’s law, etc.), and this

is accomplished most naturally with aid of the Lie derivative. Analytical dynamics,

thermodynamics, and robotics in engineering deal with constraints, including the puz-

zling nonholonomic ones, and these are dealt with here via the so-called Frobenius

theorem on differential forms. All these matters, and more, are considered in Part One

of this book.

Einstein created the astonishing principle field strength = curvature to explain

the gravitational field, but if one is not familiar with the classical meaning of surface

curvature in ordinary 3-space this is merely a tautology. Consequently I introduce

differential geometry before discussing general relativity. Cartan’s version, in terms

of exterior differential forms, plays a central role. Differential geometry has applications

to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical

systems. Differential geometry occupies the bulk of Part Two.

Einstein’s principle has been extended by physicists, and now all the field strengths

occurring in elementary particle physics (which are required in order to construct a

xxv
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Lagrangian) are discussed in terms of curvature and connections, but it is the cur-

vature of a vector bundle, that is, the field space, that arises, not the curvature of

space–time. The symmetries of the quantum field play an essential role in these gauge
theories, as was first emphasized by Hermann Weyl, and these are understood today in

terms of Lie groups, which are an essential ingredient of the vector bundle. Since many

quantum situations (charged particles in an electromagnetic field, Aharonov–Bohm ef-

fect, Dirac monopoles, Berry phase, Yang–Mills fields, instantons, etc.) have analogues

in elementary differential geometry, we can use the geometric methods and pictures of

Part Two as a guide; a picture is worth a thousand words! These topics are discussed

in Part Three.

Topology is playing an increasing role in physics. A physical problem is “well

posed” if there exists a solution and it is unique, and the topology of the configuration

(spherical, toroidal, etc.), in particular the singular homology groups, has an essential

influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory
play roles not only in modern gauge theories but also, for example, in the theory of

“defects” in materials.

Topological methods are playing an important role in field theory; versions of the

Atiyah–Singer index theorem are frequently invoked. Although I do not develop this

theorem in general, I do discuss at length the most famous and elementary exam-

ple, the Gauss–Bonnet–Poincaré theorem, in two dimensions and also the meaning

of the Chern characteristic classes. These matters are discussed in Parts Two and

Three.

The Appendix to this book presents a nontraditional treatment of the stress ten-
sors appearing in continuum mechanics, utilizing exterior forms. In this endeavor I

am greatly indebted to my engineering colleague Hidenori Murakami. In particular

Murakami has supplied, in Section g of the Appendix, some typical computations in-

volving stresses and strains, but carried out with the machinery developed in this book.

We believe that these computations indicate the efficiency of the use of forms and Lie

derivatives in elasticity. The material of this Appendix could be read, except for some

minor points, after Section 9.5.

Mathematical applications to physics occur in at least two aspects. Mathematics is

of course the principal tool for solving technical analytical problems, but increasingly

it is also a principal guide in our understanding of the basic structure and concepts

involved. Analytical computations with elliptic functions are important for certain

technical problems in rigid body dynamics, but one could not have begun to understand

the dynamics before Euler’s introducing the moment of inertia tensor. I am very much

concerned with the basic concepts in physics. A glance at the Contents will show

in detail what mathematical and physical tools are being developed, but frequently

physical applications appear also in Exercises. My main philosophy has been to attack

physical topics as soon as possible, but only after effective mathematical tools have

been introduced. By analogy, one can deal with problems of velocity and acceleration

after having learned the definition of the derivative as the limit of a quotient (or even

before, as in the case of Newton), but we all know how important the machinery of

calculus (e.g., the power, product, quotient, and chain rules) is for handling specific

problems. In the same way, it is a mistake to talk seriously about thermodynamics
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before understanding that a total differential equation in more than two dimensions

need not possess an integrating factor.

In a sense this book is a “final” revision of sets of notes for a year course that I

have given in La Jolla over many years. My goal has been to give the reader a working
knowledge of the tools that are of great value in geometry and physics and (increasingly)

engineering. For this it is absolutely essential that the reader work (or at least attempt)

the Exercises. Most of the problems are simple and require simple calculations. If you
find calculations becoming unmanageable, then in all probability you are not taking
advantage of the machinery developed in this book.

This book is intended primarily for two audiences, first, the physics or engineering

student, and second, the mathematics student. My classes in the past have been pop-

ulated mostly by first-, second-, and third-year graduate students in physics, but there

have also been mathematics students and undergraduates. The only real mathemati-
cal prerequisites are basic linear algebra and some familiarity with calculus of several

variables. Most students (in the United States) have these by the beginning of the third

undergraduate year.

All of the physical subjects, with two exceptions to be noted, are preceded by a brief

introduction. The two exceptions are analytical dynamics and the quantum aspects of

gauge theories.

Analytical (Hamiltonian) dynamics appears as a problem set in Part One, with very

little motivation, for the following reason: the problems form an ideal application of

exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part

Two, after geodesics have been discussed, do we return for a discussion of analytical

dynamics from first principles. (Of course most physics and engineering students will

already have seen some introduction to analytical mechanics in their course work any-

way.) The significance of the Lagrangian (based on special relativity) is discussed in

Section 16.4 of Part Three when changes in dynamics are required for discussing the

effects of electromagnetism.

An introduction to quantum mechanics would have taken us too far afield. Fortunately

(for me) only the simplest quantum ideas are needed for most of our discussions. I

would refer the reader to Rabin’s article [R] and Sudbery’s book [Su] for excellent

introductions to the quantum aspects involved.

Physics and engineering readers would profit greatly if they would form the habit

of translating the vectorial and tensorial statements found in their customary reading

of physics articles and books into the language developed in this book, and using the

newer methods developed here in their own thinking. (By “newer” I mean methods

developed over the last one hundred years!)

As for the mathematics student, I feel that this book gives an overview of a large

portion of differential geometry and topology that should be helpful to the mathematics

graduate student in this age of very specialized texts and absolute rigor. The student

preparing to specialize, say, in differential geometry will need to augment this reading

with a more rigorous treatment of some of the subjects than that given here (e.g., in

Warner’s book [Wa] or the five-volume series by Spivak [Sp]). The mathematics student

should also have exercises devoted to showing what can go wrong if hypotheses are

weakened. I make no pretense of worrying, for example, about the differentiability
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classes of mappings needed in proofs. (Such matters are studied more carefully in

the book [A, M, R] and in the encyclopedia article [T, T]. This latter article (and the

accompanying one by Eriksen) are also excellent for questions of historical priorities.)

I hope that mathematics students will enjoy the discussions of the physical subjects

even if they know very little physics; after all, physics is the source of interesting

vector fields. Many of the “physical” applications are useful even if they are thought

of as simply giving explicit examples of rather abstract concepts. For example, Dirac’s

equation in curved space can be considered as a nontrivial application of the method

of connections in associated bundles!

This is an introduction and there is much important mathematics that is not developed

here. Analytical questions involving existence theorems in partial differential equations,

Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there

is no discussion of Kaehler manifolds nor the algebraic–geometric notions used in

string theory. Infinite dimensional manifolds are not considered. On the physical side,

topics are introduced usually only if I felt that geometrical ideas would be a great help

in their understanding or in computations.

I have included a small list of references. Most of the articles and books listed have

been referred to in this book for specific details. The reader will find that there are

many good books on the subject of “geometrical physics” that are not referred to here,

primarily because I felt that the development, or sophistication, or notation used was

sufficiently different to lead to, perhaps, more confusion than help in the first stages of

their struggle. A book that I feel is in very much the same spirit as my own is that by

Nash and Sen [N, S]. The standard reference for differential geometry is the two-volume

work [K, N] of Kobayashi and Nomizu.

Almost every section of this book begins with a question or a quotation which may

concern anything from the main thrust of the section to some small remark that should

not be overlooked.

A term being defined will usually appear in bold type.

I wish to express my gratitude to Harley Flanders, who introduced me long ago to

exterior forms and de Rham’s theorem, whose superb book [Fl] was perhaps the first to

awaken scientists to the use of exterior forms in their work. I am indebted to my chemical

colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin

for helpful criticisms of earlier versions of my lecture notes. I have already expressed

my deep gratitude to Hidenori Murakami. Joel Broida made many comments on earlier

versions, and also prevented my Macintosh from taking me over. I’ve had many helpful

conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth

made many helpful comments on various drafts and also served as “beater,” herding

physics students into my course. Above all, my colleague Jeff Rabin used my notes

as the text in a one-year graduate course and made many suggestions and corrections.

I have also included corrections to the 1997 printing, following helpful remarks from

Professor Meinhard Mayer.

Finally I am grateful to the many students in my classes on geometrical physics for

their encouragement and enthusiasm in my endeavor. Of course none of the above is

responsible for whatever inaccuracies undoubtedly remain.



OVERVIEW

An Informal Overview of Cartan’s
Exterior Differential Forms,

Illustrated with an Application to
Cauchy’s Stress Tensor

Introduction

O.a. Introduction

My goal in this overview is to introduce exterior calculus in a brief and informal way

that leads directly to their use in engineering and physics, both in basic physical concepts

and in specific engineering calculations. The presentation will be very informal. Many

times a proof will be omitted so that we can get quickly to a calculation. In some

“proofs” we shall look only at a typical term.

The chief mathematical prerequisites for this overview are sophomore courses deal-

ing with basic linear algebra, partial derivatives, multiple integrals, and tangent vectors

to parameterized curves, but not necessarily “vector calculus,” i.e., curls, divergences,

line and surface integrals, Stokes’ theorem, . . . . These last topics will be sketched here

using Cartan’s “exterior calculus.”

We shall take advantage of the fact that most engineers live in euclidean 3-space

R
3 with its everyday metric structure, but we shall try to use methods that make sense

in much more general situations. Instead of including exercises we shall consider, in

the section Elasticity and Stresses, one main example and illustrate everything in

terms of this example but hopefully the general principles will be clear. This engineer-

ing example will be the following. Take an elastic circular cylindrical rod of radius a
and length L , described in cylindrical coordinates r , θ , z, with the ends of the cylin-

der at z = 0 and z = L . Look at this same cylinder except that it has been axially

twisted through an angle kz proportional to the distance z from the fixed end z = 0.
x

z = L
z

z

r

(r, q, z) 

(r, q + kz, z) 

q

y

xxix
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We shall neglect gravity and investigate the stresses in the cylinder in its final twisted

state, in the first approximation, i.e., where we put k2 = 0. Since “stress” and “strain”

are “tensors” (as Cauchy and I will show) this is classically treated via “tensor analysis.”

The final equilibrium state involves surface integrals and the tensor divergence of the

Cauchy stress tensor. Our main tool will not be the usual classical tensor analysis

(Christoffel symbols �i
jk . . . , etc.) but rather exterior differential forms (first used in

the nineteenth century by Grassmann, Poincaré, Volterra, . . . , and developed especially

by Elie Cartan), which, I believe, is a far more appropriate tool.

We are very much at home with cartesian coordinates but curvilinear coordinates

play a very important role in physical applications, and the fact that there are two
distinct types of vectors that arise in curvilinear coordinates (and, even more so, in

curved spaces) that appear identical in cartesian coordinates must be understood, not

only when making calculations but also in our understanding of the basic ingredients

of the physical world. We shall let xi , and ui , i = 1, 2, 3, be general (curvilinear)

coordinates, in euclidean 3 dimensional space R
3. If cartesian coordinates are wanted,

I will say so explicitly.

Vectors, 1-Forms, and Tensors

O.b. Two Kinds of Vectors

There are two kinds of vectors that appear in physical applications and it is important

that we distinguish between them. First there is the familiar “arrow” version.

Consider n dimensional euclidean space R
n with cartesian coordinates x1, . . . , xn

and local (perhaps curvilinear) coordinates u1, . . . , un .

Example: R
2 with cartesian coordinates x1 = x, x2 = y, and with polar coordinates

u1 = r, u2 = θ .

Example: R
3 with cartesian coordinates x, y, z and with cylindrical coordinates

R, �, Z .

Example of R2

with polar coordinates

p

∂q

∂p

∂r
∂r=

∂p

∂q
∂q=

q

Let p be the position vector from the origin of R
n to the point p. In the curvilinear

coordinate system u, the coordinate curve Ci through the point p is the curve where all
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u j , j �= i , are constants, and where ui is used as parameter. Then the tangent vector to

this curve in R
n is

∂p/∂ui which we shall abbreviate to ∂ i or ∂/∂ui

At the point p these n vectors ∂1, . . . ,∂n form a basis for all vectors in R
n based at

p. Any vector v at p has a unique expansion with curvilinear coordinate components
(v1, . . . , vn)

v = Σiv
i∂ i = Σi∂ iv

i

We prefer the last expression with the components to the right of the basis vectors since

it is traditional to put the vectorial components in a column matrix, and we can then

form the matrices

∂ = (∂1, . . . ,∂n) and v =

⎛
⎜⎜⎜⎜⎝

v1

.

.

.

vn

⎞
⎟⎟⎟⎟⎠ = (v1 . . . vn)T

(T denotes transpose) and then we can write the matrix expression (with v a 1×1 matrix)

v = ∂v (O.1)

Please beware though that in ∂ iv
i or (∂/∂ui )vi or v = ∂v, the bold ∂ does not

differentiate the component term to the right; it is merely the symbol for a basis vector.

Of course we can still differentiate a function f along a vector v by defining

v( f ) := (Σi∂ iv
i )( f ) = Σi∂/∂ui ( f )vi := Σi (∂ f/∂ui )vi

replacing the basis vector ∂/∂ui with bold ∂ by the partial differential operator ∂/∂ui

and then applying to the function f. A vector is a first order differential operator on

functions!

In cylindrical coordinates R, �, Z in R
3 we have the basis vectors∂R = ∂/∂ R,∂� =

∂/∂�, and ∂ Z = ∂/∂ Z .

Let v be a vector at a point p. We can always find a curve ui = ui (t) through p
whose velocity vector there is v, vi = dui/dt . Then if u′ is a second coordinate system

about p, we then have v′ j = du′ j/dt = (∂u′ j/∂ui )dui/dt = (∂u′ j/∂ui )vi . Thus the

components of a vector transform under a change of coordinates by the rule

v′ j = Σi (∂u′ j/∂ui )vi or as matrices v′ = (∂u′/∂u)v (O.2)

where (∂u′/∂u) is the Jacobian matrix. This is the transformation law for the compo-

nents of a contravariant vector, or tangent vector, or simply vector.

There is a second, different, type of vector. In linear algebra we learn that to each

vector space V (in our case the space of all vectors at a point p) we can associate its
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dual vector space V ∗ of all real linear functionals α : V → R . In coordinates, α(v) is

a number

α(v) = Σi aiv
i

for unique numbers (ai ). We shall explain why i is a subscript in ai shortly.

The most familiar linear functional is the differential of a function d f. As a function

on vectors it is defined by the derivative of f along v

d f (v) := v( f ) = Σi (∂ f/∂ui )vi and so (d f )i = ∂ f/∂ui

Let us write d f in a much more familiar form. In elementary calculus there is mumbo-

jumbo to the effect that dui is a function of pairs of points: it gives you the difference in

the ui coordinates between the points, and the points do not need to be close together.

What is really meant is

dui is the linear functional that reads off the i th component of any vector v with

respect to the basis vectors of the coordinate system u

dui (v) = dui (Σ j∂ jv
j ) := vi

Note that this agrees with dui (v) = v(ui ) since v(ui ) = (Σ j∂ jv
j )(ui )

= Σ j (∂ui/∂u j )v j = Σ jδ
i
jv

j = vi .

Then we can write

d f (v) = Σi (∂ f/∂ui )vi = Σi (∂ f/∂ui )dui (v)

i.e.,

d f = Σi (∂ f/∂ui )dui

as usual, except that now both sides have meaning as linear functionals on vectors.

Warning: We shall see that this is not the gradient vector of f !

It is very easy to see that du1, . . . , dun form a basis for the space of linear functionals

at each point of the coordinate system u, since they are linearly independent. In fact,

this basis of V * is the dual basis to the basis ∂1, . . . ,∂n , meaning

dui (∂ j ) = δi
j

Thus in the coordinate system u, every linear functional α is of the form

α = Σi ai (u)dui where α(∂ j ) = Σi ai (u)dui (∂ j ) = Σi ai (u)δi
j = a j

is the j th component of α.

We shall see in Section O.i that it is not true that every α is equal to d f for some f !

Corresponding to (O.1) we can write the matrix expansion for a linear functional as

α = (a1, . . . , an)(du1, . . . , dun)T = a du (O.3)

i.e., a is a row matrix and du is a column matrix!
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If V is the space of contravariant vectors at p, then V * is called the space of covariant
vectors, or covectors, or 1-forms at p. Under a change of coordinates, using the chain

rule, α = a′ du′ = a du = (a)(∂u/∂u′)(du′), and so

a′ = a(∂u/∂u′) = a(∂u′/∂u)−1 i.e., a′
j = Σi ai (∂ui/∂u′ j ) (O.4)

which should be compared with (O.2). This is the law of transformation of components

of a covector.

Note that by definition, if α is a covector and v is a vector, then the value

α(v) = av = Σi aiv
i

is invariant, i.e., independent of the coordinates used. This also follows, from (O.2)

and (O.4)

α(v) = a′v′ = a(∂u/∂u′)(∂u′/∂u)v = a(∂u′/∂u)−1(∂u′/∂u)v = av

Note that a vector can be considered as a linear functional on covectors,

v(α) := α(v) = Σi aiv
i

O.c. Superscripts, Subscripts, Summation Convention

First the summation convention. Whenever we have a single term of an expression

with any number of indices up and down, e.g., T abc
de, if we rename one of the lower

indices, say d so that it becomes the same as one of the upper indices, say b, and if we

then sum over this index, the result, call it S,

ΣbT abc
be = Sac

e

is called a contraction of T . The index b has disappeared (it was a summation or

“dummy” index on the left expression; you could have called it anything). This process

of summing over a repeated index that occurs as both a subscript and a superscript
occurs so often that we shall omit the summation sign and merely write, for example,

T abc
be = Sac

e. This “Einstein convention” does not apply to two upper or two lower

indices. Here is why.

We have seen that if α is a covector, and if v is a vector then α(v) = aiv
i is an

invariant, independent of coordinates. But if we have another vector, say w = ∂w then

Σiv
iwi will not be invariant

Σiv
′iw′i = v′T w′ = [(∂u′/∂u)v]T (∂u′/∂u)w = vT (∂u′/∂u)T (∂u′/∂u)w

will not be equal to vT w, for all v, w unless (∂u′/∂u)T = (∂u′/∂u)−1, i.e., unless the

coordinate change matrix is an orthogonal matrix, as it is when u and u′ are cartesian

coordinate systems.

Our conventions regarding the components of vectors and covectors

(contravariant ⇒ index up ) and ( covariant ⇒ index down) (*∗)
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help us avoid errors! For example, in calculus, the differential equations for curves of

steepest ascent for a function f are written in cartesian coordinates as

dxi/dt = ∂ f/∂xi

but these equations cannot be correct, say, in spherical coordinates, since we cannot

equate the contravariant components vi of the velocity vector with the covariant com-

ponents of the differential d f ; they transform in different ways under a (nonorthogonal)

change of coordinates. We shall see the correct equations for this situation in Section

O.d.

Warning: Our convention (**) applies only to the components of vectors and

covectors. In α = ai dxi , the ai are the components of a single covector α, while each

individual dxi is itself a basis covector, not a component. The summation convention,

however, always holds.

I cringe when I see expressions like Σiv
iwi in noncartesian coordinates, for the

notation is informing me that I have misunderstood the “variance” of one of the vectors.

O.d. Riemannian Metrics

One can identify vectors and covectors by introducing an additional structure, but the

identification will depend on the structure chosen. The metric structure of ordinary

euclidean space R
3 is based on the fact that we can measure angles and lengths of

vectors and scalar products 〈, 〉. The arc length of a curve C is∫
C

ds

where ds2 = dx2 + dy2 + dz2 in cartesian coordinates. In curvilinear coordinates u
we have, putting dxk = (∂xk/∂ui )dui , and then

ds2 = Σk(dxk)2 = Σi, j gi j dui du j = gi j dui du j (O.5)

where

gi j = Σk(∂xk/∂ui )(∂xk/∂u j )

= 〈∂p/∂ui , ∂p/∂u j 〉 (since the x coordinates are cartesian)

gi j = 〈∂ i ,∂ j 〉 = g ji

and generally

〈v, w〉 = gi jv
iw j (O.6)

For example, consider the plane R
2 with cartesian coordinates x1 = x, x2 = y, and

polar coordinates u1 = r, u2 = θ . Then

[
gxx = 1 gxy = 0

gyx = 0 gyy = 1

]
i.e.,

[
gxx gxy

gyx gyy

]
=

[
1 0

0 1

]
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Then, from x = r cos θ, dx = dr cos θ − r sin θ dθ , etc., we get ds2 = dr 2 + r 2 dθ2,

[
grr = 1 grθ = 0

gθr = 0 gθθ = r 2

]
i.e.,

[
grr grθ

gθr gθθ

]
=

[
1 0

0 r 2

]
(O.7)

which is “evident” from the picture

x

y

r dq
ds

dr
dq

q

In spherical coordinates a picture shows ds2 = dr 2 + r 2 dθ2 + r 2 sin2 θ dϕ2, where

θ is co-latitude and ϕ is co-longitude, so (gi j ) = diag(1, r2, r 2 sin2 θ). In cylindrical
coordinates, ds2 = d R2 + R2 d�2 + d Z 2, with (gi j ) = diag(1, R2, 1).

Let us look again at the expression (O.5). If α and β are 1-forms, i.e., linear function-

als, define their tensor product α ⊗ β to be the function of (ordered) pairs of vectors

defined by

α ⊗ β(v, w) := α(v)β(w) (O.8)

In particular

(dui ⊗ duk)(v, w) := viwk

Likewise (∂ i ⊗ ∂ j )(α, β) = ai b j (why?).

α ⊗β is a bilinear function of v and w, i.e., it is linear in each vector when the other

is unchanged. A second rank covariant tensor is just such a bilinear function and in

the coordinate system u it can be expressed as

Σi, j ai j dui ⊗ du j

where the coefficient matrix (ai j ) is written with indices down. Usually the tensor

product sign ⊗ is omitted (in dui ⊗ du j but not in α ⊗ β). For example, the metric

ds2 = gi j dui ⊗ du j = gi j dui du j (O.5′)

is a second rank covariant tensor that is symmetric, i.e., g ji = gi j . We may write

ds2(v, w) = 〈v, w〉
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It is easy to see that under a change of coordinates u′ = u′(u), demanding that ds2 be

independent of coordinates, g′
abdu′adu′b = gi j dui du j, yields the transformation rule

g′
ab = (∂ui/∂u′a)gi j (∂u j/∂u′b) (O.9)

for the components of a second rank covariant tensor.

Remark: We have been using the euclidean metric structure to construct (gi j ) in

any coordinate system, but there are times when other structures are more appropriate.

For example, when considering some delicate astronomical questions, a metric from

Einstein’s general relativity yields more accurate results. When dealing with complex

analytic functions in the upper half plane y > 0, Poincaré found that the planar metric

ds2 = (dx2 + dy2)/y2 was very useful. In general, when some second rank covariant

tensor (gi j ) is used in a metric ds2 = gi j dxi dx j (in which case it must be symmetric and

positive definite), this metric is called a Riemannian metric, after Bernhard Riemann,

who was the first to consider this generalization of Gauss’ thoughts.

Given a Riemannian metric, one can associate to each (contravariant) vector v a

covector v by

v(w) = 〈v, w〉

for all vectors w, i.e.,

v jw
j = vk gk jw

j and so v j = vk gk j = g jkv
k

In components, it is traditional to use the same letter for the covector as for the vector

v j = g jkv
k

there being no confusion since the covector has the subscript. We say that “we lower

the contravariant index” by means of the covariant metric tensor (g jk).

Similarly, since (g jk) is the matrix of a positive definite quadratic form ds2, it has an

inverse matrix, written (g jk), which can be shown to be a contravariant second rank

symmetric tensor (a bilinear function of pairs of covectors given by g jka j bk). Then for

each covector α we can associate a vector a by ai = gi j a j , i.e., we raise the covariant
index by means of the contravariant metric tensor (g jk).

The gradient vector of a function f is defined to be the vector grad f = ∇ f
associated to the covector d f , i.e., d f (w) = 〈∇f, w〉

(∇ f )i := gi j∂ f/∂u j

Then the correct version of the equation of steepest ascent considered at the end of

section O.c is

dui/dt = (∇ f )i = gi j∂ f/∂u j

in any coordinates. For example, in polar coordinates, from (O.7), we see grr = 1, gθθ =
1/r 2, grθ = 0 = gθr .
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O.e. Tensors

We shall consider examples rather than generalities.

(i) A tensor of the third rank, twice contravariant, once covariant, is locally of the

form

A = ∂ i ⊗ ∂ j Ai j
k ⊗ duk

It is a trilinear function of pairs of covectors α = ai dui , β = b j du j, and a single vector

v = ∂kv
k

A(α, β, v) = ai b j Ai j
kv

k

summed, of course, on all indices. Its components transform as

A′ e f
g = (∂u′e/∂ui )(∂u′ f /∂u j )Ai j

k(∂uk/∂u′g)

(When I was a lad I learned the mnemonic “co low, primes below.”)

If we contract on i and k, the result B j := Ai j
i are the components of a contravariant

vector

B ′ f = A′ e f
e = Ai j

k(∂u′ f/∂u j )(∂uk/∂u′e)(∂u′e/∂ui )

= Ai j
k(∂u′ f /∂u j )δk

i = Ai j
i (∂u′ f /∂u j ) = (∂u′ f /∂u j )B j

(ii) A linear transformation is a second rank (“mixed”) tensor P = ∂ i Pi
j ⊗ du j .

Rather than thinking of this as a real valued bilinear function of a covector and a vector,

we usually consider it as a linear function taking vectors into vectors (called a vector

valued 1-form in Section O.n)

P(v) = [∂ i Pi
j ⊗ du j ](v) := ∂ i Pi

j {du j (v)} = ∂ i Pi
jv

j

i.e., the usual

[P(v)]i = Pi
j v

j

Under a coordinate change, (Pi
j ) transforms as P ′ = (∂u′/∂u)P(∂u′/∂u)−1, as usual.

If we contract we obtain a scalar (invariant), tr P := Pi
i , the trace of P . tr P ′ =

tr P(∂u′/∂u)−1(∂u′/∂u) = tr P .

Beware: If we have a twice covariant tensor G (a “bilinear form”), for example, a

metric (gi j ), then Σk gkk is not a scalar, although it is the trace of the matrix; see for

example, equation (O.7). This is because the transformation law for the matrix G is,

from (O.9), G ′ = (∂u/∂u′)T G(∂u/∂u′) and tr G ′ �= tr G generically.

Integrals and Exterior Forms

O.f. Line Integrals

We illustrate in R
3 with any coordinates x . For simplicity, let C be a smooth “oriented”

or “directed” curve, the image under F : [a,b] ⊂ R
1 → C ⊂ R

3 (which is read
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“F maps the interval [a,b] on R
1 into the curve C in R

3”) with F(a) for some p and

F(b) for some q.

b

a

F

t
x3

x1

x2

C

q = F(b)

p = F(a)

If α = α1 = ai (x)dxi is a 1-form, a covector, in R
3, we define the line integral ∫Cα as

follows.

Using the parameterization xi = Fi (t) of C , we define

∫Cα1 = ∫Cai (x)dxi := ∫a
bai (x(t))(dxi/dt)dt = ∫a

bα(dx/dt)dt (O.10)

We say that we pull back the form α1 (that lives in R
3 ) to a 1-form on the parameter

space R
1, called the pull-back of α, denoted by F∗(α)

F∗(α) = α(dx/dt)dt = ai (x(t))(dxi/dt)dt

and then take the ordinary integral ∫a
bα(dx/dt)dt . It is a classical theorem that the

result is independent of the parameterization of C chosen, so long as the resulting

curve has the same orientation. This will become “apparent” from the usual geometric

interpretation that we now present.

In the definition there has been no mention of arc length or scalar product. Sup-

pose now that a Riemannian metric (e.g., the usual metric in R
3) is available. Then

to α we may associate its contravariant vector A. Then α(dx/dt) = 〈A, dx/dt〉 =
〈A, dx/ds〉(ds/dt) where s = s(t) is the arclength parameter along C . Then F∗(α) =
α(dx/dt)dt = 〈A, dx/ds〉ds. But T : = dx/ds is the unit tangent vector to C since

gi j (dxi/ds)(dx j/ds) = (gi j dxi dx j )/(ds2) = 1. Thus

F∗(α) = 〈A, T〉ds = ‖A‖‖T‖ cos ∠(A, T)ds

and so

∫Cα = ∫C Atands (O.11)

is geometrically the integral of the tangential component of A with respect to the arc

length parameter along C . This “shows” independence of the parameter t chosen, but to

evaluate the integral one would usually just use (O.10) which involves no metric at all!

Moral: The integrand in a line integral is naturally a 1-form, not a vector.

For example, in any coordinates, force is often a 1-form f 1 since a basic measure of

force is given by a line integral W = ∫C f 1 = ∫C fkdxk which measures the work done

by the force along the curve C , and this does not require a metric. Frequently there is a

force potential V such that f 1 = dV , exhibiting f explicitly as a covector. (In this case,

from (O.10), W = ∫C f 1 = ∫C dV = ∫a
bdV (dx/dt)dt = ∫a

b(∂V/∂xi )(dxi/dt)dt =
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∫a
b{dV (x(t)/dt}dt = V [ x(b)]−V [ x(a)] = V (q)−V (p).) Of course metrics do play

a large role in mechanics. In Hamiltonian mechanics, a particle of mass m has a kinetic

energy T = mv2/2 = mgi j ẋ i ẋ j/2 (where ẋ i is dxi/dt) and its momentum is defined

by pk = ∂(T − V )/∂ ẋ k . When the potential energy is independent of ẋ = dx/dt , we

have pk = ∂T/∂ ẋ k = (1/2)mgi j (δ
i

k ẋ j + ẋ iδ j
k) = (m/2)(gkj ẋ j + gik ẋ i ) = mgkj ẋ j .

Thus in this case p is m times the covariant version of the velocity vector dx/dt .
The momentum 1-form “pi dxi ” on the “phase space” with coordinates (x, p) plays

a central role in all of Hamiltonian mechanics.

O.g. Exterior 2-Forms

We have already defined the tensor product α1 ⊗ β1 of two 1-forms to be the bilinear

form α1 ⊗ β1(v, w) = α1(v)β1(w). We now define a more geometrically significant

wedge or exterior product α ∧ β to be the skew symmetric bilinear form

α1 ∧ β1 := α1 ⊗ β1 − β1 ⊗ α1

and thus

du j ∧ duk(v, w) = v jwk − vkw j =
∣∣∣∣du j (v) du j (w)

duk(v) duk(w)

∣∣∣∣ (O.12)

In cartesian coordinates x, y, z in R
3, see the figure below, dx ∧ dy(v, w) is ± the

area of the parallelogram spanned by the projections of v and w into the x,y plane, the

plus sign used only if proj(v) and proj(w) describe the same orientation of the plane as

the basis vectors ∂x and ∂ y .

z

v

w

proj (v)

proj (w)

∂x

∂y

Let now xi,i = 1, 2, 3 be any coordinates in R
3. Note that

dx j ∧ dxk = −dxk ∧ dx j and dxk ∧ dxk = 0 (no sum!) (O.13)

The most general exterior 2-form is of the form β2 = Σi< j bi j dxi ∧ dx j where b ji =
−bi j . In R

3, β2 = b12 dx1 ∧ dx2 + b23dx2 ∧ dx3 + b13 dx1 ∧ dx3, or, as we prefer, for
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reasons soon to be evident,

β2 = b23dx2 ∧ dx3 + b31dx3 ∧ dx1 + b12 dx1 ∧ dx2 (O.14)

An exterior 2-form is a skew symmetric covariant tensor of the second rank in the sense

of Section O.d. We frequently will omit the term “exterior,” but never the wedge ∧.

O.h. Exterior p-Forms and Algebra in R
n

The exterior algebra has the following properties. We have already discussed 1-forms

and 2-forms. An (exterior) p-form α p in R
n is a completely skew symmetric multilinear

function of p-tuples of vectors α(v1, . . . , vp) that changes sign whenever two vectors

are interchanged. In any coordinates x , for example, the 3-form dxi ∧ dx j ∧ dxk in R
n

is defined by

dxi ∧ dx j ∧ dxk(A, B, C) :=
∣∣∣∣∣∣
dxi (A) dxi (B) dxi (C)

dx j (A) dx j (B) dx j (C)

dxk(A) dxk(B) dxk(C)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
Ai Bi Ci

A j B j C j

Ak Bk Ck

∣∣∣∣∣∣
(O.15)

When the coordinates are cartesian the interpretation of this is similar to that in (O.12).

Take the three vectors at a given point x in R
n , project them down into the 3 dimensional

affine subspace of R
n spanned by ∂ i ,∂ j , and ∂k at x , and read off ± the 3-volume of

the parallelopiped spanned by the projections, the + used only if the projections define

the same orientation as ∂ i ,∂ j , and ∂k .

Clearly any interchange of a single pair of dx will yield the negative, and thus if the
same dxi appears twice the form will vanish, just as in (O.12), similarly for a p-form. The

most general 3-form is of the form α3 = Σi< j<kai jkdxi ∧dx j ∧ dxk . In R
3 there is only

one nonvanishing 3-form, dx1 ∧ dx2 ∧ dx3 and its multiples. In cartesian coordinates

this is the volume form vol3, but in spherical coordinates we know that dr ∧ dθ ∧ dφ

does not yield the euclidean volume element, which is r 2 sin θ dr ∧ dθ ∧ dφ. We will

discuss this soon. Note further that all p > n forms in R
n vanish since there are always

repeated dx in each term.

We take the exterior product of a p-form α and a q-form β, yielding a p + q
form α ∧ β by expressing them in terms of the dx , using the usual algebra (including

the associative law), except that the product of dx is anticommutative, dx ∧ dy =
−dy ∧ dx . For examples in R

3 with any coordinates

α1 ∧ γ 1 = (a1 dx1 + a2 dx2 + a3 dx3) ∧ (c1 dx1 + c2 dx2 + c3 dx3)

= · · · (a2 dx2) ∧ (c1 dx1) + · · · + (a1 dx1) ∧ (c2 dx2) + · · ·
= (a2c3 − a3c2) dx2 ∧ dx3 + (a3c1 − a1c3) dx3 ∧ dx1

+ (a1c2 − a2c1) dx1 ∧ dx2
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which in cartesian coordinates has the components of the vector product a × c. Also

we have

α1 ∧ β2 = (a1 dx1 + a2 dx2 + a3 dx3) ∧ (b23 dx2 ∧ dx3

+ b31 dx3 ∧ dx1 + b12 dx1 ∧ dx2)

= (a1b1 + a2b2 + a3b3)dx1 ∧ dx2 ∧ dx3

(where we use the notation b1 := b23, b2 = b31, b3 = b12, but only in cartesian coordi-

nates) with component a · b in cartesian coordinates. The ∧ product in cartesian R
3

yields both the dot · and the cross × products of vector analysis!! The · and × products

of vector analysis have strange expressions when curvilinear coordinates are used in

R
3, but the form expressions α1 ∧ β2 and α1 ∧ γ 1 are always the same. Furthermore,

the × product is nasty since it is not associative, i × (i × j) �= (i × i) × j.
By counting the number of interchanges of pairs of dx one can see the commutation

rule

α p ∧ βq = (−1)pqβq ∧ α p (O.16)

O.i. The Exterior Differential d

First a remark. If v = ∂av
a is a contravariant vector field, then generically (∂va/∂xb) =

Qa
b do not yield the components of a tensor in curvilinear coordinates, as is easily seen

from looking at the transformation of Q under a change of coordinates and using (O.2).

It is, however, always possible, in R
n and in any coordinates, to take a very important

exterior derivative d of p-forms. We define dα p to be a p + 1 form, as follows; α is a

sum of forms of the type a(x)dxi ∧ dx j ∧ · · · ∧ dxk . Define

d[a(x)dxi ∧ dx j ∧ . . . ∧ dxk] = da ∧ dxi ∧ dx j ∧ . . . ∧ dxk

= Σr (∂a/∂xr )dxr ∧ dxi ∧ dx j ∧ . . . ∧ dxk (O.17)

(in particular d[dxi ∧ dx j ∧ . . . ∧ dxk] = 0), and then sum over all the terms in α p. In

particular, in R
3 in any coordinates

d f 0 = d f = (∂ f/∂x1)dx1 + (∂ f/∂x2)dx2 + (∂ f/∂x3)dx3

dα1 = d(a1 dx1+ a2 dx2+ a3 dx3)=(∂a1/∂x2)dx2∧ dx1+(∂a1/∂x3)dx3∧ dx1+ · · ·
= [(∂a3/∂x2) − (∂a2/∂x3)]dx2 ∧ dx3 + [(∂a1/∂x3) − (∂a3/∂x1)]dx3 ∧ dx1

+ [(∂a2/∂x1) − (∂a1/∂x2)]dx1 ∧ dx2 (O.18)

dβ2 = d(b23 dx2 ∧ dx3 + b31 dx3 ∧ dx1 + b12 dx1 ∧ dx2)

= [(∂b23/∂x1) + (∂b31/∂x2) + (∂b12/∂x3)]dx1 ∧ dx2 ∧ dx3

In cartesian coordinates we then have correspondences with vector analysis, using

again b1 := b23 etc.,

d f 0 ⇔ ∇f · dx dα1 ⇔ (curl a) · “ dA” dβ2 ⇔ div B “dvol ” (O.19)

the quotes, for example, “dA” being used since this is not really the differential of a

1-form. We shall make this correspondence precise, in any coordinates, later. Exterior
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differentiation of exterior forms does essentially grad, curl and divergence with a

single general formula (O.17)!! Also, this machinery works in R
n as well. Furthermore,

d does not require a metric. On the other hand, without a metric (and hence without

cartesian coordinates), one cannot take the curl of a contravariant vector field. Also to

take the divergence of a vector field requires at least a specified “volume form.” These

will be discussed in more detail later in section O.n.

There are two fairly easy but very important properties of the differential d:

d2α p : = d dα p = 0 (which says curl grad = 0 and div curl = 0 in R
3)

(O.20)
d(α p ∧ βq) = dα ∧ β + (−1)pα ∧ dβ

For example, in R
3 with function (0-form) f , d f = (∂ f/∂x)dx + (∂ f/∂y)dy +

(∂ f/∂z)dz, and then d2 f = (∂2 f/∂x ∂y)dy ∧ dx + · · · + (∂2 f/∂y ∂x)dx ∧ dy
+ · · · = 0, since (∂2 f/∂y ∂x) = (∂2 f/∂x ∂y).

Note then that a necessary condition for a p-form β p to be the differential of some

(p − 1)-form, β p = dα p−1, is that dβ = d dα = 0. (What does this say in vector

analysis in R
3 ?)

Also, we know that in cartesian R
3, α1 ∧ β1 ⇔ a × b is a 2-form, d(α ∧ β) ⇔

div a × b (from (O.19)), and dα ⇔ curl a, and we know α1 ∧ γ 2 = γ 2 ∧ α1 ⇔ a · c.

Then (O.20), in cartesian coordinates, says immediately that d(α∧β) = dα∧β−α∧dβ,

i.e.,

div a × b = (curl a) · b − a · (curl b) (O.21)

O.j. The Push-Forward of a Vector and the Pull-Back of a Form

Let F: R
k → R

n be any differentiable map of k-space into n-space, where any

values of k and n are permissible. Let (u1, . . . , uk) be any coordinates in R
k , let

(x1, . . . , xn) be any coordinates in R
n . Then F is described by n functions xi =

Fi (u) = Fi (u1, . . . , ur , . . . , uk) or briefly xi = xi (u).

The “pull-back” of a function (0-form) φ = φ(x) on R
n is the function F∗φ =

φ(x(u)) on R
k , i.e., the function on R

k whose value at u is simply the value of φ at

x = F(u).

Given a vector v0 at the point u0 ∈ R
k we can “push forward” the vector to the

point x0 = F(u0) ∈ R
n by means of the so-called “differential of F ,” written F∗, as

follows. Let u = u(t) be any curve in R
k with u(0) = u0 and velocity at u0 = [du/dt]0

equal to the given v0. (For example, in terms of the coordinates u, you may use the

curve defined by ur (t) = u0
r + v0

r t .) Then the image curve x(t) = x(u(t)) will have

velocity vector at t = 0 called F∗[v0] given by the chain rule,

[F∗(v0)]
i := dxi (u(t))/dt]0 = [∂xi/∂ur ]u(0)[dur/dt]0 = [∂xi/∂ur ]u(0)v0

r

Briefly

[F∗(v)]i = (∂xi/∂ur )vr

Then

F∗[vr∂/∂ur ] = vr ∂/∂xi (∂xi/∂ur ), (O.22)∗
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and so

F∗∂r = F∗[∂/∂ur ] = [∂/∂xi ](∂xi/∂ur ) = ∂ i (∂xi/∂ur )

is again simply the chain rule.

Given any p-form α at x ∈ R
n , we define the pull-back F∗(α) to be the p-form at

each pre-image point u ∈ F−1(x) of R
k by

(F∗α)(v, . . . , w) := α(F∗v, . . . , F∗w) (O.23)

For the 1-form dxi , F∗dxi must be of the form asdus ; using dxi (∂ j ) = δi
j we get

(F∗dxi )(∂r ) = dxi [∂ j (∂x j/∂ur )] = ∂xi/∂ur = (∂xi/∂us)dus(∂r )

and so

F∗dxi = (∂xi/∂us)dus (O.22)∗

is again simply the chain rule.

It can be shown in general that F∗ operating on forms satisfies

F∗(α p ∧ βq) = (F∗α) ∧ (F∗β)

and

F∗dα = d F∗α (O.24)

For example, F∗dxi = d F∗(xi ) = dxi (u) = (∂xi/∂us)dus , as we have just seen.

For p-forms we shall use the same procedure but also use the fact that F∗ commutes

with exterior product, F∗(α ∧ β) = (F∗α) ∧ (F∗β). For simplicity we shall just

illustrate the idea for the case when β2 is a 2-form in R
n and F : R

3 → R
n . For more

simplicity we just consider a typical term b23(x)dx2 ∧ dx3 of β.

F∗[b23(x)dx2 ∧ dx3] := [F∗b23(x)][F∗dx2] ∧ [F∗dx3]

:= b23(x(u))[(∂x2/∂ua)dua]

∧ [(∂x3/∂uc)duc] (summed on a and c)

Now (∂x2/∂ua)dua = (∂x2/∂u1)du1 + (∂x2/∂u2)du2 + (∂x2/∂u3)du3 with a similar

expression for (∂x3/∂uc)duc. Taking their ∧ product and using (O.13)

[(∂x2/∂u1)du1 + (∂x2/∂u2)du2 + (∂x2/∂u3)du3] ∧ [(∂x3/∂u1)du1

+ (∂x3/∂u2)du2 + (∂x3/∂u3)du3]

= (∂x2/∂u1)du1 ∧ (∂x3/∂u2)du2 + (∂x2/∂u1)du1 ∧ (∂x3/∂u3)du3

+ (∂x2/∂u2)du2 ∧ (∂x3/∂u1)du1 + (∂x2/∂u2)du2 ∧ (∂x3/∂u3)du3

+ (∂x2/∂u3)du3 ∧ (∂x3/∂u1)du1 + (∂x2/∂u3)du3 ∧ (∂x3/∂u2)du2

= [(∂x2/∂u2)(∂x3/∂u3) − (∂x2/∂u3)(∂x3/∂u2)]du2 ∧ du3

+ [(∂x2/∂u1)(∂x3/∂u3) − (∂x2/∂u3)(∂x3/∂u1)]du1 ∧ du3

+ [(∂x2/∂u1)(∂x3/∂u2) − (∂x2/∂u2)(∂x3/∂u1)]du1 ∧ du2
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and so

F∗[b23(x)dx2 ∧ dx3] = b23(x(u))Σa<c[∂(x2, x3)/∂(ua, uc)]dua ∧ duc

where

∂(x, y)/∂(u, v) =
∣∣∣∣∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣
is the usual Jacobian determinant. In general, for pulling back a p-form on R

n to R
k

via F: R
k → R

n we use

F∗(dxi ∧ . . . ∧ dx j ) = �a<...<r [∂(xi , . . . ∂x j )/∂(ua, . . . , ur )]dua ∧ . . . ∧ dur

(O.22)∗∗

This procedure will play a key role in our discussion of surface integrals, see (O.25).

(O.20) and (O.24) contribute to what makes forms so powerful and useful, compared

to vector fields. The push-forward F∗ associated to a map F : R
k → R

n will map a

vector v at u ∈ R
k to a vector F∗v at x = F(u). But let v be a vector field, say on all

of R
k and suppose F is not 1:1. Let u′ �= u and F(u′) = x = F(u). Then generically

F∗v(u′) will not agree with F∗v(u), and so F∗v will not be a well defined vector field
on R

n . On the other hand, if α is a p-form at x , then F∗α will define a unique form at

u and another form at u′. If α p is a well defined p-form field on R
n then F∗α is a well

defined p-form field on R
k . For fields the tools (O.24) are then available.

Note that when F : R
n → R

n is the identity map, using two sets of coordinates,

for example, (r, θ) and (x, y) in the plane, and where the identity map F = I is

x = r cos θ, y = r sin θ in R
2, then the pull-back F∗α is simply expressing the form

α, given in coordinates x in terms of the new coordinates u.

Finally note that (O.23) makes sense when α is a covariant p-tensor even if it is not

an exterior form, i.e., even if α is not completely skew symmetric. The pull-back of

the Riemannian metric tensor g, g(v, w) = gi jv
iw j plays a central role in elasticity,

as will be seen in Section O.p. The pull-back of the quadratic form gi j dxi dx j is again

just the application of the chain rule. Of course (O.24) does not make sense if α is not

an exterior form.

O.k. Surface Integrals and “Stokes’ theorem”

We illustrate with a surface V 2 in R
3. Assume, for example, that R

3 has the “right

handed orientation.” Assume that V 2 is also “oriented” meaning that at each point p of

V there is a preferred sense of rotation of the tangent plane at p (indicated in the figure

below by a circular arrow), and this sense varies continuously on V . For example, if V
has a continuous choice of normal vector everywhere (unlike a Möbius band) then the

right hand rule for R
3 will yield an orientation for V .

We are going to define ∫V β2 for any 2-form β on R
3. If V is sufficiently small we

may choose a parameterization of all of V that yields the same orientation as V , i.e.,

we ask for a smooth 1:1 map

F : region S2 ⊂ some R
2 → onto V 2 ⊂ R

3 xi = xi (t1, t2)
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(If V is too large for such a parameterization, break it up into smaller pieces and add

up the individual resulting integrals.) We picture the resulting t1, t2 coordinate curves

on V as engraved on V just as latitude and longitude curves are engraved on globes of

the Earth. We demand that the sense of rotation from the engraved t1 curve to the t2

curve on V (i.e., from F∗∂1 to F∗∂2) is the same as the given orientation arrow on V .

We say V = F(S).

orientation
arrow for V2

x3

t1

t2

x2

F

x1

V2

t2

t1

S

We now define∫
V

b23 dx2 ∧ dx3 + b31 dx3 ∧ dx1 + b12 dx1 ∧ dx2 =
∫

V
β2 =

∫
F(S)

β2 :=
∫

S
F∗β

reducing the problem to defining the integral of the pull-back of β over S. First write

this out, but for simplicity we just look at the term b31(x)dx3 ∧ dx1. As in (O.22)∗∗
∫

S
F∗(b31(x)dx3 ∧ dx1) :=

∫
S

b31(x(t))[(∂x3/∂ta)dta ∧ (∂x1/∂tb)dtb]

=
∫

S
b31(x(t))[∂(x3, x1)/∂(t1, t2)]dt1 ∧ dt2

:=
∫

S
b31(x(t))[∂(x3, x1)/∂(t1, t2)]dt1dt2

and where the very last integral, with no ∧ , is the usual double integral over a region

S in the t1, t2 plane. Thus∫
V

β2 =
∫

F(S)

β2 =
∫

S
F∗β2

:=
∫

S
{b23(x(t))[∂(x2, x3)/∂(t1, t2)] + b31(x(t))[∂(x3, x1)/∂(t1, t2)]

+ b12(x(t))[∂(x1, x2)/∂(t1, t2)]}dt1dt2 (O.25)

Note that one does not need to commit this to memory. One merely uses the chain rule

in calculus and dt1 ∧ dt2 = −dt2 ∧ dt1 to get an integral over a region in the t1, t2

plane, then omit the ∧ and evaluate the resulting double integral.

Interpretation: In cartesian coordinates with the usual metric in R
3, associate to

β2 the vector

B = (B1 = b23, B2 = b31, B3 = b12)
T



xlvi OVERVIEW OF CARTAN’S EXTERIOR DIFFERENTIAL FORMS

n = [∂x/∂t1] × [∂x/∂t2] is a normal to the surface with components

([∂(x2, x3)/∂(t1, t2)], [∂(x3, x1)/∂(t1, t2)], [∂(x1, x2)/∂(t1, t2)])T

Just as in the case of a curve, where ‖dx/dt‖dt is the element of arc length ds, so in

the case of a surface, where ∂x/∂t1 and ∂x/∂t2 span a parallelogram of area

‖(∂x/∂t1) × (∂x/∂t2)‖ = ‖n‖, we have the area element “d A” = ‖n‖dt1dt2. Our

integral (O.25) then becomes∫
V

β2 =
∫ ∫

S
〈 B, n〉dt1dt2 =

∫ ∫
S
‖B‖‖n‖ cos ∠(B, n)dt1dt2

=
∫ ∫

V
Bnormal“d A” (classically)

and this shows further that the integral ∫V β is in fact independent of the parameterization

F used.

Note again that our form version (O. 25) requires no metric or area element.

Moral: The integrand in a surface integral is naturally a 2-form, not a vector.

One integrates exterior p-forms over oriented p dimensional “surfaces” V p. If V p is

not a “closed” surface it will generically have a (p −1) dimensional oriented boundary,

written ∂V . For example, if V 2 is oriented, then the circular orientation arrow near the

boundary curve of V will yield a “direction” for ∂V ( see the surface integral picture

above)

Stokes’ Theorem
∫

V
dβ p−1 =

∮
∂V

β p−1 (O.26)

is perhaps the World’s Most Beautiful Formula. The vector analysis versions, using

(O.19), include not only Stokes’ theorem (really due to William Thomson, Lord
Kelvin) when p = 2 and V 2 is an oriented surface and ∂V is its closed curve boundary,

but also Gauss’ divergence theorem when p = 3, V 3 is a bounded region in space and

∂V is its closed surface boundary. For a proof see Chapter 3.

O.l. Electromagnetism, or, Is it a Vector or a Form?

For simplicity we consider electric and magnetic fields caused by charges, currents,

and magnets in a vacuum (without polarizations, . . .)

Electric field intensity E: The work done in moving a particle with charge q along a

curve C is classically W = ∫
C q E · dr but really w = q

∫
C E1 = q

∫
C E1 dx1+E2 dx2+

E3 dx3. The electric field intensity is a 1-form E1 = E1 dx1 + E2 dx2 + E3 dx3.

Electric field D: The charge Q contained in a region V 3 with boundary ∂V is

classically given by 4π Q(V 3) = ∫∫
∂V D · dA = ∫∫∫

V div D vol, but really∫ ∫
∂V

D
2 =

∫ ∫ ∫
V

dD = 4π Q(V 3) = 4π

∫ ∫ ∫
V

ρvol3

where ρ is the charge density. Stokes’ theorem thus yields Gauss’ law

dD
2 = 4π ρvol3

D
2 is a 2-form version of E

1 . In cartesian coordinates D
2 = E1 dx2 ∧ dx3 + E2 dx3 ∧

dx1 + E3 dx1 ∧ dx2.
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Magnetic field intensity B: Faraday’s law says classically, for a fixed surface V 2,∮
∂V E · dr = −d/dt

∫∫
V B · d A. Really

∮
∂V E

1 = −d/dt
∫∫

V B
2. The magnetic field

intensity is a 2-form B
2 and Faraday’s law says

dE
1 = −∂B

2/∂t

where ∂B
2/∂t means take the time derivative of the components of B

2. Another axiom

states that

div B = 0 = dB
2

Magnetic field H: Ampère–Maxwell says classically
∮

C=∂V H ·dr = 4π
∫∫

V j ·dA
+ d/dt

∫∫
V D · dA where V 2 is fixed and j is the current vector. Really∮

C=∂V
H

1 = 4π

∫ ∫
V

j2 + d/dt
∫ ∫

V
D

2

and thus

dH
1 = 4πj2 + ∂D

2/∂t

where j2 is the current 2-form whose integral over V 2 (with a preferred normal direction)

measures the time rate of charge passing through V 2 in that direction. H1 is a 1-form

version of B2. In cartesian coordinates

H
1 = B23dx1 + B31dx2 + B12dx3

Heaviside–Lorentz force: Classically the electromagnetic force acting on a particle

of charge q moving with velocity v is given by f = q(E + v × B). We have seen that

force and the electric field should be 1-forms, f
1 = q(E

1 + ??). v is definitely a vector,

and B is a 2-form! We now discuss this dilemma raised by the vector product × and its

resolution will play a large role in our discussion of elasticity also.

O.m. Interior Products

We are at home with the fact α1 ∧β1 is a 2-form replacement for a × product of vectors

in R
3, but if we had started out with two vectors A and B it would require a metric to

change them to 1-forms. It turns out there is also a 1-form replacement that is frequently

more useful, and will resolve the Lorentz force problem.

In R
n , if v is a vector and β p is a p-form, p > 0, we define the interior product of

v and β to be the (p − 1)-form ivβ (sometimes we write i(v)β) with values

ivβ
p(A2, . . . , Ap) := β p(v, A2, . . . , Ap) (O.27)

(It can be shown that this is a contraction, (ivβ)bc... = viβibc...). This is a form since

it clearly is multilinear in A2, . . . , Ap, since β is, and changes sign under each inter-

change of the A, and is defined independent of any coordinates. In the case of a 1-form

β, ivβ is the 0-form (function)

ivβ
1 = β1(v) = biv

i
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which is equal to 〈v, b〉 in any Riemannian metric. Look at iv(α
1 ∧ β1):

iv(α
1 ∧ β1)(C) = (α1 ∧ β1)(v, C) = α(v)β(C) − α(C)β(v)

= (ivα)β(C) − (ivβ)α(C) = [(ivα)β − (ivβ)α](C)

A more tedious calculation shows the general product rule

iv(α
p ∧ βq) = [iv(α

p)] ∧ βq + (−1)pα p ∧ [ivβ
q] (O.28)

just as for the differential d (see (O.20)).

O.n. Volume Forms and Cartan’s Vector Valued Exterior Forms

Let x , y be positively oriented cartesian coordinates in R
2. The area 2-form in the

cartesian plane is vol2 = dx ∧ dy, but in polar coordinates we have vol2 = rdr ∧ dθ .

Looking at (O.7) we note that r = √
g, where

g := det(gi j ) (O.29)

In any Riemannian metric, in any oriented R
n , we define the volume n-form to be

voln := √
gdx1 ∧ . . . ∧ dxn (O.30)

in any positively oriented curvilinear coordinates. It can be shown that this is indeed

an n-form (modulo some question of orientation that I do not wish to consider here).

In spherical coordinates in R
3 we get, since (gi j ) = diag(1, r 2, r 2sin2θ), the familiar

vol3 = r 2 sin θdr ∧ dθ ∧ dφ.

Note now the following in R
3 in any coordinates. For any vector v

ivvol3 = iv
√

gdx1 ∧ dx2 ∧ dx3 = √
giv(dx1 ∧ dx2 ∧ dx3)

Now apply the product rule (O.28) repeatedly

iv(dx1 ∧ dx2 ∧ dx3) = v1dx2 ∧ dx3 − dx1 ∧ iv(dx2 ∧ dx3)

= v1dx2 ∧ dx3 − dx1 ∧ [v2dx3 − v3dx2]

= v1dx2 ∧ dx3 − v2dx1 ∧ dx3 + v3dx1 ∧ dx2

and so

ivvol3 = √
g[v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2] (O.31)

is the 2-form version of a vector v in R
3 with a volume form vol3.

Remark: For a surface V 2 in Riemannian R
3, with unit normal vector field n, it is

easy to see that invol3 is the area 2-form for V 2. Simply look at its value on a pair of

vectors (A, B) tangent to V ; invol3(A, B) = vol3(n, A, B) is the area spanned by A
and B.

Comparing (O.31) with (O.14) we see that the most general 2-form β2 in R
3 (with

vol3), in any coordinates, is of the form

β2 = ibvol3 where b1 = b23/
√

g, etc. (O.14)′
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In electromagnetism,

D
2 = iEvol3

The same procedure works for an (n − 1) form in R
n . Note that this does not require

an entire metric tensor, we use only the volume element. If we have a distinguished
volume form (i.e., if we have a coordinate independent notion of the volume spanned by

a “positively oriented” n-tuple of vectors in R
n), even if it is not derived from a metric,

we shall use the same notation in positively oriented coordinates, as given in (O.30)

voln = √
gdx1 ∧ . . . ∧ dxn

where
√

g > 0 is now merely some coefficient function dependent on the choice of

volume form and the coordinates used. (Warning: this notation is my own and is not

standard.)

If we have a volume form, we can define the divergence of a vector field v as follows

(div v)voln : = d(ivvoln) = d{√g[v1 dx2 ∧ dx3 ∧ . . . ∧ dxn

− v2 dx1 ∧ dx3 ∧ . . . ∧ dxn + · · ·]}
= [∂(v1√g)/∂x1 + ∂(v2√g)/∂x2 + · · ·] dx1 ∧ . . . ∧ dxn

i.e.,

div v = (1/
√

g)∂/∂xi (
√

gvi ) (O.32)

If, furthermore, the volume form comes from a Riemannian metric we can define the

Laplacian of a function f by

∇2 f := � f := div ∇ f = (1/
√

g)∂/∂xi (
√

ggi j∂ f/∂x j )) (O.33)

We now wish to consider the notion of vector or × product in more detail. We have

seen in Section O.h that in R
3 in any coordinates the 2-form

α1∧ γ 1 = (a1 dx1 + a2 dx2 + a3 dx3) ∧ (c1 dx1 + c2 dx2 + c3 dx3)

= (a2c3 − a3c2)dx2∧ dx3+ (a3c1− a1c3)dx3∧ dx1+ (a1c2 − a2c1)dx2∧ dx3

corresponds to the cross product a × c in cartesian coordinates, and this 2-form version

is ideal when considering surface integrals in any coordinates.

We shall now give a 1-form version of a × b, we write (a × b)∗, which will be

very useful in line integrals and in our later sections considering electromagnetism and

elasticity.

In R
3 with a vol3, and in any coordinates, we define

(a × b)∗ is the unique 1-form defined by (a × b)∗(c) := vol3(a, b, c)

for every vector c. If we have a metric, then (a × b)∗ (c) = (a × b) · (c) = vol3(a, b, c)

gives the usual definition of the vector a × b, but clearly the 1-form version is more

basic since it does not require a metric. (Question: how would you define a ×-product

of n − 1 vectors in an R
n with a voln?)
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Note

vol3(a, b, c) = −vol3(b, a, c) = (−ib vol3)(a, c) = −β2(a, c) = (−iaβ
2)(c)

where β2 = ib vol is the 2-form version of b. Thus in any coordinates with a vol3

(a × b)∗ = −iaβ
2 = −ia[ib vol3] (O.34)

which, from (O.31)

(a×b)∗ = −i(a1∂1+ a2∂2 + a3∂3)
√

g[b1 dx2∧ dx3 + b2 dx3∧ dx1 + b3 dx1∧ dx2]

= √
g[(a2b3 − a3b2)dx1 + (a3b1 − a1b3)dx2 + (a1b2 − a2b1)dx3]

Now we can write the Lorentz force law of Section O.l

f
1 = q(E

1 − ivB
2)

Finally, an important restatement of the cross product in R
3. We are going to follow

Elie Cartan and use 2-forms whose values on pairs of vectors are not numbers but

rather vectors or covectors. Let χ (2)
∗ = χ∗ be the covector-valued 2-form with value

the covector χ∗ (a, b): = (a × b)∗ . The jth component of this covector is

χ∗(a, b) j = (a × b) j = (a × b)∗(∂ j ) = vol3(∂ j ,a, b) = [i(∂ j )vol3](a, b)

Thus

χ∗ = dx j ⊗ χ j = dx j ⊗ [i(∂ j )vol3] (O.35)∗

Note the ⊗ not ∧. By definition, the value of the 2-form χ∗ on the pair of vectors a, b
is not a number, but rather the 1-form

χ∗(a, b) = [vol3(∂ j , a, b)]dx j

With a Riemannian metric, the contravariant version is the vector valued 2-form

χ∗ = ∂ i ⊗ gi j i(∂ j )vol3 (O.35)∗

This is the 2-form that, when applied to the pair of vectors, yields a × b. In cartesian

coordinates we can write it symbolically as the column of 2-forms

[dy ∧ dz dz ∧ dx dx ∧ dy]T

whose value on a pair of vectors (a, b) is the column of components of a × b.

O.o. Magnetic Field for Current in a Straight Wire

This simple example illustrates much of what we have done. Consider a steady current

j in a thin straight wire of infinite length.
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C

C ′

C ′′
j

Since the current is steady we have Ampère’s law
∮

C=∂V H1 = 4π
∫∫

V j2. Looking at

three surfaces bounded respectively by C , C ′, and C ′′ and the flux of current through

them, we have ∮
C

H
1 = 4π j =

∮
C ′

H
1

while
∮

C ′′ H
1 = 0. Introducing cylindrical coordinates, we can guess immediately that

H
1 = 2 j dθ in the region outside the wire, for it has the correct integrals. We require,

however, that div B = 0 = dB2. Now B2 = iH vol3 where H is the contravariant version

of the 1-form H. The metric for cylindrical coordinates is diag(1, r2, 1) and Hθ = 2 j is

the only nonzero component of our guess H
1, hence H θ = gθθ Hθ (no sum) = (1/r 2)2 j .

Then B
2 = iHvol3 becomes

B
2 = (2 j/r 2)i(∂θ )r dr ∧ dθ ∧ dz = −(2 j/r)dr ∧ dz = d[−2 j (ln r)dz]

Clearly dB = 0, as required and, in fact, [−2 j (ln r)dz] is a “magnetic potential”
1-form α1 outside the wire, B

2 = dα1. Another choice is α1 = 2 j z/r dr .

Elasticity and Stresses

O.p. Cauchy Stress, Floating Bodies, Twisted Cylinders,
and Strain Energy

In learning the sciences examples are of more use than precepts.

Isaac Newton, Arithmetica Universalis (1707)

We look at our cylinder B and its twisted version F(B) in Section O.a, but first we shall

use cartesian coordinates xi . Consider any small surface V in F(B) passing through a

point p and let n be a normal to V at p. Then because of the twisting, the material on

the side of V towards which n is pointing, exerts a force f on the material on the other

side of V . Cauchy’s “first theorem” states that this force is reversed if we replace n by
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–n, and further this (contravariant) force is given by integrating a vector valued 2-form

t over V (not Cauchy’s language)

f on V = ∂a

[∫
V

tabi(∂b)vol3

]

where t is the “Cauchy stress tensor.” A sketch of a proof of Cauchy’s theorem will be

given in Section O.q. Cauchy’s “second theorem” says tab = tba and a proof sketch is

given in Section O.r. (The fact that the stress force is reversed if n is replaced by −n
informs us (see Section 2.8f) that the stress form is technically a “pseudo-form.” )

As a warm-up check of our machinery, let us look first at an example of the simplest

type of stress from elementary physics. In the case of a nonviscous fluid, given a very

small parallelogram spanned by v and w and with normal n = v × w, the fluid on the

side to which n is pointing exerts a force on the other side approximated by −pv × w,

where p is the hydrostatic pressure. From (O.35) the stress vector valued 2-form is

given by t = −∂ i ⊗ pgi j i(∂ j )vol3. In a pool with cartesian coordinates x , y, z, with

the origin at the surface and z pointing down, look at a floating body B, with portion

B ′ below the water surface, with surface normal pointing out of B. While Archimedes

knew the result, we need to practice with our new tools.

z

B′

Then the total stress force exerted on ∂ B from water of constant density ρ outside B
is, with gi j = δi j and p = ρgz

f = ∂ i

∫
∂ B ′

t i j i(∂ j )vol3 = −∂ i

∫
∂ B ′

pδi j i(∂ j )vol3

= −∂x

∫
∂ B ′

ρgz dy ∧ dz − ∂ y

∫
∂ B ′

ρgz dz ∧ dx − ∂z

∫
∂ B ′

ρgz dx ∧ dy

where we have included the part of ∂ B ′ at water level z = 0, even though there is

no water there, since ρgz = 0 there and we get a 0 contribution from it. We shall

evaluate the surface integrals by applying Stokes’ theorem (O.26) to B ′. The three

2-forms ρgz dy ∧ dz, etc, apply only to the outside of B ′ since there is no water inside

B ′. To apply Stokes’ theorem to B ′, we must extend these 2-forms from the boundary of

B ′ mathematically to the inside of B ′, in any smooth way that we wish, and we choose
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the same forms as are given outside B ′, with ρ = ρwater again! Then by Stokes

f = −∂x

∫
B ′

d[ρgz dy ∧ dz] −∂ y

∫
B ′

d[ρgz dz ∧ dx] −∂z

∫
B ′

d[ρgz dx ∧ dy]

= −∂z

∫
B ′

ρg dx ∧ dy ∧ dz = −∂z W ′

where W ′ is the weight of the water displaced by B ′. Equilibrium demands this must

equal the weight of the whole body B. Thus a floating body displaces its own weight

in water. EUREKA!

Back to our twisted cylinder: Introduce cylindrical coordinates (X A) = (R, �, Z)

for the untwisted cylinder B. Next, introduce an identical set of coordinates (xa) =
(r, θ, z) and use the capitalized coordinates for a point in the untwisted body and r, θ, z
for the coordinates of the image point under the twist F . Thus F is described by

r = R, θ = � + k Z , and z = Z , where k is a constant. We need to determine the

Cauchy vector valued stress 2-form t = ∂a ⊗ta = ∂a ⊗ tabi(∂b)vol3 on F(B) in terms

of the twisting forces and the material from which B is made. We shall do this by first

pulling this 2-form back to the untwisted body B by the following procedure; we pull
back the 2-forms ta by F∗ and we push the vectors ∂a back to B by the inverse (F−1)∗,

which exists since F is a 1:1 deformation. The resulting vector valued 2-form on B is

S = [(F−1)∗(∂a)] ⊗ F∗ta = (F−1)∗(∂a) ⊗ F∗[tabi(∂b)vol3]

which is of the form

S = ∂ A ⊗ S
A = ∂ A ⊗ SABi(∂B)vol3 (O.36)

called the second Piola–Kirchhoff vector valued stress 2-form. We shall relate this
form to the twist F by a generalization of Hooke’s law.

We need to know how this twist F has stretched lengths and changed angles in the

body, and this is described as follows. The euclidean metric is d S2 = (d R2 + R2 d�2 +
d Z 2) = ds2 = (dr 2 + r 2 dθ2 + dz2). The pull-back (last paragraph of Section O.j) of

ds2 under the twist F is given by the chain rule

F∗ds2 = F∗(dr 2 + r 2 dθ2 + dz2) = d R2 + R2[(∂θ/∂�)d� + (∂θ/∂ Z)d Z ]2 + d Z 2

= d R2 + R2[d� + k d Z ]2 + d Z 2

= d R2 + R2[d�2 + 2k d�d Z + k2 d Z 2] + d Z 2

Recall what this is saying. At a point R, �, Z of the untwisted body, given two vectors

A, B, we have not only the scalar product 〈A, B〉 = d S2(A, B) but also the scalar product

of the images after the twist, i.e., from (O.23), ds2(F∗A, F∗B) =: (F∗ds2)(A, B). Then

one measure of how much the twist F is distorting distances and angles is defined by

the Lagrange deformation tensor

E := 1

2
[(F∗ds2) − d S2] (O.37)

The quadratic form (covariant second rank tensor) E is determined by its square matrix.

How do the stresses depend on the deformations? In our twisting case we have

E = k R2 d� d Z + 1

2
k2 R2 d Z 2. We will work only to the first approximation for small
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k, i.e., we shall put k2 = 0, so E = k R2 d� d Z = 1

2
k R2(d� d Z + d Z d�). We write

the components as a symmetric matrix

(EI J ) =
⎡
⎣ 0 0 0

0 0 k R2/2

0 k R2/2 0

⎤
⎦

The mixed version, using E A
B = G AI EI B and (G K L) = diag(1, 1/R2, 1), is the

(nonsymmetric)

(E A
B) =

⎡
⎣ 0 0 0

0 0 k/2

0 k R2/2 0

⎤
⎦

and thus tr E = E A
A = 0 “mod k2,” i.e., putting k2 = 0. Finally, putting E AB = E A

I G I B

(E AB) =
⎡
⎣ 0 0 0

0 0 k/2

0 k/2 0

⎤
⎦

Linear elasticity assumes a linear, vastly generalized “Hooke’s law” relating the

stress S to the deformation E . Assuming the body is isotropic (i.e., the material has

no special internal directional structure such as grains in wood), it can then be shown

(e.g., equation (D.9)), that there are then only two “elastic constants” μ and λ relating

S to E

S AB = 2μE AB + λ(tr E)G AB (O.38)

and so

(S AB) =
⎡
⎣ 0 0 0

0 0 μk
0 μk 0

⎤
⎦

This gives rise to the second Piola–Kirchhoff vector valued stress 2-form on the unde-
formed body

S : = ∂ I ⊗ SI J i(∂ J )VOL3 = ∂ I ⊗ SI J i(∂ J )R d R ∧ d� ∧ d Z

= [∂� ⊗ Sθ Z i(∂ Z ) + ∂ Z ⊗ SZθ i(∂θ )]R d R ∧ d� ∧ d Z

S = μk R[∂� ⊗ d R ∧ d� + ∂ Z ⊗ d Z ∧ d R] (O.38′)

Finally, the Cauchy stress vector valued 2-form t on the “current” deformed body

from (O.36), is t = F∗∂ A ⊗ (F−1)∗S A. Using F−1 defined by R = r , � = θ − kz,

Z = z, we get

t = μkr [∂θ ⊗ (F−1)∗(d R ∧ d�) + ∂z ⊗ (F−1)∗(d Z ∧ d R)]

= μkr [∂θ ⊗ dr ∧ (dθ − k dz) + ∂z ⊗ dz ∧ dr ] and discarding k2

t = μkr [∂θ ⊗ dr ∧ dθ + ∂z ⊗ dz ∧ dr ] (O.39)

To get correct “dimensions” for force we use the “physical” components of force,

i.e., we normalize the (already orthogonal) basis vectors. Since grr = 1 = gzz,∂r and
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∂z are unit vectors, call them er and ez . But gθθ = r 2, and so ∂θ , by (O.6), has length

r , and so we put eθ = r−1∂θ . We make no changes to the form parts dr , dθ , and dz

t = μkr2eθ ⊗ dr ∧ dθ + μkrez ⊗ dz ∧ dr (O.40)

We shall now see the consequences of this Cauchy stress. Look first at the lateral

surface r = a. Then dr = 0 there and so t = 0 on this surface. This means that no
external “traction” on this part of the boundary is needed for this twisting.

Now look at the end boundary at z = L . From (O.40) we have stress from outside

μkr 2eθ ⊗ dr ∧ dθ

acting in the eθ direction. This has to be supplied by external tractions since there is

no part of the body past its ends. What is the moment of the traction? We have a disk,

radius a, a force of magnitude μkr2 dr dθ acting in the eθ direction on an infinitesimal

“rectangle” of “sides” dr and dθ . The moment about the z axis is r(μkr 2)dr dθ , and

so the total moment is μk
∫∫

r 3dr dθ = μk(a4/4)2π = πμka4/2. If the total twist at

z = L is an angle of twist α = kL , then the total moment required is πμa4α/2L . An

opposite moment is required at z = 0. An experiment could yield the value of μ.

In the case of the floating body, treated near the beginning of our Section O.p, our

argument really showed the following. Take any blob of fluid B ′′ surrounded by fluid

at rest under the surface z = 0. Then the hydrostatic stress (pressure) on ∂ B ′′ due to the

water surrounding B ′′ produced a “body force” that supported the weight of the water

in B ′′. We now show that in the case of our twisted cylinder, to order k,

the Cauchy stresses produce no internal body forces inside the cylinder.

Look at an internal portion B of the cylinder, with boundary ∂ B. The Cauchy stress

acting on B from outside B derives from the vector valued 2-form in (O.40) at points of

∂ B. For total stress force on ∂ B, we cannot just integrate this because it makes no sense

to add vectors like eθ at different points. There is no problem with the ez components

because ez is a constant vector field in R
3. So let us express the unit vector eθ in terms of

the constant basis ex and ey . Again we leave the cylindrical coordinate 2-forms alone.

Now

∂/∂θ = (∂x/∂θ)∂/∂x + (∂y/∂θ)∂/∂y = (−r sin θ)ex + (r cos θ)ey

and eθ = r−1(∂/∂θ) = −ex sin θ + ey cos θ , and so (O.40) becomes

t = μkr 2(−ex sin θ + ey cos θ) ⊗ dr ∧ dθ + μkrez ⊗ dz ∧ dr

Then, with constant basis,
∫∫

∂ B exμkr 2 sin θ dr ∧dθ = ex

∫∫
∂ B μkr 2 sin θ dr ∧dθ , etc.,

and so ∫ ∫
∂ B

t = −ex

∫ ∫
∂ B

μkr 2 sin θ dr ∧ dθ + ey

∫ ∫
∂ B

μkr 2 cos θ dr ∧ dθ

+ ez

∫ ∫
∂ B

μkr dz ∧ dr

But each integral vanishes, e.g., ex

∫∫
∂ B μkr 2 sin θ dr ∧ dθ =

ex

∫∫∫
B d[μkr 2 sin θ ] ∧ dr ∧ dθ = 0, as desired.
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It is a fact, alas, that this simple approach will not work to higher order, keeping terms

of order k2. One cannot realize such a simple twist; other deformations are required

(see [Mu]).

I would like to emphasize one point brought out in the calculation above. When

integrating vector valued exterior forms, such as Cauchy’s ∂ i ⊗ t i j i(∂ j )vol3, we were

forced to make a change to a constant basis for the vector part, ∂ i = ea Aa
i , but kept

the cylindrical exterior forms, yielding∫ ∫
∂ B

ea ⊗ Aa
i t i j i(∂ j )vol3 = ea

∫ ∫
∂ B

Aa
i t

i j i(∂ j )vol3 = ea

∫ ∫ ∫
B

d[Aa
i t

i j i(∂ j )vol3]

and our exterior differential completely avoids Christoffel symbols and tensor diver-

gence of (t i j ) in curvilinear coordinates, that appear in tensor treatments.

Finally, let us compute the work done by the traction acting on the face Z = L ,

moving each point (R, �) to the point (R, � + α). Let 0 ≤ β ≤ α. The traction force

on the small “rectangle” of sides d R, d� at (R, � + β) has, from (O.38′), covariant

component approximately f� d R d� = g��μkβ R d R d� = μkβ R3 d R d�, where

kβ = β/L . The work done in moving this rectangle from β = 0 to β = α is approxi-

mately (d R d�)
∫ α

0
(μR3β/L) dβ = (d R d�)μR3α2/2L . Thus the total work done in

the twist of the face is W =(μα2/2L)
∫∫

R3 d R d� = πμ a4α2/4L . In most common

materials (hyperelastic), in particular for our isotropic body, this work yields a strain
energy of the same amount W , that is stored in the twisted body. Furthermore, for

hyperelastic bodies, this can be computed from an integral over the undeformed body

(see Sections A.d and D.a),

W = 1

2

∫ ∫ ∫
S AB E ABVOL3

and the reader can verify this in our example using E and S given before and after

(O.38).

This is one reason for our choice, at the beginning of this section, of considering stress

force as being contravariant, rather than covariant. Note that a metric ds2 = gi j dxi dx j

can be thought of as the covector valued 1-form dxi ⊗ gi j dx j whose value on any

vector v is the covariant version of v, dxi ⊗ gi j dx j (v) = dxi gi jv
j = vi dxi . Likewise,

the Lagrange deformation tensor can be thought of as a covector valued 1-form

E = d X I ⊗ EI J d X J = d X I ⊗ E
(1)

I

The stress tensor is a vector valued 2-form S = ∂ A ⊗ S ABi(∂B)VOL3 = ∂ A ⊗ S(2)A.

It is natural then to construct a scalar valued 3-form by introducing a new product
S(∧)E by taking the wedge product of the forms in both and evaluating the 1-form d X I

of E on the vector ∂ A of S

S(∧)E := d X I (∂ A)[S(2)A ∧ E
(1)

I ] = S
(2)A ∧ E

(1)
A

which is easily seen, since the two forms are of complementary dimension, to be the

integrand of the strain energy W

S(∧)E = [S ABi(∂B)VOL3] ∧ E AJ d X J = S AB E ABVOL3

W = 1

2

∫ ∫ ∫
S(∧) E
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While work in particle mechanics pairs a force covector ( fi ) with a contravariant tangent

vector (dxi/dt) to a curve, work done by traction in elasticity pairs the contravariant

stress force 2-form S with the covector valued deformation 1-form E, to yield a scalar

valued 3-form. (Warning: the notation -(∧)- does not appear in the literature.)

O.q. Sketch of Cauchy’s “First Theorem”

z

p

ax

az

ay

v

u

x

y

Consider a plane through a point p on the z axis of a cartesian coordinate system. This

plane generically cuts the x and y axes at two points, yielding two vectors u and v that

span the “roof” of a solid tetrahedron T , as in the figure above. The coordinate vectors

ax , ay, az are not necessarily of the same length. The material outside T exerts a stress

force, call it 1

2
t (u, v) across the roof ( 1

2
because the roof is not a parallelogram). (u, v)

tells us not only the roof, but also u, v, in that order is describing the normal pointing

out of T . Likewise 1

2
t(v, u) describes a force that the material in T exerts on material

outside T . t(v, u) = −t(u, v) can be seen by considering the equilibrium of a small

thin disk with faces parallel to the plane spanned by u and v. This is the first part of

Cauchy’s first theorem.

Stress forces act also on the coordinate faces. We now let the tetrahedron T shrink

to the point p by moving the x, y plane up to the point p, the dashed triangle showing

an intermediate position for the bottom face. At each stage the proportions of T are

preserved. As the vertical edge ‖az‖ shrinks to 0, the stress forces on the faces vanish as

their areas, i.e., as ‖az‖2 while the body forces, for example, gravity, if present, vanish

as the volume, i.e., as ‖az‖3. We will neglect the body forces for vanishingly small T .

For our small T to be in equilibrium we must have, neglecting body forces

t(u, v) + t(az, ay + t(ax , az) + t(ay, ax) ≈ 0

t(u, v) ≈ −t(az, ay) − t(ax , az) − t(ay, ax)

t(u, v) ≈ t(ay, az) + t(az, ax) + t(ax , ay) (O.41)
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Look at the first term t(ay, az). The normal to the pair ay, az is in the positive x
direction and so the area form for the y, z face is dy ∧ dz. Let 〈tyz〉 be the area vector
average of the vector t(ay, az), so

t(ay, az) = 〈tyz〉dy ∧ dz(ay, az)

Now note that for projected areas, dy ∧ dz(u, v) = dy ∧ dz(ax − az, −az + ay) =
dy ∧ dz(−az, −az) + dy ∧ dz(−az, ay) = dy ∧ dz(−az, ay) = −dy ∧ dz(az, ay) =
dy ∧ dz(ay, az). Thus

dy ∧ dz (ay, az) = dy ∧ dz(u, v) and so t(ay, az) = 〈tyz〉dy ∧ dz(u, v)

and similarly for the other faces in (O.41). We then have

t(u, v) ≈ 〈tyz〉dy ∧ dz(u, v) + 〈tzx〉dz ∧ dx(u, v) + 〈txy〉dx ∧ dy(u, v) (O.42)

Now as T shrinks to the point p the average 〈tyz〉 tends to a vector tx(p) = t1(p)

at p, etc. We can then approximate the stress in (O.42), for a very small parallelogram

at p spanned by u and v

t(u, v) ≈ [tx(p) ⊗ dy ∧ dz + ty(p) ⊗ dz ∧ dx + tz(p) ⊗ dx ∧ dy](u, v)

which suggests Cauchy’s theorem, that for any surface V 2 with normal direction pre-

scribed, the stress across V is given by a vector valued integral of the form

∫
V

tx(x, y, z) ⊗ dy ∧ dz + ty(x, y, z) ⊗ dz ∧ dx + tz(x, y, z) ⊗ dx ∧ dy

with Cauchy vector valued stress 2-form

t = ∂ i ⊗ t i j i(∂ j )vol3 (O.42)Cauchy

but this is not the way it is written in engineering texts. Consider first just the surface

integral of a 2-form β2 = i(b)vol3 over a surface V 2 ⊂ R
3 (using any coordinates xi ),

with unit normal vector field n and covector version the 1-form n∗ = ni dxi . Then, when

applied to two vectors v and w tangent to V, “dA” (v, w) := vol(n, v, w) = [i(n)vol]

(v, w) is the area spanned by v and w. Then we can write, with btan the tangential part

of b ∫
V

β =
∫

V
i(b)vol3 =

∫
V

i[(b · n)n + btan]vol =
∫

V
(b · n)[i(n)vol]

since vol(btan, v, w) = 0 for three tangent vectors to V 2. Then

∫
V

β =
∫

V
i(b)vol3 =

∫
V
(b · n)[i(n)vol] =

∫
V
(b · n)d A =

∫
V

b j n j d A

Likewise, on a surface V 2, engineering texts write the stress

t i j n j d A instead of t i j i(∂ j )vol3
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O.r. Sketch of Cauchy’s “Second Theorem,” Moments as
Generators of Rotations

For Cauchy’s second theorem, the symmetry of the stress tensor t i j = t ji , we shall

consider only the simplest case of a deformed body, at rest and in equilibrium with

its external tractions on its boundary, and with no external body forces (like gravity)

considered. We employ cartesian coordinates throughout. Then, since gi j = δi j , tenso-

rial indices may be raised and lowered indiscriminately and we can use the summation

convention for all repeated indices.

Let B be any sub-body in the interior of the body, with boundary ∂ B. Then the

(assumed vanishing) total stress force covector on B yields

0 =
∫

∂ B
{dxc} ⊗ tc

bi(∂b)vol3 = {dxc}
∫

∂ B
tc = {dxc}

∫
B

dtc

where we use the braces { } just to remind us that the basis form to the left of ⊗ is a

constant covector that plays no role in the integral. Since this holds for every interior

B we must have

dtc = dtc
bi(∂b)vol3 = 0 for each c (O.43)

which classically is written as a divergence ∂tc
b/∂xb = 0.

For equilibrium we must also have that the total moment of stress forces on ∂ B
must vanish. Now the moment about the origin, of a force f at position vector r is, in

elementary point mechanics, r × f(r), but this expression makes no sense in more than 3

dimensions. But moments and torques surely make sense in any euclidean R
n , indicating

that we have not understood mathematically the notion of moment. Now in cartesian

coordinates in R
n , if we replace r and f(r) by 1-forms r = xa dxa and f = fc(r)dxc,

then r ∧ f does make sense as a 2-form at the origin of R
n and its components, in the

case of R
3, coincide with those of r × f(r). There is a more important point. A moment

about the origin 0 of R
n is physically a “generator” of a rotation about 0. Let us see

why a 2-form at the origin of R
n , with components forming a skew symmetric matrix,

also is associated to a rotation there.

Let g(t) be a 1-parameter group (i.e., g(t) g(s) = g(t + s), and g(0) = I) of rotations
of R

n about the origin. Since each g(t) is an “orthogonal” matrix, g(t) g(t)T = I, where

T is transpose. Differentiate with respect to t (indicated by an overdot) and put t = 0.

Then

0 = ġ(0)g(0)T + g(0)ġ(0)T = ġ(0) + ġ(0)T

says that A := ġ(0) (the so-called “infinitesimal generator” of the 1-parameter group

g(t)), is a skew symmetric n×n matrix, and so defines a 2-form A = � j<k A jkdx j ∧ dxk

at the origin. For example, a 1-parameter group of rotations about the z axis of R
3 is,

with ω a constant,

g(t) =
⎡
⎣ cos(ωt) −sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1

⎤
⎦ and has generator A = ġ(0) =

⎡
⎣ 0 −ω 0

ω 0 0

0 0 0

⎤
⎦
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with associated 2-form A = −ω dx ∧ dy at the origin. If v is a vector at the origin, then

Av is the vector (Av) j = A jkv
k = −vk Akj , i.e., the covector version of Av is −i(v)A.

Conversely, if A is a skew symmetric n × n matrix at the origin (a 2-form at the

origin), then A generates a 1-parameter group of rotations g(t) by means of the expo-

nential matrix

g(t) = et A = exp t A := Σk t k Ak/k!

(it is an orthogonal matrix since g(t)T = exp t AT = exp(−t A) = g(−t) = g−1(t)). A
2-form at the origin of R

n generates a 1 parameter group of rotations about the
origin of R

n . (Linear algebra also shows that the generator of et A is [d/dtet A]t=0 =
Ae0 = A.)

Thus to each moment of a force f about the origin of R
n we may attach the generator

of its rotations, i.e., a 2-form at the origin, which is simply a skew symmetric n × n
matrix.

Then with our sub-body B of an elastic body in R
3, the Cauchy stress covector

valued 2-form yields an “area covector force density” with “components” the 2-forms

tc = tc
b i(∂b)vol3 at points of the boundary ∂ B. The “moment about an origin (chosen

inside B)” density, on ∂ B, has cartesian “components” the matrix of 2-forms

mac = [xatc
b − xcta

b]i(∂b)vol3 = xatc − xcta

Thus the total moment about the origin due to these stress forces on ∂ B is the 2-form

at the origin �a<c Mac dxa ∧ dxc with components the matrix of numbers

Mac =
∫

∂ B
[xatc − xcta] =

∫
B

d[xatc − xcta]

which, from (O.43) (i.e., assuming no external body forces), is

Mac =
∫

B
dxa ∧ tc − dxc ∧ ta

In most common elastic materials, this must vanish if there are to be no “couple

stresses” without applied internal torque sources. Since this holds for any portion B we

must have

dxa ∧ tc = dxc ∧ ta (O.44)

Since these are 3-forms in R
3,

dxa ∧ tc = dxa ∧ tc
b i(∂b)vol3 = tc

avol3 (O.44′)

For example, in R
3 with a = 2 and c = 1,

dx2 ∧ t1
b[i(∂b)dx1 ∧ dx2 ∧ dx3] = dx2 ∧ t1

2[i(∂2)dx1 ∧ dx2 ∧ dx3]

= −dx2 ∧ t1
2[i(∂2)dx2 ∧ dx1 ∧ dx3]

= −dx2 ∧ t1
2 dx1 ∧ dx3

= −t1
2 dx2 ∧ dx1 ∧ dx3 = t1

2 dx1 ∧ dx2 ∧ dx3

= t1
2vol3
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(O.44) then yields tc
avol3 = ta

cvol3, and since the coordinates are cartesian we have

t ca = tac (O.45)

Since the Cauchy stress t is a tensor, this symmetry holds in any coordinate system.

This is Cauchy’s second theorem.

Warning: In Section O.p we allowed and encouraged the use of different coordinates

for the 2-form part and the value part of the stress vector valued 2-form

∂ i ⊗ t i j i(∂ j )vol3 = ea ⊗ Aa
i t i j i(∂ j )vol3 =: ea ⊗ τ aj i(∂ j )vol3

The left index “a” on τ is associated with the e basis and the right index “ j” is associated

with the ∂ basis. (Think, for example, of e as cartesian and ∂ as cylindrical.) Does the

fact that t is symmetric, t T = t , insure that τ = At is also ? No!

τ T = (At)T = t TAT = t AT = A−1τ AT �= τ generically

O.s. A Remarkable Formula for Differentiating Line,
Surface, and . . ., Integrals

Let v be a time independent vector field in a coordinate patch U of R
n with any

coordinates xi . Roughly speaking, i.e., omitting some technicalities, by integrating the

differential equations dxi/dt = vi (x) we can move along the integral curves of v for

t seconds yielding a “flow” φt : U → R
n . Since v is time independent, the φt form

a 1 parameter commutative group of mappings, φtφh = φt+h and φ0 is the identity

map. Let V r be an oriented r dimensional “submanifold” of U . For examples, V 1

is an oriented curve , V 2 is an oriented 2 dimensional surface, . . . .V r is the kind of

object over which one integrates an exterior r-form α=αr (a scalar valued, not vector

valued form), yielding the number
∫

V αr . As time changes, the flow moves V from

V (0) = V to V (t) = φt(V ). We consider only the simplest case where the r-form α

is time independent. How does the integral change in time? The answer can be shown

(see Section 4.3a) to be

d/dt |t=0

∫
V (t)

αr =
∫

V
Lvα

r (O.46)

where the r -form Lvα
r , the Lie derivative of the form α, is defined via the pull-backs

[Lvα
r ](at x) : = [d/dt]t=0φt

∗[αr (at φt x)]

= lim
t→0

{φt
∗[αr (at φt x)] − αr (at x)}/t (O.47)

Furthermore, there is a remarkable expression for computing the Lie derivative of any

form, given by the Henri Cartan (son of Elie Cartan) formula

Lvα
r = iv(dαr ) + d(ivα

r ) (O.48)

Thus (O.46) and Stokes say

d/dt |t=0

∫
V (t)

αr =
∫

V
Lvα

r =
∫

V
iv dα +

∫
∂V

ivα (O.49)
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Consider for example the case of a line integral in R
3, which we also write in classical

form in cartesian coordinates. V 1 is then a curve C starting at point P and ending at

point Q. Symbolically ∂C = Q − P . Classically α = a · dx. Then ivα is the 0-form,

i.e., function v · a, and
∫

∂C v · a is by definition simply (v · a)(Q) − (v · a)(P). This

is the second “integral” in (O.49). Also, dα1 is the 2-form version of the vector curl a,

and so iv dα, from (O.34), is the 1-form version of −v × curl a. We then have, in the

classical version

d/dt]t=0

∫
C(t)

a · dx = −
∫

C
[v × curl a] · dx + (v · a)(Q) − (v · a)(P)

The reader might enjoy computing the rates of change of surface and volume integrals∫
S

b · n d A and

∫
M

vol3

A final remark about time dependent flows and forms. In the real world, vector

fields and forms are frequently time dependent. Consider, for example, R
n with local

coordinates x = (xi ), and let αr be an r -form (with components that may be time t
dependent) and v = ∂ iv

i (t, x). We may again solve the differential equations dx/dt =
v(t, x) to get maps φt but (as discussed in Section 4.3b) generically they will not satisfy

the crucial φa ◦ φb = φa+b. To circumvent this we introduce the space R × R
n with

n + 1 local coordinates (x0 = t, xi ), 1 ≤ i ≤ n, that is, we enlarge the space R
n to

R
n+1 by introducing time as another dimension. We then augment the original vector

field v on R
n to the new field ν (t, x) = ∂ t + v(t, x) on R

1 × R
n . Then it is shown in

Theorem (4.42) that we get new maps φt : R
1 × R

n → R
1 × R

n that do form a flow,

and if V = V0 is an r dimensional submanifold of the R
n slice t = 0, then V (a) = φa V

is in slice t = a, and (O.49) is replaced by

d/dt |t=0

∫
V (t)

α =
∫

V
Lνα =

∫
V

i(ν)dα +
∫

V
d[i(ν)α]

=
∫

V
(∂α/∂t) + ivdα + divα (O.50)

(note iv = i(v) uses the original vector field v, not the augmented ν = v + ∂ t). The

bold d is the “spatial” exterior differential of R
n (keeping t constant) and ∂α/∂t is the

r -form (with no dt term) where each term of α

ai ... j (x, t)dxi ∧ . . . ∧ dx j

is replaced by

[∂ai ... j (x, t)/∂t]t=0 dxi ∧ . . . ∧ dx j

For example, (O.50) tells us that Faraday’s law of section O.l says that for a moving
surface V 2(t)

d/dt
∫ ∫

V (t)
B

2 = −
∮

∂V
(E − ivB) = −

∮
∂V

(E + v × B) · dx

is the line integral of the electromotive force along the boundary curve.

Applications to fluid flows, vorticity, and magnetohydrodynamics can be seen in

Section 4.3c.
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CHAPTER 1

Manifolds and Vector Fields

Better is the end of a thing than the beginning thereof.

Ecclesiastes 7:8

As students we learn differential and integral calculus in the context of euclidean space

R
n , but it is necessary to apply calculus to problems involving “curved” spaces. Geodesy

and cartography, for example, are devoted to the study of the most familiar curved

surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and

longitude serve as “coordinates,” allowing us to use calculus by considering functions

on the Earth’s surface (temperature, height above sea level, etc.) as being functions of

latitude and longitude. The familiar Mercator’s projection, with its stretching of the

polar regions, vividly informs us that these coordinates are badly behaved at the poles:

that is, that they are not defined everywhere; they are not “global.” (We shall refer to

such coordinates as being “local,” even though they might cover a huge portion of the

surface. Precise definitions will be given in Section 1.2.) Of course we may use two

sets of “polar” projections to study the Arctic and Antarctic regions. With these three

maps we can study the entire surface, provided we know how to relate the Mercator to

the polar maps.

We shall soon define a “manifold” to be a space that, like the surface of the Earth, can

be covered by a family of local coordinate systems. A manifold will turn out to be the
most general space in which one can use differential and integral calculus with roughly
the same facility as in euclidean space. It should be recalled, though, that calculus in

R
3 demands special care when curvilinear coordinates are required.

The most familiar manifold is N -dimensional euclidean space R
N , that is, the space

of ordered N tuples (x1, . . . , x N ) of real numbers. Before discussing manifolds in

general we shall talk about the more familiar (and less abstract) concept of a submanifold

of R
N , generalizing the notions of curve and surface in R

3.

1.1. Submanifolds of Euclidean Space

What is the configuration space of a rigid body fixed at one point of R
n?

3
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1.1a. Submanifolds of R
N

Euclidean space, R
N , is endowed with a global coordinate system (x1, . . . , x N ) and is

the most important example of a manifold.

In our familiar R
3, with coordinates (x, y, z), a locus z = F(x, y) describes a (2-

dimensional) surface, whereas a locus of the form y = G(x), z = H(x), describes a

(1-dimensional) curve. We shall need to consider higher-dimensional versions of these

important notions.

A subset M = Mn ⊂ R
n+r is said to be an n-dimensional submanifold of R

n+r ,

if locally M can be described by giving r of the coordinates differentiably in terms of

the n remaining ones. This means that given p ∈ M , a neighborhood of p on M can

be described in some coordinate system (x, y) = (x1, . . . , xn, y1, . . . , yr ) of R
n+r by

r differentiable functions

yα = f α(x1, . . . , xn), α = 1, . . . r

We abbreviate this by y = f (x), or even y = y(x). We say that x1, . . . , xn are local
(curvilinear) coordinates for M near p.

Examples:

(i) y1 = f (x1, . . . , xn) describes an n-dimensional submanifold of R
n+1.

xn

Mn

x  , . . .1

y1

Figure 1.1

In Figure 1.1 we have drawn a portion of the submanifold M . This M is the graph
of a function f : R

n → R, that is, M = {(x, y) ∈ R
n+1 | y = f (x)}. When n = 1,

M is a curve; while if n = 2, it is a surface.

(ii) The unit sphere x2 + y2 + z2 = 1 in R
3. Points in the northern hemisphere can be

described by z = F(x, y) = (1 − x2 − y2)1/2 and this function is differentiable

everywhere except at the equator x2 + y2 = 1. Thus x and y are local coordinates for

the northern hemisphere except at the equator. For points on the equator one can solve

for x or y in terms of the others. If we have solved for x then y and z are the two local

coordinates. For points in the southern hemisphere one can use the negative square
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root for z. The unit sphere in R
3 is a 2-dimensional submanifold of R

3. We note that we

have not been able to describe the entire sphere by expressing one of the coordinates,

say z, in terms of the two remaining ones, z = F(x, y). We settle for local coordinates.

More generally, given r functions Fα(x1, . . . , xn, y1, . . . , yr ) of n + r variables,

we may consider the locus Mn ⊂ R
n+r defined by the equations

Fα(x, y) = cα, (c1, . . . , cr ) constants

If the Jacobian determinant

[
∂(F1, . . . , Fr )

∂(y1, . . . , yr )

]
(x0, y0)

at (x0, y0) ∈ M of the locus is not 0, the implicit function theorem assures us that

locally, near (x0, y0), we may solve Fα(x, y) = cα, α = 1, . . . , r , for the y’s in terms

of the x’s

yα = f α(x1, . . . , xn)

We may say that “a portion of Mn near (x0, y0) is a submanifold of R
n+r .” If the

Jacobian �= 0 at all points of the locus, then the entire Mn is a submanifold.

Recall that the Jacobian condition arises as follows. If Fα(x, y) = cα can be

solved for the y’s differentiably in terms of the x’s, yβ = yβ(x), then if, for fixed i ,
we differentiate the identity Fα(x, y(x)) = cα with respect to xi , we get

∂ Fα

∂xi
+

∑
β

[
∂ Fα

∂yβ

]
∂yβ

∂xi
= 0

and

∂yβ

∂xi
= −

∑
α

([
∂ F

∂y

]−1
)β

α

[
∂ Fα

∂xi

]

provided the subdeterminant ∂(F1, . . . , Fr )/∂(y1, . . . , yr ) is not zero. (Here

([∂ F/∂y]−1)βα is the βα entry of the inverse to the matrix ∂ F/∂y; we shall use

the convention that for matrix indices, the index to the left always is the row index,

whether it is up or down.) This suggests that if the indicated Jacobian is nonzero then

we might indeed be able to solve for the y’s in terms of the x’s, and the implicit func-

tion theorem confirms this. The (nontrivial) proof of the implicit function theorem

can be found in most books on real analysis.

Still more generally, suppose that we have r functions of n+r variables, Fα(x1, . . . ,

xn+r ). Consider the locus Fα(x) = cα . Suppose that at each point x0 of the locus the

Jacobian matrix (
∂ Fα

∂xi

)
α = 1, . . . , r i = 1, . . . , n + r

has rank r . Then the equations Fα = cα define an n-dimensional submanifold of R
n+r ,

since we may locally solve for r of the coordinates in terms of the remaining n.
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F(x, y, z) = 0

G(x, y, z) = 0

grad G

grad F

x

y

z

M 1

Figure 1.2

In Figure 1.2, two surfaces F = 0 and G = 0 in R
3 intersect to yield a curve M .

The simplest case is one function F of N variables (x1, . . . , x N ). If at each point
of the locus F = c there is always at least one partial derivative that does not
vanish, then the Jacobian (row) matrix [∂ F/∂x1, ∂ F/∂x2, . . . , ∂ F/∂x N ] has rank 1

and we may conclude that this locus is indeed an (N − 1)-dimensional submani-
fold of R

N . This criterion is easily verified, for example, in the case of the 2-sphere

F(x, y, z) = x2 + y2 + z2 = 1 of Example (ii). The column version of this row

matrix is called in calculus the gradient vector of F . In R
3 this vector⎡

⎢⎣
∂ F
∂x
∂ F
∂y
∂ F
∂z

⎤
⎥⎦

is orthogonal to the locus F = 0, and we may conclude, for example, that if this

gradient vector has a nontrivial component in the z direction at a point of F = 0,

then locally we can solve for z = z(x, y).

A submanifold of dimension (N −1) in R
N , that is, of “codimension” 1, is called

a hypersurface.

(iii) The x axis of the xy plane R
2 can be described (perversely) as the locus of the quadratic

F(x, y) := y2 = 0. Both partial derivatives vanish on the locus, the x axis, and our

criteria would not allow us to say that the x axis is a 1-dimensional submanifold of

R
2. Of course the x axis is a submanifold; we should have used the usual description

G(x, y) := y = 0. Our Jacobian criteria are sufficient conditions, not necessary ones.

(iv) The locus F(x, y) := xy = 0 in R
2, consisting of the union of the x and y axes,

is not a 1-dimensional submanifold of R
2. It seems “clear” (and can be proved) that

in a neighborhood of the intersection of the two lines we are not going to be able to

describe the locus in the form of y = f (x) or x = g(y), where f , g, are differen-

tiable functions. The best we can say is that this locus with the origin removed is a

1-dimensional submanifold.
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1.1b. The Geometry of Jacobian Matrices: The “Differential”

The tangent space to R
n at the point x , written here as R

n
x , is by definition the vector

space of all vectors in R
n based at x (i.e., it is a copy of R

n with origin shifted to x).

Let x1, . . . , xn and y1, . . . , yr be coordinates for R
n and R

r respectively. Let F :

R
n → R

r be a smooth map. (“Smooth” ordinarily means infinitely differentiable. For

our purposes, however, it will mean differentiable at least as many times as is necessary

in the present context. For example, if F is once continuously differentiable, we may

use the chain rule in the argument to follow.) In coordinates, F is described by giving

r functions of n variables

yα = Fα(x) α = 1, . . . , r

or simply y = F(x). We will frequently use the more dangerous notation y = y(x).

Let y0 = F(x0); the Jacobian matrix (∂yα/∂xi )(x0) has the following significance.

Figure 1.3

Let v be a tangent vector to R
n at x0. Take any smooth curve x(t) such that x(0) = x0

and ẋ(0) := (dx/dt)(0) = v, for example, the straight line x(t) = x0 + tv. The image

of this curve

y(t) = F(x(t))

has a tangent vector w at y0 given by the chain rule

wα = ẏα(0) =
n∑

i=1

(
∂yα

∂xi

)
(x0)ẋ i (0) =

n∑
i=1

(
∂yα

∂xi

)
(x0)v

i

The assignment v �→ w is, from this expression, independent of the curve x(t) chosen,

and defines a linear transformation, the differential of F at x0

F∗ : R
n
x0

→ R
r
y0

F∗(v) = w (1.1)
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whose matrix is simply the Jacobian matrix (∂yα/∂xi )(x0). This interpretation of the
Jacobian matrix, as a linear transformation sending tangents to curves into tangents
to the image curves under F, can sometimes be used to replace the direct computation
of matrices. This philosophy will be illustrated in Section 1.1d.

1.1c. The Main Theorem on Submanifolds of R
N

The main theorem is a geometric interpretation of what we have discussed. Note that

the statement “F has rank r at x0,” that is, [∂yα/∂xi ](x0) has rank r , is geometrically

the statement that the differential

F∗ : R
n
x0

→ R
r
y0=F(x0)

is onto or “surjective”; that is, given any vector w at y0 there is at least one vector v at

x0 such that F∗(v) = w. We then have

Theorem (1.2): Let F : R
r+n → R

r and suppose that the locus

F−1(y0) := {x ∈ R
r+n | F(x) = y0}

is not empty. Suppose further that for all x0 ∈ F−1(y0)

F∗ : R
n+r
x0

→ R
r
y0

is onto. Then F−1(y0) is an n-dimensional submanifold of R
n+r.

Figure 1.4
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The best example to keep in mind is the linear “projection” F : R
3 → R

2,

F(x1, x2, x3) = (x1, x2), that is, y1 = x1 and y2 = x2. In this case, x3 serves as

global coordinate for the submanifold x1 = y1
0 , x2 = y2

0 , that is, the vertical line.

1.1d. A Nontrivial Example: The Configuration Space
of a Rigid Body

Assume a rigid body has one point, the origin of R
3, fixed. By comparing a cartesian

right-handed system fixed in the body with that of R
3 we see that the configuration of

the body at any time is described by the rotation matrix taking us from the basis of R
3

to the basis fixed in the body. The configuration space of the body is then the rotation
group SO(3), that is, the 3 × 3 real matrices x = (xi j ) such that

x T = x−1 and det x = 1

where T denotes transpose. (If we omit the determinant condition, the group is the

full orthogonal group, O(3).) By assigning (in some fixed order) the nine coordinates

x11, x12, . . . , x33 to any matrix x , we see that the space of all 3 × 3 real matrices,

M(3×3), is the euclidean space R
9. The group O(3) is then the locus in this R

9 defined

by the equations x T x = I , that is, by the system of nine quadratic equations (i, k)

(i, k)

3∑
j=1

x ji x jk = δik

We then have the following situation. The configuration of the body at time t can be

represented by a point x(t) in R
9, but in fact the point x(t) lies on the locus O(3) in

R
9. We shall see shortly that this locus is in fact a 3-dimensional submanifold of R

9.

As time t evolves, the point x(t) traces out a curve on this 3-dimensional locus. Since

O(3) is a submanifold, we shall see, in Section 10.2c from the principle of least action,

that this path is a very special one, a “geodesic” on the submanifold O(3), and this in

turn will yield important information on the existence of periodic motions of the body

even when the body is subject to an unusual potential field. All this depends on the fact

that O(3) is a submanifold, and we turn now to the proof of this crucial result.

Note first that since x T x is a symmetric matrix, equation (i, k) is the same as equation

(k, i); there are, then, only 6 independent equations. This suggests the following. Let

Sym6 := {x ∈ M(3 × 3) | xT = x}
be the space of all symmetric 3 × 3 matrices. Since this is defined by the three linear
equations xik − xki = 0, i �= k, we see that Sym6 is a 6-dimensional linear subspace of

R
9; that is, it can be considered as a copy of R

6. To exhibit O(3) as a locus in R
9, we

consider the map

F : R
9 → R

6 = Sym6 defined by F(x) = xT x − I

O(3) is then the locus F−1(0). Let x0 ∈ F−1(0) = O(3). We shall show that F∗ :

R
9
x0

→ Sym6 is onto.
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Figure 1.5

Let w be tangent to Sym6 at the zero matrix. As usual, we identify a vector at the

origin of R
n with its endpoint. Then w is itself a symmetric matrix. We must find v, a

tangent vector to R
9 at x0, such that F∗v = w. Consider a general curve x = x(t) of

matrices such that x(0) = x0; its tangent vector at x0 is ẋ(0). The image curve

F(x(t)) = x(t)T x(t) − I

has tangent at t = 0 given by

d

dt
[F(x(t))]t=0 = ẋ(0)T x0 + x T

0 ẋ(0)

We wish this quantity to be w. You should verify that it is sufficient to satisfy the matrix

equation x T
0 ẋ(0) = w/2. Since x0 ∈ O(3), x T

0 = x−1
0 and we have as solution the matrix

product v =ẋ = x0w/2. Thus F∗ is onto at x0 and by our main theorem O(3)= F−1(0)

is a (9 − 6) = 3-dimensional submanifold of R
9.

What about the subset SO(3) of O(3)? Recall that each orthogonal matrix has de-

terminant ±1, whereas SO(3) consists of those orthogonal matrices with determinant

+1. The mapping

det : R
9 → R

that sends each matrix x into its determinant is continuous (it is a cubic polynomial

function of the coordinates xik) and consequently the two subsets of O(3) where det

is +1 and where det is −1 must be separated. This means that SO(3) itself must have

the property that it is locally described by giving 6 of the coordinates in terms of the

remaining 3, that is, SO(3) is a 3-dimensional submanifold of R
9.

Thus the configuration space of a rigid body with one point fixed is the group SO(3).

This is a 3-dimensional submanifold of R
9. Each point of this configuration space lies

in some local curvilinear coordinate system.
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In physics books the coordinates in an n-dimensional configuration space are usu-

ally labeled q1, . . . , qn . For SO(3) physicists usually use the three “Euler angles” as

coordinates. These coordinates do not cover all of SO(3) in the sense that they become

singular at certain points, just as polar coordinates in the plane are singular at the origin.

Problems

1.1(1) Investigate the locus x2 + y2 − z2 = c in R
3, for c > 0, c = 0, and c < 0. Are

they submanifolds? What if the origin is omitted? Draw all three loci, for c = 1,
0, −1, in one picture.

1.1(2) SO(n) is defined to be the set of all orthogonal n × n matrices x with det x = 1.
The preceding discussion of SO(3) extends immediately to SO(n). What is the
dimension of SO(n) and in what euclidean space is it a submanifold?

1.1(3) Is the special linear group

Sl (n) := {n × n real matrices x
∣∣ det x = 1}

a submanifold of some R
N ? Hint: You will need to know something about ∂/∂xi j

(det x ); expand the determinant by the j th column.This is an example where it
might be easier to deal directly with the Jacobian matrix rather than the differ-
ential.

1.1(4) Show, in R
3, that if the cross product of the gradients of F and G has a nontrivial

component in the x direction at a point of the intersection of F = 0 and G = 0,
then x can be used as local coordinate for this curve.

1.2. Manifolds

In learning the sciences examples are of more use than precepts.

Newton, Arithmetica Universalis (1707)

The notion of a “topology” will allow us to talk about “continuous” functions and points

“neighboring” a given point, in spaces where the notion of distance and metric might

be lacking.

The cultivation of an intuitive “feeling” for manifolds is of more importance, at this

stage, than concern for topological details, but some basic notions from point set topol-

ogy are helpful. The reader for whom these notions are new should approach them as

one approaches a new language, with some measure of fluency, it is hoped, coming later.

In Section 1.2c we shall give a technical (i.e., complete) definition of a manifold.

1.2a. Some Notions from Point Set Topology

The open ball in R
n , of radius ε, centered at a ∈ R

n is

Ba(ε) = {x ∈ R
n

∣∣ ‖ x − a ‖< ε}
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The closed ball is defined by

Ba(ε) = {x ∈ R
n

∣∣ ‖ x − a ‖≤ ε}
that is, the closed ball is the open ball with its edge or boundary included.

A set U in R
n is declared open if given any a ∈ U there is an open ball of some radius

r > 0, centered at a, that lies entirely in U . Clearly each Bb(ε) is open if ε > 0 (take

r = (ε− ‖ b − a ‖)/2), whereas Bb(ε) is not open because of its boundary points. R
n

itself is trivially open. The empty set is technically open since there are no points a in it.

A set F in R
n is declared closed if its complement R

n − F is open. It is easy to

check that each Ba(ε) is a closed set, whereas the open ball is not. Note that the entire

space R
n is both open and closed, since its complement is empty.

It is immediate that the union of any collection of open sets in R
n is an open set, and it

is not difficult to see that the intersection of any finite number of open sets in R
n is open.

We have described explicitly the “usual” open sets in euclidean space R
n . What do

we mean by an open set in a more general space? We shall define the notion of open

set axiomatically.

A topological space is a set M with a distinguished collection of subsets, to be called

the open sets. These open sets must satisfy the following.

1. Both M and the empty set are open.

2. If U and V are open sets, then so is their intersection U ∩ V .

3. The union of any collection of open sets is open.

These open subsets “define” the topology of M .

(A different collection might define a different topology.) Any such collection of subsets

that satisfies 1, 2, and 3 is eligible for defining a topology in M . In our introductory

discussion of open balls in R
n we also defined the collection of open subsets of R

n .

These define the topology of R
n , the “usual” topology. An example of a “perverse”

topology on R
n is the discrete topology, in which every subset of R

n is declared open!

In discussing R
n in this book we shall always use the usual topology.

A subset of M is closed if its complement is open.

Let A be any subset of a topological space M . Define a topology for the space A
(the induced or subspace topology) by declaring V ⊂ A to be an open subset of A
provided V is the intersection of A with some open subset U of M , V = A ∩ U . These

sets do define a topology for A. For example, let A be a line in the plane R
2. An open

ball in R
2 is simply a disc without its edge. This disc either will not intersect A or will

intersect A in an “interval” that does not contain its endpoints. This interval will be an

open set in the induced topology on the line A. It can be shown that any open set in A
will be a union of such intervals.

Any open set in M that contains a point x ∈ M will be called a neighborhood of x .

If F :M → N is a map of a topological space M into a topological space N , we

say that F is continuous if for every open set V ⊂ N , the inverse image F−1V :=
{x ∈ M | F(x) ∈ V } is open in M . (This reduces to the usual ε, δ definition in the case

where M and N are euclidean spaces.) The map sending all of R
n into a single point of

R
m is an example showing that a continuous map need not send open sets into open sets.
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If F :M → N is one to one (1 : 1) and onto, then the inverse map F−1:N → M
exists. If further both F and F−1 are continuous, we say that F is a homeomorphism
and that M and N are homeomorphic. A homeomorphism takes open (closed) sets into

open (closed) sets. Homeomorphic spaces are to be considered to be “the same” as

topological spaces; we say that they are “topologically the same.” It can be proved that

R
n and R

m are homeomorphic if and only if m = n.

The technical definition of a manifold requires two more concepts, namely “Haus-

dorff” and “countable base.” We shall not discuss these here since they will not arise

explicitly in the remainder of the book. The reader is referred to [S] for questions

concerning point set topology.

There is one more concept that plays a very important role, though not needed for the

definition of a manifold; the reader may prefer to come back to this later on when needed.

A topological space X is called compact if from every covering of X by open sets one

can pick out a finite number of the sets that still covers X . For example, the open interval

(0,1), considered as a subspace of R, is not compact; we cannot extract a finite subcov-

ering from the open covering given by the sets Un = {x | 1/n < x < 1}n = 1, 2, . . ..

On the other hand, the closed interval [0,1] is a compact space. In fact, it is shown in

every topology book that any subset X of R
n (with the induced topology) is compact

if and only if

1. X is a closed subset of R
n ,

2. X is a bounded subset, that is, ‖ x ‖ < some number c, for all x ∈ X .

Finally we shall need two properties of continuous maps. First

The continuous image of a compact space is itself compact.

P R O O F: If f : G → M is continuous and if {Ui } is an open cover of f (G) ⊂ M ,

then { f −1(Ui )} is an open cover of G. Since G is compact we can extract a finite

open subcover { f −1(Uα)} of G, and then {Uα} is a finite subcover of f (G).

Furthermore

A continuous real-valued function f : G → R on a compact space G is bounded.

P R O O F: f (G) is a compact subspace of R, and thus is closed and bounded.

1.2b. The Idea of a Manifold

An n-dimensional (differentiable) manifold Mn (briefly, an n-manifold) is a topological

space that is locally R
n in the following sense. It is covered by a family of local

(curvilinear) coordinate systems {U ; x1
U , . . . , xn

U }, consisting of open sets or “patches”

U and coordinates xU in U , such that a point p ∈ U ∩ V that lies in two coordinate

patches will have its two sets of coordinates related differentiably

xi
V (p) = f i

V U (x1
U , . . . , xn

U ) i = 1, 2, . . . , n. (1.3)
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(If the functions fV U are C∞, that is, infinitely differentiable, or real analytic, . . . , we

say that M is C∞, or real analytic, . . . .) There are more requirements; for example, we

shall demand that each coordinate patch is homeomorphic to some open subset of R
n .

Some of these requirements will be mentioned in the following examples, but details

will be spelled out in Section 1.2c.

Examples:

(i) Mn = R
n , covered by a single coordinate system. The condition (1.3) is vacuous.

(ii) Mn is an open ball in R
n , again covered by one patch.

(iii) The closed ball in R
n is not a manifold. It can be shown that a point on the edge of

the ball can never have a neighborhood that is homeomorphic to an open subset of

R
n . For example, with n = 1, a half open interval 0 ≤ x < 1 in R

1 can never be

homeomorphic to an open interval 0 < x < 1 in R
1.

(iv) Mn = Sn , the unit sphere in R
n+1. We shall illustrate this with the familiar case

n = 2. We are dealing with the locus x2 + y2 + z2 = 1.

z

x

y
(x, z)

(x, y)

p

Figure 1.6

Cover S2 with six “open” subsets (patches)

Ux+ = {p ∈ S2 | x(p) > 0} Ux− = {p ∈ S2 | x(p) < 0}
Uy+ = {p ∈ S2 | y(p) > 0} Uy− = {p ∈ S2 | y(p) < 0}
Uz+ = {p ∈ S2 | z(p) > 0} Uz− = {p ∈ S2 | z(p) < 0}

The point p illustrated sits in [Ux+] ∩ [Uy+] ∩ [Uz+]. Project Uz+into the xy
plane; this introduces x and y as curvilinear coordinates in Uz+.

Do similarly for the other patches. For p ∈ [Uy+] ∩ [Uz+], p is assigned the two

sets of coordinates {(u1, u2) = (x, z)} and {(v1, v2) = (x, y)} arising from the two

projections

πxz : Uy → xz plane and πxy : Uz → xy plane
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These are related by v1 = u1 and v2 = +[1 − u2
1 − u2

2]1/2; these are differentiable

functions provided u2
1 + u2

2 < 1, and this is satisfied since p ∈ Uy+.

S2 is “locally R
2.” The indicated point p has a neighborhood (in the topology of

S2 induced as a subset of R
3) that is homeomorphic, via the projection πxy , say, to

an open subset of R
2 (in this case an open subset of the xy plane). We say that a

manifold is locally euclidean.

If two sets of coordinates are related differentiably in an overlap we shall say

that they are compatible. On S2 we could introduce, in addition to the preceding

coordinates, the usual spherical coordinates θ and φ, representing colatitude and

longitude. They do not work for the entire sphere (e.g., at the poles) but where they

do work they are compatible with the original coordinates.

We could also introduce (see Section 1.2d) coordinates on S2 via stereographic

projection onto the planes z = 1 and z = −1, again failing at the south and north

pole, respectively, but otherwise being compatible with the previous coordinates. On

a manifold we should allow the use of all coordinate systems that are compatible with

those that originally were used to define the manifold. Such a collection of compatible

coordinate systems is called a maximal atlas.

(v) If Mn is a manifold with local coordinates {U ; x1, . . . , xn} and W r is a manifold with

local coordinates {V ; y1, . . . ,yr }, we can form the product manifold

Ln+r = Mn × W r = {(p, q) | p ∈ Mn and q ∈ W r }
by using x1, . . . , xn , y1, . . . , yr as local coordinates in U × V .

S1 is simply the unit circle in the plane R
2; it has a local coordinate θ = tan−1(y/x),

using any branch of the multiple-valued function θ . One must use at least two such

coordinates (branches) to cover S1. “Topologically” S1 is conveniently represented by

an interval on the real line R with endpoints identified; by this we mean that there is a

homeomorphism between these two models. In order to talk about a homeomorphism

identify these two points

p
p p

Figure 1.7

we would first have to define the topology in the space consisting of the interval

with endpoints identified; it clearly is not the same space as the interval without the

identification. To define a topology, we may simply consider the map F : [0 ≤ θ ≤
2π ] → R

2 = C defined by F(θ) = eiθ . It sends the endpoints θ = 0 and θ = 2π to

the point p = 1 on the unit circle in the complex plane. This map is 1 : 1 and onto if we

identify the endpoints. The unit circle has a topology induced from that of the plane,

built up from little curved intervals. We can construct open subsets of the interval by

taking the inverse images under F of such sets. (What then is a neighborhood of the

endpoint p?) By using this topology we force F to be a homeomorphism.
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S1 is the configuration space for a rigid pendulum constrained to oscillate in the

plane

Figure 1.8

The n-dimensional torus T n := S1 × S1 × · · · × S1 has local coordinates given

by the n-angular parameters θ1, . . . , θn . Topologically it is the n cube (the product

of n intervals) with identifications. For n = 2

Figure 1.9

T 2 is the configuration space of a planar double pendulum. It might be thought that

it is simpler to picture the double pendulum itself rather than the seemingly abstract

version of a 2-dimensional torus. We shall see in Section 10.2d that this abstract

picture allows us to conclude, for example, that a double pendulum, in an arbitrary
potential field, always has periodic motions in which the upper pendulum makes p
revolutions while the lower makes q revolutions.

Figure 1.10

(vi) The real projective n space RPn is the space of all unoriented lines L through the

origin of R
n+1. We illustrate with the projective plane of lines through the origin of R

3.
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x

y

z
L

Figure 1.11

Such a line L is completely determined by any point (x, y, z) on the line, other

than the origin, but note that (ax, ay, az) represents the same line if a �= 0. We should

really use the ratios of coordinates to describe a line. We proceed as follows.

We cover RP2 by three sets:

Ux := those lines not lying in the yz plane

Uy := those lines not lying in the xz plane

Uz := those lines not lying in the xy plane

Introduce coordinates in the Uz patch; if L ∈ Uz , choose any point (x, y, z) on L
other than the origin and define (since z �= 0)

u1 = x

z
, u2 = y

z
Do likewise for the other two patches. In Problem 1.2(1) you are asked to show that

these patches make RP2 into a 2-dimensional manifold.

These coordinates are the most convenient for analytical work. Geometrically, the

coordinates u1 and u2 are simply the xy coordinates of the point where L intersects

the plane z = 1.

Consider a point in RP2; it represents a line through the origin 0. Let (x, y, z) be

a point other than the origin that lies on this line. We may represent this line by the

triple [x, y, z], called the homogeneous coordinates of the point in RP2 where we

must identify [x, y, z] with [λx , λy, λz] for all λ �= 0. They are not true coordinates

in our sense.

We have suceeded in “parameterizing” the set of undirected lines through the origin

by means of a manifold, M2 = RP2 . A manifold is a generalized parameterization
of some set of objects. RP2 is the set of undirected lines through the origin; each point

of RP2 is an entire line in R
3 and RP2 is a global object. If, however, one insists on

describing a particular line L by coordinates, that is, pairs of numbers (u, v), then this

can, in general, only be done locally, by means of the manifold’s local coordinates.

Note that if we had been considering directed lines, then the manifold in question

would have been the sphere S2, since each directed line L
⇀

could be uniquely defined

by the “forward” point where L
⇀

intersects the unit sphere. An undirected line meets S2

in a pair of antipodal points; RP2 is topologically S2 with antipodal points identified.
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We can now construct a topological model of RP2 that will allow us to identify

certain spaces we shall meet as projective spaces. Our model will respect the topol-

ogy; that is, “nearby points” in RP2 (that is, nearby lines in R
3) will be represented

by nearby points in the model, but we won’t be concerned with the differentiability

of our procedure. Also it will be clear that certain natural “distances” will not be pre-

served; in the rigorous definition of manifold, to be given shortly, there is no mention
of metric notions such as distance or area or angle.

identify identify identify

Figure 1.12

In the sphere with antipodal points identified, we may discard the entire southern

hemisphere (exclusive of the equator) of redundant points, leaving us with the north-

ern hemisphere, the equator, and with antipodal points only on the equator identified.

We may then project this onto the disc in the plane. Topologically RP2 is the unit
disc in the plane with antipodal points on the unit circle identified.

Similarly, RPn is topologically the unit n sphere Sn in R
n+1 with antipodal points

identified, and this in turn is the solid n-dimensional unit ball in R
n with antipodal

points on the boundary unit (n − 1) sphere identified.

(vii) It is a fact that every submanifold of R
n is a manifold. We verified this in the case

of S2 ⊂ R
3 in Example (ii). In 1.1d we showed that the rotation group SO(3) is a

3-dimensional submanifold of R
9. A convenient topological model is constructed as

follows. Use the “right-hand rule” to associate the endpoint of the vector θr to the

rotation through an angle θ (in radians) about an axis descibed by the unit vector r.

Note, however, that the rotationπr is exactly the same as the rotation−πr and (π+α)r
is the same as −(π − α)r. The collection of all rotations then can be represented by

the points in the solid ball of radius π in R
3 with antipodal points on the sphere of

radius π identified; SO(3) can be identified with the real projective space RP3.

(viii) The Möbius band Mö is the space obtained by identifying the left and right hand

edges of a sheet of paper after giving it a “half twist”

identify

Mö
Mö

Figure 1.13
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If one omits the edge one can see that Mö is a 2-dimensional submanifold of R
3

and is therefore a 2-manifold. You should verify (i) that the Möbius band sits naturally

as the shaded “half band” in the model of RP2 consisting of S2 with antipodal points

identified, and (ii) that this half band is the same as the full band. The edge of the

Figure 1.14

Möbius band consists of a single closed curve C that can be pictured as the “upper”

edge of this full band in RP2. Note that the indicated “cap” is topologically a 2-

dimensional disc with a circular edge C ′. If we observe that the lower cap is the same

as the upper, we conclude that if we take a 2-disc and sew its edge to the single edge of
a Möbius band, then the resulting space is topologically the projective plane! We may

say that RP2 is Mö with a 2-disc attached along its boundary. Although the actual

sewing, say with cloth, cannot be done in ordinary space R
3 (the cap would have to

slice through itself), this sewing can be done in R
4, where there is “more room.”

1.2c. A Rigorous Definition of a Manifold

Let M be any set (without a topology) that has a covering by subsets M = U ∪ V ∪ . . .,

where each subset U is in 1 : 1 correspondence φU : U → R
n with an open subset

φU (U ) of R
n .

Figure 1.15
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We require that each φU (U ∩V ) be an open subset of R
n . We require that the overlap

maps

fV U = φV ◦ φ−1
U : φU (U ∩ V ) → R

n (1.4)

that is,

φU (U ∩ V )
φ−1

U→ M
φV→ R

n

be differentiable (we know what it means for a map φV ◦ φ−1
U from an open set of

R
n to R

n to be differentiable). Each pair U , φU defines a coordinate patch on M ; to

p ∈ U ⊂ M we may assign the n coordinates of the point φU (p) in R
n . For this reason

we shall call φU a coordinate map.

Take now a maximal atlas of such coordinate patches; see Example (iv). Define a

topology in the set M by declaring a subset W of M to be open provided that given

any p ∈ W there is a coordinate chart U , φU such that p ∈ U ⊂ W . If the resulting

topology for M is Hausdorff and has a countable base (see [S] for these technical

conditions) we say that M is an n-dimensional differentiable manifold. We say that a

map F : R
p → R

q is of class Ck if all k th partial derivatives are continuous. It is of

class C∞ if it is of class Ck for all k. We say that a manifold Mn is of class Ck if its

overlap maps fV U are of class Ck . Likewise we have the notion of a C∞ manifold. An

analytic manifold is one whose overlap functions are analytic, that is, expandable in

power series.

Let F : Mn → R be a real-valued function on the manifold M . Since M is a topo-

logical space we know from 1.2a what it means to say that F is continuous. We say that

F is differentiable if, when we express F in terms of a local coordinate system (U, x),

F = FU (x1, . . . , xn) is a differentiable function of the coordinates x . Technically this

means that that when we compose F with the inverse of the coordinate map φU

FU := F ◦ φ−1
U

(recall that φU is assumed 1 : 1) we obtain a real-valued function FU defined on a

portion φU (U ) of R
n , and we are asking that this function be differentiable. Briefly

speaking, we envision the coordinates x as being engraved on the manifold M , just

as we see lines of latitude and longitude engraved on our globes. A function on the

Earth’s surface is continuous or differentiable if it is continuous or differentiable when

expressed in terms of latitude and longitude, at least if we are away from the poles.

Similarly with a manifold.With this understood, we shall usually omit the process of
replacing F by its composition F ◦ φ−1

U , thinking of F as directly expressible as a
function F(x) of any local coordinates.

Consider the real projective plane RP2, Example (vi) of Section 1.2b. In terms of

homogeneous coordinates we may define a map (R3 − 0) → RP2 by

(x, y, z) → [x, y, z]

At a point of R
3 where, for example, z �= 0 we may use u = x/z and v = y/z

as local coordinates in RP2, and then our map is given by the two smooth functions

u = f (x, y, z) = x/z and v = g(x, y, z) = y/z.
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1.2d. Complex Manifolds: The Riemann Sphere

A complex manifold is a set M together with a covering M = U ∪ V ∪ . . ., where

each subset U is in 1 : 1 correspondence φU : U → C
n with an open subset φU (U ) of

complex n-space C
n . We then require that the overlap maps fV U mapping sets in C

n into

sets in C
n be complex analytic; thus if we write fV U in the form wk = wk(z1, . . . , zn)

where zk = xk + iyk and wk = uk + ivk , then uk and vk satisfy the Cauchy–Riemann

equations with respect to each pair (xr , yr ). Briefly speaking, each wk can be expressed

entirely in terms of z1, . . . , zn , with no complex conjugates zr appearing. We then

proceed as in the real case in 1.2c. The resulting manifold is called an n-dimensional

complex manifold, although its topological dimension is 2n.

Of course the simplest example is C
n itself. Let us consider the most famous non-

trivial example, the Riemann sphere M1.

The complex plane C (topologically R
2) comes equipped with a global complex co-

ordinate z = x+iy. It is a complex 1-dimensional manifold C
1. To study the behavior of

functions at “∞” we introduce a point at ∞, to form a new manifold that is topologically

the 2-sphere S2. We do this by means of stereographic projection, as follows.

Figure 1.16

In the top part of the figure we have a sphere of radius 1/2, resting on a w = u + iv
plane, with a tangent z = x +iy plane at the north pole. Note that we have oriented these
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two tangent planes to agree with the usual orientation of S2 (questions of orientation

will be discussed in Section 2.8).

Let U be the subset of S2 consisting of all points except for the south pole, let V be

the points other than the north pole, let φU and φV be stereographic projections of U
and V from the south and north poles, respectively, onto the z and the w planes. In this

way we assign to any point p other than the poles two complex coordinates, z = |z|eiθ

and w = |w|e−iθ . From the bottom of the figure, which depicts the planar section in the

plane holding the two poles and the point p, one reads off from elementary geometry

that |w| = 1/|z|, and consequently

w = fV U (z) = 1

z
(1.5)

gives the relation between the two sets of coordinates. Since this is complex analytic

in the overlap U ∩ V , we may consider S2 as a 1-dimensional complex manifold, the

Riemann sphere. The point w = 0 (the south pole) represents the point z = ∞ that

was missing from the original complex plane C.

Note that the two sets of real coordinates (x, y) and (u, v) make S2 into a real analytic

manifold.

Problems

1.2(1) Show that RP 2 is a differentiable 2-manifold by looking at the transition func-
tions.

1.2(2) Give a coordinate covering for RP 3, pick a pair of patches, and show that the
overlap map is differentiable.

1.2(3) Complex projective n-space CP n is defined to be the space of complex lines
through the origin of C

n+1. To a point (z0, z1, . . . , zn) in (Cn+1 − 0) we associate
the line consisting of all complex multiples λ (z0, z1, . . . , zn) of this point, λ ∈ C.
We call [z0, z1, . . . , zn] the homogeneous coordinates of this line, that is, of this
point in CP n; thus [z0, z1, . . . , zn] = [μz0, μz1, . . . , μzn] for all μ ∈ (C − 0). If
zp �= 0 on this line, we may associate to this point [z0, z1, . . . , zn] its n complex
Up coordinates z0/zp, z1/zp, . . . , zn/zp, with zp/zp omitted.

Show that CP 2 is a complex manifold of complex dimension 2.
Note that CP1 has complex dimension 1, that is, real dimension 2. For z1 �= 0

the U1 coordinate of the point [z0, z1] is z = z0/z1, whereas if z0 �= 0 the U0

coordinate is w = z1/z0. These two patches cover CP1 and in the intersection
of these two patches we have w = 1/z . Thus CP1 is nothing other than the
Riemann sphere!

1.3. Tangent Vectors and Mappings

What do we mean by a “critical point” of a map F : Mn → V r ?

We are all acquainted with vectors in R
N . A tangent vector to a submanifold Mn of R

N ,

at a given point p ∈ Mn , is simply the usual velocity vector ẋ to some parameterized
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curve x = x(t) of R
N that lies on Mn . On the other hand, a manifold Mn , as defined in

the previous section, is a rather abstract object that need not be given as a subset of R
N .

For example, the projective plane RP2 was defined to be the space of lines through the

origin of R
3, that is, a point in RP2 is an entire line in R

3; if RP2 were a submanifold

of R
3 we would associate a point of R

3 to each point of RP2. We will be forced to

define what we mean by a tangent vector to an abstract manifold. This definition will

coincide with the previous notion in the case that Mn is a submanifold of R
N . The fact

that we understand tangent vectors to submanifolds is a powerful psychological tool,

for it can be shown (though it is not elementary) that every manifold can be realized
as a submanifold of some R

N . In fact, Hassler Whitney, one of the most important

contributors to manifold theory in the twentieth century, has shown that every Mn can

be realized as a submanifold of R
2n . Thus although we cannot “embed” RP2 in R

3

(recall that we had a difficulty with sewing in 1.2b, Example (vii) ), it can be embedded

in R
4. It is surprising, however, that for many purposes it is of little help to use the fact

that Mn can be embedded in R
N, and we shall try to give definitions that are “intrinsic,”

that is, independent of the use of an embedding. Nevertheless, we shall not hesitate to

use an embedding for purposes of visualization, and in fact most of our examples will

be concerned with submanifolds rather than manifolds.

A good reference for manifolds is [G, P]. The reader should be aware, however, that

these authors deal only with manifolds that are given as subsets of some euclidean space.

1.3a. Tangent or “Contravariant” Vectors

We motivate the definition of vector as follows. Let p = p(t) be a curve lying on

the manifold Mn; thus p is a map of some interval on R into Mn . In a coordinate

system (U, xU ) about the point p0 = p(0) the curve will be described by n functions

xi
U = xi

U (t), which will be assumed differentiable. The “velocity vector” ṗ(0) was

classically described by the n-tuple of real numbers dx1
U/dt]0, . . . , dxn

U/dt]0. If p0

also lies in the coordinate patch (V, xV ), then this same velocity vector is described

by another n-tuple dx1
V /dt]0, . . ., dx N

V /dt]0, related to the first set by the chain rule

applied to the overlap functions (1.3), xV = xV (xU ),

dxi
V

dt

]
0

=
n∑

j=1

(
∂xi

V

∂x j
U

)
(p0)

(
dx j

U

dt

)
0

This suggests the following.

Definition: A tangent vector, or contravariant vector, or simply a vector at

p0 ∈ Mn , call it X, assigns to each coordinate patch (U, x) holding p0, an n-tuple

of real numbers

(Xi
U ) = (X 1

U , . . . , Xn
U )

such that if p0 ∈ U ∩ V , then

Xi
V =

∑
j

[
∂xi

V

∂x j
U

(p0)

]
X j

U (1.6)
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If we let XU = (X 1
U , . . . , Xn

U )T be the column of vector “components” of X, we

can write this as a matrix equation

XV = cV U XU (1.7)

where the transition function cV U is the n × n Jacobian matrix evaluated at the

point in question.

The term contravariant is traditional and is used throughout physics, and we shall use it

even though it conflicts with the modern mathematical terminology of “categories and

functors.”

1.3b. Vectors as Differential Operators

In euclidean space an important role is played by the notion of differentiating a function

f with respect to a vector at the point p

Dv( f ) = d

dt
[ f (p + tv)]t=0 (1.8)

and if (x) is any cartesian coordinate system we have

Dv( f ) =
∑

j

[
∂ f

∂x j

]
(p)v j

This is the motivation for a similar operation on functions on any manifold M . A real-

valued function f defined on Mn near p can be described in a local coordinate system

x in the form f = f (x1, . . . , xn). (Recall, from Section 1.2c, that we are really dealing

with the function f ◦φ−1
U where φU is a coordinate map.) If X is a vector at p we define

the derivative of f with respect to the vector X by

Xp( f ) := DX( f ) :=
∑

j

[
∂ f

∂x j

]
(p)X j (1.9)

This seems to depend on the coordinates used, although it should be apparent from

(1.8) that this is not the case in R
n . We must show that (1.9) defines an operation that is

independent of the local coordinates used. Let (U, xU ) and (V, xV ) be two coordinate

systems. From the chain rule we see

DV
X ( f ) =

∑
j

(
∂ f

∂x j
V

)
X j

V =
∑

j

(
∂ f

∂x j
V

) ∑
i

(
∂x j

V

∂xi
U

)
Xi

U

=
∑

i

(
∂ f

∂xi
U

)
Xi

U = DU
X ( f )

This illustrates a basic point. Whenever we define something by use of local coordi-
nates, if we wish the definition to have intrinsic significance we must check that it has
the same meaning in all coordinate systems.
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Note then that there is a 1 : 1 correspondence between tangent vectors X to Mn at

p and first-order differential operators (on differentiable functions defined near p) that

take the special form

Xp =
∑

j

X j ∂

∂x j

]
p

(1.10)

in a local coordinate system (x). From now on, we shall make no distinction between a
vector and its associated differential operator. Each one of the n operators ∂/∂xi then

defines a vector, written ∂/∂xi , at each p in the coordinate patch.

The i th component of ∂/∂xα is, from (1.9), given by δi
α (where the Kronecker δi

α is 1

if i = α and 0 if i �= α). On the other hand, consider the αth coordinate curve through a

point, the curve being parameterized by xα. This curve is described by xi (t) = constant

for i �= α and xα(t) = t . The velocity vector for this curve at parameter value t has

components dxi/dt = δi
α. The j th coordinate vector ∂/∂x j is the velocity vector to

the j th coordinate curve parameterized by x j ! If Mn ⊂ R
N , and if r = (y1, . . . , yN )T

is the usual position vector from the origin, then ∂/∂x j would be written classically
as ∂r/∂x j ,

∂

∂x j
= ∂r

∂x j
=

(
∂y1

∂x j
, . . . ,

∂yN

∂x j

)T

(1.11)

A familiar example will be given in the next section.

1.3c. The Tangent Space to Mn at a Point

It is evident from (1.6) that the sum of two vectors at a point, defined in terms of their

n-tuples, is again a vector at that point, and that the product of a vector by a scalar, that

is, a real number, is again a vector.

Definition: The tangent space to Mn at the point p ∈ Mn , written Mn
p , is the

real vector space consisting of all tangent vectors to Mn at p. If (x) is a coordinate

system holding p, then the n vectors

∂

∂x1

]
p

, . . . ,
∂

∂xn

]
p

form a basis of this n-dimensional vector space (as is evident from (1.10)) and

this basis is called a coordinate basis or coordinate frame.

If Mn is a submanifold of R
N , then Mn

p is the usual n-dimensional affine subspace of
R

N that is “tangent” to Mn at p, and this is the picture to keep in mind.

A vector field on an open set U will be the differentiable assignment of a vector X
to each point of U ; in terms of local coordinates

X =
∑

j

X j (x)
∂

∂x j

where the components X j are differentiable functions of (x). In particular, each ∂/∂x j

is a vector field in the coordinate patch.
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Example:

Figure 1.17

We have drawn the unit 2-sphere M2 = S2 in R
3 with the usual spherical coordinates θ

and φ (θ is colatitude and −φ is longitude). The equations defining S2 are x = sin θ cos φ,

y = sin θ sin φ, and z = cos θ. The coordinate vector ∂/∂θ = ∂r/∂θ is the velocity

vector to a line of longitude, that is, keep φ constant and parameterize the meridian by

“time” t = θ. ∂/∂φ has a similar description. Note that these two vectors at p do not
live in S2, but rather in the linear space S2

p attached to S2 at p. Vectors at q �= p live

in a different vector space S2
q .

Warning: Because S2 is a submanifold of R
3 and because R

3 carries a familiar

metric, it makes sense to talk about the length of tangent vectors to this particular S2;

for example, we would say that ‖ ∂/∂θ ‖ = 1 and ‖ ∂/∂φ ‖ = sin θ . However, the

definition of a manifold given in 1.2c does not require that Mn be given as some specific

subset of some R
N ; we do not have the notion of length of a tangent vector to a general

manifold. For example, the configuration space of a thermodynamical system might

have coordinates given by pressure p, volume v, and temperature T , and the notions

of the lengths of ∂/∂ p, and so on, seem to have no physical significance. If we wish

to talk about the “length” of a vector on a manifold we shall be forced to introduce an

additional structure on the manifold in question. The most common structure so used

is called a Riemannian structure, or metric, which will be introduced in Chapter 2. See

Problem 1.3 (1) at this time.

1.3d. Mappings and Submanifolds of Manifolds

Let F : Mn → V r be a map from one manifold to another. In terms of local coordinates

x near p ∈ Mn and y near F(p) on V r F is described by r functions of n variables

yα = Fα(x1, . . . , xn), which can be abbreviated to y = F(x) or y = y(x). If, as we
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shall assume, the functions Fα are differentiable functions of the x’s, we say that F is

differentiable. As usual, such functions are, in particular, continuous.

When n = r , we say that F is a diffeomorphism provided F is 1 : 1, onto, and if, in

addition, F−1 is also differentiable. Thus such an F is a differentiable homeomorphism

(see 1.2a) with a differentiable inverse. (If F−1 does exist and the Jacobian determinant

does not vanish, ∂(y1, . . . ,yn)/∂(x1, . . . , xn) �= 0, then the inverse function theorem

of advanced calculus (see 1.3e) would assure us that the inverse is differentiable.)

The map F : R → R given by y = x3 is a differentiable homeomorphism, but it is

not a diffeomorphism since the inverse x = y1/3 is not differentiable at x = 0.

We have already discussed submanifolds of R
n but now we shall need to discuss

submanifolds of a manifold. A good example is the equator S1 of S2.

Definition: W r ⊂ Mn is an (embedded) submanifold of the manifold Mn

provided W is locally described as the common locus

F1(x1, . . . , xn) = 0, . . . , Fn−r (x1, . . . , xn) = 0

of (n − r) differentiable functions that are independent in the sense that the

Jacobian matrix [∂ Fα/∂xi ] has rank (n − r) at each point of the locus.

The implicit function theorem assures us that W r can be locally described (after perhaps

permuting some of the x coordinates ) as a locus

xr+1 = f r+1(x1, . . . xr ), . . . , xn = f n(x1, . . . , xr )

It is not difficult to see from this (as we saw in the case S2 ⊂ R
3) that every embedded

submanifold of Mn is itself a manifold!

Later on we shall have occasion to discuss submanifolds that are not “embedded,”

but for the present we shall assume “embedded” without explicit mention.

Definition: The differential F∗ of the map F : Mn → V r has the same meaning

as in the case R
n → R

r discussed in 1.1b. F∗ : Mn
p → V r

F(p) is the linear

transformation defined as follows. For X ∈ Mn
p , let p = p(t) be a curve on M

with p(0) = p and with velocity vector ṗ(0) = X. Then F∗X is the velocity vector

d/dt{F(p(t))}t=0 of the image curve at F(p) on V . This vector is independent

of the curve p = p(t) chosen (as long as ṗ(0) = X). The matrix of this linear

transformation, in terms of the bases∂/∂x at p and∂/∂y at F(p), is the Jacobian

matrix

(F∗)α
i = ∂ Fα

∂xi
(p) = ∂yα

∂xi
(p)

The main theorem on submanifolds is exactly as in euclidean space (Section 1.1c).

Theorem (1.12): Let F : Mn → V r and suppose that for some q ∈ V r the locus
F−1(q) ⊂ Mn is not empty. Suppose further that F∗ is onto, that is, F∗ is of rank
r , at each point of F−1(q). Then F−1(q) is an (n−r)-dimensional submanifold
of Mn.
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Example: Consider a 2-dimensional torus T 2 (the surface of a doughnut), embedded

in R
3.

Figure 1.18

We have drawn it smooth with a flat top (which is supposed to join smoothly with

the rest of the torus). Define a differentiable map (function) F : T 2 → R by F(p) = z,

the height of the point p ∈ T 2 above the z plane (R is being identified with the z axis).

Consider a point d ∈ T and a tangent vector v to T at d. Let p = p(t) be a curve on T
such that p(0) = d and ṗ(0) = v. The image curve in R is described in the coordinate

z for R by z(t) = z(p(t)), and it is clear from the geometry of T 2 ⊂ R
3 that ż(0) is

simply the z component of the spatial vector v. In other words F∗(v) is the projection
of v onto the z axis. Note then that F∗ will be onto at each point p ∈ T 2 for which the

tangent plane T 2(p) is not horizontal, that is, at all points of T 2 except a ∈ F−1(0),

b ∈ F−1(2), c ∈ F−1(4), and the entire flat top F−1(6).

From the main theorem, we may conclude that F−1(z) is a 1-dimensional subman-

ifold of the torus for 0 ≤ z ≤ 6 except for z = 0, 2, 4, and 6, and this is indeed

“verified” in our picture. (We have drawn the inverse images of z = 0, 1, . . . , 6.)

Notice that F−1(2), which looks like a figure 8, is not a submanifold; a neighborhood

of the point b on F−1(2) is topologically a cross + and thus no neighborhood of b is

topologically an open interval on R.

Definition: If F : Mn → V r is a differentiable map between manifolds, we say

that

(i) x ∈ M is a regular point if F∗ maps Mn
x onto V r

F(x); otherwise we say that

x is a critical point.
(ii) y ∈ V r is a regular value provided either F−1(y) is empty, or F−1(y)

consists entirely of regular points. Otherwise y is a critical value.

Our main theorem on submanifolds can then be stated as follows.
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Theorem (1.13): If y ∈ V r is a regular value, then F−1(y) either is empty or is
a submanifold of Mn of dimension (n − r).

Of course, if x is a critical point then F(x) is a critical value. In our toroidal example,

Figure 1.18, all values of z other than 0, 2, 4, and 6 are regular. The critical points on T 2

consist of a, b, c, and the entire flat top of T 2. These latter critical points thus fill up a

positive area (in the sense of elementary calculus) on T 2. Note however, that the image

of this 2-dimensional set of critical points consists of the single critical value z = 6.

The following theorem assures us that the critical values of a map form a “small” subset

of V r ; the critical values cannot fill up any open set in V r and they will have “measure”

0. We will not be precise in defining “almost all”; roughly speaking we mean, in some

sense, “with probability 1.”

Sard’s Theorem (1.14): If F : Mn → V r is sufficiently differentiable, then
almost all values of F are regular values, and thus for almost all points y ∈ V r ,
F−1(y) either is empty or is a submanifold of Mn of dimension (n − r).

By sufficiently differentiable, we mean the following. If n ≤ r , we demand that F be

of differentiability class C1, whereas if n − r = k > 0, we demand that F be of class

Ck+1. The proof of Sard’s theorem is delicate, especially if n > r ; see, for example,

[A, M, R].

1.3e. Change of Coordinates

The inverse function theorem is perhaps the most important theoretical result in all of

differential calculus.

The Inverse Function Theorem (1.15): If F : Mn → V n is a differentiable
map between manifolds of the same dimension, and if at x0 ∈ M the differential
F∗ is an isomorphism, that is, it is 1 : 1 and onto, then F is a local diffeomorphism
near x0.

This means that there is a neighborhood U of x such that F(U ) is open in V and

F : U → F(U ) is a diffeomorphism. This theorem is a powerful tool for introducing

new coordinates in a neighborhood of a point, for it has the following consequence.

Corollary (1.16): Let x1, . . . , xn be local coordinates in a neighborhood U of
the point p ∈ Mn. Let y1 , . . . , yn be any differentiable functions of the x’s ( thus
yielding a map:U → R

n) such that

∂(y1, . . . , yn)

∂(x1, . . . , xn)
(p) �= 0

Then the y’s form a coordinate system in some (perhaps smaller) neighborhood
of p.
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For example, when we put x = r cos θ , y = r sin θ , we have ∂(x, y)/∂(r, θ) = r , and

so ∂(r, θ)/∂(x, y) = 1/r . This shows that polar coordinates are good coordinates in a

neighborhood of any point of the plane other than the origin.

It is important to realize that this theorem is only local. Consider the map F : R
2 →

R
2 given by u = ex cos y, v = ex sin y. This is of course the complex analytic map

w = ez . The real Jacobian ∂(u, v)/∂(x, y) never vanishes (this is reflected in the

complex Jacobian dw/dz = ez never vanishing). Thus F is locally 1 : 1. It is not

globally so since ez+2πni = ez for all integers n. u, v form a coordinate system not in

the whole plane but rather in any strip a ≤ y < a + 2π .

The inverse function theorem and the implicit function theorem are essentially equiv-

alent, the proof of one following rather easily from that of the other. The proofs are

fairly delicate; see for example, [A, M, R].

Problems

1.3(1) What would be wrong in defining ‖ X ‖ in an Mn by

‖ X ‖2=
∑

j

(X j
U )2 ?

1.3(2) Lay a 2-dimensional torus flat on a table (the x y plane) rather than standing as
in Figure 1.18. By inspection, what are the critical points of the map T2 → R

2

projecting T2 into the x y plane?

1.3(3) Let Mn be a submanifold of R
N that does not pass through the origin. Look at

the critical points of the function f : M → R that assigns to each point of M the
square of its distance from the origin. Show, using local coordinates u1, . . . , un,
that a point is a critical point for this distance function iff the position vector to
this point is normal to the submanifold.

1.4. Vector Fields and Flows

Can one solve dxi/dt = ∂ f/∂xi to find the curves of steepest ascent?

1.4a. Vector Fields and Flows on R
n

A vector field on R
n assigns in a differentiable manner a vector vp to each p in R

n . In

terms of cartesian coordinates x1, . . . , xn

v =
∑

j

v j (x)
∂

∂x j

where the components v j are differentiable functions. Classically this would be written

simply in terms of the cartesian components v = (v1(x), . . . , vn(x))
T

.

Given a “stationary” (i.e., time-independent) flow of water in R
3, we can construct

the 1-parameter family of maps

φt : R
3 → R

3
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where φt takes the molecule located at p when t = 0 to the position of the same

molecule t seconds later. Since the flow is time-independent

φs(φt(p)) = φs+t(p) = φt(φs(p))

and (1.17)

φ−t(φt(p)) = p, i.e., φ−t = φ−1
t

We say that this defines a 1-parameter group of maps. Furthermore, if each φt is

differentiable, then so is each φ−1
t , and so each φt is a diffeomorphism. We shall call

such a family simply a flow. Associated with any such flow is a time-independent

velocity field

vp := dφt(p)

dt

]
t=0

In terms of coordinates we have

v j (p) = dx j (φt(p))

dt

]
t=0

which will usually be written

v j (x) = dx j

dt
Thought of as a differential operator on functions f

vp( f ) =
∑

j

v j (p)
∂ f

∂x j
=

∑
j

dx j

dt

∂ f

∂x j

= d

dt
f (φt(p))

]
t=0

is the derivative of f along the “streamline” through p.

We thus have the almost trivial observation that to each flow {φt} we can associate the

velocity vector field. The converse result, perhaps the most important theorem relating

calculus to science, states, roughly speaking, that to each vector field v in R
n one may

associate a flow {φt} having v as its velocity field, and that φt(p) can be found by

solving the system of ordinary differential equations

dx j

dt
= v j (x1(t), . . . , xn(t)) (1.18)

with initial conditions

x(0) = p

Thus one finds the integral curves of the preceding system, and φt(p) says, “Move

along the integral curve through p (the ‘orbit’ of p) for time t .” We shall now give

a precise statement of this “fundamental theorem” on the existence of solutions of

ordinary differential equations. For details one can consult [A, M, R; chap. 4], where

this result is proved in the context of Banach spaces rather than R
n . I recommend highly

chapters 4 and 5 of Arnold’s book [A2].
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The Fundamental Theorem on Vector Fields in R
n (1.19): Let v be a Ck vec-

tor field, k ≥ 1 (each component v j (x) is of differentiability class Ck) on an open
subset U of R

n. This can be written v : U → R
n since v associates to each x ∈ U

a point v(x) ∈ R
n. Then for each p ∈ U there is a curve γ mapping an interval

(−b, b) of the real line into U

γ : (−b, b) → U

such that
dγ (t)

dt
= v(γ (t)) and γ (0) = p

for all t ∈ (−b, b). (This says that γ is an integral curve of v starting at p.) Any
two such curves are equal on the intersection of their t-domains (“uniqueness”).
Moreover, there is a neighborhood Up of p, a real number ε > 0, and a Ck map


 : Up × (−ε, ε) → R
n

such that the curve t ∈ (−ε, ε) �→ φt(q) := 
(q, t) satisfies the differential
equation

∂

∂t
φt(q) = v(φt(q))

for all t ∈ (−ε, ε) and q ∈ Up. Moreover, if t , s, and t + s are all in (−ε, ε), then

φt ◦ φs = φt+s = φs ◦ φt

for all q ∈ Up, and thus {φt} defines a local 1- parameter “group” of diffeomor-
phisms, or local flow.

The term local refers to the fact that φt is defined only on a subset Up ⊂ U ⊂ R
n . The

word “group” has been put in quotes because this family of maps does not form a group

in the usual sense. In general (see Problem 1.4 (1)), the maps φt are only defined for

small t , −ε < t < ε; that is, the integral curve through a point q need only exist for
a small time. Thus, for example, if ε = 1, then although φ1/2(q) exists neither φ1(q)

nor φ1/2 ◦ φ1/2 need exist; the point is that φ1/2(q) need not be in the set Up on which

φ1/2 is defined.

Example: R
n = R, the real line, and v(x) = xd/dx . Thus v has a single component x

at the point with coordinate x . Let U = R. To find φt we simply solve the differential

equation

dx

dt
= x with initial condition x(0) = p

to get x(t) = et p, that is, φt (p) = et p. In this example the map φt is clearly defined on

all of M1 = R and for all time t . It can be shown that this is true for any linear vector

field

dx j

dt
=

∑
k

a j
k xk

defined on all of R
n .
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Note that if we solved the differential equation dx/dt = 1 on the real line with the

origin deleted, that is, on the manifold M1 = R − 0, then the solution curve starting at

x = −1 at t = 0 would exist for all times less than 1 second, but φ1 would not exist;

the solution simply runs “off” the manifold because of the missing point. One might

think that if we avoid dealing with pathologies such as digging out a point from R
1,

then our solutions would exist for all time, but as you shall verify in Problem 1.4(1)

this is not the case. The growth of the vector field can cause a solution curve to “leave”

R
1 in a finite amount of time.

We have required that the vector field v be differentiable. Uniqueness can be lost if the

field v is only continuous. For example, again on the real line, consider the differential

equation dx/dt = 3x2/3. The usual solutions are of the form x(t) = (t − c)3, but there

is also the “singular” solution x(t) = 0 identically. This is a reflection of the fact that

x2/3 is not differentiable when x = 0.

1.4b. Vector Fields on Manifolds

If X is a Ck vector field on an open subset W of a manifold Mn then we can again

recover a 1-parameter local group φt of diffeomorphisms for the following reasons. If

W is contained in a single coordinate patch (U, xU ) we can proceed just as in the case

R
n earlier since we can use the local coordinates xU . Suppose that W is not contained

in a single patch. Let p ∈ W be in a coordinate overlap, p ∈ U ∩ V . In U we can solve

the differential equations

dx j
U

dt
= X j

U (x1
U , . . . , xn

U )

as before. In V we solve the equations

dx j
V

dt
= X j

V (x1
V , . . . , xn

V )

Because of the transformation rule (1.6), the right-hand side of this last equation is∑
k[∂x j

V /∂xk
U ]Xk

U ; the left-hand side is, by the chain rule,
∑

k[∂x j
V /∂xk

U ]dxk
U/dt . Thus,

because of the transformation rule for a contravariant vector, the two differential equa-
tions say exactly the same thing. Using uniqueness, we may then patch together the U
and the V solutions to give a local solution in W .

Warning: Let f : Mn → R be a differentiable function on Mn . In elementary

mathematics it is often said that the n-tuple

[
∂ f

∂x1
, . . . ,

∂ f

∂xn

]T

form the components of a vector field “grad f .” However, if we look at the transfor-

mation properties in U ∩ V , by the chain rule

∂ f

∂x j
V

=
∑

k

[
∂xk

U

∂x j
V

]
∂ f

∂xk
U
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and this is not the rule for a contravariant vector. One sees then that a proposed differ-

ential equation for “steepest ascent,” dx/dt =“grad f ,” that is,

dx j
U

dt
= ∂ f

∂x j
U

in U and
dx j

V

dt
= ∂ f

∂x j
V

in V

would not say the same thing in two overlapping patches, and consequently would not
yield a flow φt ! In the next chapter we shall see how to deal with n-tuples that transform

as “grad f .”

1.4c. Straightening Flows

Our version of the fundamental theorem on the existence of solutions of differential

equations, as given in the previous section, is not the complete story; see [A, M, R,

theorem 4.1.14] or [A2, chap. 4] for details of the following. The map (p, t) → φt(p)

depends smoothly on the initial condition p and on the time of flow t . This has the

following consequence. (Since our result will be local, it is no loss of generality to

replace Mn by R
n.) Suppose that the vector field v does not vanish at the point p.

Then of course it doesn’t vanish in some neighborhood of p in Mn . Let W n−1 be a

hypersurface, that is, a submanifold of codimension 1, that passes through p. Assume

that W is transversal to v, that is, the vector field v is not tangent to W .

Figure 1.19

Let u1, . . ., un−1 be local coordinates for W , and let pu be the point on W with

local coordinates u. Then φt(pu) is the point t seconds along the orbit of v through

pu . This point can be described by the n-tuple (u, t). The fundamental theorem states

that if W is sufficiently small and if t is also sufficiently small, then (u, t) can be
used as (curvilinear) coordinates for some n-dimensional neighborhood of p in Mn .

To see this we shall apply the inverse function theorem. We thus consider the map

L : W n−1 × (−ε, ε) → Mn given by L(u, t) = φt(pu). We compute the differential

of this map at the origin u = 0 of the coordinates on W n−1. Then by the geometric

meaning of L∗, and since φ0(p) = p

L∗

(
∂

∂u1

)
= ∂

∂u
[φ0(u, 0, . . . , 0)]0 = ∂p(u,0,...,0)

∂u

∣∣∣∣
u=0

= ∂

∂u1

Likewise L∗(∂/∂ui ) = ∂/∂ui , for i = 1, . . . , n − 1. Finally

L∗(v) = ∂

∂t
φt(p0) = v

Thus L∗ is the identity linear transformation, and by Corollary (1.16) we may use

u1, . . . , un−1, t as local coordinates for Mn near p0.
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It is then clear that in these new local coordinates near p, the flow defined by the

vector field v is simply φS : (u, t) → (u, s + t) and the vector field v in terms of∂/∂u1,

. . . ,∂/∂un−1, ∂/∂t , is simply v = ∂/∂t . We have “straightened out” the flow!

Figure 1.20

This says that near a nonsingular point of v, that is, a point where v �= 0, coordinates

u1, . . . , un can be introduced such that the original system of differential equations

dx1/dt = v1(x), . . . , dxn/dt = vn(x) becomes

du1

dt
= 0, . . . ,

dun−1

dt
= 0,

dun

dt
= 1 (1.20)

Thus all flows near a nonsingular point are qualitatively the same! In a sense this

result is of theoretical interest only, for in order to introduce the new coordinates u
one must solve the original system of differential equations. The theoretical interest

is, however, considerable. For example, u1 = c1, . . ., un−1 = cn−1, are (n − 1) “first

integrals,” that is, constants of the motion, for the system (1.20). We conclude that

near any nonsingular point of any system there are (n − 1) first integrals, u1(x) =
c1, . . . , un−1(x) = cn−1 (but of course, we might have to solve the original system to

write down explicitly the functions u j in terms of the x’s).

Problems

1.4(1) Consider the quadratic vector field problem on R, v(x ) = x2d/dx . You must
solve the differential equation

dx
dt

= x2 and x (0) = p

Consider, as in the statement of the fundamental theorem, the case when Up is
the set 1/2 < x < 3/2. Find the largest ε so that 
 : Up × (−ε, ε) → R is defined;
that is, find the largest t for which the integral curve φt (q) will be defined for all
1/2 < q < 3/2.

1.4(2) In the complex plane we can consider the differential equations dz/dt = 1, where
t is real. The integral curves are of course lines parallel to the real axis.This
can also be considered a differential equation on the z patch of the Riemann
sphere of Section 1.2d. Extend this differential equation to the entire sphere by
writing out the equivalent equation in the w patch. Write out the general solution
w = w(t) in the neighborhood of w = 0, and draw in particular the solutions
starting at i , ±1, and −i .





CHAPTER 2

Tensors and Exterior Forms

In Section 1.4b we considered the n-tuple of partial derivatives of a single function

∂ F/∂x j and we noticed that this n-tuple does not transform in the same way as the n-

tuple of components of a vector. These components ∂ F/∂x j transform as a new type of

“vector.” In this chapter we shall talk of the general notion of “tensor” that will include

both notions of vector and a whole class of objects characterized by a transformation

law generalizing 1.6. We shall, however, strive to define these objects and operations

on them “intrinsically,” that is, in a basis-free fashion. We shall also be very careful in

our use of sub- and superscripts when we express components in terms of bases; the
notation is designed to help us recognize intrinsic quantities when they are presented
in component form and to help prevent us from making blatant errors.

2.1. Covectors and Riemannian Metrics

How do we find the curves of steepest ascent?

2.1a. Linear Functionals and the Dual Space

Let E be a real vector space. Although for some purposes E may be infinite-dimensional,

we are mainly concerned with the finite-dimensional case. Although R
n , as the space

of real n-tuples (x1, . . . , xn), comes equipped with a distinguished basis (1, 0, 0, . . . ,

0)T , . . . , the general n-dimensional vector space E has no basis prescribed.

Choose a basis e1, . . . , en for the n-dimensional space E . Then a vector v ∈ E has

a unique expansion

v =
∑

j

e jv
j =

∑
j

v j e j

where the n real numbers v j are the components of v with respect to the given basis. For

algebraic purposes, we prefer the first presentation, where we have put the “scalars”

v j to the right of the basis elements. We do this for several reasons, but mainly so

that we can use matrix notation, as we shall see in the next paragraph. When dealing

37
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with calculus, however, this notation is awkward. For example, in R
n (thought of as a

manifold), we can write the standard basis at the origin as e j = ∂/∂x j (as in Section

1.3c); then our favored presentation would say v = ∑
j ∂/∂x j v j , making it appear,

incorrectly, that we are differentiating the components v j . We shall employ the bold∂ to
remind us that we are not differentiating the components in this expression. Sometimes

we will simply use the traditional
∑

j v j e j .

We shall use the matrices

e = (e1, . . . , en) and v = (v1, . . . , vn)T

The first is a symbolic row matrix since each entry is a vector rather than a scalar.

Note that in the matrix v we are preserving the traditional notation of representing

the components of a vector by a column matrix. We can then write our preferred

representation as a matrix product

v = e v (2.1)

where v is a 1×1 matrix. As usual, we see that the n-dimensional vector space E , with a
choice of basis, is isomorphic to R

n under the correspondence v → (v1, . . . , vn) ∈ R
n ,

but that this isomorphism is “unnatural,” that is, dependent on the choice of basis.

Definition: A (real) linear functional α on E is a real-valued linear function α,

that is, a linear transformation α : E → R from E to the 1-dimensional vector

space R. Thus

α(av + bw) = aα(v) + bα(w)

for real numbers a, b, and vectors v, w.

By induction, we have, for any basis e

α
( ∑

e jv
j
)

=
∑

α(e j )v
j (2.2)

This is simply of the form
∑

a jv
j (where a j := α(e j )), and this is a linear function of

the components of v. Clearly if {a j } are any real numbers, then v �→ ∑
a jv

j defines a

linear functional on all of E . Thus, after one has picked a basis, the most general linear
functional on the finite-dimensional vector space E is of the form

α(v) =
∑

a jv
j where a j := α(e j ) (2.3)

Warning: A linear functional α on E is not itself a member of E ; that is, α is not

to be thought of as a vector in E . This is especially obvious in infinite-dimensional

cases. For example, let E be the vector space of all continuous real-valued functions

f : R → R of a real variable t . The Dirac functional δ0 is the linear functional on E
defined by

δ0( f ) = f (0)

You should convince yourself that E is a vector space and that δ0 is a linear functional

on E . No one would confuse δ0, the Dirac δ “function,” with a continuous function,
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that is, with an element of E. In fact δ0 is not a function on R at all. Where, then, do the

linear functionals live?

Definition: The collection of all linear functionals α on a vector space E form a

new vector space E∗, the dual space to E , under the operations

(α + β)(v) := α(v) + β(v), α, β ∈ E∗, v ∈ E

(cα)(v) := cα(v), c ∈ R

We shall see in a moment that if E is n-dimensional, then so is E∗.

If e1, . . . , en is a basis of E , we define the dual basis σ 1, . . . , σ n of E∗ by first

putting

σ i (e j ) = δi
j

and then “extending σ by linearity,” that is,

σ i

( ∑
j

e jv
j

)
=

∑
j

σ i (e j )v
j =

∑
j

δi
jv

j = vi

Thus σ i is the linear functional that reads off the i th component (with respect to the

basis e) of each vector v.

Let us verify that the σ ’s do form a basis. To show linear independence, assume that a

linear combination
∑

a jσ
j is the 0 functional. Then 0 = ∑

j a jσ
j (ek) = ∑

j a jδ
j
k =

ak shows that all the coefficients ak vanish, as desired. To show that the σ ’s span E∗,

we note that if α ∈ E∗ then

α(v) = α
( ∑

e jv
j
)

=
∑

α(e j )v
j

=
∑

α(e j )σ
j (v) =

( ∑
α(e j )σ

j
)
(v)

Thus the two linear functionals α and
∑

α(e j )σ
j must be the same!

α =
∑

j

α(e j )σ
j (2.4)

This very important equation shows that the σ ’s do form a basis of E∗.

In (2.3) we introduced the n-tuple a j = α(e j ) for each α ∈ E∗. From (2.4) we see

α = ∑
a jσ

j . a j defines the j th component of α.

If we introduce the matrices

σ = (σ 1, . . . , σ n)T and a = (a1, . . . , an)

then we can write

α =
∑

j

a jσ
j = aσ (2.5)

Note that the components of a linear functional are written as a row matrix a.
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If β = (βi R) is a matrix of linear functionals and if f = (fRs) is a matrix of vectors,

then by βf = β (f) we shall mean the matrix of scalars

β(f)is :=
∑

R

βi R (fRs)

Note then that σe is the identity n × n matrix, and then equation (2.3) says

α(v) = (aσ)(ev) = a(σe)v = av

2.1b. The Differential of a Function

Definition: The dual space Mn∗
p to the tangent space Mn

p at the point p of a

manifold is called the cotangent space.

Recall from (1.10) that on a manifold Mn , a vector v at p is a differential operator

on functions defined near p.

Definition: Let f : Mn → R. The differential of f at p, written d f , is the

linear functional d f : Mn
p → R defined by

d f (v) = vp( f ) (2.6)

Note that we have defined d f independent of any basis. In local coordinates, e j =
∂/∂x j ]p defines a basis for Mn

p and

d f
( ∑

v j ∂

∂x j

)
=

∑
v j (p)

∂ f

∂x j
(p)

is clearly a linear function of the components of v. In particular, we may consider the

differential of a coordinate function, say xi

dxi

(
∂

∂x j

)
= ∂xi

∂x j
= δi

j

and

dxi

( ∑
j

v j ∂

∂x j

)
=

∑
j

v j dxi

(
∂

∂x j

)
= vi

Thus, for each i, the linear functional dxi reads off the i th component of any vector v
(expressed in terms of the coordinate basis). In other words

σ i = dxi

yields, for i = 1, . . . , n, the dual basis to the coordinate basis. dx1, . . . , dxn form a

basis for the cotangent space Mn∗
p .

The most general linear functional is then expressed in coordinates, from (2.5) as

α =
∑

j

α

(
∂

∂x j

)
dx j =

∑
j

a j dx j (2.7)

Warning: We shall call an expression such as (2.7) a differential form. In elementary

calculus it is called simply a “differential.” We shall not use this terminology since, as
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we learned in calculus, not every differential form is the differential of a function; that

is, it need not be “exact.” We shall discuss this later on in great detail.

The definition of the differential of a function reduces to the usual concept of dif-
ferential as introduced in elementary calculus. Consider for example R

3 with its usual

cartesian coordinates x = x1, y = x2, and z = x3. The differential is there traditionally

defined in two steps.

First, the differential of an “independent” variable, that is, a coordinate function, say

dx , is a function of ordered pairs of points. If P = (x, y, z) and Q = (x ′, y′, z′) then

dx is defined to be (x ′ − x). Note that this is the same as our expression dx (Q − P),

where (Q − P) is now the vector from P to Q. The elementary definition in R
3 takes

advantage of the fact that a vector in the manifold R
3 is determined by its endpoints,

which again are in the manifold R
3. This makes no sense in a general manifold; you

cannot subtract points on a manifold.

Second, the differential df of a “dependent” variable, that is, a function f , is defined

to be the function on pairs of points given by(
∂ f

∂x

)
dx +

(
∂ f

∂x

)
dy +

(
∂ f

∂z

)
dz

Note that this is exactly what we would get from (2.7)

d f =
∑

d f
(

∂

∂xi

)
dxi =

∑ (
∂ f

∂xi

)
dxi

Our definition makes no distinction between independent and dependent variables, and

makes sense in any manifold.

Our coordinate expression for d f obtained previously holds in any manifold

d f =
∑

j

(
∂ f

∂x j

)
dx j (2.8)

A linear functional α : Mn
p → R is called a covariant vector, or covector, or

1-form. A differentiable assignment of a covector to each point of an open set in Mn

is locally of the form

α =
∑

j

a j (x) dx j

and would be called a covector field, and so on; d f = ∑
j (∂ f/∂x j )dx j is an example.

Thus the numbers ∂ f/∂x1, . . . , ∂ f/∂xn form the components not of a vector field

but rather of a covector field, the differential of f . We remarked in our warning in

paragraph 1.4c that these numbers are called the components of the “gradient vector”

in elementary mathematics, but we shall never say this. It is important to realize that

the local expression (2.8) holds in any coordinate system; for example, in spherical

coordinates for R
3, f = f (r, θ, φ) and

d f =
(

∂ f

∂r

)
dr +

(
∂ f

∂θ

)
dθ +

(
∂ f

∂φ

)
dφ

and no one would call ∂ f/∂r, ∂ f/∂θ, ∂ f/∂φ the components of the gradient vector

in spherical coordinates! They are the components of the covector or 1-form d f . The

gradient vector grad f will be defined in the next section after an additional structure

is introduced.
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Under a change of local coordinates the chain rule yields

dxV
i =

∑
j

(
∂xV

i

∂xU
j

)
dxU

j (2.9)

and for a general covector
∑

i aV
i dxV

i = ∑
i j aV

i (∂xV
i/∂xU

j ) dxU
j must be the same

as
∑

j aU
j dxU

j . We then must have

aU
j =

∑
i

aV
i

(
∂xV

i

∂xU
j

)
(2.10)

But
∑

j (∂xV
i/∂xU

j )(∂xU
j/∂xV

k) = ∂xV
i/∂xV

k = δi
k shows that ∂xU/∂xV is the

inverse matrix to ∂xV /∂xU . Equation (2.10) is, in matrix form, aU = aV (∂xV /∂xU ),

and this yields aV = aU (∂xU/∂xV ), or

aV
i =

∑
j

aU
j

(
∂xU

j

∂xV
i

)
(2.11)

This is the transformation rule for the components of a covariant vector, and should

be compared with (1.6). In the notation of (1.7) we may write

aV = aU cU V = aU c−1
V U (2.12)

Warning: Equation (1.6) tells us how the components of a single contravariant

vector transform under a change of coordinates. Equation (2.11), likewise, tells us

how the components of a single 1-form α transform under a change of coordinates.

This should be compared with (2.9). This latter tells us how the n-coordinate 1-forms

dxV
1, . . . , dxV

n are related to the n-coordinate 1-forms dxU
1, . . . , dxU

n . In a sense we

could say that the n-tuple of covariant vectors (dx1, . . . , dxn) transforms as do the

components of a single contravariant vector. We shall never use this terminology.

See Problem 2.1 (1) at this time.

2.1c. Scalar Products in Linear Algebra

Let E be an n-dimensional vector space with a given inner (or scalar) product 〈, 〉.
Thus, for each pair of vectors v, w of E, 〈v, w〉 is a real number, it is linear in each entry

when the other is held fixed (i.e., it is bilinear), and it is symmetric 〈v, w〉 = 〈w, v〉.
Furthermore 〈, 〉 is nondegenerate in the sense that if 〈v, w〉 = 0 for all w then v = 0;

that is, the only vector “orthogonal” to every vector is the zero vector. If, further,

‖ v ‖2:= 〈v, v〉 is positive when v 
= 0, we say that the inner product is positive

definite, but to accommodate relativity we shall not always demand this.

If e is a basis of E , then we may write v = ev and w = ew. Then

〈v, w〉 = 〈
∑

i

eiv
i ,

∑
j

e jw
j 〉

=
∑

i

vi 〈ei ,
∑

j

e jw
j 〉 =

∑
i

∑
j

vi 〈ei , e j 〉w j
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If we define the matrix G = (gi j ) with entries

gi j := 〈ei , e j 〉
then

〈v, w〉 =
∑

i j

vi gi jw
j (2.13)

or

〈v, w〉 = vGw

The matrix (gi j ) is briefly called the metric tensor. This nomenclature will be explained

in Section 2.3.

Note that when e is an orthonormal basis, that is, when gi j = δi
j is the identity

matrix (and this can happen only if the inner product is positive definite), then 〈v, w〉 =∑
j v j w j takes the usual “euclidean” form. If one restricted oneself to the use of

orthonormal bases, one would never have to introduce the matrix (gi j ), and this is what

is done in elementary linear algebra.

By hypothesis, 〈v, w〉 is a linear function of w when v is held fixed. Thus if v ∈ E ,

the function ν defined by

ν(w) = 〈v, w〉 (2.14)

is a linear functional, ν ∈ E∗. Thus to each vector v in the inner product space E we

may associate a covector ν; we shall call ν the covariant version of the vector v. In

terms of any basis e of E and the dual basis σ of E∗ we have from (2.4)

ν =
∑

j

ν jσ
j =

∑
j

ν(e j )σ
j

=
∑

j

〈v, e j 〉σ j

=
∑

j

〈
∑

i

eiv
i , e j 〉σ j

=
∑

j

(
∑

i

vi gi j )σ
j

Thus the covariant version of the vector v has components ν j = ∑
i vi gi j and it is

traditional in “tensor analysis” to use the same letter v rather than ν. Thus we write

for the components of the covariant version

v j =
∑

i

vi gi j =
∑

i

g ji vi (2.15)

since gi j = g ji . The subscript j in v j tells us that we are dealing with the covariant

version; in tensor analysis one says that we have “lowered the upper index i , making

it a j , by means of the metric tensor gi j .” We shall also call the (v j ), with abuse of

language, the covariant components of the contravariant vector v.

Note that if e is an orthonormal basis then v j = v j .
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In our finite-dimensional inner product space E , every linear functional ν is the

covariant version of some vector v. Given ν = ∑
j v jσ

j we shall find v such that

ν(w) = 〈v, w〉 for all w. For this we need only solve (2.15) for vi in terms of the given

v j . Since G = (gi j ) is assumed nondegenerate, the inverse matrix G−1 must exist and is

again symmetric. We shall denote the entries of this inverse matrix by the same letters

g but written with superscripts

G−1 = (gi j )

Then from (2.15) we have

vi =
∑

j

gi jv j (2.16)

yields the contravariant version v of the covector ν = ∑
j v jσ

j . Again we call (vi ) the

contravariant components of the covector ν.

Let us now compare the contravariant and covariant components of a vector v in a

simple case. First of all, we have immediately

v j = ν(e j ) = 〈v, e j 〉 (2.17)

and then vi = ∑
j gi jv j = ∑

j gi j 〈v, e j 〉. Thus although we always have v = ∑
i vi ei ,

v =
∑

i

( ∑
j

gi j 〈v, e j 〉
)

ei

replaces the euclidean v = ∑
i 〈v, ei 〉ei that holds when the basis is orthonormal. Con-

sider, for instance, the plane R
2, where we use a basis e that consists of unit but not

orthogonal vectors.

e1

e2

v1v1

2v

v2
v

Figure 2.1

We must make some final remarks about linear functionals. It is important to realize

that given an n-dimensional vector space E , whether or not it has an inner product,

one can always construct the dual vector space E∗, and the construction has nothing

to do with a basis in E . If a basis e is picked for E , then the dual basis σ for E∗ is
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determined. There is then an isomorphism, that is, a 1:1 correspondence between E∗

and E given by
∑

a jσ
j → ∑

a j e j , but this isomorphism is said to be “unnatural”

since if we change the basis in E the correspondence will change. We shall never use

this correspondence. Suppose now that an inner product has been introduced into E .

As we have seen, there is another correspondence E∗ → E that is independent of

basis; namely to ν ∈ E∗ we associate the unique vector v such that ν(w) = 〈v, w〉; we

may write ν = 〈v, •〉. In terms of a basis we are associating to ν = ∑
viσ

i the vector∑
vi ei . Then we know that each σ i can be represented as σ i = 〈fi , •〉; that is, there

is a unique vector fi such that σ i (w) = 〈fi , w〉 for all w ∈ E . Then f ={fi } is a new

basis of the original vector space E , sometimes called the basis of E dual to e, and we

have 〈fi , e j 〉 = δi
j . Although this new basis is used in applied mathematics, we shall

not do so, for there is a very powerful calculus that has been developed for covectors,

a calculus that cannot be applied to vectors!

2.1d. Riemannian Manifolds and the Gradient Vector

A Riemannian metric on a manifold Mn assigns, in a differentiable fashion, a positive

definite inner product 〈, 〉 in each tangent space Mn
p . If 〈, 〉 is only nondegenerate (i.e.,

〈u, v〉 = 0 for all v only if u = 0) rather than positive definite, then we shall call the

resulting structure on Mn a pseudo-Riemannian metric. A manifold with a (pseudo-)

Riemannian metric is called a (pseudo-) Riemannian manifold.

In terms of a coordinate basis ei = ∂ i := ∂/∂xi we then have the differentiable

matrices (the “metric tensor”)

gi j (x) =
〈

∂

∂xi
,

∂

∂x j

〉

as in (2.13). In an overlap U ∩ V we have

gV
i j =

〈
∂

∂xV
i
,

∂

∂xV
j

〉
(2.18)

= 〈
∑

r

(
∂xU

r

∂xV
i

)
∂U

r ,
∑

s

(
∂xU

s

∂xV
j

)
∂U

s 〉

gV
i j =

∑
rs

(
∂xU

r

∂xV
i

)(
∂xU

s

∂xV
j

)
gU

rs

This is the transformation rule for the components of the metric tensor.

Definition: If Mn is a (pseudo-) Riemannian manifold and f is a differentiable

function, the gradient vector

grad f = ∇ f

is the contravariant vector associated to the covector d f

d f (w) = 〈∇ f, w〉 (2.19)
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In coordinates

(∇ f )i =
∑

j

gi j ∂ f

∂x j

Note then that ‖ ∇ f ‖2:= 〈∇ f, ∇ f 〉 = d f (∇ f ) = ∑
i j (∂ f/∂xi )gi j (∂ f/∂x j ). We

see that d f and ∇ f will have the same components if the metric is “euclidean,” that

is, if the coordinates are such that gi j = δi
j .

Example (special relativity): Minkowski space is, as we shall see in Chapter 7, R
4 but

endowed with the pseudo-Riemannian metric given in the so-called inertial coordinates

t = x0, x = x1, y = x2, z = x3, by

gi j =
〈

∂

∂xi
,

∂

∂x j

〉
= 1 if i = j = 1, 2, or 3

= −c2 if i = j = 0, where c is the speed of light

= 0 otherwise

that is, (gi j ) is the 4 × 4 diagonal matrix

(gi j ) = diag(−c2, 1, 1, 1)

Then

d f =
(

∂ f

∂t

)
dt +

3∑
j=1

(
∂ f

∂x j

)
dx j

is classically written in terms of components

d f ∼
[
∂ f

∂t
,

∂ f

∂x
,

∂ f

∂y
,

∂ f

∂z

]

but

∇ f = − 1

c2

(
∂ f

∂t

)
∂ t +

3∑
j=1

(
∂ f

∂x j

)
∂ j

∇ f ∼
[
− 1

c2

∂ f

∂t
,

∂ f

∂x
,

∂ f

∂y
,

∂ f

∂z

]T

(It should be mentioned that the famous Lorentz transformations in general are simply

the changes of coordinates in R
4 that leave the origin fixed and preserve the form −c2t2+

x2 + y2 + z2, just as orthogonal transformations in R
3 are those transformations that

preserve x2 + y2 + z2!)

2.1e. Curves of Steepest Ascent

The gradient vector in a Riemannian manifold Mn has much the same meaning as in

euclidean space. If v is a unit vector at p ∈ M , then the derivative of f with respect to v
is v( f ) = ∑

(∂ f/∂x j )v j = d f (v) = 〈∇ f, v〉. Then Schwarz’s inequality (which holds

for a positive definite inner product), |v( f )| = |〈∇ f, v〉| ≤‖ ∇ f ‖ ‖ v ‖=‖ ∇ f ‖,

shows that f has a maximum rate of change in the direction of ∇ f . If f (p) = a, then

the level set of f through p is the subset defined by

Mn−1(a) := {x ∈ Mn| f (x) = a}
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A good example to keep in mind is the torus of Figure 1.18. If df does not vanish

at p then Mn−1(a) is a submanifold in a neighborhood of p. If x = x(t) is a curve

in this level set through p then its velocity vector there, dx/dt , is “annihilated” by

d f ; d f (dx/dt) = 0 since f (x(t)) is constant. We are tempted to say that d f is

“orthogonal” to the tangent space to Mn−1(a) at p, but this makes no sense since d f
is not a vector. Its contravariant version ∇ f is, however, orthogonal to this tangent
space since 〈∇ f, dx/dt〉 = d f (dx/dt) = 0 for all tangents to Mn−1(a) at p. We say

that ∇ f is orthogonal to the level sets.

Finally recall that we showed in paragraph 1.4b that one does not get a well-defined

flow by considering the local differential equations dxi/dt = ∂ f/∂xi ; one simply

cannot equate a contravariant vector dx/dt with a covariant vector d f . However it

makes good sense to write dx/dt = ∇ f ; that is, the “correct” differential equations are

dxi

dt
=

∑
j

gi j

(
∂ f

∂x j

)

The integral curves are then tangent to ∇ f , and so are orthogonal to the level sets f =
constant. How does f change along one of these “curves of steepest ascent”? Well,

d f/dt = d f (dx/dt) = 〈∇ f, ∇ f 〉. Note then that if we solve instead the differential

equations

dx

dt
= ∇ f

‖∇ f ‖2

(i.e., we move along the same curves of steepest ascent but at a different speed) then

d f/dt = 1. The resulting flow has then the property that in time t it takes the level set
f = a into the level set f = a + t . Of course this result need only be true locally

and for small t (see 1.4a). Such a motion of level sets into level sets is called a Morse
deformation. For more on such matters see [M, chap. 1].

Problems

2.1(1) If v is a vector and α is a covector, compute directly in coordinates that
∑

aV
i v i

V =∑
aU

j v j
U . What happens if w is another vector and one considers

∑
vi wi ?

2.1(2) Let x , y, and z be the usual cartesian coordinates in R
3 and let u1 = r, u2 = θ

(colatitude), and u3 = φ be spherical coordinates.

(i) Compute the metric tensor components for the spherical coordinates

gr θ := g12 =
〈

∂

∂r
,

∂

∂θ

〉
etc.

(Note: Don’t fiddle with matrices; just use the chain rule ∂/ ∂r =
(∂x/∂r )∂/∂x + · · ·)

(ii) Compute the coefficients (∇ f ) j in

∇ f = (∇ f )r ∂

∂r
+ (∇F )θ

∂

∂θ
+ (∇ f )φ

∂

∂φ
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(iii) Verify that ∂/ ∂r, ∂/∂θ , and ∂/ ∂φ are orthogonal, but that not all are unit
vectors. Define the unit vectors e′

j = (∂/ ∂u j)/ ‖ ∂/∂u j ‖ and write ∇ f in
terms of this orthonormal set

∇ f = (∇ f)′r e′
r + (∇ f)′θe′

θ + (∇ f)′φe′
φ

These new components of grad f are the usual ones found in all physics
books (they are called the physical components); but we shall have little
use for such components; d f , as given by the simple expression d f =
(∂ f/∂r ) dr + · · ·, frequently has all the information one needs!

2.2. The Tangent Bundle

What is the space of velocity vectors to the configuration space of a dynamical system?

2.2a. The Tangent Bundle

The tangent bundle, T Mn , to a differentiable manifold Mn is, by definition, the

collection of all tangent vectors at all points of M .

Thus a “point” in this new space consists of a pair (p, v), where p is a point of M and v is

a tangent vector to M at the point p, that is, v ∈ Mn
p . Introduce local coordinates in T M

as follows. Let (p, v) ∈ T Mn . p lies in some local coordinate system U, x1, . . . , xn . At

p we have the coordinate basis (∂ i = ∂/∂xi ) for Mn
x . We may then write v = ∑

i vi∂ i .

Then (p, v) is completely described by the 2n-tuple of real numbers

x1(p), . . . , xn(p), v1, . . . , vn

The 2n-tuple (x,v) represents the vector
∑

j v j∂ j at p. In this manner we associate

2n local coordinates to each tangent vector to Mn that is based in the coordinate patch

(U, x). Note that the first n-coordinates, the x’s, take their values in a portion U of R
n ,

whereas the second set, the v’s, fill out an entire R
n since there are no restrictions on

the components of a vector. This 2n-dimensional coordinate patch is then of the form

(U ⊂ R
n) × R

n ⊂ R
2n . Suppose now that the point p also lies in the coordinate patch

(U ′, x ′). Then the same point (p, v) would be described by the new 2n-tuple

x ′1(p), . . . , x ′n(p), v′1, . . . , v′n

where

x ′i = x ′i (x1, . . . , xn) (2.20)

and

v′i =
∑

j

[
∂x ′i

∂x j

]
(p)v j

We see then that T Mn is a 2n-dimensional differentiable manifold!
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We have a mapping

π : T M → M π(p, v) = p

called projection that assigns to a vector tangent to M the point in M at which the

vector sits. In local coordinates,

π(x1, . . . , xn, v1, . . . , vn) = (x1, . . . , xn)

It is clearly differentiable.

Figure 2.2

We have drawn a schematic diagram of the tangent bundle T M . π−1(x) represents

all vectors tangent to M at x , and so π−1(x) = Mn
x is a copy of the vector space R

n .

It is called “the fiber over x .” Our picture makes it seem that T M is the product space

M × R
n , but this is not so! Although we do have a global projection π : T M → M ,

there is no projection map π ′ : T M → R
n .

A point in TM represents a tangent vector to M at a point p but there is no way to
read off the components of this vector until a coordinate system (or basis for Mp) has
been designated at the point at which the vector is based!

Locally of course we may choose such a projection; if the point is in π−1(U ) then by

using the coordinates in U we may read off the components of the vector. Since π−1(U )

is topologically U × R
n we say that the tangent bundle T M is locally a product.
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Figure 2.3

A vector field v on M clearly assigns to each point x in M a point v(x) in π−1(x) ⊂
T M that “lies over x .” Thus a vector field can be considered as a map v : M → T M
such that π◦v is the identity map of M into M . As such it is called a (cross) section of the

tangent bundle. In a patch π−1(U ) it is described by vi = vi (x1, . . . , xn) and the image

v(M) is then an n-dimensional submanifold of the 2n-dimensional manifold T M . A

special section, the 0 section (corresponding to the identically 0 vector field), always

exists. Although different coordinate systems will yield perhaps different components

for a given vector, they will all agree that the 0-vector will have all components 0.

Example: In mechanics, the configuration of a dynamical system with n degrees of

freedom is usually described as a point in an n-dimensional manifold, the configuration
space. The coordinates x are usually called q1, . . . , qn , the “generalized coordinates.”

For example, if we are considering the motion of two mass points on the real line,

M2 = R × R with coordinates q1, q2 (one for each particle). The configuration space

need not be euclidean space. For the planar double pendulum of paragraph 1.2b (v),

the configuration space is M2 = S1 × S1 = T 2. For the spatial single pendulum M2

is the 2-sphere S2 (with center at the pin). A tangent vector to the configuration space

Mn is thought of, in mechanics, as a velocity vector; its components with respect to the

coordinates q are written q̇1, . . . , q̇n rather than v1, . . . , vn . These are the generalized
velocities. Thus T M is the space of all generalized velocities, but there is no standard

name for this space in mechanics (it is not the phase space, to be considered shortly).

2.2b. The Unit Tangent Bundle

If Mn is a Riemannian manifold (see 2.1d) then we may consider, in addition to T M ,

the space of all unit tangent vectors to Mn . Thus in T M we may restrict ourselves to

the subset T0 M of points (x, v) such that ‖ v ‖2= 1. If we are in the coordinate patch
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(x1, . . . , xn, v1, . . . , vn) of T M , then this unit tangent bundle is locally defined by

T0 Mn :
∑

i j

gi j (x)viv j = 1

In other words, we are looking at the locus in T M defined locally by putting the single

function f (x, v) = ∑
i j gi j (x)viv j equal to a constant. The local coordinates in T M

are (x, v). Note, using gi j = g ji , that

∂ f

∂vk
= 2

∑
j

gk j (x)v j

Since det(gi j ) 
= 0, we conclude that not all ∂ f/∂vk can vanish on the subset v 
= 0,

and thus T0 Mn is a (2n − 1)-dimensional submanifold of T Mn! In particular T0 M is

itself a manifold.

In the following figure, v0 = v/ ‖ v ‖.

Figure 2.4

Example: T0S2 is the space of unit vectors tangent to the unit 2-sphere in R
3.

S2

f1
f2

f3

e1

e2

e3

Figure 2.5

Let v = f2 be a unit tangent vector to the unit sphere S2 ⊂ R
3. It is based at some point

on S2, described by a unit vector f1. Using the right-hand rule we may put f3 = f1 × f2.
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It is clear that by this association, there is a 1:1 correspondence between unit tangent

vectors v to S2 (i.e., to a point in T0S2) and such orthonormal triples f1, f2, f3. Translate

these orthonormal vectors to the origin of R
3 and compare them with a fixed right-handed

orthonormal basis e of R
3. Then fi = e j R j

i for a unique rotation matrix R ∈ SO(3).

In this way we have set up a 1:1 correspondence T0S2 → SO(3). It also seems evident

that the topology of T0S2 is the same as that of SO(3), meaning roughly that nearby

unit vectors tangent to S2 will correspond to nearby rotation matrices; precisely, we

mean that T0S2 → SO(3) is a diffeomorphism. We have seen in 1.2b(vii) that SO(3) is

topologically projective space.

The unit tangent bundle T0S2 to the 2-sphere is topologically the 3-dimensional real
projective 3-space T0S2 ∼ RP3 ∼ SO(3).

2.3. The Cotangent Bundle and Phase Space

What is phase space?

2.3a. The Cotangent Bundle

The cotangent bundle to Mn is by definition the space T ∗Mn of all covectors at all

points of M . A point in T ∗M is a pair (x, α) where α is a covector at the point x . If x is

in a coordinate patch U , x1, . . . , xn , then dx1, . . . , dxn , gives a basis for the cotangent

space Mn∗
x , and α can be expressed as α = ∑

ai (x)dxi . Then (x, α) is completely

described by the 2n-tuple

x1(x), . . . , xn(x), a1(x), . . . , an(x)

The 2n-tuple (x, a) represents the covector
∑

ai dxi at the point x. If the point p also

lies in the coordinate patch U ′, x ′1, . . . , x ′n , then

x ′i = x ′i (x1, . . . , xn)

and (2.21)

a′
i =

∑
j

[
∂x j

∂x ′i

]
(x)a j

T ∗Mn is again a 2n-dimensional manifold. We shall see shortly that the phase space in

mechanics is the cotangent bundle to the configuration space.

2.3b. The Pull-Back of a Covector

Recall that the differential φ∗ of a smooth map φ : Mn → V r has as matrix the Jacobian

matrix ∂y/∂x in terms of local coordinates (x1, . . . , xn) near x and (y1, . . . , yr ) near

y = φ(x). Thus, in terms of the coordinate bases

φ∗

(
∂

∂x j

)
=

∑
R

(
∂y R

∂x j

)
∂

∂y R
(2.22)
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Note that if we think of vectors as differential operators, then for a function f near y

φ∗

(
∂

∂x j

)
( f ) =

∑
R

(
∂y R

∂x j

)(
∂ f

∂y R

)

simply says, “Apply the chain rule to the composite function f ◦ φ, that is, f (y(x)).”

Definition: Let φ : Mn → V r be a smooth map of manifolds and let φ(x) = y.

Let φ∗ : Mx → Vy be the differential of φ. The pull-back φ∗ is the linear

transformation taking covectors at y into covectors at x , φ∗ : V (y)∗ → M(x)∗,

defined by

φ∗(β)(v) := β(φ∗(v)) (2.23)

for all covectors β at y and vectors v at x .

Let (xi ) and (y R) be local coordinates near x and y, respectively. The bases for the

tangent vector spaces Mx and Vy are given by (∂/∂x j ) and (∂/∂y R). Then

φ∗β =
∑

j

φ∗(β)

(
∂

∂x j

)
dx j =

∑
j

β

(
φ∗

∂

∂x j

)
dx j

=
∑

j

β

( ∑
R

(
∂y R

∂x j

)
∂

∂y R

)
dx j

=
∑

j R

(
∂y R

∂x j

)
β

(
∂

∂y R

)
dx j

=
∑

j R

bR

(
∂y R

∂x j

)
dx j , where β =

∑
R

bRdy R

Thus

φ∗(β) =
∑

j R

bR

(
∂y R

∂x j

)
dx j (2.24)

In terms of matrices, the differential φ∗ is given by the Jacobian matrix ∂y/∂x acting

on columns v at x from the left, whereas the pull-back φ∗ is given by the same matrix

acting on rows b at y from the right. (If we had insisted on writing covectors also as

columns, then φ∗ acting on such columns from the left would be given by the transpose
of the Jacobian matrix.)

φ∗(dyS) is given immediately from (2.24); since dyS = ∑
R δS

Rdy R

φ∗(dyS) =
∑

j

(
∂yS

∂x j

)
dx j (2.25)

This is again simply the chain rule applied to the composition yS ◦ φ!

Warning: Let φ : Mn → V r and let v be a vector field on M . It may very well

be that there are two distinct points x and x ′ that get mapped by φ to the same point

y = φ(x) = φ(x ′). Usually we shall have φ∗(v(x)) 
= φ∗(v(x ′)) since the field v need

have no relation to the map φ. In other words, φ∗(v) does not yield a well defined vector

field on V (does one pick φ∗(v(x)) or φ∗(v(x ′)) at y?). φ∗ does not take vector fields
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into vector fields. (There is an exception if n = r and φ is 1:1.) On the other hand, if
β is a covector field on V r , then φ∗β is always a well-defined covector field on Mn;

φ∗(β(y)) yields a definite covector at each point x such that φ(x) = y. As we shall

see, this fact makes covector fields easier to deal with than vector fields.

See Problem 2.3 (1) at this time.

2.3c. The Phase Space in Mechanics

In Chapter 4 we shall study Hamiltonian dynamics in a more systematic fashion. For the

present we wish merely to draw attention to certain basic aspects that seem mysterious

when treated in most physics texts, largely because they draw no distinction there

between vectors and covectors.

Let Mn be the configuration space of a dynamical system and let q1, . . . , qn be local

generalized coordinates. For simplicity, we shall restrict ourselves to time-independent

Lagrangians. The Lagrangian L is then a function of the generalized coordinates q
and the generalized velocities q̇, L = L(q, q̇). It is important to realize that q and q̇
are 2n-independent coordinates. (Of course if we consider a specific path q = q(t) in

configuration space then the Lagrangian along this evolution of the system is computed

by putting q̇ = dq/dt.) Thus the Lagrangian L is to be considered as a function on

the space of generalized velocities, that is, L is a real-valued function on the tangent
bundle to M ,

L : T Mn → R

We shall be concerned here with the transition from the Lagrangian to the Hamiltonian

formulation of dynamics. Hamilton was led to define the functions

pi (q, q̇) := ∂L

∂ q̇ i
(2.26)

We shall only be interested in the case when det(∂pi/∂ q̇ j ) 
= 0. In many books (2.26)

is looked upon merely as a change of coordinates in T M ; that is, one switches from

coordinates q, q̇, to q, p. Although this is technically acceptable, it has the disadvantage

that the p’s do not have the direct geometrical significance that the coordinates q̇ had.

Under a change of coordinates, say from qU to qV in configuration space, there is an

associated change in coordinates in T M

qV = qV (qU )

q̇ j
U =

∑
i

(
∂q j

U

∂qi
V

)
q̇ i

V (2.27)

This is the meaning of the tangent bundle! Let us see now how the p’s transform.

pV
i := ∂L

∂ q̇ i
V

=
∑

j

{(
∂L

∂q j
U

)(
∂q j

U

∂q̇ i
V

)
+

(
∂L

∂ q̇ j
U

)(
∂q̇ j

U

∂q̇ i
V

)}

However, qV does not depend on q̇U ; likewise qU does not depend on q̇V , and therefore

the first term in this sum vanishes. Also, from (2.27),

∂ q̇ j
U

∂q̇ i
V

= ∂q j
U

∂qi
V

(2.28)
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Thus

pV
i =

∑
j

pU
j

(
∂q j

U

∂qi
V

)
(2.29)

and so the p’s represent then not the components of a vector on the configuration

space Mn but rather a covector. The q’s and p’s then are to be thought of not as local

coordinates in the tangent bundle but as coordinates for the cotangent bundle. Equation

(2.26) is then to be considered not as a change of coordinates in T M but rather as the

local description of a map

p : T Mn → T ∗Mn (2.30)

from the tangent bundle to the cotangent bundle. We shall frequently call (q1, . . . , qn ,

p1, . . . , pn) the local coordinates for T ∗Mn (even when we are not dealing with me-

chanics). This space T ∗M of covectors to the configuration space is called in mechanics

the phase space of the dynamical system.

Recall that there is no natural way to identify vectors on a manifold Mn with co-

vectors on Mn . We have managed to make such an identification,
∑

j q̇ j∂/∂q j →∑
j (∂L/∂ q̇ j )dq j , by introducing an extra structure, a Lagrangian function. T M and

T ∗M exist as soon as a manifold M is given. We may (locally) identify these spaces by

giving a Lagrangian function, but of course the identification changes with a change of

L , that is, a change of “dynamics.”

Whereas the q̇’s of T M are called generalized velocities, the p’s are called gener-

alized momenta. This terminology is suggested by the following situation. The La-

grangian is frequently of the form

L(q, q̇) = T (q, q̇) − V (q)

where T is the kinetic energy and V the potential energy. V is usually independent of

q̇ and T is frequently a positive definite symmetric quadratic form in the velocities

T (q, q̇) = 1

2

∑
jk

g jk(q)q̇ j q̇k (2.31)

For example, in the case of two masses m1 and m2 moving in one dimension, M =
R

2, T M = R
4, and

T = 1

2
m1(q̇

1)2 + 1

2
m2(q̇

2)2

and the “mass matrix” (gi j ) is the diagonal matrix diag(m1, m2).

In (2.31) we have generalized this simple case, allowing the “mass” terms to depend

on the positions. For example, for a single particle of mass m moving in the plane, we

have, using cartesian coordinates, T = (1/2)m[ẋ2 + ẏ2], but if polar coordinates are

used we have T = (1/2)m[ṙ2 + r 2θ̇ 2] with the resulting mass matrix diag(m, mr 2). In

the general case,

pi = ∂L

∂q̇ i
= ∂T

∂q̇ i
=

∑
j

gi j (q)q̇ j (2.32)
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Thus, if we think of 2T as defining a Riemannian metric on the configuration space Mn

〈q̇, q̇〉 =
∑

i j

gi j (q)q̇ i q̇ j

then the kinetic energy represents half the length squared of the velocity vector, and

the momentum p is by (2.32) simply the covariant version of the velocity vector q̇. In

the case of the two masses on R we have

p1 = m1q̇1 and p2 = m2q̇2

are indeed what everyone calls the momenta of the two particles.

The tangent and cotangent bundles, T M and T ∗M , exist for any manifold M , in-
dependent of mechanics. They are distinct geometric objects. If, however, M is a Rie-

mannian manifold, we may define a diffeomorphism T Mn → T ∗Mn that sends the

coordinate patch (q, q̇) to the coordinate patch (q, p) by

pi =
∑

j

gi j q̇
j

with inverse

q̇ i =
∑

j

gi j p j

We did just this in mechanics, where the metric tensor was chosen to be that defined

by the kinetic energy quadratic form.

2.3d. The Poincaré 1-Form

Since T M and T ∗M are diffeomorphic, it might seem that there is no particular reason

for introducing the more abstract T ∗M , but this is not so. There are certain geometrical
objects that live naturally on T ∗M , not TM. Of course these objects can be brought

back to T M by means of our identifications, but this is not only frequently awkward,

it would also depend, say, on the specific Lagrangian or metric tensor employed.

Recall that “1-form” is simply another name for covector. We shall show, with

Poincaré, that there is a well-defined 1-form field on every cotangent bundle T ∗M .

This will be a linear functional defined on each tangent vector to the 2n-dimensional

manifold T ∗Mn , not M .

Theorem (2.33): There is a globally defined 1-form on every cotangent bundle
T ∗Mn, the Poincaré 1-form λ. In local coordinates (q, p) it is given by

λ =
∑

i

pi dqi

(Note that the most general 1-form on T ∗M is locally of the form
∑

i ai (q, p)dqi +∑
i bi (q, p)dpi , and also note that the expression given for λ cannot be considered a

1-form on the manifold M since pi is not a function on M!)
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P R O O F: We need only show that λ is well defined on an overlap of local coordi-

nate patches of T ∗M . Let (q ′, p′) be a second patch. We may restrict ourselves to

coordinate changes of the form (2.21), for that is how the cotangent bundle was

defined. Then

dq ′i =
∑

j

{(
∂q ′i

∂q j

)
dq j +

(
∂q ′i

∂p j

)
dp j

}

But from (2.21), q ′ is independent of p, and the second sum vanishes. Thus

∑
i

p′
i dq ′i =

∑
i

pi
′ ∑

j

(
∂q ′i

∂q j

)
dq j =

∑
j

p j dq j

There is a simple intrinsic definition of the form λ, that is, a definition not using

coordinates. Let A be a point in T ∗M ; we shall define the 1-form λ at A. A represents a

1-form α at a point x ∈ M . Let π : T ∗Mn → Mn be the projection that takes a point A
in T ∗M , to the point x at which the form α is located. Then the pull-back π∗α defines

a 1-form at each point of π−1(x), in particular at A. λ at A is precisely this form π∗α!

Let us check that these two definitions are indeed the same. In terms of local coor-

dinates (q) for M and (q, p) for T ∗M the map π is simply π(q, p) = (q). The point

A with local coordinates (q, p) represents the form
∑

j p j dq j at the point q in M .

Compute the pull-back (i.e., use the chain rule)

π∗
( ∑

i

pi dqi

)
=

∑
i

piπ
∗(dqi )

=
∑

i

pi

∑
j

{(
∂qi

∂q j

)
dq j +

(
∂qi

∂p j

)
dp j

}

=
∑

i

pi

∑
j

δi
j dq j =

∑
i

pi dqi = λ

As we shall see when we discuss mechanics, the presence of the Poincaré 1-form field
on T ∗M and the capability of pulling back 1-form fields under mappings endow T ∗M
with a powerful tool that is not available on T M.

Problems

2.3(1) Let F : Mn → Wr and G : Wr → Vs be smooth maps. Let x , y, and z be local
coordinates near p ∈ M, F(p) ∈ W , and G(F(p)) ∈ V , respectively. We may
consider the composite map G ◦ F : M → V .

(i) Show, by using bases ∂/ ∂x ,∂/ ∂y, and ∂/∂z , that

(G ◦ F)∗ = G∗ ◦ F∗

(ii) Show, by using bases dx , dy, and dz , that

(G ◦ F)∗ = F∗ ◦ G∗

2.3(2) Consider the tangent bundle to a manifold M.
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(i) Show that under a change of coordinates in M, ∂/ ∂q depends on both
∂/ ∂q′ and ∂/ ∂q̇′.

(ii) Is the locally defined vector field
∑

j q̇ j∂/ ∂q j well defined on all of T M?

(iii) Is
∑

j q̇ j∂/ ∂q̇ j well defined?

(iv) If any of the above in (ii), (iii) is well defined, can you produce an intrinsic
definition?

2.4. Tensors

How does one construct a field strength from a vector potential?

2.4a. Covariant Tensors

In this paragraph we shall again be concerned with linear algebra of a vector space

E . Almost all of our applications will involve the vector space E = Mn
x of tangent

vectors to a manifold at a point x ∈ E . Consequently we shall denote a basis e of

E by ∂ = (∂1, . . . ,∂n), with dual basis σ = dx = (dx1, . . . , dxn)T. It should be

remembered, however, that most of our constructions are simply linear algebra.

Definition: A covariant tensor of rank r is a multilinear real-valued function

Q : E × E × · · · × E → R

of r-tuples of vectors, multilinear meaning that the function Q(v1, . . . , vr ) is

linear in each entry provided that the remaining entries are held fixed.

We emphasize that the values of this function must be independent of the basis in which
the components of the vectors are expressed.

A covariant vector is a covariant tensor of rank 1. When r = 2, a multilinear function

is called bilinear, and so forth. Probably the most important covariant second-rank tensor

is the metric tensor G, introduced in 2.1c:

G(v, w) = 〈v, w〉 =
∑

i j

gi jv
iw j

is clearly bilinear (and is assumed independent of basis).

We need a systematic notation for indices. Instead of writing i, j, . . . , k, we shall

write i1, . . . , i p.

In components, we have, by multilinearity,

Q(v1, . . . , vr ) = Q

( ∑
i1

v
i1

1 ∂ i1
, . . . ,

∑
ir

vir
r ∂ ir

)

=
∑

i1

v
i1

1 Q

(
∂ i1

, . . . ,
∑

ir

vir
r ∂ ir

)
= . . .

=
∑

i1,...,ir

v
i1

1 . . . vir
r Q(∂ i1

, . . . ,∂ ir )
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That is,

Q(v1, . . . , vr) =
∑

i1,...,ir

Qi1,...,ir v
i1

1 . . . vir
r

where (2.34)

Qi1,...,ir := Q(∂ i1
, . . . ,∂ ir )

We now introduce a very useful notational device, the Einstein summation conven-
tion. In any single term involving indices, a summation is implied over any index that

appears as both an upper (contravariant) and a lower (covariant) index. For example,

in a matrix A = (ai
j ), ai

i = ∑
i ai

i is the trace of the matrix. With this convention we

can write

Q(v1, . . . , vr ) = Qi1,...,ir v
i1

1 . . . vir
r (2.35)

The collection of all covariant tensors of rank r forms a vector space under the usual

operations of addition of functions and multiplication of functions by real numbers.

These simply correspond to addition of their components Qi,..., j and multiplication of

the components by real numbers. The number of components in such a tensor is clearly

nr . This vector space is the space of covariant r th rank tensors and will be denoted by

E∗ ⊗ E∗ ⊗ · · · ⊗ E∗ = ⊗r E∗

If α and β are covectors, that is, elements of E∗, we can form the second-rank

covariant tensor, the tensor product of α and β, as follows. We need only tell how

α ⊗ β : E × E → R.

α ⊗ β(v, w) := α(v) β(w)

In components, α = ai dxi and β = b j dx j , and from (2.34)

(α ⊗ β)i j = α ⊗ β(∂ i ,∂ j ) = α(∂ i )β(∂ j ) = ai b j

(ai b j ), where i, j = 1, . . . , n, form the components of α ⊗ β. See Problem 2.4 (1) at

this time.

2.4b. Contravariant Tensors

Note first that a contravariant vector, that is, an element of E , can be considered as a

linear functional on covectors by defining

v(α) := α(v)

In components v(α) = aiv
i is clearly linear in the components of α.

Definition: A contravariant tensor of rank s is a multilinear real valued func-

tion T on s-tuples of covectors

T : E∗ × E∗ × · · · × E∗ → R
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As for covariant tensors, we can show immediately that for an s-tuple of 1-forms

α1, . . . , αs

T (α1, . . . , αs) = a1 i1
. . . as is T

i1...is

where (2.36)

T i1...is := T (dxi1, . . . , dxis )

We write for this space of contravariant tensors

E ⊗ E ⊗ · · · ⊗ E := ⊗s E

Contravariant vectors are of course contravariant tensors of rank 1. An example

of a second-rank contravariant tensor is the inverse to the metric tensor G−1, with

components (gi j ),

G−1(α, β) = gi j ai b j

(see 2.1c). Does the matrix gi j really define a tensor G−1? The local expression for

G−1 (α, β) given is certainly bilinear, but are the values really independent of the

coordinate expressions of α and β? Note that the vector b associated to β is coordinate-

independent since β(v) = 〈v, b〉, and the metric 〈, 〉 is coordinate-independent. But

then G−1(α, β) = gi j ai b j = ai bi = α(b) is indeed independent of coordinates, and

G−1 is a tensor.

Given a pair v, w of contravariant vectors, we can form their tensor product v ⊗ w
in the same manner as we did for covariant vectors. It is the second-rank contravariant

tensor with components (v ⊗ w)i j = viw j . As in Problem 2.4 (1) we may then write

G = gi j dxi ⊗ dx j and G−1 = gi j∂ i ⊗ ∂ j (2.37)

2.4c. Mixed Tensors

The following definition in fact includes that of covariant and contravariant tensors as

special cases when r or s = 0.

Definition: A mixed tensor, r times covariant and s times contravariant, is a

real multilinear function W

W : E∗ × E∗ × · · · × E∗ × E × E × · · · × E → R

on s-tuples of covectors and r -tuples of vectors.

By multilinearity

W (α1, . . . , αs, v1, . . . , vr ) = a1 i1
. . . as is W i1...is

j1... jr v
j1
1 . . . v jr

r

where (2.38)

W i1...is
j1... jr := W (dxi1, . . . ,∂ jr )
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A second-rank mixed tensor arises from a linear transformation A : E → E . Define

WA : E∗ × E → R by WA(α, v) = α(Av). Let A = (Ai
j ) be the matrix of A, that is,

A(∂ j ) = ∂ i Ai
j . The components of WA are given by

WA
i

j = WA(dxi ,∂ j ) = dxi (A(∂ j )) = dxi (∂k Ak
j ) = δi

k Ak
j = Ai

j

The matrix of the mixed tensor WA is simply the matrix of A! Conversely, given a mixed

tensor W, once covariant and once contravariant, we can define a linear transformation

A by saying A is that unique linear transformation such that W (α, v) = α(Av). Such

an A exists since W (α, v) is linear in v. We shall not distinguish between a linear

transformation A and its associated mixed tensor WA; a linear transformation A is a

mixed tensor with components (Ai
j ).

Note that in components the bilinear form has a pleasant matrix expression

W (α, v) = ai Ai
jv

j = a A v

The tensor product w ⊗ β of a vector and a covector is the mixed tensor defined by

(w ⊗ β)(α, v) = α(w)β(v)

As in Problem 2.4 (1)

A =Ai
j∂ i ⊗ dx j = ∂ i ⊗ Ai

j dx j

In particular, the identity linear transformation is

I = ∂ i ⊗ dxi (2.38)

and its components are of course δi
j .

Note that we have written matrices A in three different ways, Ai j , Ai j , and Ai
j . The

first two define bilinear forms (on E and E∗, respectively)

Ai jv
iw j and Ai j ai b j

and only the last is the matrix of a linear transformation A : E → E . A point of

confusion in elementary linear algebra arises since the matrix of a linear transformation

there is usually written Ai j and they make no distinction between linear transformations

and bilinear forms. We must make the distinction. In the case of an inner product space

E, 〈, 〉 we may relate these different tensors as follows. Given a linear transformation

A : E → E , that is, a mixed tensor, we may associate a covariant bilinear form A′ by

A′(v, w) := 〈v, Aw〉 = vi gi j A j
kw

k

Thus A′
ik = gi j A j

k . Note that we have “lowered the index j , making it a k, by means

of the metric tensor.” In tensor analysis one uses the same letter; that is, instead of A′

one merely writes A,

Aik := gi j A j
k (2.39)

It is clear from the placement of the indices that we now have a covariant tensor. This

is the matrix of the covariant bilinear form associated to the linear transformation A. In

general its components differ from those of the mixed tensor, but they coincide when
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the basis is orthonormal, gi j = δi
j . Since orthonormal bases are almost always used in

elementary linear algebra, they may dispense with the distinction.

In a similar manner one may associate to the linear transformation A a contravariant

bilinear form

Ā(α, β) = ai Ai
j g

jkbk

whose matrix of components would be written

Aik = Ai
j g

jk (2.40)

Recall that the components of a second-rank tensor always form a matrix such that

the left-most index denotes the row and the right-most index the column, independent
of whether the index is up or down.

A final remark. The metric tensor {gi j }, being a covariant tensor, does not represent a

linear transformation of E into itself. However, it does represent a linear transformation

from E to E∗, sending the vector with components v j into the covector with components

gi jv
j .

2.4d. Transformation Properties of Tensors

As we have seen, a mixed tensor W has components (with respect to a basis ∂ of E
and the dual basis dx of E∗) given by

W i ... j
k···l = W (dxi , . . . , dx j ,∂k, . . . ,∂l).

Under a change of bases, ∂ ′
l = ∂s(∂xs/∂x ′l) and dx ′i = (∂x ′i/∂xc) dxc we have, by

multilinearity,

W ′i ··· j
k···l = W (dx ′i , . . . , dx ′ j

,∂ ′
k, . . . ,∂

′
l) (2.41a)

=
(

∂x ′i

∂xc

)
· · ·

(
∂x ′ j

∂xd

)(
∂xr

∂x ′k

)
· · ·

(
∂xs

∂x ′l

)
W c···d

r ···s

Similarly, for covariant Q and contravariant T we have

Q′
i ... j =

(
∂xk

∂x ′i

)
· · ·

(
∂xl

∂x ′ j

)
Qk...l (2.41b)

and

T ′i ... j =
(

∂x ′i

∂xk

)
. . .

(
∂x ′ j

∂xl

)
T k...l (2.41c)

Classical tensor analysts dealt not with multilinear functions, but rather with their
components. They would say that a mixed tensor assigns, to each basis of E , a collection

of “components” W i ... j
k...l such that under a change of basis the components transform

by the law (2.41a). This is a convenient terminology generalizing (2.1).

Warning: A linear transformation (mixed tensor) A has eigenvalues λ determined

by the equation Av = λv, that is, Ai
jv

j = λvi , but a covariant second-rank tensor Q
does not. This is evident just from our notation; Qi j v j = λvi makes no sense since

i is a covariant index on the left whereas it is a contravariant index on the right. Of

course we can solve the linear equations Qi j v j = λvi as in linear algebra; that is,

we solve the secular equation det(Q − λI ) = 0, but the point is that the solutions λ
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depend on the basis used. Under a change of basis, the transformation rule (2.41b) says

Q ′
i j = (∂xk/∂x ′i )Qkl(∂xl/∂x ′ j

). Thus we have

Q ′ =
(

∂x

∂x ′

)T

Q
(

∂x

∂x ′

)

and the solutions of det[Q ′ −λI ] = 0 in general differ from those of det[Q −λI ] = 0.

(In the case of a mixed tensor W , the transpose T is replaced by the inverse, yielding

an invariant equation det(W ′ − λI ) = det(W − λI ).) It thus makes no intrinsic sense
to talk about the eigenvalues or eigenvectors of a quadratic form. Of course if we
have a metric tensor g given, to a covariant matrix Q we may form the mixed version

gi j Q jk = W i
k and then find the eigenvalues of this W . This is equivalent to solving

Qi jv
j = λgi jv

j

and this requires

det(Q − λg) = 0

It is easy to see that this equation is independent of basis, as is clear also from our

notation. We may call these eigenvalues λ the eigenvalues of the quadratic form with
respect to the given metric g. This situation arises in the problems of small oscillations
of a mechanical system; see Problem 2.4(4).

2.4e. Tensor Fields on Manifolds

A (differentiable) tensor field on a manifold has components that vary differentiably.

A Riemannian metric (gi j ) is a very important second-rank covariant tensor field.

Tensors are important on manifolds because we are frequently required to construct

expressions by using local coordinates, yet we wish our expressions to have an intrinsic

meaning that all coordinate systems will agree upon.

Tensors in physics usually describe physical fields. For example, Einstein discovered

that the metric tensor (gi j ) in 4-dimensional space–time describes the gravitational field,

to be discussed in Chapter 11. (This is similar to describing the Newtonian gravitational

field by the scalar Newtonian potential function φ.) Different observers will usually

use different local coordinates in 4-space. By making measurements with “rulers and

clocks,” each observer can in principle measure the components gi j for their coordi-

nate system. Since the metric of space–time is assumed to have physical significance

(Einstein’s discovery), although two observers will find different components in their

systems, the two sets of components gi j and g′
i j will be related by the transformation

law for a covariant tensor of the second rank. The observers will then want to describe

and agree on the strength of the gravitational field, and this will involve derivatives

of their metric components, just as the Newtonian strength is measured by grad φ. By

“agree,” we mean, presumably, that the strengths will again be components of some

tensor, perhaps of higher rank. In the Newtonian case the field is described by a scalar

φ and the strength is a vector, grad(φ). We shall see that this is not at all a trivial task.

We shall illustrate this point with a far simpler example; this example will be dealt with

more extensively later on, after we have developed the appropriate tools.
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Space–time is some manifold M , perhaps not R
4. Electromagnetism is described

locally by a “vector potential,” that is, by some vector field. It is not usually clear in

the texts whether the vector is contravariant or covariant; recall that even in Minkowski

space there are differences in the components of the covariant and contravariant versions

of a vector field (see 2.1d). As you will learn in Problem 2.4(3), there is good reason

to assume that the vector potential is a covector α = A j dx j .

In the following we shall use the popular notations ∂iφ := ∂φ/∂xi , and ∂ ′
iφ =

∂φ/∂x ′i .
The electromagnetic field strength will involve derivatives of the A’s, but it will be

clear from the following calculation that the expressions

∂i A j

do not form the components of a second-rank tensor!

Theorem (2.42): If A j are the components of a covariant vector on any manifold,
then

Fi j := ∂i A j − ∂ j Ai

form the components of a second-rank covariant tensor.

P R O O F: We need only verify the transformation law in (2.42). Since α = A j dx j

is a covector, we have A′
j = (∂ ′

j x
l)Al and so

F ′
i j = ∂ ′

i A′
j − ∂ ′

j A′
i = ∂ ′

i {(∂ ′
j x

l)Al} − ∂ ′
j {(∂ ′

i x
l)Al}

= (∂ ′
j x

l)(∂ ′
i Al) + [(∂ ′

i ∂
′
j x

l)Al] − (∂ ′
i x

l)(∂ ′
j Al) − (∂ ′

j∂
′
i x

l)Al

= (∂ ′
j x

l)(∂r Al)(∂
′
i x

r ) − (∂ ′
i x

l)(∂r Al)(∂
′
j x

r )

(and since r and l are dummy summation indices)

= (∂ ′
i x

l)(∂ ′
j x

r )(∂l Ar − ∂r Al)

= (∂ ′
i x

l)(∂ ′
j x

r )Flr

Note that the term in brackets [ ] is what prevents ∂i A j itself from defining a ten-

sor. Note also that if our manifold were R
n and if we restricted ourselves to linear

changes of coordinates, x ′i = Li
j x

j , then ∂i A j would transform as a tensor. One can
talk about objects that transform as tensors with respect to some restricted class of

coordinate systems; a cartesian tensor is one based on cartesian coordinate systems,

that is, on orthogonal changes of coordinates. For the present we shall allow all changes

of coordinates. In our electromagnetic case, (Fi j ) is the field strength tensor.

Our next immediate task will be the construction of a mathematical machine, the

“exterior calculus,” that will allow us systematically to generate “field strengths” gen-

eralizing (2.42).
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Problems

2.4(1) Show that the second-rank tensor given in components by ai b jdx i ⊗ dx j has
the same values as α ⊗ β on any pair of vectors, and so

α ⊗ β = ai b jdx i ⊗ dx j

2.4(2) Let A : E → E be a linear transformation.

(i) Show by the transformation properties of a mixed tensor that the trace tr(A) =
Ai

i is indeed a scalar, that is, is independent of basis.

(ii) Investigate
∑

i Ai i .

2.4(3) Let v = vi∂ i be a contravariant vector field on Mn.

(i) Show by the transformation properties that v j = g ji v i yields a covariant
vector.

For the following you will need to use the chain rule

∂

∂x ′i

(
∂x ′ j

∂xk

)
=

∑
r

(
∂2x ′ j

∂xr ∂xk

)(
∂xr

∂x ′i

)

(ii) Does ∂ j v i yield a tensor?

(iii) Does (∂i v j − ∂ j v i ) yield a tensor?

2.4(4) Let (q = 0, q̇ = 0) be an equilibrium point for a dynamical system, that is, a
solution of Lagrange’s equations d/dt (∂L/∂q̇k ) = ∂L/∂qk for which q and q̇ are
identically 0. Here L = T − V where V = V(q) and where 2T = gi j(q)q̇i q̇ j is
assumed positive definite. Assume that q = 0 is a nondegenerate minimum for
V ; thus ∂V/∂qk = 0 and the Hessian matrix Qjk = (∂2V/∂q j∂qk )(0) is positive
definite. For an approximation of small motions near the equilibrium point one
assumes q and q̇ are small and one discards all cubic and higher terms in these
quantities.

(i) Using Taylor expansions, show that Lagrange’ s equations in our quadratic
approximation become

gkl (0)q̈l = −Qkl q
l

One may then find the eigenvalues of Q with respect to the kinetic energy
metric g; that is, we may solve det(Q − λg) = 0. Let y = (y1, . . . , yn) be an
(constant) eigenvector for eigenvalue λ, and put qi (t) := sin (t

√
λ)yi .

(ii) Show that q(t) satisfies Lagrange’s equation in the quadratic approximation,
and hence the eigendirection y yields a small harmonic oscillation with
frequency ω = √

λ. The direction y yields a normal mode of vibration.

(iii) Consider the double planar pendulum of Figure 1.10, with coordinates q1 =
θ and q2 = φ, arm lengths l1 = l2 = l , and masses m1 = 3, m2 = 1. Write
down T and V and show that in our quadratic approximation we have

g = l2
[

4 1
1 1

]
and Q = gl

[
4 0
0 1

]

Show that the normal mode frequencies are ω1 = (2g/3l)1/2 and ω2 =
(2g/ l)1/2 with directions (y1, y2) = (θ, φ) = (1, 2) and (1, −2).
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2.5. The Grassmann or Exterior Algebra

How can we define an oriented area spanned by two vectors in R
n?

2.5a. The Tensor Product of Covariant Tensors

Before the middle of the nineteenth century, Grassmann introduced a new “algebra”

whose product is a vast generalization of the scalar and vector products in use today

in vector analysis. In particular it is applicable in space of any dimension. Before

discussing this “Grassmann product” it is helpful to consider a simpler product, special

cases of which we have used earlier. In 2.4 we defined the vector space ⊗p E∗ of

covariant p-tensors (i.e., tensors of rank p) over the vector space E ; these covariant

tensors were simply p-linear maps α : E × · · · × E → R. We now define the “tensor”

product of a covariant p-tensor and a covariant q-tensor.

Definition: If α ∈ ⊗p E∗ and β ∈ ⊗q E∗, then their tensor product α ⊗ β is the

covariant (p + q)-tensor defined by

α ⊗ β(v1, . . . , vp+q) := α(v1, . . . , vp)β(vp+1, . . . , vp+q)

2.5b. The Grassmann or Exterior Algebra

Definition: An (exterior) p-form is a covariant p-tensor α ∈ ⊗p E∗ that is

antisymmetric (= skew symmetric = alternating)

α(. . . vr , . . . , vs, . . .) = −α(. . . vs, . . . , vr , . . .)

in each pair of entries.

In particular, the value of α will be 0 if the same vector appears in two different entries.

The collection of all p-forms is a vector space

p∧
E∗ = E∗ ∧ E∗ ∧ . . . ∧ E∗ ⊂ ⊗p E∗

By definition,
∧1 E∗ = E∗ is simply the space of 1-forms. It is convenient to make the

special definition
∧0 E∗ := R, that is, 0-forms are simply scalars. A 0-form field on a

manifold is a differentiable function.

We need again to simplify the notation. We shall use the notion of a “multiindex,”

I = (i1, . . . , i p); the number p of indices appearing will usually be clear from the

context. Furthermore, we shall denote the p-tuple of vectors (vi1
, . . . , vi p) simply by vI .

Let α ∈ ∧p E∗ be a p-form, and let ∂ be a basis of E . Then by (2.34) (i.e.,

multilinearity) α is determined by its n p components

aI = ai1,...,i p = α(∂ i1
, . . . ,∂ i p) = α(∂ I )

By skew symmetry

ai1,...,ir ,...,is ,...,i p = −ai1,...,is ,...,ir ,...,i p
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Thus α is completely determined by its values α(∂ i1
, . . .∂ i p) where the indices are in

strictly increasing order. When the indices in I are in increasing order, i1 < i2 < . . . , <

i p we shall write I⇁

I⇁ = (i1 < . . . < i p)

The number of distinct I⇁ = (i1 < . . . < i p) is the combinatorial symbol, that is,

dim

p∧
E∗ = n!/p!(n − p)!

In particular, the dimension of the space of n-forms, where n = dimE , is 1; any n-form

is determined by its value on (∂1, . . . ,∂n). Furthermore, since a repeated ∂ i will give

0,
∧p E∗ is 0-dimensional if p > n. There are no nontrivial p-forms on an n-manifold

when p > n.

We now wish to define a product of exterior forms. Clearly, if α is a p-form and

β is a q-form then α ⊗ β is a (p + q) tensor that is skew symmetric in the first p
and last q entries, but need not be skew symmetric in all entities; that is, it need not

be a (p + q) form. Grassmann defined a new product α ∧ β that is indeed a form. To

motivate the definition, consider the case of 1-forms α1 and β1 (the superscripts are not

tensor indices; they are merely to remind us that the forms are 1-forms). If we put

α1 ∧ β1 := α ⊗ β − β ⊗ α

that is,

α ∧ β(v, w) = α(v)β(w) − β(v)α(w)

then α ∧ β is then not only a tensor, it is a 2-form. In a sense, we have taken the tensor

product of α and β and skew-symmetrized it. Define a “generalized Kronecker delta”

symbol as follows

δ I
J : = 1 if J = ( j1, . . . , jr ) is an even permutation of I = (i1, . . . , ir )

= −1 if J is an odd permutation of I

= 0 if J is not a permutation of I

For examples, δ126
621 = −1, δ126

623 = 0, δ126
612 = 1.

We can then define the usual permutation symbols

εI = εi1,...,in = ε I := δ I
12,...,n

describing whether the n indices i1, . . . , in form an even or odd permutation of 1, . . . , n.

This appears in the definition of the determinant of a matrix

det A = εI Ai1
1 Ai2

2 . . . Ain
n

(From this one can see that the ε symbol does not define a tensor. For in R
2, if εi j defined

a covariant tensor, we would have 1 = ε ′
12 = εrs(∂xr/∂x ′1)(∂xs/∂x ′2) = det(∂x/∂x ′),

which is only equal to ε12 = 1 if det(∂x/∂x ′) = 1.)

We now define the exterior or wedge or Grassmann product

∧ :

p∧
E∗ ×

q∧
E∗ →

p+q∧
E∗
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of forms. Let α p and βq be forms. We define α p ∧ βq to be the (p + q)-form with

values on (p + q)-tuples of vectors vI , I = (i1, . . . , i(p+q)) given as follows. Let

J⇁ = ( j1 < . . . < jp) and K⇁ = (k1 < . . . < kq) be subsets of I . Then

α ∧ β(vI ) : =
∑

K⇁

∑
J⇁

δ J K
I α(vJ )β(vK )

or (2.43)

(α ∧ β)I =
∑

K⇁

∑
J⇁

δ J K
I αJ βK

For example, if dim E = 5, and if e1, . . . , e5 is a basis for E

(α2 ∧ β1)523 = α2 ∧ β1(e5, e2, e3) =
∑
r<s

∑
t

δrst
523αrsβt

= δ235
523 α23β5 + δ253

523 α25β3 + δ352
523 α35β2

= α23β5 − α25β3 + α35β2

In general, one checks easily that α ∧ β is multilinear. Also, since δR
i ... j ...k...l =

−δR
i ...k... j ...l we see that α ∧ β is again skew symmetric. The wedge product, however, is

not commutative in general.

(βq ∧ α p)I =
∑

J⇁

∑
K⇁

δK J
I βK αJ

= (−1)pq
∑

J⇁

∑
K⇁

δ J K
I αJ βK

since K J → J K requires pq transpositions. Thus,

α p ∧ βq = (−1)pqβq ∧ α p (2.44)

In particular, for forms of odd degree, α2p+1 ∧ α2p+1 = 0. Thus

dx ∧ dy = −dy ∧ dx and dx ∧ dx = 0 (2.45)

We may consider the vector space of all forms of all degrees over E∗

∗∧
E∗ :=

( 0∧
E∗ = R

)
⊕

( 1∧
E∗ = E∗

)
⊕ . . . ⊕

( n∧
E∗

)

This is the Grassmann or exterior algebra over E∗, and

dim

∗∧
E∗ =

(
n
0

)
+

(
n
1

)
+ · · · +

(
n
n

)
= 2n

It is crucial for computational purposes that the Grassmann algebra is distributive

and associative. It is trivial to show distributivity; associativity will follow from the

following very useful result.

Lemma (2.46): ∑
J⇁

δ I J
M δK L

J = δ I K L
M
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P R O O F: I, K , L , and M are all fixed. Since J is in increasing order, there is at

most one term on the left-hand side, namely when J is some permutation of K L .

One then simply verifies that the preceding formula is correct in the cases when

J is an even and an odd permutation of K L .

One can now verify that the exterior product is associative. Let M be any (p+q +r)

multiindex. Look at the component [α p ∧ (βq ∧ γ r )]M . Then

[α p ∧ (βq ∧ γ r )]M =
∑

I⇁J⇁

δ I J
M αI (β ∧ γ )J

=
∑

I⇁J⇁

δ I J
M αI

∑
K⇁L⇁

δK L
J βK γL

=
∑
I⇁K⇁L⇁

δ I K L
M αI βK γL

It is clear that one would get the same expression for [(α ∧ β) ∧ γ ].

The same type of computation would show that if α(1), . . . , α(r) are all 1-forms and

if v(1), . . . , v(r) is any r -tuple of vectors, then

α(1) ∧ . . . ∧ α(r)(v(1), . . . , v(r)) =
∑

I

δ I
12...rα(1)(vi(1)) . . . α(r)(vi(r))

= det[α( j)(vi )] (2.47)

Let σ 1, . . . , σ n be the basis of 1-forms dual to e1, . . . , en . If we write

σ I for σ i1 ∧ . . . ∧ σ ir

then we have

σ I (eJ ) = δ I
J (2.48)

since this is certainly true, from (2.47), when I and J are increasing.

The reader should see Problem 2.5 (1) at this time. This problem says that

α p =
∑

I⇁

aI σ
I

where (2.49)

aI = ai1...i p := α(eI )

is skew symmetric in i1, . . . , i p. The aI are the “components of the covariant tensor α

with respect to the basis σ 1, . . . , σ n of E∗.” Thus the most general 2-form in R
3 is of

the form

β2 =
∑
i< j

bi j dxi ∧ dx j = b12dx1 ∧ dx2 + b13dx1 ∧ dx3 + b23dx2 ∧ dx3

= b23dx2 ∧ dx3 + b31dx3 ∧ dx1 + b12dx1 ∧ dx2 (2.50)

We shall see in a moment why we prefer this expression. The reader should see Problem

2.5 (2) at this point.
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2.5c. The Geometric Meaning of Forms in R
n

Let us look at the geometrical meaning of exterior forms in E = R
n in the special case

when the coordinates x1, . . . , xn are cartesian; that is, we shall employ the euclidean

metric of R
n . The coordinate vectors {∂ i } form an orthonormal basis of E , with dual

basis {dxi } for E∗. We already know that for these 1-forms dxi (v) = vi , that is, dxi

reads off the i th component of v. Next,

dxi ∧ dx j (v, w) = dxi (v)dx j (w) − dx j (v)dxi (w)

=
∣∣∣∣ vi wi

v j w j

∣∣∣∣
= ± the area of the parallelogram spanned by the projections π(v), π(w) of the vectors

v, w into the xi x j plane; the + sign is used if these projections determine the same

orientation of the plane as do ∂ i and ∂ j . (We shall discuss the notion of orientation

more thoroughly in Section 2.8.)

Figure 2.6

In the figure, dx ∧ dy(v, w) is the negative of the area of the parallelogram spanned

by π(v) and π(w). Likewise, from (2.47),

dxi1 ∧ . . . ∧ dxi p(v1, . . . , vp)

= ± the p-dimensional volume of the parallelopiped spanned by the projections of

these vectors into the xi1 . . . xi p coordinate plane; the + sign is used only if these

projected vectors define the same orientation as does ∂ i1
, . . . ,∂ i p .

2.5d. Special Cases of the Exterior Product

Let τ 1, . . . , τ n be any n-tuple of 1-forms, and expand each in terms of a basis (we are

not assuming any scalar product)

τ i = T i
jσ

j
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Then τ 1 ∧ . . . ∧ τ n = ∑
J T 1

j1 . . . T n
jn σ j1 ∧ . . . ∧ σ jn

=
∑

J

T 1
j1 . . . T n

jn δ
j1... jn
12...n σ 1 ∧ . . . ∧ σ n

that is,

τ 1 ∧ . . . ∧ τ n = (det T )σ 1 ∧ . . . ∧ σ n (2.51)

Exterior products yield a coordinate-free expression for the determinant! For this reason

the wedge product is very convenient for discussing linear dependence.

Theorem (2.52): The p 1-forms τ 1, . . . , τ p are linearly dependent iff

τ 1 ∧ . . . ∧ τ p = 0

P R O O F: If τ r = ∑
i 
=r aiτ

i then τ 1∧. . .∧τ r ∧. . .∧τ p will be a sum of terms, each

having a repeated τ i , and so the product will vanish. On the other hand, if the τ ’s are

linearly independent we may complete them to a basis τ 1, . . . , τ n . Let f1, . . . , fn

be the dual basis. From (2.47) we have τ 1 ∧ . . . ∧ τ p ∧ . . . ∧ τ n(f1, . . . , fn) = 1,

showing that τ 1 ∧ . . . ∧ τ p 
= 0.

2.5e. Computations and Vector Analysis

For computations using forms we may use the usual rules of arithmetic except that

the commutative law is replaced by (2.44). In particular dx ∧ dy = −dy ∧ dx and

dx ∧ dx = 0. Consider R
3 as a 3-manifold with any (perhaps curvilinear) coordinate

system x1, x2, x3. Let f be a 0-form, that is, a function of x , and let ai , bi , and ci j be

functions. Then

α1 = a1dx1 + a2dx2 + a3dx3 and β1 = b1dx1 + b2dx2 + b3dx3

are 1-forms

γ 2 = c23dx2 ∧ dx3 + c31dx3 ∧ dx1 + c12dx1 ∧ dx2

:= c1dx2 ∧ dx3 + c2dx3 ∧ dx1 + c3dx1 ∧ dx2

is a 2-form, and

ω3 = dx1 ∧ dx2 ∧ dx3

is a 3-form.

(In cartesian coordinates ω3 is the “volume form,” but note that, for example, in

spherical coordinates r 2 sin θdr ∧ dθ ∧ dφ is the volume form; these matters will be

discussed later.)

As we shall see, these are familiar expressions used in vector analysis in the case
when the coordinates are cartesian, involving line, surface, and volume integrals, where
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they are usually written, for example, as α = a • dx and γ = c • dS, and ω = dV . We

then have

α1 ∧ β1 = (a1dx1 + a2dx2 + a3dx3) ∧ (b1dx1 + b2dx2 + b3dx3)

= a1b1dx1 ∧ dx1 + · · · + a2b3dx2 ∧ dx3 + · · · + a3b2dx3 ∧ dx2

= 0 + · · · + (a2b3 − a3b2)dx2 ∧ dx3

= (a2b3 − a3b2)dx2 ∧ dx3 + (a3b1 − a1b3)dx3 ∧ dx1

+ (a1b2 − a2b1)dx1 ∧ dx2

In cartesian coordinates this says

(a • dx) ∧ (b • dx) = (a × b) • dS

but note that the three components of α ∧ β, which make sense in any coordinate

system, are not the components of the cross product in curvilinear coordinates! The

exterior product replaces the notion of × product (which is not associative; i × (i × j)

= (i × i) × j). We shall see the exact correspondence between exterior forms and

vector analysis in Section 2.9b.

Problems

2.5(1) Show that if αp is any p-form, we have the expansion

αp =
∑

I
⇁

αp(eI)σ
I

=
∑

I
⇁

α(ei1 . . . , ei p)σ
i1 ∧ . . . ∧ σ i p

(Hint: Check values of both sides on eJ
⇁
.)

2.5(2) Show that in R
n, if i < j < k , then

(α1 ∧ β2)i jk = ai b jk + ak bi j + a jbki

that is, one writes down ai b jk and then one cyclically permutes the indices i, j, k .
Investigate α1 ∧ βn−1 in R

n, paying special care to the parity of n.

2.5(3) In R
3, compute α1 ∧ γ 2 and α1 ∧ β1 ∧ ρ1, where ρ is a 1-form, and relate these

results to vector analysis.
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2.6. Exterior Differentiation

Does one ever need to write out curl A in curvilinear coordinates?

2.6a. The Exterior Differential

In Section 2.4e we saw that if A = Ai (x)dxi is a covariant vector field on a manifold,

that is, a 1-form, then Fi j = ∂i A j −∂ j Ai are the components of a covariant second-order

tensor that is clearly skew symmetric. Thus

F :=
∑
i< j

(∂i A j − ∂ j Ai )dxi ∧ dx j

is an exterior 2-form. We then have a way of “differentiating” a 1-form, obtaining a

2-form. We also showed that the expressions {∂i A j } themselves do not form the compo-

nents of a tensor. Problem 2.4 (3) indicated that it does not seem to be possible to differ-

entiate a contravariant vector field and obtain a tensor field. In this chapter we shall de-

fine a differential operator d that will always take exterior p-form fields into exterior (p+
1)-form fields. In a sense then, covariant skew symmetric tensors have a richer structure
than tensors in general, and this richer structure plays an essential role in physics.

Recall that if f is a function, that is, a 0-form, then its differential d f = (∂i f )dxi

is a 1-form. Also, equation (2.44) says that α0 ∧ β p = β p ∧ α0. For this reason one
ordinarily does not put a wedge ∧ in a product involving a 0-form.

Theorem (2.53): There is a unique operator, exterior differentiation,

d :

p∧
Mn →

p+1∧
Mn

satisfying

(i) d is additive, d(α + β) = dα + dβ.

(ii) dα0 is the usual differential of the function α0.

(iii) d(α p ∧ βq) = dα p ∧ βq + (−1)pα p ∧ dβq .

(iv) d2α := d(dα) = 0, for all forms α.

P R O O F: We shall first define an operator dx , using a local coordinate system x ,

and then show that this operator is in fact independent of the coordinate system.

Step I. If f is a 0-form, define dx f = d f = (∂i f )dxi . We know in fact that

d f is independent of coordinates: Its coordinate-free definition is d f (v) = v( f );

see (2.6). Condition (ii) has been satisfied.

Step II. If a is a function, define, for I = (i1, . . . , i p)

dx [a(x)dx I ] = da ∧ dx I = (∂ j a)dx j ∧ dx I

We then define dx on any p-form in the coordinate patch x by additivity

dx

∑
I⇁

aI (x)dx I =
∑

I⇁

daI ∧ dx I
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Condition (i) is automatically satisfied. Consider condition (iii). Let J = ( j1, . . . , jq).
Then

dx [
∑

I⇁

aI dx I ∧
∑

J⇁

bJ dx J ] = dx

∑
I⇁J⇁

aI bJ dx I ∧ dx J

=
∑

I⇁J⇁

(daI bJ + aI dbJ ) ∧ dx I ∧ dx J

=
∑

I⇁

daI ∧ dx I ∧
∑

J⇁

bJ dx J

+
∑

I⇁

aI dx I ∧
∑

J⇁

(−1)pdbJ ∧ dx J

since dbJ ∧ dx I = (−1)pdx I ∧ dbJ involves p interchanges. (iii) is satisfied.

To verify (iv), note that if f is a function, then

dx(dx( f )) = dx

∑
i

(∂i f )dxi =
∑

i

dx(∂i f ) ∧ dxi =
∑

i j

(∂2
i j f )dx j ∧ dxi

= · · · +
(

∂2 f

∂xr∂xs

)
dxr ∧ dxs · · · +

(
∂2 f

∂xs∂xr

)
dxs ∧ dxr + · · · = 0

(It is a general and very useful fact that if A...i ... j ...
...r ...s... is symmetric in i, j and skew

symmetric in r, s then the contraction A...i ... j ...
...i ... j ... = 0.)

Then from (iii), for any functions f, g, not simply for coordinate functions,

we have

dx(d f ∧ dg) = 0

and by induction

dx(d f ∧ dg ∧ · · · ∧ dh) = 0 (2.54)

Then, for any p-form α

d2
x α = d2

x

∑
I⇁

aI dx I = dx

∑
I⇁

daI ∧ dx I = 0

We have now defined an operator dx in each coordinate patch x and it satisfies

(i), (ii), (iii), and (iv). Let y be another coordinate patch that overlaps x , and let

dy be the corresponding differential. Then, since dy again coincides with dx on

functions, in particular coordinate functions, we have, from (iii) and (2.54),

dy

∑
I⇁

aI (x)dx I =
∑

I⇁

dyaI [x(y)] ∧ dx I

=
∑

I⇁

daI ∧ dx I

= dx

∑
I⇁

aI (x)dx I

Thus d := dy = dx is well defined, independent of coordinates.
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As to uniqueness, any operator d ′ satisfying (i), (ii), (iii), and (iv) must satisfy

d ′ ∑
I⇁

aI (x)dx I =
∑

I⇁

daI ∧ dx I = d
∑

I⇁

aI (x)dx I

2.6b. Examples in R
3

Let x = x, y, z be any (perhaps curvilinear) coordinate system in R
3. Then the differ-

ential of a function f = f 0 is

d f 0 =
(

∂ f

∂x

)
dx +

(
∂ f

∂y

)
dy +

(
∂ f

∂z

)
dz

If the coordinates are cartesian, then the components are the components of the gradient

of f ,

d f = ∇ f • dx

If, in general coordinates

α1 = a1(x)dx + a2(x)dy + a3(x)dz

then

dα1 = da1 ∧ dx + da2 ∧ dy + da3 ∧ dz

=
[(

∂a1

∂x

)
dx +

(
∂a1

∂y

)
dy +

(
∂a1

∂z

)
dz

]
∧ dx

+
[(

∂a2

∂x

)
dx +

(
∂a2

∂y

)
dy +

(
∂a2

∂z

)
dz

]
∧ dy

+
[(

∂a3

∂x

)
dx +

(
∂a3

∂y

)
dy +

(
∂a3

∂z

)
dz

]
∧ dz

= (∂ya3 − ∂za2)dy ∧ dz + (∂za1 − ∂x a3)dz ∧ dx

+ (∂x a2 − ∂ya1)dx ∧ dy

In cartesian coordinates the components are the components of the curl of the vector A,

d(A • dx) = (curl A) • dS

Finally, for a 2-form β (writing b23 = b1, b31 = b2, b12 = b3)

dβ2 = d[b1dy ∧ dz + b2dz ∧ dx + b3dx ∧ dy]

= db1 ∧ dy ∧ dz + db2 ∧ dz ∧ dx + db3 ∧ dx ∧ dy

= [∂x b1 + ∂yb2 + ∂zb3]dx ∧ dy ∧ dz

whose single component in cartesian coordinates is the divergence of the vector B,

d(B • dS) = div B dV

d2 = 0 in any coordinate system; in cartesian coordinates this yields the famous

curl grad = 0 and div curl = 0.
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It is important to realize that it is no more difficult to compute d in a curvilinear
coordinate system than in a cartesian one. For example, in spherical coordinates, for

1-form α = Pdr + Qdθ + Rdφ

d[Pdr + Qdθ + Rdφ] = d P ∧ dr + d Q ∧ dθ + d R ∧ dφ

= (∂θ R − ∂φ Q)dθ ∧ dφ + (∂φ P − ∂r R)dφ ∧ dr

+ (∂r Q − ∂θ P)dr ∧ dθ

Note that (P, Q, R) form the components of a covariant vector, α, and that the three

components of dα1 do not form the components of the curl of a vector; they are the

components of a second-rank covariant skew symmetric tensor. We shall see in Section

2.9 that it is possible to identify 2-forms in R
3 (with a given metric) with contravariant

vectors and then the vector identified with dα is the curl of the contravariant version

of α. This is not only an extremely awkward procedure, it serves no purpose, for we

maintain that there is never any reason to take the curl of a contravariant vector. In
situations where the “curl” of a “vector” is required, the “vector” will most naturally
appear in covariant form (i.e., it will be a 1-form α), and then dα is all that is required.

For example, the electric field measures the force on a unit charge that is at rest. Force,

being the time rate of change of momentum, appears naturally as a covector (see (2.29))

and so the electric field is a 1-form E
1. Then Faraday’s law really states that dE

1 is the

negative of the time rate of change of the magnetic field 2-form B
2. These matters will

be discussed in Section 3.5.

2.6c. A Coordinate Expression for d

Let α p = ∑
L⇁

aLdx L be a p-form; then dα p = ∑
L⇁
(daL) ∧ dx L . Now daL is the 1-

form whose j th component is (daL) j = ∂ j aL . Also dx L is the p-form with components

(dx L)K = δL
K . Then from (2.43) we get

(dα)I =
∑

L⇁

(daL ∧ dx L)I =
∑

L⇁

∑
j,K⇁

δ
j K
I (∂ j aL)δL

K

that is,

(dα)I =
∑
j K⇁

δ
j K
I (∂ j aK ) (2.55)

Thus for I increasing

(dα p)I⇁ =
∑
j,K⇁

δ
jk1...kp

i1...i(p+1)
∂ j ak1...kp

= ∂i1
ai2...i(p+1)

− ∂i2
ai1i3...i(p+1)

+ · · ·
Hence

(dα p)I =
∑

r

(−1)r+1∂ir ai1···îr ···i(p+1)
(2.56)
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where the hat ̂ over ir means omit ir . We can also write

(dα p)I =
∑

r

(−1)r+1∂ ir [α
p(∂ i1

, . . . ∂̂ ir . . .∂ i(p+1)
)] (2.57)

If, for example, α = ∑
i ai dxi is a 1-form on Mn , from (2.55)

(dα1)i j = ∂i a j − ∂ j ai (2.58)

and this of course was the procedure used for defining the field strength in (2.42).

If β2 = ∑
i< j bi j dxi ∧ dx j is a 2-form in an Mn , from (2.56)

(dβ2)i< j<k = (∂i b jk + ∂kbi j + ∂ j bki) (2.59)

Problem

2.6(1) Relabel the components of a 3-form β3 in R
4 (as we did for a 2-form in R

3, b12 =
b3, . . .) to get a divergencelike expression for dβ3. Guess what should be done
for βn−1 in R

n. Watch for the parity of n.

2.7. Pull-Backs

What are the deformation tensors that arise in elasticity theory?

2.7a. The Pull-Back of a Covariant Tensor

Let F : Mn → W r be a differentiable map. Sometimes we shall write M
F→ W . In

local coordinates x for M and y for W we have y j = F j (x), or briefly y = y(x).

If f : W → R is a smooth function (0-form) on W we define its pull-back to M ,

written F∗ f , to be the composition f ◦ F : M → R, that is, M
F→ W

f→ R.

(F∗ f )(x) = ( f ◦ F)(x) = f (y(x))

This is a real-valued function on M , M
f ◦F−→ R. One can always pull back a function

on W . If F has an inverse G = F−1 then one can “push forward” a function h on M to

yield a function h ◦ F−1 on W , W
G→ M

g→ R, but it should be clear that one cannot

in general expect to push forward a function on M to get a function on W , unless F−1

exists.

For future needs, we exhibit here how a vector v at x of M , as a differential operator,

acts on the pull-back of a function.

v(F∗ f ) = v[ f {y(x)}] = vi ∂

∂xi
[ f {y(x)}]

= vi

(
∂y j

∂xi

)(
∂ f

∂y j

)

v(F∗ f ) = (F∗v)( f ) = d f (F∗v) (2.60)
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Now let α p be a covariant tensor at y in W . We have just defined the pull-back of

α p when p = 0. When p = 1, that is, when α is a 1-form, its pull-back was defined in

(2.23). We now define in general the pull-back of a covariant tensor by

F∗α p(v1, . . . , vp) := α p(F∗v1, . . . , F∗vp) (2.61)

It is clear that F∗α is alternating if α is; that is, the pull-back of a p-form on W is a

p-form on M

F∗ :

p∧
W →

p∧
M

Unless otherwise indicated, by pull-back we shall mean the pull-back of an exterior
form.

In our warning following (2.25) we pointed out that one cannot push forward a

contravariant vector field on M to yield a vector field on W . The ability to pull back

covariant tensors endows these tensors with a crucial operation that is not available to

the contravariant ones. It is difficult to overemphasize the importance of this advantage.

It is clear from (2.61) that F∗ is additive; that is, F∗ of a sum is the sum of the F∗’s.

This is further enhanced by the following two properties: The pull-back of a product

of forms is the product of the pull-backs, and the pull-back of the exterior derivative

of a form is the derivative of the pull-back. We proceed to these matters, for they are

crucial to writing down coordinate expressions economically.

Theorem (2.62): F∗ is an algebra homomorphism, that is,

F∗(α ∧ β) = (F∗α) ∧ (F∗β)

For proof see Problem 2.7(1).

It is even simpler to prove that for any tensor product of covariant tensors

F∗(α ⊗ β) = (F∗α) ⊗ (F∗β) (2.63)

Theorem (2.64): F∗ commutes with exterior differentiation, d ◦ F∗ = F∗ ◦ d,

F∗(dα) = d(F∗α)

P R O O F: When α = α0 is a function f on W near F(x) and v is tangent vector

to M at x , we have from (2.60) and (2.23)

d(F∗ f )(v) = v(F∗ f ) = d f (F∗(v)) = (F∗(d f ))(v)

Thus (2.64) has been proved when α is a 0-form. When α is a p-form, we have

d ◦ F∗ ∑
J⇁

aJ (y)dy j1 ∧ · · · ∧ dy jp , which from (2.62)

= d
∑

J⇁

(F∗aJ (y))(F∗dy j1) ∧ · · · ∧ (F∗dy jp) =
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(since (2.64) has been proved for 0-forms)

= d
∑

J⇁

(F∗aJ (y))d(F∗y j1) ∧ . . . ∧ d(F∗y jp)

=
∑

J⇁

(d F∗aJ (y)) ∧ d(F∗y j1) ∧ . . . ∧ d(F∗y jp)

=
∑

J⇁

(F∗daJ ) ∧ (F∗dy j1) ∧ . . . ∧ (F∗dy jp)

= F∗ ∑
J⇁

(daJ ) ∧ dy j1 ∧ . . . ∧ dy jp

= F∗ ◦ d
∑

J⇁

aJ (y)dy j1 ∧ . . . ∧ dy jp

as desired.

Explicitly, with I = (i1, . . . , i p), F∗d(y J ) = F∗(dy j1 ∧ . . . ∧ dy jp) = ∑
I (∂y j1/∂xi1)

. . . (∂y jp/∂xi p)dx I . But dx I = ∑
L⇁
δ I

Ldx L (we are merely putting the dx’s in increasing

order; for each given I there is only one nonzero term in the sum on the right). Then

F∗d(y J ) =
∑

L⇁

{ ∑
I

(
∂y j1

∂xi1

)
. . .

(
∂y jp

∂xi p

)
δ I

L

}
dx L

=
∑

L⇁

det

{
∂(y J )

∂(x L)

}
dx L

Thus we have

F∗d(y J ) =
∑

L⇁

det

{
∂(y J )

∂(x L)

}
dx L

and so

F∗α p = F∗ ∑
J⇁

aJ dy J =
∑

L⇁

a∗
L(x)dx L

where (2.65)

a∗
L(x) :=

∑
J⇁

aJ (y(x)) det

{
∂(y J )

∂(x L)

}

Let, for example, M2 be a surface in R
3, that is, a 2-dimensional submanifold. We

have the inclusion map, i : M → R
3, which is a fancy way of saying that any point of

M is also a point in R
3. If v is a tangent vector to M , then i∗v is simply the same vector

v, considered as a vector in R
3. If β2 is a 2-form on R

3, then the pull-back of β to M
is the 2-form i∗β whose value on the pair v, w of tangent vectors to M is given simply

by i∗β(v, w) = β(i∗v, i∗w) = β(v, w). In other words, i∗β in this case of inclusion is
the same form β, but we restrict its domain to vectors that are tangent to M . This same
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situation holds whenever Mn is a submanifold of another manifold. If u = (u, v) are

local coordinates in M2 and x = (x, y, z) are coordinates for R
3, then

i∗β = i∗[b1(x)dy ∧ dz + b2(x)dz ∧ dx + b3(x)dx ∧ dy]

=
[

b1(x(u))
∂(y, z)

∂(u, v)
+ b2(x(u))

∂(z, x)

∂(u, v)
+ b3(x(u))

∂(x, y)

∂(u, v)

]
du ∧ dv

See Problem 2.7(2) at this time.

Another way to get this coordinate expression for i∗β is to compute directly, using the

fact that i∗ commutes with exterior products and differentiation. For example, putting

x = (x, y, z) and u = (u, v)

i∗(b1dy ∧ dz) = b1(x(u))i∗(dy) ∧ i∗(dz)

= b1(x(u))

[(
∂y

∂u

)
du +

(
∂y

∂v

)
dv

]
∧

[(
∂z

∂u

)
du +

(
∂z

∂v

)
dv

]

= b1(x(u))

[(
∂y

∂u

)(
∂z

∂v

)
−

(
∂y

∂v

)(
∂z

∂u

)]
du ∧ dv

Two final remarks. First, if F : Mn → Mn is the identity map but expressed in

different coordinates, that is, if y = y(x) is simply a change of coordinates, then

α = F∗α is simply expressing the form α in the two coordinate systems. For example,

if u, v, w are curvilinear coordinates in R
3 then from either (2.65) or from (2.51) we

see

dx ∧ dy ∧ dz =
[

∂(x, y, z)

∂(u, v, w)

]
du ∧ dv ∧ dw

Finally, we have defined the Poincaré 1-form λ = pi dqi in phase space T ∗Mn (see

(2.33)). We then define the Poincaré 2-form by

ω2 = dλ = dpi ∧ dqi (2.66)

This form, as we shall see, plays a most important role in Hamiltonian mechanics. If

F : R
2 → T ∗Mn is a 2-dimensional surface in phase space, then the pull back of ω to

R
2 (whose coordinates are u, v) is the 2-form

F∗ω = {u, v}du ∧ dv

where

{u, v} :=
∑

i

∂(pi , qi )

∂(u, v)
(2.67)

defines the Lagrange bracket of the functions u and v.

2.7b. The Pull-Back in Elasticity

Consider an elastic body B in R
3 and a deformation B

′ = F(B) of this body. To describe

this we shall let X1, X2, X3 be cartesian coordinates in R
3 and the deformation will be
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described by functions xi = xi (X). We may think of X and x as being two identical

Cartesian coordinate systems in R
3. A point with coordinates X in B will be sent into the

point with coordinates x in B
′. We shall try to follow a common practice of denoting

quantities associated with the undeformed body by capital letters, and those of the

deformed body with lower case.

Figure 2.7

Under the deformation, the orthonormal pair ∂ A,∂B at X is sent, by the differential

of F at X , into a pair of vectors F∗∂ A, F∗∂B at x .

The metric tensor of R
3 can be written d S2 = G AB(X)d X A ⊗ d X B , meaning

d S2(V, W) = G AB V AW B . It is traditional to omit the tensor product sign ⊗ when
dealing with symmetric tensors. Thus at X , since the coordinates are cartesian,

d S2 = G ABd X Ad X B = δABd X Ad X B =
∑

A

(d X A)2

and this is the usual expression for “arc length” in elementary calculus, ds2 = dx2 +
dy2 + dz2. This will be discussed at great length in Part Two.

We may also write this same tensor, at the point x , as ds2 = ∑
a(dxa)2. For the

pull-back under F we have, from (2.63),

F∗(ds2) =
∑

a

[ ∑
A

(
∂xa

∂ X A

)
d X A

]
⊗

[ ∑
B

(
∂xa

∂ X B

)
d X B

]

=
∑
a AB

(
∂xa

∂ X A

)(
∂xa

∂ X B

)
d X Ad X B

This tensor,

F∗(ds2) =
∑
AB

(
∂x

∂ X A

)
•

(
∂x

∂ X B

)
d X Ad X B (2.68)
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when applied to the pair ∂C ,∂D , reads off the scalar product of the pair F∗∂C , F∗∂D ,

and is called the right Cauchy–Green tensor C

C := F∗(ds2)

One measure of the deformation taking place is given by the Lagrange deformation
tensor

1

2
[F∗(ds2) − d S2] = 1

2

[ ∑
AB

(
∂x

∂ X A

)
•

(
∂x

∂ X B

)
− δAB

]
d X Ad X B (2.69)

A more general discussion of deformations in continuum mechanics will be found

in the Appendix to this book.

Problems

2.7(1) Prove (2.62). [Hint: Use (2.43)].

2.7(2) Let x be cartesian coordinates for R
3. Then the 2-form β is of the form β = b • dS.

Show that in the coordinate patch (u, v) of the surface M 2 ⊂ R
3 we have

i∗β = b • ndu ∧ dv (2.70)

where n := xu × xv := (∂x/∂u)×(∂x/∂v) is a (nonunit) normal to M.

2.8. Orientation and Pseudoforms
Leave your shoes, labeled R and L , and take a long trip around the universe. Is it possible that

your right foot will only fit into your left shoe when you return?

2.8a. Orientation of a Vector Space

Let e = (e1, . . . , en) and f = (f1, . . . , fn) be two bases of a vector space E ; we can

then write f = eP , that is, fi = e j P j
i , for a unique nonsingular matrix P . We say that

e and f have the same (resp. opposite) orientation if det P is positive (resp. negative).

(It is easy to see, from the continuity of the function P → det(P), that if a basis e is

continuously deformed into a basis f while remaining a basis at each stage, then both

bases have the same orientation.)

The collection of all bases of E then falls naturally into two equivalence classes of

bases. (For example, the tangent space to our physical 3-space at a given point is a 3-

dimensional vector space, and we have the two classes of bases defined by using either

the right- or the left-hand rule.) We orient a vector space by declaring one of the two

classes of bases to be positive; the other class then consists of negatively oriented bases.

In our 3-space it is usual to declare the right-handed bases to be positively oriented,

but we could just as well have the left-handed bases as positive. It should be clear that

except for our prejudices about right and left, neither choice is any more “natural” than

the other. This is especially clear if we consider a 2-dimensional case instead. If we

draw a “positive” basis for a sheet of paper by using an xy coordinate system where,



O R I E N T A T I O N A N D P S E U D O F O R M S 83

as is usual, we rotate through a right angle counterclockwise from x to y, then if we

view the sheet of paper from the reverse side we see that this basis requires us to rotate

clockwise from x to y.

To orient a 2-dimensional vector space is to declare one of the two possible senses

of rotation about the origin to be positive. Given an oriented plane and a positively

oriented basis e1, e2, the positive sense of rotation goes from the first basis vector to

the second through the unique angle that is less than a straight angle.

R
n , as a space of n-tuples, comes equipped with a natural basis e1 = (1, 0, . . . , 0)T ,

and so on, but it is important to realize that most vector spaces we shall encounter do not

have distinguished bases and consequently do not have a natural choice of orientation!

2.8b. Orientation of a Manifold

Now consider a manifold Mn . Of course we may orient each tangent space Mn
x hap-

hazardly, but for many purposes it would help if we could do this in a “continuous”

or “coherent” fashion. For example, let Ux be a coordinate patch with coordinates x .

Then we may orient each tangent space at each point of Ux by declaring the bases

∂ = (∂1, . . . ,∂n) to be positively oriented. We have then oriented all the tangent

spaces at all points of the patch Ux . If a point lies in an overlap Ux ∩Uy of two patches,

the two bases are related by ∂ y = ∂x(∂x/∂y), and thus the two orientations agree if

and only if the Jacobian determinant is positive.

We shall say that a manifold Mn is orientable if we can cover M by coordinate

patches having positive Jacobians in each overlap. We can then declare the given co-

ordinate bases to be positively oriented, and we then say that we have oriented the

manifold. Briefly speaking, if a manifold is orientable it is then possible to pick out, in
a continuous fashion, an orientation for each tangent space Mn

x to Mn . Conversely, if
it is possible to pick out continuously an orientation in each tangent space, we can (by
permuting x1 and x2 if necessary) assume that the coordinate frames in each coordinate
patch have the chosen orientation and Mn must be orientable.

It should be clear that if M is connected and orientable, then there are exactly two

different ways to orient it. Of course if M can be covered by a single coordinate patch

it is then orientable. Möbius discovered that there are manifolds that are not orientable

and we shall consider this in a moment.

Let p and q be two points of a manifold Mn . Let C be any curve joining these two

points, p = C(0) and q = C(1). Given a frame e(0) at C(0) we can extend this frame,

in many ways, to yield a frame e(t) at C(t) for all 0 ≤ t ≤ 1 such that the assignment

t �→ ei (t) is continuous (we do not ask that e(t1) = e(t2) whenever C(t1) = C(t2)).

For example, if C(t) lies in a coordinate patch Ux for 0 ≤ t ≤ a, we can insist that the

components of the fields ei (t) with respect to the coordinate basis ∂ be constant. We

can extend past t = a by using perhaps a different patch that holds the next portion

of the curve, and so forth. In this way we can, in a continuous fashion, transport a

frame at p to a frame at q. Although this process is in no sense unique, it is easy to

see that the orientation of the frame e(1) at the end q = C(1) of the curve is uniquely

determined by the orientation e(0) at the beginining p = C(0), and the reader should

verify this. In other words, we have unique transport of orientation along a curve. We



84 T E N S O R S A N D E X T E R I O R F O R M S

do not claim that the resulting orientation at q is independent of the curve C joining

it to p. If, however, M is orientable, we may cover M with coordinate patches having

positive Jacobians in their overlaps; it is then clear that if e(0) is positively oriented

then e(1) will also be positively oriented, independent of the curve C . It follows that

if, in a manifold, transport of orientation can lead to opposing results when applied to

two different curves joining p and q, then M cannot be orientable. Thus if transport of
orientation about some closed curve leads to a reversal of orientation on return to the
starting point, then Mn must be nonorientable!

The Möbius band is thus clearly nonorientable.

Figure 2.8

In this figure we have transported a frame along the midcircle of the Möbius band.

By the identifications defining the Möbius band we see that e1(1) = e1(0) and e2(1) =
−e2(0), and thus orientation is reversed on going around the midcircle.

This example of the Möbius band is but a special case of a very general situation

involving “identifications.” An accurate treatment of this subject would take us too

long; we hope to convey the ideas by means of an example. Before this, we must

discuss an important criterion for orientability of a hypersurface (i.e., a submanifold of

codimension 1) of an orientable manifold.

2.8c. Orientability and 2-Sided Hypersurfaces

Let Mn be a submanifold of W r . A vector field along M is a continuous tangent vector

field to W that is defined at all points of M (it need not be defined at other points). A

vector field N along M is transverse to M if it is never tangent to M ; in particular it is

never 0 on M .

We say that a hypersurface Mn in W n+1 is 2-sided in W if there is a (continuous)

transverse vector field N defined along M .

A surface M2 in R
3 has at each point a pair of oppositely pointing unit normals.

Suppose that it is possible to make a continuous choice N for the entire surface. N
is then a transversal field to M2 and M2 is 2-sided in R

3. For example, the 2-sphere

S2 is the complete boundary of a solid ball, and consequently it makes sense to talk

of the outward pointing unit normal. On the other hand, it is a famous fact that the

Möbius band is “1-sided”; that is, there is no way to make a continuous selection of

unit normal field. (If we choose a normal at a point of the midcircle of the band and
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transport it continuously once around the circle, we find on returning to the starting

point that the normal has returned to its negative.) If one can define continuously a

unit normal field to a surface in R
3 then the surface must be orientable, for we could

then make a continuous choice of orientation in each tangent space as follows. R
3 is

orientable and so we can choose an orientation of R
3, say the right-handed one. We can

then declare a basis e1, e2 of tangent vectors to M2 to be positively oriented if N, e1, e2

forms a positively oriented basis in R
3.

More generally, if Mn is a 2-sided hypersurface of an orientable manifold W n+1,

then Mn is itself orientable!

We must emphasize the difference between orientability and 2-sidedness. Orientabil-

ity is an intrinsic property of a manifold Mn; whether Mn is 2-sided in W n+1 depends
on W and on how M is embedded in W. For example, if Mn is any manifold, orientable

or not, consider the product manifold W n+1 = Mn ×R, with local coordinates (x) from

M and a global coordinate t from R. Then Mn considered as the submanifold defined

by t = 0 is automatically a 2-sided hypersurface of W n+1 with transverse vector field

∂/∂t . Thus the Möbius band Mö is 1-sided in R
3 but it is a 2-sided hypersurface of

Mö × R.

2.8d. Projective Spaces

We have seen in Section 1.2b(vi) that the real projective plane RP2 is the 2-sphere S2

with antipodal points identified. Since S2 is 2-sided in R
3 it is orientable; we declare

a basis e1, e2 of tangent vectors to S2 to be positively oriented provided N, e1, e2, is a

right-handed basis of R
3, where N is the outward pointing normal to the sphere. Note

that the antipodal map a : S2 → S2 is simply the restriction to S2 of the reversal map

r : R
3 → R

3, r(x) = −x, and in 3 dimensions the reversal map reverses orientation of
space. Thus if N, e1, e2, is right-handed at the north pole n then −e1, −e2, −N is left-

handed at the south pole s. But −N is the outward pointing normal at s, and so −e1, −e2

is negatively oriented at the south pole of S2. This means, since S2 is orientable, that if

the basis e1, e2 at n is transported along a curve C on S2 to s (the pair remaining tangent

to S2 and independent) then the resulting basis f1, f2 has the opposite orientation as

−e1, −e2 there. But the basis −e1, −e2 at s represents, on RP2, exactly the same basis

e1, e2 at n, and the arc C on S2 becomes a closed curve C ′ on RP2 that starts and stops at

n. This means that on transporting the basis e1, e2 at n along C ′ on RP2, one returns to

an oppositely oriented basis. Thus RP2 is not orientable! Note that the crucial point in

the preceding argument was that RP2 is obtained from the orientable S2 by identifying

points by means of the antipodal map, and this map reverses orientation on S2.

In Problem 2.8(1) you are asked to show that RPn is not orientable if n is even. We

shall see later on that odd-dimensional projective spaces are in fact orientable.

2.8e. Pseudoforms and the Volume Form

The differential forms and vectors considered so far have not involved the notion of

orientation of space. However, roughly half of the “forms,” “vectors,” and “scalars” that

occur in physics are in fact “pseudo-objects” that make sense only when an orientation
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is prescribed. The magnetic field pseudovector B is perhaps the most famous example,

and we shall discuss this later.

Consider ordinary 3-space R
3 with its euclidean metric. We would like to define the

“volume 3-form” vol3 to be the form that assigns to any triple of vectors the volume of

the parallelopiped spanned by the vectors; in particular vol(X, Y, Z) should be 1 if X, Y ,

and Z are orthonormal. But if vol is to be a form we must then have vol(Y, X, Z) = −1,

and yet Y, X , and Z are orthonormal. We have asked too much of vol. In some books

they get around this by taking absolute value | vol(Y, X, Z)|, but this does great harm

to the machinery of forms that we have labored to develop. What we could do is require

that vol(X, Y, Z) = 1 if the triple is an orthonormal right-handed system. This makes

the volume form orientation-dependent. There is a serious drawback to this definition;

what if we are dealing with a space that is not orientable? The physical space in which

we live is, according to general relativity, curved and perhaps not orientable. If you

leave your shoes (labeled “right” and “left”) at home and take a very long trip, it may

very well be that on returning home your right foot will fit only into your shoe labeled

“left.” The term “right- handed” might not have an unambiguous meaning in the large,

just as rotation in “the clockwise sense” has no meaning on the Möbius band.

We compromise by defining a new type of form (called “form of odd kind” by its

inventor Georges de Rham) differing from our usual forms (of “even kind”) in a way

that will not seriously harm our machinery.

First note that the assignment of an orientation to a vector space E is the same as

the assignment of a function o on bases of E whose values are the two integers ±1;

o(e) = +1 iff the basis e has the given orientation. If (x) is a coordinate system, we

shall write o(x) rather than o(∂x).

Definition: A pseudo-p-form α on a vector space E assigns, for each orientation
o of E , an exterior p-form αo such that if the orientation is reversed the exterior

form is replaced by its negative

α−o = −αo

A pseudo-p-form on a manifold Mn assigns a pseudo-p-form α to each tangent

space Mn
x in a smooth fashion; that is, if (x) is a coordinate system in a patch then

if we take the orientation o in this patch defined by o(∂x) = +1, we demand that

the (ordinary) exterior form αo be smooth.

For example, let us write down a volume form for R
3 (we shall give a general definition

later on). Let x, y, z, be a cartesian coordinate system in R
3 (it may be right- or left-

handed). Then the volume (pseudo) form is

vol3 := o(∂x ,∂ y,∂z)dx ∧ dy ∧ dz

Thus if o is the right-handed orientation of R
3, and if the coordinate system is right-

handed then volo = dx ∧ dy ∧ dz, whereas if the coordinate system is left-handed

volo = −dx ∧ dy ∧ dz = dy ∧ dx ∧ dz.

Similarly we can define pseudovectors, pseudoscalars, and so on, pseudo always

referring to a change of sign with a change of orientation. For example, the magnetic
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field about a current carrying infinite straight wire circulates about the wire, but the
sense of circulation is undetermined! If we employ the usual right-handed orientation

of R
3, then the field (by definition) circulates about the wire in the sense of a right-hand

screw, whereas if we use the left-handed orientation the direction is in the sense of a

left-hand screw. This indecisiveness cannot be avoided; it stems from the definition

of the magnetic field, (see (3.36)), and the fact that a “sense” can be assigned to a

× product of vectors v × w only after an orientation is chosen. Thus B is not a true
vector, but rather changes into its negative when the orientation of R

3 is reversed; B is

a pseudovector.
Warning: We have defined vectors, forms, orientation and pseudoforms in a manner

that is independent of coordinate systems. For example, in R
3 we may assign the right-

hand orientation and still employ a left-handed cartesian coordinate system. This is

usually not done in physics books. In physics one usually does not talk about the

orientation of R
3 but rather the orientation of a particular coordinate system being

employed. Where in this book we would say that a vector is unchanged under a change

of orientation and a pseudovector B changes into −B if the orientation of R
3 is reversed,

a physicist would usually say, for example, that if Ai and Bi are the components of

a vector A and a pseudovector B in a cartesian coordinate system x, y, z, then the

components of A and B in the reversed system −x, −y, −z, are −Ai and Bi . This is
saying the same thing as in our definition.

2.8f. The Volume Form in a Riemannian Manifold

Let p be a point in the Riemannian manifold Mn . The volume (pseudo)-n-form voln

is by definition the unique n-form that assigns to an orientation o of the tangent space

Mn
p and a positively oriented orthonormal basis e the value +1. (Recall that an n-form

is determined by its value on a single basis.) Let us find the coordinate expression for

voln .

Clearly, if (x) is a coordinate system that is orthonormal at p, that is, (∂ i ) are

orthonormal, then

vol = o(x)dx1 ∧ . . . ∧ dxn

is the volume form at p, since this form, when applied to (∂x), yields o(x).

Let (y) be any coordinate system holding p. Choose any coordinate system (x) that

is orthonormal at p. (This can be done as follows. Let e be an orthonormal basis at p
and let (z) be any coordinate system near p. Then e = ∂z P for a unique nonsingular

P . Now define coordinates x by z j = P j
i x i . We then have

∂

∂xi
=

(
∂z j

∂xi

)
∂

∂z j
=

(
∂

∂z j

)
P j

i = ei

at p, as desired.) Then, at p

voln = o(x)dx1 ∧ . . . ∧ dxn = o(x)
∂(x)

∂(y)
dy1 ∧ . . . ∧ dyn

= o(y)

∣∣∣∣∂(x)

∂(y)

∣∣∣∣dy1 ∧ . . . ∧ dyn
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Now at p we have (in the notation of Section 2.7b) ds2 = δrsdxr dxs = gi j (y)dyi dy j ,

where

gi j (y) =
(

∂xr

∂yi

)
δrs

(
∂xs

∂y j

)
=

∑
r

(
∂xr

∂yi

)(
∂xr

∂y j

)

Thus if we define, for each Riemannian metric tensor gi j (y),

g(y) := det[gi j (y)] (2.71)

we have

g(y) = det

[ ∑
r

(
∂xr

∂yi

)(
∂xr

∂y j

)]

= det

[(
∂x

∂y

)T (
∂x

∂y

)]
=

[
det

(
∂x

∂y

)]2

and consequently |∂(x)/∂(y)| = √
g(y) and

voln = o(y)
√

g(y)dy1 ∧ . . . ∧ dyn (2.72)

is the coordinate expression for the volume form. Since the coordinates (x) do not

appear anywhere in this expression, (2.72) gives the volume form at each point of the

(y) coordinate patch. If we write, as we do for any form, voln = voln
12...n dy1 ∧ . . .∧dyn ,

we see that

voln
i1i2...in

= o(y)
√

g(y)εi1i2...in (2.73)

It is traditional to omit the orientation function o(y), and we shall do so when no

confusion can arise.

Note that since voln is a pseudo-n-form, we conclude that

√
g(y)εi1i2...in

are the components of an nth rank covariant pseudotensor, but, as we noticed in Section

2.5 b, the permutation symbol itself is not a tensor!

Problems

2.8(1) Show that even dimensional projective spaces are not orientable.

2.8(2) Show that a 1-sided hypersurface Mn of an orientable manifold Wn+1 is not
orientable. (Hint: Transport of a normal about some closed curve on M must
reverse this normal (why?). Now transport a basis of W about this same curve.)

2.8(3) Use Problem 2.1(2) to compute the volume 3-form of R
3 in spherical coordinates.
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2.9. Interior Products and Vector Analysis

What is the precise relationship between exterior forms and vector analysis in R
3?

2.9a. Interior Products and Contractions

We know that if α is a covariant vector and v is a contravariant vector then α(v) = aiv
i

is a scalar. Also, if A is a linear transformation, that is, a mixed tensor that is once

covariant and once contravariant, then the trace tr(A) = Ai
i is also a scalar. In fact we

have a general remark, whose proof is requested in Problem 2.9(1).

Theorem (2.74): If T ...i ...
... j ... are the components of a mixed tensor, p times con-

travariant and q times covariant, then the contraction on a pair of indices i, j,
defined by the components

∑
i T ...i ...

...i ... defines a tensor (p − 1) times contravariant
and (q − 1) times covariant.

If v is a vector and α is a p-form, then their tensor product has components v j ai1...i p

and consequently the contraction v j a ji2...i p defines a covariant tensor, and it is clearly a

(p−1)-form. There is, however, a special machinery for contracting vectors and forms,

and we turn now to this “interior product.”

Definition: If v is a vector and α is a p-form, their interior product (p−1)-form

ivα is defined by

ivα
0 = 0 if α is a 0-form

ivα
1 = α(v) if α is a 1-form

ivα
p(w2, . . . , wp) = αp(v, w2, . . . , wp) if α is a p-form

Clearly iA+B = iA + iB and iaA = aiA. Sometimes we shall write i(v).

Theorem (2.75): iv :
∧p → ∧p−1 is an antiderivation, that is,

iv(α
p ∧ βq) = [ivα

p] ∧ βq + (−1)pα p ∧ [ivβ
q]

(Note that exterior differentiation is also an antiderivation.)

P R O O F: Let us write v = w1. Then

iv(α ∧ β)(w2, . . . , wp+q) = α ∧ β(w1, w2, . . . , wp+q)

=
∑

I⇁J⇁

δ I J
1...(p+q)α(wI )β(wJ ) =

∑
I⇁ J⇁ 1∈I

+
∑

I⇁ J⇁ 1∈J

=
∑

i2<...<i p

∑
J⇁

δ
1i2...i p J
1...(p+q)α(w1, wi2

, . . . wi p)β(wJ )

+
∑

I⇁

∑
j2<...< jq

δ
I 1 j2... jq
1...(p+q)α(wI )β(w1, w j2, . . . w jq )
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=
∑

1
=i2<...<i p

∑
J⇁−{1}

δ
i2...i p J
2...(p+q)[ivα](wi2

, . . . , wi p)β(wJ )

+
∑
I−{1}

∑
1
= j2<...< jq

(−1)pδ
I j2... jq
2...(p+q)α(wI )[ivβ](w j2, . . . , w jq )

= [(ivα) ∧ β + (−1)pα ∧ (ivβ)](w2, . . . , wp+q)

Theorem (2.76): In components we have

ivα =
∑

i2<...<i p

∑
j

v j a ji2<...<i p dxi2 ∧ . . . ∧ dxi p

that is,

(ivα)i2<...<i p =
∑

j

v j a ji2<...<i p

or

[ivα]K = v jα j K

Thus the interior product of v and α is simply the contraction with the first index of α!

For proof of (2.76) see Problem 2.10(2).

We also have the very easy ivcα = civα = icvα for a real number c.

Before proceeding, we should mention that exterior algebra and calculus and interior

products, and so on, all can be applied to pseudoforms as well. It should be clear, for

example, if α is a pseudoform, then so is dα. Also, if β is also a pseudoform then α ∧β

is a (true) form, and if v is a vector then ivβ is a pseudoform, and so on.

2.9b. Interior Product in R
3

In 2.5e we mentioned that in R
3 with cartesian coordinates one can associate to a vector

v a 1-form
∑

i vi dxi and also a 2-form v1dx2 ∧dx3 +v2dx3 ∧dx1 +v3dx1 ∧dx2. These
correspondences do not make sense in general coordinates; for instance, two different

coordinate systems will yield different 1-forms associated to a given vector v (not just

different coordinate expressions). We wish to give a correct correspondence that works

in any coordinates. We have already done this for 1-forms in a Riemannian manifold;

associated to the vector v = vi∂ i is the covector ν = vi dxi , where vi = gi jv
j . (We will

write ν = 〈 ,v〉 since ν(w) = 〈w, v〉.) We shall indicate this correspondence simply by

v ⇔ ν1 = v1dx1 + v2dx2 + v3dx3

What is the 2-form corresponding to v? We claim v ⇔ the pseudo-2-form ν2 :=
iv vol3. Let us look at the coordinate expression for this interior product. In curvilinear

coordinates u (with ∂ i = ∂/∂ui , and omitting the orientation function o) we have the

volume form (2.72) and

iv
√

g(u)du1 ∧ du2 ∧ du3 = √
g

∑
j

v j i∂ j (du1 ∧ du2 ∧ du3)
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Repeated use of (2.75) then gives

i(∂ j )(du1 ∧ du2 ∧ du3)

= i(∂ j )(du1)du2 ∧ du3 − du1 ∧ i(∂ j )(du2) ∧ du3 + du1 ∧ du2i(∂ j )(du3)

= du1(∂ j )du2 ∧ du3 − du2(∂ j )du1 ∧ du3 + du3(∂ j )du1 ∧ du2

= δ1
j du2 ∧ du3 − δ2

j du1 ∧ du3 + δ3
j du1 ∧ du2

Thus to the vector v we associate the pseudo-2-form

v ⇔ ν2 := iv vol3

where (2.77)

iv vol3 = √
g(v1du2 ∧ du3 + v2du3 ∧ du1 + v3du1 ∧ du2)

is the correct replacement for v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2. Note,

conversely, that if

β2 = b23du2 ∧ du3 + b31du3 ∧ du1 + b12du1 ∧ du2

is a pseudo-2-form, then we may associate to it a vector B with components

B1 = b23√
g
, B2 = b31√

g
, B3 = b12√

g
(2.78)

Two things should be noted about (2.77). First, of course iv vol3 does not use the

full Riemannian structure of R
3; rather only the volume form is used. Second, the same

procedure will work in any manifold Mn having some distinguished volume form (not

necessarily coming from a Riemannian metric)

voln = ρ(u)du1 ∧ . . . ∧ dun (2.79)

where ρ 
= 0. To the vector v we may associate the pseudo-(n − 1)-form

v ⇔ νn−1 := iv voln (2.80)

One can easily work out the coordinate expression for this form, as in (2.77).

Back now to R
3. Given a pair of vectors v, w, with associated covectors ν1 = 〈 , v〉

and ω1 = 〈 , w〉, we know that

〈v, w〉 = ivω
1 (2.81)

We can also associate to our vectors their pseudo-2-forms ν2 and ω2. In cartesian

coordinates we know that ν1 ∧ ω2 is a 3-form whose coefficient is again 〈v, w〉. We

claim that in general we have

ν1 ∧ ω2 = 〈v, w〉 vol3 (2.82)

We give two proofs. For the first we simply notice that both sides are pseudo-3-forms.

Since they are equal in cartesian coordinates they are always equal.



92 T E N S O R S A N D E X T E R I O R F O R M S

Our second proof illustrates the machinery of interior products.

ν1 ∧ ω2 = ν1 ∧ iw vol3 = iw(vol3) ∧ ν1

= iw(vol3 ∧ν1) + vol3 ∧iwν1

= iw(ν1) vol3 (Why?)

What about the × product of the vectors? We know that in cartesian coordinates,

the 2-form ν1 ∧ ω1 has as coefficients the three components of v × w. We should like

then to say that ν1 ∧ω1 is the 2-form associated to the vector v × w, but we only have a

pseudo-2-form associated to a vector. Thus we should say that the pseudovector v × w
is associated to the 2-form ν1 ∧ ω1

iv×w vol3 = ν1 ∧ ω1 (2.83)

This makes sense when we recall that the direction of v × w is given usually by the

right-hand rule; that is, it uses the orientation of R
3. Although not usually mentioned in

elementary books, the vector product is defined in R
3 as follows: v × w is the unique

pseudovector such that

〈(v × w), c〉 = vol3(v, w, c) (2.84)

for each vector c.

We may ask now for the 1-form version of v × w, that is, the pseudo-1-form asso-

ciated to the vector product. We claim

−ivω
2 is the covariant version of v × w (2.85)

This follows from (2.84)

〈v × w, c〉 = vol3(v, w, c) = − vol3(w, v, c)

= −[iw(vol3)](v, c) = −ω2(v, c)

= [−ivω
2](c)

2.9c. Vector Analysis in R
3

Vector algebra in R
3 is easily handled by use of interior and exterior products; the

only question is, should one associate to a vector B its 1-form β1 = 〈 , B〉 or its 2-

form β2 = iB vol3? For example, consider an expansion of the vector triple product

A × (B × C). The following works. Let B ⇔ β1, C ⇔ γ 1. Then

A × (B × C) ⇔ −iA(β1 ∧ γ 1) = [−iA(β1)]γ 1 + β1[iAγ 1]

⇔ −〈A, B〉C + 〈A, C〉B
the familiar vector identity.

So much for vector algebra! Now for calculus. We already know that

d f = 〈 , ∇ f 〉
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We define curl A by using A ⇔ α1 and then curl A ⇔ dα1

dα1 = icurl A vol3 (2.86)

and define div B by using B ⇔ β2 and

dβ2 = (div B) vol3 (2.87)

for these are surely identities when expressed in cartesian coordinates. Note that in

(2.87), since B is a vector, β2 is a pseudoform. Since vol3 is a pseudoform we conclude

that div B is a (true) scalar. On the other hand, if A is a vector then curl A must be a

pseudovector!

Warning: Given a vector field A, one can write out the components of the vector

curl A in a curvilinear coordinate system; one takes A, one converts it to a 1-form α1

using the metric tensor gi j (this is generally complicated), then takes dα1, and then

uses (2.78). To my knowledge, however, there is no reason for ever writing out the

components of the vector curl A in curvilinear coordinates; if the expression curl A
appears, it is a sure sign that the vector in question was not the contravariant A but
rather the covariant vector α1 ⇔ A! But then dα1 is as simple to write down in

curvilinear coordinates as in cartesian. A similar remark applies to the components of

grad f in curvilinear coordinates; d f is all that is needed.

It is a different story with div B. div B is the scalar coefficient of vol3 in (2.87),

and its expression in coordinates u is needed. Since B ⇔ iB vol3 (and omitting the

orientation function o)

d[iB vol3] = d[
√

gb1du2 ∧ du3 + √
gb2du3 ∧ du1 + √

gb3du1 ∧ du2]

= [
∂

∂u1
(
√

gb1) + ∂

∂u2
(
√

gb2) + ∂

∂u3
(
√

gb3)]du1 ∧ du2 ∧ du3

= 1√
g

∂

∂ui
[
√

gbi ]
√

gdu1 ∧ du2 ∧ du3

Thus

div B = 1√
g

∂

∂ui
[
√

gbi ] (2.88)

Note again that only the volume form appears, not the full metric tensor.

We define the Laplacian of a function f by

∇2 f = � f := div(grad f )

= 1√
g

∂

∂ui

[√
ggi j

(
∂ f

∂u j

)]
(2.89)

To continue with vector identities it is useful to associate a pseudo-3-form to each

scalar f , namely

f ⇔ f vol3
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Then, for example, from (2.82)

div(A × B) ⇔ div(A × B) vol3 = d(α1 ∧ β1) = dα1 ∧ β1 − α1 ∧ dβ1

= 〈curl A, B〉 vol3 −〈A, curl B〉 vol3

⇔ 〈curl A, B〉 − 〈A, curl B〉

2.10. Dictionary

Let

vol3 = dx ∧ dy ∧ dz = volume form

0-form f = function f

1-form α1 = covariant expression for a vector A

1-form γ 1 = covariant expression for a vector C

2-form β2 be associated to a vector B through

β2 = iB vol

Then we may make the following rough, symbolic identifications

α1 ∧ γ 1 = iA×C vol3 ⇔ A × C

α1 ∧ β2 = A • B vol3 ⇔ A • B

iCα1 = C • A

iCβ2 ⇔ −C × B

d f ⇔ grad f

dα1 = icurl A vol3 ⇔ curl A

dβ2 = div B vol3 ⇔ div B

digrad f vol3 = (∇2 f ) vol3 ⇔ ∇2 f

Problems

2.10(1) Prove (2.74).

2.10(2) Prove (2.76).

2.10(3) Compute ∇2 f in spherical coordinates.

2.10(4) Derive the following identities using forms

(i) grad( fg) = f grad g + g grad f

(ii) div( fB) = f div B + 〈grad f, B〉
(iii) curl( fA) = f curl A + grad f × A

(iv) 〈A × B, C × D〉 = . . .?

2.10(5) Use (2.73) and invoke (2.76) twice to show

v × B ⇔ √
g

∑
k

v i B jεi jk dxk



CHAPTER 3

Integration of Differential Forms

Exterior differential forms occur implicitly in all aspects of physics and engineering

because they are the natural objects appearing as integrands of line, surface, and
volume integrals as well as the n-dimensional generalizations required in, for example,

Hamiltonian mechanics, relativity, and string theories. We shall see in this chapter that

one does not integrate vectors; one integrates forms. If there is extra structure available,

for example, a Riemannian metric, then it is possible to rephrase an integration, say of

exterior 1-forms or 2-forms, in terms of a vector integrations involving “arc lengths” or

“surface areas,” but we shall see that even in this case we are complicating a basically

simple situation. If a line integral of a vector occurs in a problem, then usually a deeper
look at the situation will show that the vector in question was in fact a covector, that is, a
1-form! For example (and this will be discussed in more detail later), the strength of the

electric field can be determined by the work done in moving a unit charge very slowly

along a small path, that is, by a line integral. The electric field strength is a 1-form.

Integration of a pseudoform proceeds in a way that differs slightly from that for a

(true) form. We shall consider pseudoforms later on.

3.1. Integration over a Parameterized Subset

How does one integrate the Poincaré 2-form ω over a surface in phase space?

3.1a. Integration of a p-Form in R
p

We are familiar with the notion of a multiple integral of a function f over a region in R
p

∫
U

f (u)du1 . . . du p

(Of course we shall assume that the integral makes sense; for example, this will be the

case if U is a closed ball and f is continuous on U .) This integral does not involve any
notion of orientation, and it is immaterial in which order the dui ’s appear.

95
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We now define the integral of a p-form α p = a(u)du1 ∧ . . .∧ du p over an oriented
region (U, o) ⊂ R

p. ∫
(U,o)

α =
∫

(U,o)

a(u)du1 ∧ . . . ∧ du p (3.1)

:= o(u)

∫
U

a(u)du1 . . . du p

where the last integral is the ordinary multiple integral of the function a over the region

U , disregarding the orientation, and where o(u) = ±1, the + sign being chosen if and

only if the coordinate basis (
∂

∂u1
, . . . ,

∂

∂u p

)

has the same orientation as given by o. Clearly the integral of a p-form changes into

its negative if the orientation of U is reversed∫
(U,−o)

α = −
∫

(U,o)

α (3.2)

We shall see shortly that the definition (3.1), in spite of its appearance, is in fact

independent of the coordinates u used in R
p.

3.1b. Integration over Parameterized Subsets

We define an oriented parameterized p-subset of a manifold Mn to be a pair (U, o; F)

consisting of an oriented region (U, o) in R
p and a differentiable map

F : U → Mn

We shall also call the point set F(U ) ⊂ Mn a p-subset.

When p = 1 we simply have a curve on Mn with a specific parameterization,

expressed locally by xi = xi (t), and when p = 2 we have a surface on Mn again with

a specific parameterization xi = xi (u, v).

It should be noted that we make no requirements on the rank of the differential
of the map F ; for example, it may be that the curve has a vanishing tangent vector,

dx/dt = 0, at some or perhaps all parameter values t . Consequently, the p-subset

F(U ) need not have dimension p everywhere (that is why we do not use the term

p-dimensional subset, rather than p-subset). In the most important cases, F∗ will have

rank p “almost everywhere.” For example, the map R
2 → R

3 defined by F(θ, φ) =
(sin θ cos φ, sin θ sin φ, cos θ) defines a parameterized 2-subset of R

3 that covers the

unit sphere an infinity of times, and with F∗ of rank 2 everywhere except at the poles,

that is, the lines θ = nπ of R
2.

If α p is a p-form on Mn , defined at least in some neighborhood of the image F(U )

of U , we define the integral of α p over the oriented parameterized p-subset by∫
(U,o;F)

α p :=
∫

(U,o)

F∗α p (3.3)
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Thus we pull the form α p back to the oriented region (U, o) and integrate there by

means of (3.1). In all detail

∫
(U,o;F)

α p : =
∫

(U,o)

F∗α p

=
∫

(U,o)

(F∗α p)

[
∂

∂u1
, . . . ,

∂

∂u p

]
du1 ∧ . . . ∧ du p

(3.4)

= o(u)

∫
U
(F∗α p)

[
∂

∂u1
, . . . ,

∂

∂u p

]
du1 . . . du p

Note that we can also write this as

∫
(U,o;F)

α p = o(u)

∫
U

α p

[
F∗

∂

∂u1
, . . . , F∗

∂

∂u p

]
du1 . . . du p (3.5)

3.1c. Line Integrals

Consider a curve C : x = F(t), for a ≤ t ≤ b, in R
3 (with x any coordinates), oriented

so that d/dt defines the positive orientation in U = R
1. If α1 = a1(x)dx1 +a2(x)dx2 +

a3(x)dx3 is a 1-form on R
3 then its integral or line integral over C becomes

∫
C

α1 =
∫

C

∑
i

ai (x)dxi

=
∫ b

a
F∗

[∑
i

ai (x)dxi

]

=
∫ b

a

[∑
i

ai (x(t))
dxi

dt

]
dt (3.6)

Thus (3.3) is the usual rule for evaluating a line integral over an oriented parameterized
curve! We may write this as

∫
C

α1 =
∫ b

a
α1

(
dx
dt

)
dt (3.7)

and so the integral of a 1-form over an oriented parameterized curve C is simply the

ordinary integral of the function that assigns to the parameter t the value of the 1-form

on the velocity vector at x(t). This of course is simply (3.5), since F∗(d/dt) = dx/dt .
Note that there is no mention of arc length nor dot product. If we wish to use a

Riemannian metric in R
3, for example, if the x’s are cartesian coordinates, then to the

1-form α1 is associated the contravariant vector A and (3.6) or (3.7) says

∫
C

α1 =
∫ b

a
A •

(
dx
dt

)
dt (3.8)

If the coordinates are not cartesian, then although (3.7) remains the same,
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∫ b
a ai (dxi/dt)dt , (3.8) becomes the more complicated

∫ b

a
[gi j A j ]

(
dxi

dt

)
dt

Thus if one insists on integrating a vector over a curve, rather than a 1-form, one is going

to need a Riemannian metric to convert the contravariant vector first into a covariant one,

that is, a 1-form. Line integrals of 1-forms do not involve a metric, whereas integrals

of vectors must involve one!

dx/dt F∗(d/dt)

x(t)

C

x(b)

A
x(a)

F

d/dt

0 a t b
R

=

Figure 3.1

Use of a Riemannian metric allows us to write a line integral in the more usual form∫
C

α1 =
∫

C
A • dx (3.9)

=
∫ b

a
A •

(
dx
dt

)
dt

=
∫ b

a
‖ A ‖

∥∥∥∥dx
dt

∥∥∥∥ cos ∠
(

A,
dx
dt

)
dt

=
∫ L

0

At ds

where At is the tangential component of A, ds :=‖ dx/dt ‖ dt is the element of arc

length, and L is the length of the curve. Although this appears simpler than (3.6), to

compute using (3.9) one would have to introduce a parameterization, leading effectively

back to (3.6)! There are times when one needs to compute the arc length of a curve,

but, usually, it is completely irrelevant to either the computation or the concept of a line
integral! Line (and, as we shall see, surface) integrals are independent of any metric
notions in space. This is one case where the usual elementary treatment given in many

calculus texts is harmful and misleading and should have been discarded long ago.
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3.1d. Surface Integrals

Consider now an oriented parameterized surface in R
3, with x any coordinate system.

u2

u1

∂/∂u2

∂/∂u1

B

u1

F∗(

(

∂

∂ ∂ u1
∂

/∂u 1
)

)

=
=

∂x/

/ /

∂u1

x1
∂x2

, , u1
∂/∂x3 T

F∗(∂/∂ u )

= ∂x/∂u

u(∂ ∂ u∂ )= / /x1
∂x2 2 22

2

2

, , u∂/∂x3 T

N

Figure 3.2

Suppose that ∂/∂u1,∂/∂u2 has the given orientation o. Let β2 be a 2-form on R
3

and put b1 = b23, b2 = b31, b3 = b12. Then, as in (2.65)∫
F(U )

β2 =
∫

F(U )

b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2

=
∫

U

⎡
⎣∑

i< j

bi j (x(u))
∂(xi , x j )

∂(u1, u2)

⎤
⎦ du1du2 (3.10)

or, as in (3.5),

∫
F(U )

β2 =
∫

U
β2

(
∂x
∂u1

,
∂x
∂u2

)
du1du2 (3.11)

Suppose that one insists on writing this in terms of the vector, or rather the pseudovector

B, associated to β2

∫
F(U )

β2 =
∫

U
[iB vol3]

(
∂x
∂u1

,
∂x
∂u2

)
du1du2

=
∫

U
vol3

(
B,

∂x
∂u1

,
∂x
∂u2

)
du1du2 (3.12)

Recall that an orientation of U ⊂ R
2 has already been given (it is inherent in the

definition of the surface integral), but not one for R
3. Since both vol3 and B change sign

under a change of orientation of R
3, it is clear that (3.12) is independent of the choice

of orientation of R
3.



100 I N T E G R A T I O N O F D I F F E R E N T I A L F O R M S

We now proceed to the usual expression of (3.12). Choose an orientation of R
3 and

let x be a positively oriented cartesian coordinate system for this chosen orientation.

(In our Figure 3.2 we have perversely chosen a left-handed orientation.)

In the “classical” case discussed in elementary texts, the surface is regular; that is, the

map F has maximal rank and thus the coordinate vectors ∂x/∂u1, ∂x/∂u2 are linearly

independent. In this case we can transfer the orientation o from the “parameter plane”

U ⊂ R
3 to the surface F(U ); since ∂/∂u1,∂/∂u2 are positively oriented in U we

declare ∂x/∂u1, ∂x/∂u2 to define the positive orientation for F(U ). We then pick the

unique unit normal N such that N, ∂x/∂u1, ∂x/∂u2 is positively oriented in R
3. We then

have a unique decomposition B =(B • N)N + T, where T is tangent to the surface (and

consequently is a linear combination of ∂x/∂u1 and ∂x/∂u2). From (3.12)∫
F(U )

β2 =
∫

U
vol3

(
(B • N)N,

∂x
∂u1

,
∂x
∂u2

)
du1du2

=
∫

U
(B • N)[iN vol3]

(
∂x
∂u1

,
∂x
∂u2

)
du1du2

Now

iN vol3 (3.13)

is simply the area 2-form for the surface, for its value on the (positively oriented) pair

of tangent vectors ∂x/∂u1, ∂x/∂u2 is simply the area of the parallelogram spanned by

them, ‖ (∂x/∂u1) × (∂x/∂u2) ‖. We shall write (with a classical abuse of notation

since d S is not the differential of a form)

d S : = [iN vol3]

(
∂x
∂u1

,
∂x
∂u2

)
du1du2 (3.14)

= ‖ n ‖ du1du2

where n = (∂x/∂u1) × (∂x/∂u2) is the (non-unit) normal to the surface. Bn := B • N is

the normal component of B. Thus we have the usual expression for the surface integral∫
F(U )

β2 =
∫

U
Bnd S (3.15)

This can all be said as follows. Given a pseudovector B and an oriented parameterized

surface in R
3, choosing an orientation of R

3 simultaneously picks out a specific vector

field B and a definite unit normal N. Then
∫

U Bnd S is the desired surface integral.

Surface integrals arise in higher dimensional manifolds. For example, in Hamiltonian

mechanics, one sometimes needs to integrate the Poincaré 2-form ω over an arbitrary

parameterized surface q = q(u, v), p = p(u, v) in phase space.∫∫
ω =

∫∫
dp j ∧ dq j =

∫∫ ∑
j

[
∂(p j , q j )

∂(u, v)

]
du ∧ dv

=
∫∫

{u, v}dudv

becomes an integral of the Lagrange bracket of u and v (see (2.67)). Note that there is
no mention of a Riemannian metric, dot products, nor area elements!
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3.1e. Independence of Parameterization

We have defined our integral in terms of a parameterized subset of an Mn . What if we

decide to consider the same subset (i.e., point set in Mn) but parameterized in a different

fashion. We claim that if, in a sense to be prescribed later, the orientations are the same

then the integrals will be the same; that is, the integral is independent of the parameteri-

zation. This is “clear” in the case of line or surface integrals in R
3, for in R

3 with the stan-

dard metric our integrals have been put in the geometric form
∫

At ds or
∫

Bnd S. These

involve length or area integrations, and so the original parameterizations have “disap-

peared.” It is not easy to make this proof “honest” in the case of surface or higher dimen-

sional integrals. We shall instead give a general proof relying directly on the famous

Jacobi formula for change of variables in a multiple integral (whose proof is not trivial).

First, what do we mean by an orientation preserving reparameterization? Let F :

(U ⊂ R
p) → Mn be an oriented parameterized p-subset of a manifold Mn . We say

that G : (V ⊂ R
p) → Mn is a reparameterization of this subset if there is an

orientation preserving diffeomorphism H : U → V such that F = G ◦ H , that is,

F(u) = G[H(u)], or, in terms of local coordinates x for Mn, F(u) = x(v(u)).

u p

F

U

Mn

u1

H

G

vp

V

v1

Figure 3.3

Since H is orientation preserving, H is of the form v = H(u) = v(u) where

∂(v)

∂(u)
= ∂(v1, . . . , v p)

∂(u1, . . . , u p)
> 0

provided u and v are positively oriented coordinates for U and V, respectively.

Recall now Jacobi’s formula. If H : U → V is a diffeomorphism of unoriented
regions then ∫

V =H(U )

f (v)dv1 . . . dv p =
∫

U
f [H(u)]

∣∣∣∣∂(v)

∂(u)

∣∣∣∣du1 . . . du p (3.16)

(note the absolute value of the Jacobian determinant).

Now we can consider our integrals of forms. If G is a reparameterization of F
(with positively oriented coordinates u and v in U and V , respectively) and x are local
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coordinates on Mn

∫
(V,G)

α p =
∫

V
G∗α p =

∫
V

G∗[aI⇁(x)dx I ]

=
∫

V
aI⇁[x(v)]

[
∂(x I )

∂(v)

]
dv1 . . . dv p

=
∫

U
aI⇁[x(v(u))]

[
∂(x I )

∂(v)

]∣∣∣∣∂(v)

∂(u)

∣∣∣∣du1 . . . du p

=
∫

U
aI⇁[F(u)]

∂(x I )

∂(u)
du1 . . . du p =

∫
U

F∗α p =
∫

(U,F)

α p

which shows that the integral is independent of the parameterization.

3.1f. Integrals and Pull-Backs

Let φ : Mn → W r be a smooth map of manifolds, and let F : U → Mn be an

oriented parameterized p-subset of Mn . Then clearly ψ = φ ◦ F : U → W r is an

oriented parameterized p-subset of W r . Then if α p is a p-form on W r , we have, from

Problem 2.3(1)∫
(U,ψ)

α p =
∫

U
ψ∗α p =

∫
U
(φ ◦ F)∗α p =

∫
U

F∗ ◦ φ∗α p =
∫

(U,F)

φ∗α p

We shall write briefly σ for the oriented subset (U, F) of Mn and then (U, ψ) =
(U, φ ◦ F) will be written simply as φ(σ), a subset of W r . We then have the general
pull-back formula (generalizing (3.3))

φ : Mn → W r

∫
φ(σ)

α p =
∫

σ

φ∗α p (3.17)

In words, the integral of a form over the image φ(σ) ⊂ W r of a subset σ ⊂ Mn is the

integral of the pull-back of the form over σ .

3.1g. Concluding Remarks

Again I must remark that (3.10) is ordinarily much simpler than (3.15). Of course

there are very special situations when (3.15) is simpler. For example, let our surface

be the unit sphere. Consider the vector B = x, the position vector. Then (3.15) gives

immediately
∫

x • Nd S = ∫
1d S = 4π . This is “simpler” because we already know

the area of S2.

Finally, note that we have only defined the integral of a form over an oriented param-

eterized subset of a manifold Mn , and these subsets are basically covered by a single

coordinate system. We would ideally like to integrate p-forms over p-dimensional

submanifolds of Mn . We shall discuss this in our next section.
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Problems

3.1(1) Let us say that a parameterized p-subset (U, F) of Mn is “irregular” at u0 if rank
F < p at u0. Show that if αp is a form at such a u0 then F∗αp = 0.

3.1(2) We know that d S =‖ n ‖ du1du2. Show that in cartesian coordinates x for R
3

n = ∂(x2, x3)

∂(u1, u 2)

∂

∂x1
+ ∂(x3, x1)

∂(u1, u 2)

∂

∂x2
+ ∂(x1, x2)

∂(u1, u 2)

∂

∂x3

and so ‖ n ‖2= ∑
i< j [∂(x i , x j)/∂(u1, u 2)]2

Show that when the surface is simply the graph of a function, that is,

x1 = u1, x2 = u 2, x3 = f(x1, x2)

we recover the classical expression for the area element. What do we get for
the area element when the surface is given in the form F(x , y, z) = 0 and we
assume that we can solve for z in terms of x , y?

The following problem investigates the area element for a hypersurface and
may be omitted.

3.1(3) The formula d S =‖ n ‖ du1du 2 followed from the fact that the area spanned by
∂x/∂u1 and ∂x/∂u 2 is the length of the × product (∂x/∂u1) × (∂x/∂u 2). Although
we cannot define a vector A1 × A2 for a pair of vectors in R

n we can define a
generalized × product of (n − 1) vectors in R

n as follows (see (2.84)):

A1 × . . . × An−1 is the unique (pseudo) vector B such that

C • B = voln(C, A1, . . . , An−1) for each vector C

(i) Show that B is orthogonal to A1, . . . , An−1.

Suppose we consider a hypersurface of R
n parameterized by u1, . . . ,

un−1. Let n := (∂x/∂u1) × · · · × (∂x/∂un−1) where the x’s are cartesian
coordinates for R

n, and let N be the unit vector in the direction of n.

(ii) Show that we can then express the (n − 1)-dimensional area element
d Sn−1 := [iN voln](∂x/∂u1, . . . , ∂x/∂un−1)du1 . . . dun−1 as

d Sn−1 =‖ n ‖ du1 . . . dun−1

(iii) Let i (v) := iv. Show that we can also say that the covariant version in R
n of

the vector n is the 1-form

〈 , n〉 = i

(
∂x

∂un−1

)
◦ . . . ◦ i

(
∂x

∂u1

)
voln

(It is interesting that this 1-form uses only the volume form, not the metric
of R

n, and it vanishes on vectors tangent to the hypersurface.)

(iv) Now in cartesian coordinates, voln has components given by the permuta-
tion symbol (see 2.73). Use (2.73) repeatedly to show that

〈 , n〉 j = εi1..i(n−1) j

(
∂x i1

∂u1

)
. . .

(
∂x i(n−1)

∂un−1

)

= ∂(x1, x2, . . . x̂ j, . . . xn)

∂(u1, . . . , un−1)
=: Dj
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where Dj is the determinant of the Jacobian matrix with the j th row omitted.
We conclude

d Sn−1 = [
∑

j

D 2
j ]1/2du1 . . . dun−1

(v) Show that if the x coordinates are not necessarily cartesian, with metric
tensor (gi j), then the correct formula for ‖ n ‖ is given by

‖ n ‖2= g(x )gi j Di Dj

(this is also the correct expression in a Riemannian manifold).

3.2. Integration over Manifolds with Boundary

Does every manifold carry a Riemannian metric?

In 3.1 we defined how one integrates a (true) p-form over an oriented parameterized

subset of a manifold. We would like to be able to integrate over objects that cannot

be covered by a single parameterized subset, for example p-dimensional oriented sub-

manifolds. A common way of doing this is indicated in the following figure.

z

U

V

W 2

y

x

Figure 3.4

We have indicated a submanifold W 2 of R
3 together with its boundary. It is oriented

and we have indicated its orientation by giving the positive sense of rotation. We wish

to integrate a 2-form β2 of R
3 over this object. We first restrict the form β to the

submanifold W : thus if i : W → R
3 is the inclusion map, we consider the pull-back

i∗β instead of β. This restricted form i∗β has the same values on tangent vectors to

W as the original form β. We then break up W 2 into a finite union of coordinate

patches that overlap only at edges or vertices. A theorem (whose proof is difficult)

on “triangulations” shows that this can always be done. We have indicated two of the
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patches (as drawn, we can use y and z as local coordinates in each). We can assume

that the coordinates u in U , v in V , and so forth, are such that the orientation of the

patches agrees with the given orientation of W 2 (in our drawing, y, z, in that order yield

the given orientation). We know how to integrate i∗β2 over each of these patches, for

if φU : U → R
2 is the coordinate map for U , as in 1.2c, φ−1

U : φU (U ) → W 2 is our

parameterized map. We then compute these integrals and add the results. This is the

integral of β2 over W 2.

We emphasize that this is a perfectly acceptable way, and in fact the usual way to

evaluate the integral. For theoretical purposes, however, we wish to define the integral

in a different way. Instead of breaking the object W up into nonoverlapping coordinate
regions, we shall rather write the form i∗β as a sum i∗β = ∑

U βU of differential forms
βU , each of which vanishes outside its associated coordinate patch U (this requires a

“partition of unity”; see 3.2b). This is simpler than triangulating W since we no longer

demand that the patches fit together carefully. We know how to integrate βU over the

oriented patch U . The integral of βU over W should then be the same as the integral of

βU over U , since βU is zero outside U . Then we shall define the integral of β over W
to be the sum of the integrals of the βU over their patches U .

We now proceed with this program. Our first step is to generalize the notion of

manifold so as to be able to include, as in Figure 3.4, the boundary of the object.

3.2a. Manifolds with Boundary

The closed 3-ball ‖ x ‖≤ 1 in R
3 is not a 3-manifold, for although interior points,

(i.e., points for which ‖ x ‖< 1) do have neighborhoods diffeomorphic to open balls

in R
3, ‖ u ‖< 1, points on the boundary 2-sphere have neighborhoods that resemble

half open balls, ‖ v ‖< 1 and v3 ≥ 0.

u3

u1

u2

v1

v3

2v

v

v
3

‖u‖<1

‖ ‖<1

0

open ball

interior point

boundary point

half open ball

φu

≥
φv

Figure 3.5
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We shall check that boundary points do have such neighborhoods, as this illustrates a

typical use of the inverse function theorem. For simplicity we consider the south pole on

the boundary 2-sphere. This sphere, near the pole, can be described as z + f (x, y) = 0,

where f (x, y) = √
(1 − x2 − y2). Thus a neighborhood of the south pole in the closed

unit ball is given, say, by x2 + y2 < ε together with 0 ≤ z + f (x, y) < δ where ε and

δ are positive. The “bottom” boundary consists of a curved disc, a portion of the unit

sphere. We would like to straighten this into a flat disc. Consider the three functions

v1 = x, v2 = y, and v3 = z + f (x, y). From dv1 ∧ dv2 ∧ dv3 = dx ∧ dy ∧ dz, that is,

∂(v1, v2, v3))/∂(x, y, z) = 1 �= 0, we conclude (see Corollary (1.16)) that the v’s form

a smooth coordinate system for R
3 near the south pole. Thus the above neighborhood of

the south pole described can be described by (v1)2 + (v2)2 < ε and 0 ≤ v3 < δ, which

is a cylindrical “can” (with sides and top removed) in a v1, v2, v3 space (see the figure).

By then removing the points in the can with ‖ v ‖≥ ε we have the desired half open ball.

Briefly speaking, an n-manifold with boundary Mn has an interior that is a genuine

n-manifold, and a boundary or edge, usually written

∂ M

Points on the boundary have neighborhoods diffeomorphic not to open sets in R
n but

rather to half open sets, that is, sets of the form ‖ v ‖< ε and 0 ≤ vn < δ. We still

call such a neighborhood a coordinate patch. For more details the reader may consult

[G, P, p. 57] or [A, M, R, p. 406]. It is an important fact that the boundary or edge ∂ M
is itself always an (n − 1)-dimensional manifold without boundary, although it need

not be connected; that is, it may consist of several disjoint manifolds, as in Figure 3.4.

Local coordinates for ∂ M are given by the v1, . . . , vn−1. In the example of the closed

ball, v1 = x and v2 = y are local coordinates for ∂ M = S2 near the south pole.

Of course if the boundary is empty, ∂ M = φ, M is a genuine manifold.

Concepts such as orientability and 1-sidedness apply to manifolds with boundary

as well. An actual Möbius band constructed from a sheet of paper is a surface with

boundary, the boundary in this case consisting of a single closed curve diffeomorphic

to a circle S1.

3.2b. Partitions of Unity

We discussed some elementary point set topology in Section 1.2a. Some further notions

will, I hope, be helpful even if only lightly touched upon. If you find this discussion

too brief to follow, you should consider the special familiar case of R
n rather than an

abstract manifold. In R
n an open ball (i.e., a ball without its boundary sphere) centered

at a point x is the most important example of a neighborhood of x . Given a point p in an

Mn , let {U, xi } be a coordinate patch with origin at p. Then the set where
∑

(xi )2 < ε2

is an open ε-ball neighborhood of p on Mn .

A point x in Mn is an accumulation point of a subset A of Mn provided every
neighborhood of x contains at least one point in A other than x itself. It is a fact that if

one adjoins to A all of its accumulation points, then the resulting set, called the closure
of A, is a closed subset; its complement is open. (It is a fact that a subset of a topological

space is closed if and only if it contains all of its accumulation points.)
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Recall that a real-valued function f : M → R is continuous if the inverse image

of every open set in R is itself open in M . The nonzero real numbers clearly form an

open subset of R, and so the subset of M where f �= 0 is an open subset of M , being

f −1(R − 0). The closure of this set is called the support of f . Note that f may be 0

at some points of the support of f . For example, for the function whose graph is given

− ε 2 − ε// 4 0 ε/4 ε/2

t

Figure 3.6

in Figure 3.6, the support is all t with | t |≤ ε/2. Similarly, we can define the support

of any tensor field on M as the closure of the set of points on M where the tensor is

different from 0.

Given a point p ∈ Mn , it is easy to construct an n-form on Mn whose support is

contained in an ε-ball neighborhood of p. Let p be the origin of local coordinates x ,

and let f = f (t) be the function whose graph is depicted in Figure 3.6. This is an

example of a bump function. We can then define an n-form ωn on Mn , a bump form,

by putting ‖ x ‖2= ∑
(xi )2 and

ωn := f (‖ x ‖)dx1 ∧ . . . ∧ dxn, for x in the ball ‖ x ‖≤ ε

and

ωn = 0 for x outside the ball

Now for the notion of a partition of unity. We shall restrict ourselves to manifolds

(perhaps with boundary) that can be covered by a finite number of coordinate patches.

In fact this restriction is not necessary, but we would have to be more careful (see [G,

P, p. 52]).

Given a finite covering {Uα}, α = 1, . . . , N , of Mn by coordinate patches Uα, a

partition of unity subordinate to this covering will exhibit N real-valued differentiable

functions fα : Mn → R having the following properties.

1. fα(x) ≥ 0, all α and all x
2. the support of fα is a (closed) subset of the patch Uα (in particular fα vanishes outside

Uα).

3.
∑

α fα(x) = 1 for all x in Mn .

Such partitions always exist (it is clear that only the third condition is going to be

difficult); they are constructed in the general case in [G, P]. We shall, instead, illustrate

the construction in the simplest possible case. Let M1 be the closed unit interval [0, 1]

on R. This is a 1-dimensional manifold with boundary consisting of the two endpoints.
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Consider the covering given by the two patches U1 = {x | 0 ≤ x < 3/4} and

U2 = {x | 1/2 < x ≤ 1}.

1

1

0

0 1/2 3/4
M

g 1 g 2

U 1

U 2

R

Figure 3.7

We first construct two bump functions g1 and g2 whose supports are in U1 and U2,

respectively, and such that they do not vanish simultaneously. We have indicated their

graphs in the figure. Since g1(x) + g2(x) > 0 everywhere on M1 we may define

fα(x) = gα(x)

[g1(x) + g2(x)]
α = 1, 2

yielding the desired partition,
∑

α fα(x) = 1. It is evident that keeping the g’s from all

vanishing simultaneously might be difficult in a general covering of an Mn , but it can

be done.

3.2c. Integration over a Compact Oriented Submanifold

Recall from Section 1.2a that a topological space is compact if from every open cover

one may extract a finite subcover. This means in particular that every compact manifold
can be covered by a finite number of coordinate patches. If it is a subset of R

n , then it

is compact iff it is closed (as a point set) and bounded. Thus M1 = R is not compact

since it is not bounded. M1 = (0, 1], the half open interval {x | 0 < x ≤ 1}, is not

compact; see 1.2a. On the other hand, the closed interval [0, 1] is a compact manifold

with boundary, being a closed, bounded subset of R.

The Möbius band in R
3 including its edge is compact, but without its edge it is not

a closed subset and is thus not compact. The 2-sphere S2 is a compact manifold. The

closed ball in R
3 is a compact 3-manifold with boundary.

Warning: The Möbius band without its edge, when considered as a subset of R
3, is

not a closed subset of R
3, and is thus not compact. The same set, but considered as a

manifold or a topological space in its own right (with the induced topology), is closed,

as are all topological spaces (this is because its complement is the empty set, which is

open; see 1.2a). In this topology, however, the strip is not compact.
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We first define the integral of a p-form β p over a compact p-dimensional oriented

manifold (with or without boundary) V p, that is, the integral of a form of maximal

degree. Let {U (α)}, α = 1, . . . , N , be a finite covering of V p by coordinate patches,

each positively oriented. Let { fα} be a partition of unity subordinate to this covering.

Since each such chart is an oriented parameterized p-subset we then know how to

evaluate
∫

U (α)
fαβ p. We then define∫

V
β p :=

∑
α

∫
U (α)

fαβ
p (3.18)

It is easy to show then that the integral so defined is independent of the coordinate cover

and partition of unity employed (see [B, T, p. 30]). Of course the crucial ingredient is∑
α fα = 1.

Finally, if Mn is any manifold and if β p is a p-form on Mn , we define the integral

of β p over any compact oriented p-dimensional submanifold V p ⊂ Mn (perhaps with

boundary) by ∫
V

β p :=
∫

V
i∗β p (3.19)

where i : V p → Mn is the inclusion map (note that i∗β p is a p-form on the oriented

manifold V p).

We emphasize again that one does not really evaluate integrals by means of a partition

of unity; it is merely a powerful theoretical tool, as we shall see.

3.2d. Partitions and Riemannian Metrics

If a manifold Mn is a submanifold of some R
N we may let i : Mn → R

N be the

inclusion map. If we let ds2 = ∑
i (dyi )2 be the usual Riemannian metric of R

N , then

the pull-back or “restriction” i∗ds2 will be a Riemannian metric on Mn , the “induced”

metric. For example, if a surface M2 in R
3 is given in the form z = z(x, y), then we

may use x, y as coordinates for M2 and then

i∗(dx2 + dy2 + dz2) = dx2 + dy2 + [zx dx + zydy]2 (3.20)

= [1 + z2
x ]dx2 + 2zx zydxdy + [1 + z2

y]dy2

How can we assign a Riemannian metric to a manifold that is not sitting in R
N ? Let

{Uα, xi
α} be a coordinate cover for Mn (again assumed finite for simplicity). In each

patch Uα we may (artificially) introduce a metric ds2
α = ∑

α(dxi
α)

2, but of course ds2
α

need not be the same as ds2
β in Uα ∩ Uβ . If, however, we introduce a partition of unity

{ fα} subordinate to the cover we may define a Riemannian metric for Mn by

ds2 =
∑

α

fαds2
α

(Note that fαds2
α makes sense on all of Mn since fα = 0 outside Uα.) Although this

metric is again highly artificial, it does show that any manifold admits some Riemannian

metric. This is a typical example of how a partition of unity is used to splice together

local objects to form a global one.
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3.3. Stokes’s Theorem

∫
V

dωp−1 =
∫

∂V
ωp−1

3.3a. Orienting the Boundary

Let Mn be an oriented manifold with nonempty boundary ∂ M ; we state again that ∂ M
is an (n − 1)-dimensional manifold without boundary. A triangle is not a 2-manifold

with boundary since its boundary is only piecewise differentiable.

2-manifold with boundary not a manifold with boundary  

M2

�2

∂M

Figure 3.8

Given the orientation of Mn we can orient the boundary ∂ Mn as follows. Let

e2, . . . , en span the tangent space to ∂ Mn at x . Let N be a tangent vector to Mn at

N

N

M2

e2

e2

e2

v1

v2

N

Figure 3.9

x that is transverse to ∂ Mn and points out of Mn . We then declare that e2, . . . , en is

positively oriented for ∂ Mn provided N, e2, . . . , en is positively oriented with respect to

the given orientation of Mn . In Figure 3.9, we have indicated the positive orientation for

M2 by the basis v1, v2; then the indicated e2 is positively oriented for the 1-dimensional

manifold ∂ M . In the right-hand figure we indicate the orientation of M2 by describing

the positive sense of rotation and the orientations of the boundary curves by simply
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giving arrows. Although this works only for 2-manifolds we shall use the same sort of

symbolic picture even for n-manifolds.

3.3b. Stokes’s Theorem

Theorem (3.21): Let V p ⊂ Mn be a compact oriented submanifold with bound-
ary ∂V in a manifold Mn. Let ωp−1 be a continuously differentiable (p −1)-form
on Mn. Then ∫

V
dωp−1 =

∫
∂V

ωp−1

Versions of this for p = 2 and 3 in R
3 were proved in the first half of the eighteenth

century by Ampere, Lord Kelvin, Green, Gauss and others. (Unfortunately Kelvin’s

theorem is traditionally attributed to Stokes.) The general theorem stated previously is

again called Stokes’s theorem.

PR O O F O F ST O K E S’S T H E O R E M: Let i : V p → Mn be the inclusion map.

Then from (3.19) and (2.64) we have∫
V

dωp−1 =
∫

V
i∗dωp−1 =

∫
V

di∗ωp−1

and also ∫
∂V

ωp−1 =
∫

∂V
i∗ωp−1

Thus to prove (3.21) we need only prove the same formula where ω is replaced

by i∗ω. In other words, it is sufficient to prove∫
V

dβ p−1 =
∫

∂V
β p−1

for any continuously differentiable form β p−1 on V p, forgetting Mn altogether!

Since V p is compact we may choose a finite cover of V p by coordinate patches

{V (α)}. Let 1 = ∑
α fα be the associated partition of unity; we may then write

β = ∑
α βα, βα = fαβ. Then∫

V
dβ p−1 =

∫
V

d
∑

α

βα =
∑

α

∫
V (α)

dβ p−1
α

and ∫
∂V

β p−1 =
∑

α

∫
∂V

β p−1
α

We see then that we need only prove∫
V (α)

dβ p−1
α =

∫
∂V

β p−1
α (3.22)

for the form β p−1
α whose support lies in V (α). There are two cases.
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Case (i): V (α) is a full coordinate patch lying in the interior of V , that is,

disjoint from the boundary of V .

up

U(α)

φ

u1

V(α)

V

Figure 3.10

Then, when everything is expressed in terms of the parameterization φ :

U (α) → V (α) ∫
V (α)=φU (α)

dβα =
∫

U (α)

φ∗dβα =
∫

U (α)

d(φ∗βα)

Denote φ∗βα by γ p−1.

φ∗βα = γ p−1 =
∑

i

(−1)i−1γi du1 ∧ . . . ∧ d̂ui ∧ . . . ∧ du p

Then∫
U (α)

dγ p−1 =
∑

i

(−1)i−1

∫
U (α)

d(γi du1 ∧ . . . ∧ d̂ui ∧ . . . ∧ du p)

=
∑

i

(−1)i−1

∫
U (α)

(
∂γi

∂ui

)
dui ∧ du1 ∧ . . . ∧ d̂ui ∧ . . . ∧ du p

=
∑

i

∫
U (α)

(
∂γi

∂ui

)
du1 ∧ . . . ∧ du p (3.23)

We may assume that the coordinate patch V (α) carries the positive orientation

of V . Then the last integral becomes an ordinary multiple integral and since the

support of dφ∗βα lies entirely in U (α), we may replace U (α) in the right-hand

integral by all of R
p.∫

U (α)

dγ p−1 =
∑

i

∫
R

p

(
∂γi

∂ui

)
du1 . . . du p

=
∑

i

∫
R

p−1

du1 . . . d̂ui . . . du p
∫ ∞

−∞

(
∂γi

∂ui

)
dui = 0
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since γi vanishes outside U (α). Thus the left-hand side of (3.22) vanishes. But

the right-hand side of (3.22) vanishes since ∂V does not meet the support of βα

in the case considered. This finishes Case (i).

Case (ii): V (α) is a “half patch” that meets the boundary.

u p

φ

U(α)

Y(α)

u1

W(α)

V(α)

V

Figure 3.11

We proceed exactly as in case (i), reaching (3.23). The only nonvanishing term

here is i = p since the other terms will involve
∫ ∞

−∞(∂γi/∂ui )dui , which again

vanishes if i < p. Thus∫
V (α)

dβα =
∫

U (α)

(
∂γp

∂u p

)
du1 . . . du p

=
∫

R
p−1

du1 . . . du p−1

∫ ∞

0

(
∂γp

∂u p

)
du p

=
∫

R
p−1

[γp(∞) − γp(0)]du1 . . . du p−1

= −
∫

R
p−1

γp(u
1, . . . , u p−1, 0)du1 . . . du p−1 (3.24)

If we restrict φ : U (α) → V to the subset Y of U (α) defined by u p = 0 we

get a (p − 1)-dimensional coordinate patch W (α) for ∂V ; φ(Y ) = W ; see the

preceding figure. Then the support of βα meets ∂V in W , and so∫
∂V

βα =
∫

W=φ(Y )

βα =
∫

Y
φ∗βα =

∫
Y

γ

=
∫

Y

∑
i

(−1)i−1γi (u
1, . . . u p)du1 ∧ . . . ∧ d̂ui ∧ . . . ∧ du p

But u p = 0 on Y and so du p = 0 and the only surviving term is∫
∂V

βα =
∫

Y
(−1)p−1γp(u

1, . . . u p−1, 0)du1 ∧ . . . ∧ du p−1

Now since ∂/∂u1, . . . ,∂/∂u p is positively oriented on V (by assumption), and

−∂/∂u p is the outward pointing normal to ∂V we conclude from Section 3.3a
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that∂/∂u1, . . . ,∂/∂u p−1 carries the orientation (−1)p on ∂V (there is one minus

sign for −∂/∂u p and p − 1 minus signs to get ∂/∂u p into the first position).

Consequently

∫
∂V

βα = (−1)p
∫

Y
(−1)p−1γp(u

1, . . . u p−1, 0)du1 . . . du p−1

Since this coincides with (3.24) we are finished.

Finally a note about the case p = 1. An oriented 1-manifold with boundary is

simply a curve C starting at some P = x(a) ∈ Mn and ending at Q = x(b) ∈ Mn .

The fundamental theorem of calculus says that

∫
C

d f =
∫

C

(
∂ f

∂xi

)
dxi =

∫ b

a
(∂ f/∂xi )(dxi/dt)dt

=
∫ b

a

[
d{ f [x(t)]}

dt

]
dt = f (Q) − f (P)

If we define the oriented boundary of C to be ∂C = Q − P and define f (∂C) =
f (Q)− f (P), then formally Stokes’s theorem holds even when p = 1. It is then

simply the fundamental theorem of calculus!

Problems

3.3(1) Write out in full in coordinates what (3.21) says in R
3 for p = 2 and 3.

3.3(2) Write out in full in coordinates what (3.21) says in R
4 for p = 2, 3, and 4.

3.4. Integration of Pseudoforms

How do we measure “flux”?

We would like to integrate pseudo-p-forms β p of Mn over parameterized subsets F :

U → Mn, U ⊂ R
p. If we orient U , we would like F∗β to be a well-defined p-

form on U , but β is really a pair of forms ±β on Mn and we would have to have a

prescription for picking out one of the β’s to pull back. In general there is no way of

accomplishing this; we would need, somehow, a way of picking out an orientation of

Mn near F(u) whenever we pick an orientation of U , and if Mn is nonorientable this

might be impossible. If one can associate an orientation on Mn near F(u) whenever

one assigns an orientation to U , the map is said to be oriented (de Rham). This is a

restriction on the map F and in general one cannot pull back a pseudoform! We are
not going to be able to integrate a pseudoform over an oriented submanifold, as we did

with a true form.
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3.4a. Integrating Pseudo-n-Forms on an n-Manifold

We claim that any pseudo-n-form ωn can be integrated over any compact n-dimensional

manifold Mn , orientable or not! First note that if U is a coordinate patch on such an

Mn , then we can define
∫

U ωn as follows. Pick an orientation of U ; this picks out a

specific choice for ωn and then the integral of the form ωn over the oriented region U
is performed just as in the case of a true form. Note that if we had chosen the opposite

orientation of U , then the integral would be unchanged since although the region of

integration would have its orientation reversed we would also automatically have picked

out the negative −ωn of the previous form. One can then define the integral of ωn over

all of Mn by use again of a partition of unity as in (3.18).

This should not be surprising. Certainly the Möbius band has an area and this can

be computed using its area pseudo-2-form.

3.4b. Submanifolds with Transverse Orientation

Let V p be a p-dimensional submanifold of a manifold Mn . At each point x of V p the

tangent space to Mn is of the form Mn
x = V p

x ⊕ N n−p, where the vectors in N are

transverse to V p. Let us say that V p is transverse orientable if each transversal N n−p

can be oriented continuously as a function of the point x in V p. If V p is a framed
submanifold, that is, if one can find (n − p) continuous linearly independent vector

fields on V p that are transverse to V p, then clearly V p is transverse orientable.

Since every manifold carries a Riemannian metric (see 3.2d) one can always replace

“transverse” by “normal” in some Riemannian metric.

Note that if V n−1 is a hypersurface, then V is framed if and only if V is 2-sided

(see 2.8c). It is also clear that in the case of a hypersurface, transverse orientability is

equivalent to being framed by a normal vector field; in particular, the Möbius band in R
3

is not transverse orientable. For V p ⊂ Mn for p < n, however, transverse orientability

is a weaker condition than being framed.

Given a point x on V p we may (since V p is an embedded submanifold, see 1.3d)

introduce coordinates x1, . . . , xn near this point x = 0 on Mn (in a patch W) such that

V p∩W is defined by xα = f α(x1, . . . , x p), α = p+1, . . . , n. Then the n−p coordinate

vectors Nα = ∂/∂xα are defined in W and are transverse to V p at V p ∩W . A sufficiently
small piece of a submanifold can always be framed and is thus transverse orientable.

V p∩W is a coordinate patch for V p; in fact x1, . . . , x p could be used as local coordinates

there. In particular, given an orientation for V p∩W , we can always find p tangent vector

fields X1, . . . , Xp that are positively oriented in this patch and these vector fields can

be extended to all of W by keeping their components constant as we move off V . We

may then define an orientation of W by insisting that Np+1, . . . , Nn, X1, . . . , Xp define

the positive orientation. Thus to an orientation of V p ∩ W onV p we may associate an
orientation of W on Mn , and thus if β p is a pseudo-p-form on W , we may pull it back

to a pseudo-p-form i∗β p on V p ∩ W . To say that V p is transverse orientable is to say

that we can patch these local constructions together in a coherent or continuous fashion.

(We shall certainly fail in the case of a Möbius band in R
3.) In summary, if β p is a

pseudoform in W , we may pull back this form via the inclusion map i : V p → Mn to
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yield a pseudo-p-form i∗β p on V p ∩ W and if V p is transverse orientable we may pull
back a pseudo-p-form β p of Mn to i∗β p on all of V p.

3.4c. Integration over a Submanifold with Transverse Orientation

Let i : V p → Mn be a submanifold of the compact manifold Mn (perhaps with bound-

ary) with transverse orientation, and let β p be a pseudo-p-form on Mn . We have seen

in the previous section that we may pull this pseudo-p-form back to i∗β p on V p. Let

{U (α)} be a finite coordinate cover of V p with associated partition of unity { fα}. Then

we define (since i∗β is a p-form on V p)∫
V

β p :=
∑

α

∫
U (α)

(i∗β p) fα (3.25)

In summary, we have the following contrast.

A true p-form on Mn is always integrated over an oriented submanifold V p, whereas

a pseudo-p-form β p is always integrated over a submanifold V p with transverse

orientation.

Consider, for example, the Möbius band V 2 sitting in R
3 and one also in Mö×R. If

β2 is a true 2-form on R
3 or Mö×R, then we cannot define the integral of β2 over either

Möbius band since the Möbius band is not orientable. If β2 is a pseudo-2-form then we

cannot integrate β2 over the strip in R
3 since this strip is 1-sided, and we cannot pull

β2 back to the strip. On the other hand Mö is 2-sided in Mö×R (see 2.8c), and thus

we can integrate β2 over Mö ⊂ Mö × R once we have chosen one of the two possible

normals ∂/∂t or −∂/∂t , where t is the coordinate in R.

In the case of a surface integral of a pseudo-2-form β2 in R
3 we have the following

simple prescription. Let F(U ) be an unoriented parameterized surface in R
3 with a

prescribed unit normal N. We know that β2 is of the form β2 = iB vol3 for a unique

(true) vector B. Then B • N is a true scalar and from (3.25) and (3.15)∫
F(U ),N

β2 =
∫

U
B • Nd S =

∫
U

Bnd S (3.26)

This is sometimes called the flux of B through the surface with given normal N. This

result is independent of any choice of orientation of R
3 or of orientation of the surface.

Only the normal was prescribed.

Let α1 be a pseudo-1-form and F(I ) an unoriented curve with framing in R
3; thus

there are two mutually orthogonal unit normals N1 and N2 defined along the curve

F(I ). (We shall see in Section 16.1d that such a framing exists for any curve in R
3.) Let

A be the contravariant pseudovector associated to the pseudoform α1. If we pick out

arbitrarily an orientation, that is, a direction, for the curve F(I ), then a specific vector

A is chosen through the orientation of R
3 determined by the triple N1, N2, T, where T

is the unit tangent vector to the directed curve. We then have for a line integral∫
F(I ),N1,N2

α1 =
∫

I
A • Tds (3.27)

and this is again independent of the orientation chosen for the curve.
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3.4d. Stokes’s Theorem for Pseudoforms

Letωn−1 be a pseudo-(n−1)-form on a compact unoriented manifold Mn with boundary.

Then dωn−1 is a pseudo-n-form on Mn and we may compute the integral
∫

M dω as in

3.4a. Now ∂ M has a natural transverse orientation in Mn since there is clearly an

outward pointing transversal N; if Mn has a Riemannian metric we may even choose

N to be a unit normal. In any case we may then form the integral
∫

∂ M ωp−1 (we have

omitted indicating the transversal since it will always be assumed to be the outward

one). The proof of Stokes’s theorem in the previous section carries over to yield again∫
M dω = ∫

∂ M ωp−1, but we emphasize that no orientation has been assumed for M!

If you are used to proving Stokes’s theorem by breaking up Mn into nonoverlap-

ping patches U, V, . . . , you are familiar with the cancellations in
∫

ω over boundaries

common to two adjacent patches. This still happens with pseudoforms in spite of the

arbitrariness in picking orientations in the patches.

M

U

V

Figure 3.12

In Figure 3.12 we have given opposite orientations to the patches U, V for the

evaluations of
∫

U dωn−1 and
∫

V dωn−1. It appears as if the boundary integrals along the

common part of their boundaries would not cancel, but this is not so since the ω’s used

in U and V would be negatives of each other!

Suppose now that V p is a compact submanifold with boundary of Mn , and suppose

that V is tranverse oriented in M : for simplicity we shall assume that V has a normal

framing N1, . . . , Nn−p. Let n be the unit vector that is tangent to V , normal to ∂V , and

points out of V . Then we may frame ∂V by using N1, . . . , Nn−p, n. Thus a transverse
orientation of V leads in a natural way to a transverse orientation for its boundary ∂V !

With this understood we may state

Stokes’s Theorem (3.28): Let β p−1 be a pseudo-(p − 1)-form on any manifold
Mn. Let V p be a compact transverse oriented submanifold (with boundary) of
Mn. Then ∫

V
dβ p−1 =

∫
∂V

β p−1

The proof is similar to that given for true forms. We emphasize that no orientation is

required for V p or Mn .
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3.5. Maxwell’s Equations

Suppose that our space is really a 3-torus T 3. How does the electric field behave when a constant

current is sent through a wire loop?

3.5a. Charge and Current in Classical Electromagnetism

We accept as a primitive notion the charge Q on a particle and we assume that there

is a 3-form σ 3 defined in R
3 whose integral over any region U will yield the charge

contained in the region

Q(U ) =
∫

U
σ 3 (3.29)

We shall assume that Q(U ) is a scalar independent of the orientation of R
3. This means

that σ 3 is a pseudoform. Note that (3.29) does not require and is independent of the use
of any Riemannian metric in space. If we do introduce a Riemannian metric, say the

standard euclidean one, then we have

σ 3 = ρ(x) vol3 (3.30)

where ρ is the charge density 0-form (a scalar). Note that to define ρ only a volume

form is required, not a full metric. In the following, whenever vol3 or some object

constructed from a Riemannian metric appears, it will be assumed that a choice of

volume form or metric has been made, but it is intriguing to note which objects (such

as σ 3) do not require these extraneous structures.

Let W 2 be a 2-sided surface. If we prescribe one of the two sides, that is, if W
is transverse oriented by, say, a transverse vector field N, then we shall also assume
that the rate at which charge is crossing W (in the sense indicated by N) is given by

integrating a (necessarily pseudo-) 2-form j2, the current 2-form∫
W

j2 (3.31)

We assume that charge is conserved; thus if W 2 = ∂U 3 is the boundary of a fixed

compact region U (with outward pointing transversal N), then the rate at which charge

is leaving U,
∫

∂U j2, must equal the rate of decrease of charge inside U ,

− d

dt

∫
U

σ 3 = −
∫

U

∂σ 3

∂t
=

∫
∂U

j2

This must be true for each region U . If j2 is continuously differentiable we have∫
∂U j2 = ∫

U dj2, and so

∂σ 3

∂t
+ dj2 = 0 (3.32)

We have introduced here two notational devices. First

We have used a bold d to emphasize that this exterior derivative is spatial, not using

differentiation with respect to time; this distinction will be important when considering

space–time later on.
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Second

We have defined the time derivative of an exterior form by simply differentiating

each component

∂

∂t
[aI⇁(x, t)dx I ] :=

(
∂aI⇁

∂t

)
dx I (3.33)

Since j2 is a pseudo-2-form we can associate a current vector J such that j2 = iJ vol3.

We can then write (3.32), using (2.87), as the “equation of continuity”

∂ρ

∂t
+ div J = 0 (3.34)

In many cases the current is a convective current, meaning that J is of the form

J = ρv (3.35)

where v is the velocity of a charged fluid. In this case, in cartesian coordinates,

j2 = ρ[v1dy ∧ dz + v2dz ∧ dx + v3dx ∧ dy]

and by inserting a factor
√

g we have the correct expression in any coordinates (see

(2.77)).

3.5b. The Electric and Magnetic Fields

We isolate the effects of the electromagnetic field by assuming that no other external

forces, such as gravity, are present. The electric and magnetic fields are defined opera-

tionally. In the following we shall use the euclidean metric and cartesian coordinates of

R
3 (where there is no blatant distinction between covariant and contravariant vectors)

and then we shall put the results in a form independent of the metric.

We suppose units chosen so that the velocity of light is unity, c = 1. The electro-

magnetic force on a point mass of charge q moving with velocity v is given by the

(Heaviside–) Lorentz force law

F = q[E + v × B] (3.36)

Thus to determine the electric field E at a point x and instant t , we measure the force on

a unit charge at rest at the point x . To get B, we then measure immediately the forces on

unit charges at x that are moving with velocity vectors i, j, and k. This information will

determine B since E has already been determined. Thus the Lorentz force law serves

to define the fields B and E! It is interesting that the “correct” magnetic force qv × B
was first written down by Heaviside only in 1889! (For a history of electromagnetism

I recommend Whittaker’s book [W].)

The force F has a direction that is independent of orientation of R
3 and so must be

a true vector. Since q is a scalar both E and v × B must be vectors. But the velocity

v is certainly a vector, and so B must be a pseudovector whose sense is orientation-

dependent (agreeing with our discussion in 2.8e)!

We shall now redefine the electric and magnetic fields to free them from cartesian

analysis and orientation. First note that force naturally enters in line integrals when

computing work, and in fact force can be measured by looking at the work expended. We
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then prefer to consider force as a 1-form f 1. This is in agreement with our considering

force as the time derivative of momentum and the fact that momentum is to be considered

as covariant; see (2.32). From (3.35) we are then to consider the covariant versions of E
and v × B. We think then of the electric field as again a 1-form E

1. To the pseudovector

B in euclidean R
3 we may associate the true 2-form B2 defined by

B
2 = iB vol3

and then the magnetic force covector is −qivB
2; see (2.85). We consider the magnetic

2-form B
2 as being more basic than the pseudovector B, since B is independent of the

choice of volume form. We then have for the Lorentz force covector

f 1 = q(E
1 − ivB

2) (3.37)

and this equation is independent of any metric or orientation.

Our view is then that the electric field intensity is given by a 1-form E
1 and the

magnetic field intensity is given by a 2-form B2. In any coordinates

E
1 = E1dx1 + E2dx2 + E3dx3

and (3.38)

B
2 = B23dx2 ∧ dx3 + B31dx3 ∧ dx1 + B12dx1 ∧ dx2

If we introduce a metric, then we may consider the associated vector field E and the

pseudovector B. The pseudovector B has components B1 = B23/
√

g, and so on. See

Problem 3.5(1) at this time.

3.5c. Maxwell’s Equations

First some terminology.

A closed manifold is a compact manifold without boundary.

The 2-sphere and torus are familiar examples in R
3. We have the 2:1 continuous map

S2 → RP3 of the 2-sphere onto the projective plane, and so RP2 is compact. RP2 is

a closed manifold that is not a submanifold of R
3.

We accept the following empirical laws governing the electromagnetic field in R
3.

The name given to the first law is traditional and will be better understood after Gauss’s

law is given.

The Absence of Magnetic Charges. For each compact oriented region U 3 in R
3 we

have ∫∫
∂U

B
2 = 0 (3.39)

Assume that the field B2 has continuous first partial derivatives. Then
∫∫∫

U dB2 =∫∫
∂U B2 = 0. Since this is true for arbitrarily small regions U we conclude that

dB
2 = 0 (3.39′)

which is simply the familiar vector analysis statement div B = 0 (see (2.87)).
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Faraday’s law. Let V 2 be a compact oriented surface with boundary ∂V 2. Then∮
∂V

E
1 = −

∫∫
V

∂B2

∂t
(3.40)

If E
1 has continuous first partial derivatives we may conclude that

∫∫
V dE

1 +∂B
2/∂t = 0

for all such surfaces V 2. By applying this to small rectangles parallel to the xy, xz, and

yz planes we may conclude

dE
1 = −∂B

2

∂t
( 3.40′)

which is the vector statement curl E = −∂B/∂t .
Warning: Equation (3.40) holds for any surface, moving or not. However, the right-

hand side can be written −d/dt
∫∫

V B
2, that is, as a time rate of change of flux of B

2,

only if the surface is fixed in space. We shall see (Problem 4.3(4)) that in the case of a

moving surface we may write
∮

∂V [E
1 − ivB

2] = −d/dt
∫∫

V B
2.(3.40′) of course holds

under all circumstances.

For the remaining equations we must assume a Riemannian metric in R
3. (We shall

see later on that our 3-space does inherit a Riemannian metric, the one we use in daily

life, from the space–time structure of general relativity.)

We may then introduce two pseudoforms

∗∗E := iE vol3 = √
g(E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2) (3.41)

and

∗∗B := 〈 , B〉 = B1dx1 + B2dx2 + B3dx3

Note that ∗∗E is a 2-form and ∗∗B is the 1-form version of B.

Gauss’s law. If U 3 is any compact region∫∫
∂U

∗∗E = 4π

∫∫∫
U

σ 3 = 4π Q(U ) (3.42)

measures the charge contained in U .

We again conclude, when E is continuously differentiable, that

d∗∗E = 4πσ 3 (3.42′)

or div E = 4πρ.

Ampere–Maxwell law. If M2 is a compact 2-sided surface with prescribed normal,

then ∮
∂ M

∗∗B =
∫∫

M
4πj2 + ∂∗∗E

∂t
(3.43)

Thus

d∗∗B = 4πj2 + ∂∗∗E

∂t
(3.43′)
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(assuming B continuously differentiable) with vector expression curl B = 4πJ+∂E/∂t .

Note that the integral versions of Maxwell’s equations are more general than the

partial differential equation versions since spatial derivatives do not appear in the

equations. In particular, their continuity is of no concern!

3.5d. Forms and Pseudoforms

There is a general rule of thumb concerning forms versus pseudoforms; a form measures

an intensity whereas a pseudoform measures a quantity. E and B measure the intensities

of the electric and magnetic fields (they are “field strengths”). σ 3 measures the quantity

of charge, as does ∗∗E through (3.42). j2 measures essentially the quantity of charge

passing through a (transverse oriented) surface in unit time. In Ampere’s law, d∗∗B =
4πj2, d∗∗B measures again this flux of charge.

Our conclusions, however, about intensities and quantities must be reversed when

dealing with a pseudo-quantity, i.e., a quantity whose sign reverses when the orientation

of space is reversed. If this quantity is represented by integrating a 3-form over an

oriented region, then the form must, by our definition of integration, be a true form. For

example, in section 16.4e we shall discuss the hypothetical Dirac magnetic monopole.

When such magnetic charge distributions are allowed, the Maxwell equation dB = 0

should be replaced by dB = q vol3, where q is the magnetic charge density, dB

is a true 3-form, q is a pseudo-scalar, and the total magnetic charge in a region, a

pseudo-quantity, is given by the integral of this true 3-form over the oriented region.

Furthermore, the classical “definition” of the magnetic field strength B(x), before the

Heaviside–Lorentz force law was known, was the force acting on a “magnetic pole” of

unit charge at the point x. Thus the work done against the magnetic field in transporting

a magnetic pole of charge q along a curve is the true scalar given by the line integral∫
q∗∗B. In terms of these hypothetical poles, the magnetic field strength is measured

by the pseudo-form ∗∗B or contravariantly by the pseudo-vector B. Thus magnetic field

strength, when measured by a (true) electric charge, is given by the true 2-form B, but

when measured by a magnetic pseudo-charge it is given by the pseudo-1-form ∗∗B.

Problems

3.5(1) If the magnetic field is a 2-form, not a vector, how do you explain the curves
generated by iron filings near a bar magnet (i.e., the B lines) when we have not
informed the magnet of which metric we are using?

3.5(2) Assume that Maxwell’s equations (3.39′), (3.40′), (3.42′), and (3.43′) for B and
E hold in every 3-manifold M3, not just R

3. This will be discussed in more detail
in Chapter 14.

The 3-dimensional torus T 3 is obtained from the solid unit cube in R
3 by iden-

tifying opposite faces pairwise; for example, top and bottom faces are identified
by identifying (x , y, 0) with (x , y, 1), and so on. Note then that each face has its
opposite edges also identified; thus on the bottom face, (x , 0, 0) is identified with
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(x , 1, 0). In this way we see that each face of the cube becomes a 2-torus. We
have indicated the top (= bottom) T 2 = Top.

p

p

T 2

Figure 3.13

Consider a current flux of magnitude j through the top torus for all times
t ≥ 0; ∫∫Top j2 = j. We can realize this by attaching a battery (delivering a current
j) at time t = 0 to a closed wire loop that pierces the top face. Show that for t ≥ 0∣∣∣∣∣

∫∫
Top

∗∗E

∣∣∣∣∣ = 4π jt

and thus, unlike the case of a wire loop carrying a constant current in R
3, the

electric field must tend to infinity, with time, at some points of the torus!
(Warning: The top torus T 2 is not the boundary of any 3-dimensional region!)
On the other hand, it can be shown, though it is more difficult, that if one has a

loop that yields no net flux of current through the top, side, or back toroidal faces,
for example, if the loop lies in the interior of the cube or if it can be “contracted to
a point” in the torus, then a constant current will lead to an electric field that must
remain bounded for all time. Thus the behavior of the electric field is dependent
on the “topological position” of the loop. (It can be shown that the magnetic field
remains bounded in all cases.) In a sense, given a closed 2-sided mathematical
surface such as Top, and a closed wire loop that pierces it exactly once, the
surface will increasingly resist a current through the wire by forcing an electric
field to be generated, via Ampere-Maxwell, that will oppose the e.m.f. in the wire.
On the other hand, an ordinary closed surface, one that bounds a 3-dimensional
region U , can never be pierced exactly once by a wire loop; if the loop pierces
the surface and enters the region U then it must eventually leave the region,
resulting in a zero net flow of current through the surface. For this and other
strange behavior in spaces other than R

3, see [D, F]. We shall have more to say
about topology in Chapters 13 and 14.





CHAPTER 4

The Lie Derivative

4.1. The Lie Derivative of a Vector Field

Walk one mile east, then north, then west, then south. Have you really returned?

4.1a. The Lie Bracket

Let X and Y be a pair of vector fields on a manifold Mn and let φ(t) = φt be the

local flow generated by the field X (see 1.4a). Then φt x is the point t seconds along

the integral curve of X, the “orbit” of x , that starts at time 0 at the point x . We shall

compare the vector Yφt x at that point with the result of pushing Yx to the point φt x by

means of the differential φt∗. The Lie derivative of Y with respect to X is defined to

φ(− t)∗Y

Y

Y

Y

(φ(t)x)
(x

X X

X

X

)

x

φ(t)∗ (x)

φ(t)x

(φ (t)x)

Figure 4.1

be the vector field LXY whose value at x is

[LXY ]x := lim
t→0

[Yφt x − φt∗Yx ]

t
(4.1)

125
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= lim
t→0

φt∗
[φ−t∗Yφt x − Yx ]

t

= lim
t→0

[φ−t∗Yφt x − Yx ]

t
(4.2)

since φ0∗ is the identity. We must first show that the limit exists. In the process we shall

discover an important alternative interpretation of the Lie derivative. First we shall

need a very useful version of the mean value theorem in our context. In a sense this is

a replacement for a Taylor expansion along the orbit of x .

Hadamard’s Lemma (4.3): Let f be a continuously differentiable function de-
fined in a neighborhood U of x. Then for sufficiently small t , there is a function
gt , continuously differentiable in t and points near x, such that

g0(x) = Xx( f )

and

f (φt x) = f (x) + tgt(x)

that is,

f ◦ φt = f + tgt

If we accept this for the moment we may proceed with the existence of the limit. At x

[LXY]( f ) = lim
t→0

[Yφt x − φt∗Yx ]

t
( f )

which from (2.60) is

= lim
t→0

[Yφt x( f ) − Yx( f ◦ φt)]

t

= lim
t→0

[Yφt x( f ) − Yx( f + tgt)]

t

= lim
t→0

[Yφt x( f ) − Yx( f )]

t
− lim

t→0
Yx(gt)

= Xx{Y( f )} − Yx(lim
t→0

gt)

= Xx{Y( f )} − Yx{X( f )}
Thus not only have we shown that the limit exists, but also we have the alternative

expression

LXY = [X, Y] (4.4)

where the Lie bracket [X, Y] = −[Y, X] is the vector field whose differential operator

is the commutator of the operators for X and Y

[X, Y]x f := Xx{Y( f )} − Yx{X( f )} (4.5)
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In particular, for any two coordinates x,y we have

L∂/∂x
∂

∂y
= 0

In Problem 4.1(1) you are asked to show that by expressing the right-hand side of (4.5)

in local coordinates one gets

[X, Y]i =
∑

j

{
X j

(
∂Y i

∂x j

)
− Y j

(
∂ Xi

∂x j

)}
(4.6)

We remark that (4.2) can be written

LXYx =
{

d

dt
(φ−t)∗Yφt x

}
t=0

(4.7)

Note that (φ−t)∗Yφt x is a vector that is always based at the point x .

PR O O F O F HA D A M A R D’S LE M M A: Define F(t, x) = ( f ◦ φt)(x). Fix t and

x and put F(s) = F(st, x). Then

( f ◦ φt)(x) − f (x) = F(1) − F(0) =
∫ 1

0

F
′(s)ds

=
∫ 1

0

d

ds
F(st, x)ds =

∫ 1

0

t F1(st, x)ds

where F1 denotes derivative with respect to the first variable. Thus if we define

gt(x) :=
∫ 1

0

F1(st, x)ds

then

( f ◦ φt)(x) − f (x) = tgt(x)

Furthermore

g0(x) =
∫ 1

0

F1(0, x)ds = F1(0, x)

= lim
t→0

[F(t, x) − F(0, x)]

t

= lim
t→0

[( f ◦ φt)(x) − f (x)]

t
= Xx( f )

4.1b. Jacobi’s Variational Equation

If, in (4.6), we use the fact that X j = dx j/dt along the orbit, we can write

[LX Y ]i = dY i

dt
−

∑
j

(
∂ Xi

∂x j

)
Y j (4.8)

We then notice that this makes sense even when Y is a vector field that is defined only

along the orbit φ(t)x of the vector field X! (4.1) and (4.7) also make sense in this case.
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The same derivation that yielded (4.5) will yield (4.8) and we shall accept (4.8) in this
extended sense.

This equation thus even applies in the case when the vector field X vanishes at the

point x . In this case the vector Yφt x is a time-dependent vector based forever at the

point x ; note then that LXY need not vanish at x . For example, consider the vector field

X = −y∂/∂x + x∂/∂y in R
2, vanishing at the origin. The flow φt generated by X

satisfies dx/dt = −y and dy/dt = x[
x(t)
y(t)

]
=

[
cos t − sin t
sin t cos t

] [
x
y

]
= φt

[
x
y

]

Since φ is linear, φt∗ = φt . Let Y = ∂/∂x sit at the origin; then LXY is the vector at

the origin given by d/dt{φ−t∗∂/∂x}t=0. In components[
0 1

−1 0

] [
1

0

]
=

[
0

−1

]

and so LX∂/∂x = −∂/∂y.

In the case when Y is defined only along an orbit of X, it makes no sense to consider

LYX, since Y has no integral curves. We shall reserve the notation [X, Y] = −[Y, X]

for the case in which both X and Y are vector fields defined in an open subset in Mn .

We shall say that a vector field Y defined along an orbit of X is invariant (under the

flow generated by X) provided

Yφt x = φt∗Yx

From (4.1) we see that Y then satisfies the Jacobi variational equations

[LX Y ]i = dY i

dt
−

∑
j

(
∂ Xi

∂x j

)
Y j = 0 (4.9)

The reason for this classical terminology is the following. Classically one worked only

in R
n . Consider a solution curve x = x(t) to the differential equation dx/dt = Xx

that starts at the initial point x(0). To discuss the stability of solutions, one would

then, in classical language, consider a second integral curve y = y(t) that starts at

an “infinitesimally nearby” y(0) = x(0) + δx(0). One would then write this solution

in the form y(t) = x(t) + δx(t). The solution curve y is called a variation of the

solution x , and δx is called an infinitesimal variation vector. Now dx/dt = X(x) and

d(x + δx)/dt = X(x + δx) are both satisfied.

δx

δx

X

X

X

y(t)

y(0)

x(0)

x(t)

X

Figure 4.2
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Subtracting, δ(dx/dt) := d(x + δx)/dt − dx/dt = d(δx)/dt becomes

d(δxi )

dt
= Xi

x+δx − Xi
x =

∑
j

(
∂ Xi

∂x j

)
x(t)

δx j + �i

where �i contains terms of higher order in δx. This is a nonlinear system of ordinary

differential equations for the infinitesimal variation vector δx ; it is assumed that the

base solution x = x(t) is known. If we linearize this system, that is, throw away the

high-order terms �, we obtain the “infinitesimal” variational equations. Finally if we

denote δx by Y we return to the equations (4.9). In our development of (4.9) the vector
field Y replaces the obscure notion of infinitesimally near points. Instead of seeing how

two nearby points are pushed along by the flow, we observe how a vector Y at x(0) is

pushed by the differential φt∗. This differential, being the linear approximation to φt∗,

leads to a linear equation for Y along the orbit x(t).
If x = x(t) is a given solution to the system dx/dt = Xx , and if Y0 is a vector at

the point x(0), then there is a unique solution to the variational equations

dY i

dt
=

∑
j

[
∂ Xi

∂x j

]
x(t)

Y j

with (4.10)

Y i (0) = Y i
0

and, since this system is linear, this solution exists for all t for which the integral curve

x(t) is defined. Y is sometimes called a Jacobi field along the solution x .

We can also reinterpret (4.1) as follows. Let Yφt x := φt∗Yx be the Jacobi field along

the orbit with initial value Yx . Then

LXY = d

dt
[Yφt x − Yφt x ]t=0 (4.11)

Warning: Neither side of (4.10) has intrinsic meaning, independent of coordinates;

for instance, we know that ∂ Xi/∂x j do not form the components of a tensor. Never-

theless, (4.10) has intrinsic meaning since it expresses LXY = 0, and LXY is a vector

field (defined without the use of coordinates).

4.1c. The Flow Generated by [X, Y]

Let X and Y be vector fields on Mn . Let φ(t) and ψ(t) be the flows generated by X
and Y. [X, Y] is also a vector field; what is its flow? We claim that the flow generated

by [X, Y] is in the following sense the commutator of the two flows. Let x ∈ Mn .

Theorem (4.12): Let σ be the curve

σ(t) := ψ−t ◦ φ−t ◦ ψt ◦ φt x
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Then for any smooth function f

[X, Y]x f = lim
t→0

f [σ(
√

t)] − f [σ(0)]

t

4 = ψ(−t)

Y

Y

Y3 = φ(−t)

2 = ψ(t)

1= φ(t)= 0

[ ](x) is tangent to this curve

X

X,

x

X
3

2

1

0

Figure 4.3

P R O O F (Richard Faber): As in the preceding figure, let 0, 1, 2, 3, 4 be the vertices

of the broken integral curves of X and Y. Let f be a smooth function. Form

f (σ (t)) − f (0) = [ f (4) − f (3)] + [ f (3) − f (2)]

+ [ f (2) − f (1)] + [ f (1) − f (0)]

By Taylor’s theorem, letting X0 denote X(0), and so on,

f (1) − f (0) = tX0( f ) +
(

t2

2

)
X0{X( f )} + O(3) (i)

where O(3)(t)/t2 → 0 as t → 0. Also

f (2) − f (1) = tY1( f ) +
(

t2

2

)
Y1{Y( f )} + O(3)

Note Y1{Y( f )} = Y0{Y( f )} + tX0[Yt{Y( f )}] + O(2), where Yt{Y( f )} is the

function t → Yφt 0{Y( f )}. Thus

f (2) − f (1) = tY1( f ) +
(

t2

2

)
Y0{Y( f )} + O(3) (ii)

Likewise

f (3) − f (2) = −tX2( f ) +
(

t2

2

)
X0{X( f )} + O(3) (iii)

and

f (4) − f (3) = −tY3( f ) +
(

t2

2

)
Y0{Y( f )} + O(3) (iv)
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Adding (i) through (iv) we get

f (4) − f (0) = t[X0( f ) + Y1( f ) − X2( f ) − Y3( f )]

+ t2[X0{X( f )} + Y0{Y( f )}] + O(3)

But

X2( f ) − X0( f ) = X2( f ) − X1( f ) + X1( f ) − X0( f )

= tY1{X( f )} + O(2) + tX0{X( f )} + O(2)

= tY0{X( f )} + tX0{X( f )} + O(2) (v)

Also

Y3( f ) − Y1( f ) = Y3( f ) − Y2( f ) + Y2( f ) − Y1( f )

= −tX2{Y( f )} + O(2) + tY1{Y( f )} + O(2)

= −tX0{Y( f )} + tY0{Y( f )} + O(2) (from (v))

Thus

f (4) − f (0) = t2[X0{Y( f )} − Y0{X( f )}] + O(3)

and then

f {σ(t)} − f {σ(0)}
t2

→ X0{Y( f )} − Y0{X( f )}
as t → 0. This concludes the proof.

We may write, in terms of a right-handed derivative,

LXY = [X, Y] = d

dt+
σ(

√
t)]t=0 (4.13)

Corollary (4.14): Suppose that the vector fields X and Y on Mn are tangent to a
submanifold V p of Mn at all points of V p. Then since the orbits of X and Y that
start at x ∈ V p will remain on V p, we conclude that the curve t �→ σ(t), starting
at x, also lies on V p and therefore the vector [X, Y] is also tangent to V p.

Warning: Many books use a sign convention opposite to ours for the bracket [X, Y].

Problems

4.1(1) Prove (4.6).

4.1(2) Prove Corollary (4.14) by introducing coordinates for Mn such that V p is locally
defined by x p+1 = 0, . . . , xn = 0, and then using (4.6).
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4.1(3) Consider the unit 2-sphere with the usual coordinates and metric ds2 = dθ2 +
sin2 θdφ2. The two coordinate vector fields∂θ and∂φ have, of course, a vanishing
Lie bracket. Give a graphical verification of this by examining the “closure” of the
“rectangle” of orbits used in the Theorem (4.12). Now consider the unit vector
fields eθ and eφ associated to the coordinate vectors. Compute [eθ , eφ ] and
illustrate this misclosure graphically. Verify Theorem (4.12) in this case.

4.2. The Lie Derivative of a Form

If a flow deforms some attribute, say volume, how does one measure the deformation?

4.2a. Lie Derivatives of Forms

If X is a vector field with local flow φ(t) and if f is a function, we shall define the

Lie derivative of f with respect to X by LX f := X( f ) = ∑
i X i∂ f/∂xi . Thus at x ,

from 2.7a,

LX f = d

dt
f [φt x]t=0 = d/dt[φ∗

t f ]t=0 (4.15)

This simply describes how f changes along the orbits of X.

If α p is a p-form we define, putting αx = α(x)

LXα p : = d

dt
[φ∗

t α
p]t=0 (4.16)

= lim
t→0

φ∗
t αφt x − αx

t
By this we mean the following. Let Y1, . . ., Yp be vectors at x . Then[

d

dt
φ∗

t α
p

]
(Y1, . . ., Yp) : = d

dt
[φ∗

t α
p(Y1, . . ., Yp)] (4.17)

= d

dt
{α p[φt∗Y1, . . . , φt∗Yp]}

In particular, if we extend the vectors Yi to be invariant fields along the orbit through

x, φt∗Yx = Yφt x , then we can write

LXα p(Y1, . . . , Yp) = d

dt
[α

p
φt x(Y1, . . . , Yp)]t=0 (4.18)

that is

LXα(Y1, . . . , Yp) measures the derivative (as one moves along the orbit of X) of the

value of α evaluated on a p-tuple of vector fields Y that are invariant under the flow

generated by X.

The reader should note that although one cannot pull back a pseudoform by means

of a general map, one can do so if the map is a diffeomorphism, or a 1-parameter

group of such, that is, a flow. Thus it makes sense to talk about the Lie derivative of a

pseudoform. For example, if

αn = voln = √
gdx1 ∧ dx2 ∧ . . . ∧ dxn
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is the volume form for a Riemannian Mn and if X is a vector field on Mn , then LX voln

is the n-form that reads off the rate of change of volume of a parallelopiped spanned

by n vectors that are pushed forward by the flow φt . Schematically

3Y

x

X

X

X

1Y

2Y

1Y

3Y

2Y

Figure 4.4

In other words, LX voln measures how volumes are changing under the flow φt

generated by X. One usually thinks of voln as a given form; then LX voln is “really”

describing a property of the vector field X, namely, how the flow generated by X is

distorting volumes!

We need convenient methods for computing Lie derivatives. First note that for a

(p + q)-tuple YI and their “push-forwards” φt∗YI

LX(α p ∧ βq)(YI ) = d

dt
[α p ∧ βq(φt∗YI )]t=0

= d

dt

∑
K⇁

∑
J⇁

δ J K
I α(φt∗YJ )β(φt∗YK )t=0

=
∑

K⇁

∑
J⇁

δ J K
I

d

dt
[α(φt∗YJ )]β(YK )

+
∑

K⇁

∑
J⇁

δ J K
I α(YJ )

d

dt
[β(φt∗YK )]t=0

and so LX is a “derivation” (to be discussed shortly),

LX(α p ∧ βq) = (LXα p) ∧ βq + α p ∧ (LXβq) (4.19)

Theorem (4.20): LX commutes with exterior differentiation d

LX ◦ d = d ◦ LX

P R O O F: We first verify this for 0-forms, that is, functions f . In our computations

we shall omit indications of location, such as, x or φt x . Also, all derivatives with
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respect to time will be evaluated at t = 0. Let Y be a fixed vector at x ∈ Mn .

From (2.60)

LX(d f )(Y) = d

dt
{[φ∗

t d f ](Y)} = d

dt
{d f [φt∗Y]}

= d

dt
{Y[φ∗

t f ]}

= Y
{

d

dt
[ f ◦ φ(t)]

}
(since Y is time-independent)

= Y{X( f )} = Y{LX( f )} = [dLX( f )](Y)

and we have verified (4.20) for 0-forms. When applied to p-forms

LXdα p = LXd
∑

aI dx I = LX

∑
daI ∧ dxi1 ∧ . . . ∧ dxi p

=
∑

(LXdaI ) ∧ dxi1 ∧ . . . ∧ dxi p

+
∑

daI ∧ (LXdxi1) ∧ . . . ∧ dxi p + · · ·

=
∑

d(LXaI ) ∧ dxi1 ∧ . . . ∧ dxi p

+
∑

daI ∧ d(LXxi1) ∧ . . . ∧ dxi p + · · ·

= d
∑

(LXaI )dxi1 ∧ . . . ∧ dxi p

+ d
∑

aI d(LXxi1) ∧ . . . ∧ dxi p + . . .

= d
∑

(LXaI )dxi1 ∧ . . . ∧ dxi p

+ d
∑

aI (LXdxi1) ∧ . . . ∧ dxi p + . . .

= dLX

∑
aI dx I = dLXα p

In particular, we have

LXdxi = dLXxi = d{X(xi )} = d Xi (4.21)

Thus if t is any one of the coordinate functions x j we have L∂/∂t dxi = 0. Hence if α p

is any p-form and if t is a coordinate function

L∂/∂tα
p = L∂/∂t aI⇁dx I =

(
∂aI⇁

∂t

)
dx I = ∂α p

∂t
(4.22)

simply differentiates the coefficients with respect to the coordinate!

See Problem 4.2(1) at this time.

4.2b. Formulas Involving the Lie Derivative

Let
∧p Mn be the space of p-forms on Mn . This is an infinite dimensional vector space

since the components are functions. A linear map A:
∧p Mn → ∧p+r Mn is said to be

a derivation if r is even and

A(α p ∧ βq) = (Aα p) ∧ βq + α p ∧ (Aβq) (e.g., LX)
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and is said to be an antiderivation if r is odd and

A(α p ∧ βq) = (Aα p) ∧ βq + (−1)pα p ∧ (Aβq) (e.g., d and iX)

Suppose we know the value of a derivation or antiderivation on any function and on d
of any function. Since the general p-form is of the form α p = ∑

aI (x)dxi1 ∧ . . .∧dxi p ,

we then know the value of A on any form:

If A and B are both derivations or antiderivations, then to prove Aα p = Bα p for all

forms we need only prove this for α a function and for α = d (a function).

See Problem 4.2(2).

The following is perhaps the most often used formula involving Lie derivatives.

H. Cartan’s Formula (4.23): When acting on exterior forms

LX = iX ◦ d + d ◦ iX

P R O O F: Both sides are derivations, by Problem 4.2(2). We need only verify

(4.23) on functions and differentials of functions.

On functions, iX f = 0 and iXd f = X( f ) = LX( f ); we have verified the

function case. On differentials of functions

[iXd + diX]d f = diX(d f ) = d[iX(d f )] = d[X( f )]

= dLX( f ) = LXd f

Theorem (4.24): When applied to forms

LX ◦ iY − iY ◦ LX = i[X,Y]

The reader is asked to supply the proof in Problem 4.2(3).

The following is an intrinsic (i.e., coordinate-free) expression for the exterior deriva-

tive of a 1-form. It is extremely useful.

Theorem (4.25): Let α1 be a 1-form and let Xx and Yx be vectors at x. Extend
these vectors in any smooth way to be fields near x . Then

dα1(Xx , Yx) = Xx{α1(Y)} − Yx{α1(X)} − α1([X, Y])

P R O O F: We shall use (4.23) and (4.24)

dα(X, Y) = {iXdα}(Y) = {LXα − diXα}(Y) = iYLXα − Y{α(X)}
= LXiYα − i[X,Y]α − Y{α(X)}
= LXα(Y) − α([X, Y]) − Y{α(X)}
= X{α(Y)} − α([X, Y]) − Y{α(X)}
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See Problem 4.2(4) at this time.

The following proposition says that if Y’s are vector fields, one can differentiate

the function α p(Y1, . . . , Yp) = aI (x)Y
i1

1 . . . Y
i p
p by using a “Leibniz” rule for Lie

derivative.

Theorem (4.26): For a form α p and vector fields X, Y1, . . . , Yp we have

X{α p(Y1, . . . , Yp)} = {LXα p}(Y1, . . . , Yp)

+
∑

r

α p(Y1, . . . , (LXYr ), . . . , Yp)

P R O O F: For 1-forms we have

{LXα}(Y) = iYLXα = LXiYα − α([X, Y])

= X{α(Y)} − α(LXY)

as desired. By induction, assuming true for (p − 1)-forms,

{LXα}(Y1, . . . , Yp) = iY1
{LXα}(Y2, . . . , Yp)

= {LXiY1
α − i[X,Y1]α}(Y2, . . . , Yp)

But iY1
α is a (p−1)-form and so we may apply (4.26) to compute {LXiY1

α}(Y2, . . . ,

Yp). This will complete the proof.

Finally, we have a formula that generalizes (4.25) to p-forms. For vector fields

Y0, . . . , Yp

dα p(Y0, . . . , Yp) =
∑

r

(−1)r Yr {α p(Y0, . . . , Ŷr , . . . , Yp)}
(4.27)

+
∑
r<s

(−1)r+sα p([Yr , Ys], . . . Ŷr , . . . , Ŷs, . . . , Yp)

This can again be proved by induction. Note that from the left-hand side we see that

this result depends only on the values of the Y’s at the given point!

4.2c. Vector Analysis Again

Let voln be a volume form for an Mn , that is, a pseudo-n-form that never vanishes on

any basis of tangent vectors. If X is a vector field on Mn , the divergence of X is the

scalar div X defined by the formula

LX voln = (div X) voln (4.28)
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If Y1, . . . , Yn are fields invariant under the flow generated by X then from (4.17)

LX(vol)n(Y1, . . . , Yn) = d

dt
voln(Y1, . . . , Yn)t=0

and so div X measures the logarithmic rate of change of volumes along the flow. In

local coordinates voln = ρdx1 ∧ . . . ∧ dxn, ρ(x) > 0, and by Cartan’s formula

LX( vol)n = d{iX voln} = d
∑

r

(−1)r−1ρdx1 ∧ . . . iXdxr ∧ . . . ∧ dxn

= d
∑

r

(−1)r−1(ρXr )dx1 ∧ . . . d̂xr ∧ . . . ∧ dxn

=
∑

r

(−1)r−1

{
∂

∂xs
(ρXr )dxs

}
∧ dx1 ∧ . . . d̂xr ∧ . . . ∧ dxn

=
∑

r

{
∂

∂xr
(ρXr )

}
dx1 ∧ . . . ∧ dxr ∧ . . . ∧ dxn

and thus

div X = 1

ρ

∑
r

∂

∂xr
(ρXr ) (4.29)

generalizing (2.88) of R
3.

Note also that to the vector X and the volume form voln we may associate the

(n − 1) form

βn−1 = iX voln (4.30)

and then Cartan’s formula gives

dβn−1 = (div X) voln (4.31)

generalizing (2.87) of R
3.

We now use the Lie derivative formalism to complete our discussion of classical

vector analysis in R
3. Consider, for example, the vector identity for curl(A×B).

curl(A×B) ⇔ diBα2 = LBα2 − iBdα2

= LBα2 − iB div A vol3 = LBα2 − div A iB vol3

Now use (4.24).

LBα2 = LBiA vol3 = iALB vol3 +i[B,A] vol3

= div B iA vol3 +i[B,A] vol3

⇔ (div B)A + [B, A]

Thus

curl(A×B) = (div B)A + [B, A] − (div A)B (4.32)
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In vector analysis books the term LBA = [B, A] is written differently. We can write,

in cartesian coordinates,

[B, A]i = B j

(
∂ Ai

∂x j

)
− A j

(
∂ Bi

∂x j

)
= (DBA)i − (DAB)i

where (DBA)i : = B • grad Ai . Thus they write the term [B, A] as B • grad A −
A • grad B as if it made sense to talk about the gradient of a vector! This makes

sense only in cartesian coordinates.

Problems

4.2(1) Show that if α1 = ∑
i ai dx i is a 1-form then

LXα1 =
∑

i

{
X j

(
∂ai

∂x j

)
+ a j

(
∂ X j

∂x i

)}
dx i

which should be compared with (4.6).

4.2(2) Show that if θ is a derivation and A an antiderivation then

θ ◦ A − A ◦ θ

is an antiderivation. If A and B are antiderivations then

A ◦ B + B ◦ A

is a derivation.

4.2(3) Prove (4.24).

4.2(4) Prove (4.25) by expressing both sides in coordinates and using (2.58) and (2.35).

4.3. Differentiation of Integrals

How does one compute the rate of change of an integral when the domain of integration is also

changing?

4.3a. The Autonomous (Time-Independent) Case

Let α p be a p-form and V p an oriented compact submanifold (perhaps with boundary

∂V ) of a manifold Mn . We consider a “variation” of V p arising as follows. We suppose

that there is a flow φt : Mn → Mn , that is, a 1-parameter “group” of diffeomorphisms

φt , defined in a neighborhood of V p for small times t , and we define the submanifold

V p(t) := φt V P .
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Figure 4.5

Let Xx = dφt(x)/dt]t=0 be the resulting velocity field. We are interested in the time

variation of the integral

I (t) =
∫

V (t)
α p =

∫
V

φ∗
t α

(see (3.17)). Differentiating

I ′(t) = lim
h→0

[I (t + h) − I (t)]

h

= lim
h→0

[ ∫
V φ∗

t+hα − ∫
V φ∗

t α
]

h

= lim
h→0

[ ∫
V

φ∗
t {φ∗

hα − α}
h

]

= lim
h→0

[ ∫
V (t)

{φ∗
hα − α}

h

]

=
∫

V (t)
lim
h→0

{φ∗
hα − α}

h

Thus

d

dt

∫
V (t)

α p =
∫

V (t)
LXα p (4.33)

a remarkably simple and powerful formula! From Cartan’s formula

d

dt

∫
V (t)

α p =
∫

V (t)
iXdα p + diXα p

(4.34)

=
∫

V (t)
iXdα p +

∮
∂V (t)

iXα p

When α is the volume form and V n is a compact region in Mn we have

d

dt

∫
V (t)

voln =
∫

V (t)
diX voln =

∫
V (t)

divX voln (4.35)

=
∫

∂V
iX voln



140 T H E L I E D E R I V A T I V E

a form of the divergence theorem. Let the volume form come from a Riemannian

metric. Then, as in the derivation of (3.15) in the 2-dimensional case, letting N be the

outward pointing normal to the boundary of V n and Xt the projection of X into the

tangent space to ∂V∫
∂V

iX voln =
∫

∂V
i〈X,N〉N+Xt voln =

∫
∂V

〈X, N〉iN voln

On ∂V , the form iN voln , when applied to n − 1 tangent vectors to ∂V , reads off the

(n − 1)-dimensional “volume” of the parallelopiped spanned, that is,

voln−1
∂V := iN voln (4.36)

is the area form for the boundary. We then have the usual form of the divergence theorem∫
V

div X voln =
∫

∂V
〈X, N〉 voln−1

∂V (4.37)

We emphasize that the divergence theorem, being a theorem about pseudo-n-forms,

holds whether Mn is orientable or not.

4.3b. Time-Dependent Fields

Consider a nonautonomous flow of water in R
3, that is, a flow where the velocity field

v(t, x) = dx/dt depends on time. We define a map φt : R
3 → R

3 as follows. If we

observe a molecule at x when t = 0, we let φt x be the position of this same molecule

t seconds after 0. Consider φs[φt x]. If we put y = φt x then φsy is the point where the

flow would take y s seconds after time 0. This is usually not the same point as φt+sx
since the flow is time-dependent. A time-dependent flow of water is not a flow in the

sense of 1.4a since it does not satisfy the 1-parameter group property. A time-dependent
vector field on a manifold Mn does not generate a flow!

Consider for example the contractions of R defined by x �→ x(t) = φt x := (1− t)x ,

each of which is a diffeomorphism if t 
= 1. This does not define a flow, because it does

not have the group property. The velocity vector at x(t) and time t are determined from

dx(t)

dt
= −x = − x(t)

(1 − t)
(4.38)

Thus v(t, y) = −y/(1 − t) is a time-dependent velocity field.

Suppose then that v = v(t, x) is a time-dependent vector field on Mn . We apply a

simple classical trick; any tensor field A(t,x) on Mn that is time-dependent should be
considered as a tensor field on the product manifold R × Mn , where t is the coordinate
for R. R × Mn has local coordinates (t = x0, x1, . . . , xn). A time-dependent vector

field on Mn is now an ordinary vector field v = v(t, x) on R × Mn since t is now a

coordinate on R × M . By solving the system of ordinary differential equations

dxi

ds
= vi (t, x), xi (s = 0) = xi

0, i = 1, . . . , n

(4.39)
dt

ds
= 1, t (s = 0) = t0

we get a flow φs : R×Mn → R×Mn . If v(t, x) is the velocity field of a time-dependent

flow of fluid in Mn , then the integral curves s �→ φs(t0, x0) on R × Mn project down
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to yield the time-dependent “flow” on Mn; φs(t0, x0) is the position of the molecule at

time s + t0 that had been located at the point x0 at time t0.

In our example (4.38) we need to solve the s-independent system

dx

ds
= −x/(1 − t) x(s = 0) = x0 (4.38′)

dt

ds
= 1 t (s = 0) = t0

The solution is

x(s) =
[
(1 − t0 − s)

(1 − t0)

]
x0 (4.38′′)

t (s) = t0 + s

and one verifies that φ(s) : R
2 → R

2 given by

φs(t, x) = (t (s), x(s))

is indeed a flow. To see the path in R of a point that starts at x0 at time 0, we merely

put t0 = 0, getting x(s) = (1 − s)x0, and forget the t equation.

We now return to the general discussion. Note that the curves s �→ φs(t0, x0) of

(4.39) are integral curves of the s-independent vector field

X = v + ∂

∂t

To discuss a time-dependent vector field v on Mn we introduce the vector field

X = v + ∂/∂t on R × Mn and look at the flow on R × Mn generated by this field.

The path in Mn traced out by a point that starts at t = 0 at x0 consists of the projection

into Mn of the solution curve on R × Mn starting at (0, x0).

We now recall an important space–time notation introduced in Section 3.5a. First

note that in any manifold the operation of exterior differentiation

d(bI⇁dx I ) =
(

∂bI⇁

∂x j

)
dx j ∧ dx I

can be written symbolically as d = dx j ∧ ∂/∂x j ; the operator ∂/∂x j acts only on the

coefficients. In a space–time R× Mn with local coordinates (t = x0, . . . , xn) we have,

for any form on R × Mn (which may contain terms involving dt)

d bI⇁dx I = dt ∧
(

∂bI⇁

∂t

)
dx I + dx j ∧

(
∂bI⇁

∂x j

)
dx I

which we write symbolically as

d = dt ∧ ∂

∂t
+ d (4.40)

where d is the spatial exterior derivative. We shall also write

X = v + ∂

∂t
(4.41)

using a boldfaced v to remind us that v is a spatial vector.
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4.3c. Differentiating Integrals

Let φt : Mn → Mn be a 1-parameter family of diffeomorphisms of M ; we do not
assume that they form a flow (i.e., they might not have the group property), but we do

assume that φ0 is the identity and that (t, x) → φt x is smooth as a function of (t, x) on

R × M . (In our previous example, φt x = (1 − t)x.)

Let α
p
t (x) = α p(t, x) be a 1-parameter family of forms on M and let V p be a p-

dimensional submanifold of M . We wish to consider the t derivative of
∫

V (t) α where

V (t) = φt V .

dφt x/dt is some t-dependent vector function w(t, x) = w(t, φ−1
t φt x) =: v(t, φt x)

on M . This yields a time-dependent velocity field dy/dt = v(t, y) on M . We consider

this as a field on R × M and we let α(t, x) be considered as a p-form on R × M (with

no dt term).

Solving dx/ds = v(t, x), dt/ds = 1 on R × M (i.e., finding the integral curves of

X = v+∂/∂t) yields a flow 
s on R×M and the curves φs(x) on M are simply the pro-

jections of the curves
s(0, x)on R×M . The 1-parameter family of submanifolds V p(s)
of M is the projection of the 1-parameter family 
s(0, V p) of submanifolds of R× M .

Theorem (4.42): Let φt : Mn → Mn be a 1-parameter family of diffeomor-
phisms of M; we do not assume that they form a flow. Let α

p
t (x) = α p(t, x) be

a 1-parameter family of forms on M, let V p be a p-dimensional submanifold of
M, and put V (t) := φt V . Then

d

dt

∫
V (t)

α p =
∫

V (t)

∂α

∂t
+ ivdα + divα

where v(t, φt x) = dφt x/dt is the t-dependent velocity field on M.

P R O O F: We again form R × Mn . α p is now a p-form on R × Mn . V p(t) is now

the projection of the submanifold W (t) := 
t(0, V ) of R × Mn that lies in the

“spatial section” {t} × Mn . Then dt = 0 when restricted to W (t). The flow 
t

on R × M is generated by X = v + ∂/∂t . We then have, from (4.33),

d

dt

∫
V (t)

α p = d

dt

∫
W (t)

α p =
∫

W (t)
LXα p =

∫
W (t)

Lv+∂/∂tα
p (4.43)

We now write out (4.43) in the case at hand. Using (4.22) and d = dt ∧ ∂/∂t + d

d

dt

∫
W (t)

α p =
∫

W (t)
Lv+∂/∂tα

p =
∫

W (t)
Lvα

p + ∂α

∂t

=
∫

W (t)

∂α

∂t
+ ivdα + divα

(since v does not involve ∂/∂t and dt = 0 on W (t))

=
∫

V (t)

∂α

∂t
+ ivdα + divα

(Note that Lvα is the Lie derivative of α with respect to the vector field v “frozen” at

time t , that is, we look at both α and v as fields fixed forever at time t!)
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Corollary (4.44):

∂

∂t
φ∗

t α = φ∗
t

{
∂α

∂t
+ ivdα + divα

}

= φ∗
t

{
∂α

∂t
+ Lvα

}

This follows from d/dt
∫

V φ∗
t α

p = ∫
V φ∗

t {∂α/∂t + ivdα + divα} with V arbitrary.

Problems

Let A and B be time-dependent vector fields on R
3 and let ρ(t, x) be a function. Show

that (4.43) yields the following classical expressions for the time derivatives of line,
surface, and volume integrals over moving domains.

4.3(1) d/dt
∫

C A • dx = ∫
C [∂A/∂t − v × curl A + grad(v • A)] • dx

4.3(2) d/dt
∫∫

S B • dS = ∫∫
S [∂B/∂t + (div B)v − curl(v × B)] • dS

4.3(3) d/dt
∫∫∫

U ρ vol3 = ∫∫∫
U [∂ρ/∂t + div(ρv)] vol3

4.3(4) Show Faraday’s law says d/dt
∫∫

S B • dS = − ∮
∂S [E + v × B] • dx for a moving

surface. E + v×B is the electromotive force.

Additional Problems on Fluid Flow

Consider a fluid flow in R
3 with density ρ(t, x) and velocity vector v(t, x). Problem 4.3(3)

says conservation of mass is equivalent to
∂ρ

∂t
+ div(ρv) = 0

or

LX (ρ vol3) = 0

These two expressions are equivalent since iX (ρβ p) = iρXβ p.
In this section we shall use cartesian coordinates, but we shall still make an attempt

to use the correct “variance” of the tensors involved.
Consider the linear momentum of a small region U . If ν is the velocity covector, ν =

vi dx i , the density of momentum is ρν. In R
3 with cartesian coordinates we attribute phys-

ical significance to the individual components of the momentum P of the moving region

Pi =
∫

U
vi ρ vol3

Since LX (ρ vol3) = 0, we get (vi being a function)

d Pi

dt
=

∫
U

LX (vi ρ vol3) =
∫

U
X (vi )ρ vol3 =

∫
U

[
v + ∂

∂t

]
(vi )ρ vol3

=
∫

U

[
∂vi

∂t
+ v j

(
∂vi

∂x j

)]
ρ vol3
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dP/dt must equal the total force acting on U . (Newton’s second law applies to parti-
cle mechanics. The generalization to continuum mechanics is due to Euler; see [T,T,
footnote, p. 531].) Under the assumption of a “perfect” fluid, this consists of a body
force (e.g., gravity) with mass density f, and the pressure forces arising from the part
of the fluid outside U . This latter is a vector integral w = − ∫

∂U p Nd S. Vector integrals
make no sense on general manifolds (how could we add two vectors located at different
points?) but they can be defined in cartesian coordinates componentwise, that is, by
putting wi = − ∫

∂U pNi d S. If the surface has local coordinates u, v , then, as in (3.14),
d S = √

gdu ∧ dv =‖ n ‖ du ∧ dv . Thus Ni d S = ni du ∧ dv . For example, from Prob-
lem 3.1(2) we have that N1d S = ∂(y, z)/∂(u, v)du ∧ dv = dy ∧ dz . Thus in cartesian
coordinates we may consider the symbolic vector 2-form dS with “components”

dS = N d S = (dy ∧ dz dz ∧ dx dx ∧ dy)T

and then we could write − ∫
∂U p Nd S = − ∫

∂U p dS. The first component of
∫

∂U p dS is∫
∂U

p dy ∧ dz =
∫

U
dp ∧ dy ∧ dz =

∫
U

px dx ∧ dy ∧ dz

and likewise for the other components. Thus∫
∂U

p dS =
∫

U
grad p vol3 (4.45)

We conclude from Euler’s version of the second law, applied to the arbitrarily small U

∂vi

∂t
+ v j

(
∂vi

∂x j

)
= −

(
1
ρ

)
∂p

∂x i
+ fi (4.46)

where f is the force density (per unit mass). These are Euler’s equations.

4.3(5) Assume that the body force density is derivable from a potential f = grad φ.
Assume that the pressure is functionally related to the density, p = p(ρ). (This
is an “equation of state.”) Then let G (ρ) be a specific antiderivative of dp/ρ; we
write this symbolically as G (ρ) = ∫

dp/ρ = ∫
ρ−1(dp/dρ)dρ. Then ∂G/∂x i =

G′(ρ)∂ρ/∂x i = ρ−1(dp/dρ)∂ρ/∂x i = ρ−1∂p/∂x i .

(i) Show that Euler’s equations can then be written

∂ν

∂t
+ Lv(ν) = d

{
1
2

‖ v ‖2 + φ −
∫

dp
ρ

}

or (4.47)

Lv+∂/∂t (ν) = d

{
1
2

‖ v ‖2 + φ −
∫

dp
ρ

}

where now Lv(ν) is the Lie derivative of the 1-form ν (we are no longer taking
the Lie derivative of a function). Note that (4.47) makes sense in any Rie-
mannian manifold, unlike (4.46) where v j(∂vi /∂x j) are not the components
of a covector.

(ii) Conclude with Lord Kelvin that if C(t) is a closed curve that follows the
motion of the fluid, then the circulation

∮
C(t) ν is constant in time.

A time-dependent form αp on Mn is said to be invariant under the flow
of the time-dependent vector field v provided

Lv+∂/∂t (α) = ∂α

∂t
+ Lvα = ∂α

∂t
+ ivdα + divα = 0
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(iii) The vorticity 2-form for a flow in R
3 is defined by

ω2 := dν

Show (using d ◦ ∂/∂t = ∂/∂t ◦ d) that for a perfect fluid with p = p(ρ) that
the vorticity form ω2 is invariant under the flow (Helmholtz).

(iv) Warning: The vorticity vector ω = curl v, defined as usual by ω2 = iω vol3,
is not usually invariant since the flow need not conserve the volume form.
The mass form, ρ vol3, however, is conserved. From ω = i (ω/ρ)ρ vol3 we
see that the vector ω/ρ should be invariant; that is, Lv+∂/∂t (ω/ρ) = 0. Show
that this follows from (4.24). Note that the direction of ω is invariant under
the flow; physicists say that the “lines of ω ” are “frozen” into the fluid.

(v) Let V3(t) be a compact region moving with the fluid. Assume that at t = 0
the vorticity 2-form ω2 vanishes when restricted to the boundary ∂V3(0);
that is, i∗ω2 = 0, where i is the inclusion of ∂V in R

3. (This does not say that
ω2 itself vanishes, rather only that ω(u, w) = 0 for u, w tangent to ∂V3(0).)

Show that the helicity integral∫
V(t)

v • ωdx ∧ dy ∧ dz

is constant in time.

4.3(6) Magnetohydrodynamics. Define a perfectly conducting fluid as one with van-
ishing “electromotive intensity” E1−ivB2 = 0 (otherwise there would be an infinite
current flow).

(i) Show that B2 is invariant under the flow, Lv+∂/∂t B2 = 0 (and thus the lines
of B are frozen into the fluid).

We are concerned with the case when the charge density σ vanishes.
Then the Lorentz force density (per unit volume) on the fluid is −iJB2 and
so the external force density (per unit mass) is f = −iJB2/ρ. This is not
derivable from a potential, and so Euler’s equations become

∂ν

∂t
+ Lv(ν) = d

{‖ v ‖2

2
−

∫
dp
ρ

}
− iJB2

ρ

(ii) Consider then a blob U of perfectly conducting fluid with (moving) boundary
∂U (e.g., the interface between the fluid and vacuum). Frequently one takes
as boundary condition that B2 restricted to the boundary vanishes (i.e.,
Bn = 0). Show then that

d
dt

∫
U

ν ∧ B = 0

This result is due to Woltjer. See and compare with Moffat’s treatment in [Mo].

4.4. A Problem Set on Hamiltonian Mechanics

Why phase space?

In Section 10.2 we shall talk about Lagrangian (i.e., tangent bundle) mechanics from

first principles. In the present section we shall simply assume Lagrange’s equations,
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and proceed to the Hamiltonian formulation in phase space. The following problems

involve much of the machinery of forms and Lie derivatives that we have developed,

and should be worked by the readers even if Hamiltonian mechanics is not their primary

interest.

Let Mn be the configuration space of a mechanical system; M has local coordi-

nates q1, . . . , qn . The phase space is the cotangent bundle T ∗M with local coordinates

q1, . . . , qn, p1, . . . , pn . Introduce the notation

xi = qi , xn+i = pi , i = 1, . . . , n

On T ∗M we have the Poincaré 1-form (see 2.3d)

λ = pi dqi

and the resulting Poincaré 2-form

ω2 := dλ = dpi ∧ dqi

Warning: Many books call this form −ω2!

Definition: A 2-form ω2 on an even dimensional manifold M2n is called sym-
plectic (and then M is called a symplectic manifold) provided it satisfies

(i) dω = 0

(ii) ω is nondegenerate that is, the linear transformation associating to a vector

X the 1-form iXω2 is nonsingular. In local coordinates x , since [iXω] j = Xiωi j ,

this merely says det (ωi j ) 
= 0.

As we shall see, every cotangent bundle is a symplectic manifold.
If M2 is an orientable Riemannian surface, then an area 2-form vol2 = ω2 is a

symplectic form! The plane R
2 = R × R and the cylinder S1 × R are the cotangent

bundles, respectively, of the line R and the circle S1. Closed (compact) orientable

surfaces are symplectic but are never cotangent bundles since the vector space fibers

of a cotangent bundle are never compact.

(Note that we demand that ω be a true form, not a pseudoform. On an orientable

manifold, a pseudoform defines a true form by using a coordinate cover with positive

Jacobians in each overlap.)

Warning: A symplectic form ω2 allows us to associate to each contravariant vec-

tor X a covariant vector iXω with components Xiωi j , and in this sense is similar to a

Riemannian metric. This similarity is very misleading since the matrix ω is skew sym-

metric rather than symmetric. The remark (iXω)(X) = ω(X, X) = 0 shows in fact that

in any Riemannian metric that one imposes on a symplectic manifold, the contravariant
version of iXω is orthogonal to X!

4.4(1) Show that the Poincaré 2-form is symplectic. (You need only show that the

1-forms i∂/∂xi ω are linearly independent.)

4.4(2) Show that ωn := ω ∧ . . . ∧ ω = ±n!dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . dpn
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Since ω is a well-defined 2-form on any cotangent bundle, this 2n-form is actu-

ally independent of the local coordinates q used on Mn . We call ωn the Liouville or

symplectic volume form for the phase space.

4.4(3) Clearly ωn never vanishes. Show why this implies that T ∗M is always ori-
entable, whether or not M itself is orientable.

Since phase space is orientable we need not distinguish between forms and pseudo-

forms.

4.4a. Time-Independent Hamiltonians

Let L = L(q, q̇) be a time-independent Lagrangian, a function on the tangent bundle.

We have a map (see 2.3c) P : T M → T ∗M given by qi = qi and

pi = ∂L

∂q̇ i

For our purposes we shall insist that this map is a diffeomorphism. Locally this means

the following. Since for the pull-back

P∗dpi =
(

∂2L

∂q̇ j∂q̇ i

)
dq̇ j +

(
∂2L

∂q j∂q̇ i

)
dq j

we have, from (2.51),

P∗(dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn)

= det

(
∂2L

∂q̇ j∂q̇ i

)
dq1 ∧ . . . ∧ dqn ∧ dq̇1 ∧ . . . ∧ dq̇n

Locally then, we have a diffeomorphism if the Lagrangian is “regular,” that is,

det(∂2L/ ∂ q̇ j∂ q̇ i ) 
= 0.

Lagrange’s equations, ∂L/∂qi − d/dt (∂L/∂ q̇ i ) = 0 in T M , translate to Hamil-
ton’s equations in the phase space T ∗M

dqi

dt
= ∂ H

∂pi

dpi

dt
= −∂ H

∂qi
(4.48)

where the Hamiltonian function is defined by

H(q, p) := pi q̇
i − L(q, q̇) (4.49)

It is assumed in this expression that q̇ is expressed in terms of q and p by means

of the inverse T ∗M → T M . For a proof one proceeds as follows, with an obvious

notation. d H = Hqdq + Hpdp. But from (4.49) d H = pdq̇ + q̇dp − Lqdq − pdq̇.

From Lagrange’s equations, Lq = dp/dt . Comparing the two expressions for d H
yields Hamilton’s equations. (The same proof works also when L and H are time

dependent.)

Let X be a time-independent vector field on T ∗M ,

X = Xi ∂

∂qi
+ Xi+n ∂

∂ pi
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4.4(4) Show that the integral curves of X, that is, the solutions to

dqi

dt
= Xi and

dpi

dt
= Xi+n

satisfy Hamilton’s equations if and only if the vector field X satisfies

iXω = −d H (4.50)

We shall refer to (4.50) again as Hamilton’s equations and X will be called a Hamil-
tonian vector field. The flow φt : T ∗M → T ∗M generated by X will be called a

Hamiltonian flow.

4.4(5) Show that if X is Hamiltonian then

LXω = 0 = LXωn (4.51)

The right-hand side shows that volumes in phase space are invariant under a Hamilto-
nian flow; this is Liouville’s theorem.

Under this time-independent Hamiltonian flow, H is a constant of the motion, that is,

d H

dt
= X(H) = iXd H = iX(i−Xω) = 0

This is merely a fancy way of saying

d H

dt
=

(
∂ H

∂qi

)
dqi

dt
+

(
∂ H

∂pi

)
dpi

dt
= 0

from (4.48). H is also called the total energy.

Look now at the “level sets” of the function H in T ∗M

V 2n−1
E := {x = (q, p) ∈ T ∗M

∣∣ H(q, p) = E}
If d H 
= 0 on VE , then we know that VE is a (2n − 1) dimensional submanifold of

T ∗M ; it is called the hypersurface of constant energy E . By Sard’s theorem of 1.3d,

we know that for almost all E, E is a regular value. In the following we shall assume

that VE is a hypersurface of constant energy with d H 
= 0.

Since d H/dt = 0 along the flow lines of X, we conclude that X is tangent to VE .

VE

T ∗M

X X

X

X

Figure 4.6
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We know that LXω = d/dt[φ∗
t ω]t=0 = 0. Then, for small t

d

dt
[φ∗

t ω]t = lim
h→0

h−1[φ∗
t+hω − φ∗

t ω]

= φ∗
t lim

h→0
h−1[φ∗

hω − ω]

that is,

d

dt
[φ∗

t ω] = φ∗
t LXω

(and this is true for any form, any vector field). This also follows directly from Corollary

(4.44). In our case then φ∗
t ωx(t) = ωx(0), and so

φ∗
t ω = ω (4.52)

holds for all small t in any Hamiltonian flow.

Definition: A map φ : M → M of a symplectic manifold is canonical if φ

preserves ω, that is, φ∗ω = ω.

Thus

A Hamiltonian vector field X generates a local 1-parameter group of canonical trans-

formations of phase space.

Since X is tangent to VE , the integral curves of X that start on VE remain on VE .

Consequently

φt : VE → VE

We know that φt preserves Liouville volume on T ∗M . We claim that there is a (2n−1)-
form τ = τV on VE that is nonzero and is also invariant under φt ! We see this as follows.

d H 
= 0 on VE , and so d H 
= 0 in some T ∗M neighborhood of x ∈ VE . We shall

first construct a form σ 2n−1 in a neighborhood of x so that

ωn = d H ∧ σ 2n−1 (4.53)

Since d H 
= 0, some ∂ H/∂xi 
= 0. For simplicity we shall assume ∂ H/∂q1 
= 0.

Introduce a local change of coordinates y1 = H, yi = xi for i > 1. Then

d H ∧ dq2 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn

=
(

∂ H

∂q1

)
dq1 ∧ dq2 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn 
= 0

shows that this is an admissible change of coordinates. Put then

σ 2n−1 =
(

∂ H

∂q1

)−1

dq2 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn (4.54)
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Multipying by ±n! we shall get the desired form σ . Since we are not concerned at all
with this factor ±n! we shall simply omit all mention of it.

The form σ so constructed is a form on T ∗M defined near x ∈ VE . Its construction

was highly arbitrary. In an overlap of coordinate patches for T ∗M there is no hope for

agreement. Problem 4.4(6) shows, however, that this defect is not serious.

4.4(6) Let i : VE → T ∗M be the inclusion map. Let σ 2n−1 be any form satisfying

(4.53). Show that the restriction (pull-back)

τ 2n−1 := i∗σ 2n−1 (4.55)

of σ to VE is independent of the choice of σ . (Hint: Let σ ′ be another choice. Show

i∗σ = i∗σ ′ by evaluating d H ∧ (σ − σ ′) on a 2n-tuple of vectors (N, T2, . . . , T2n)

where N is transverse to VE and the T’s are tangent to VE .)

To show that τ is invariant under the flow generated by X on VE , we need only

show that τ(T2, . . . , T2n) is constant when the T’s are tangent vectors to VE that are

invariant under the flow. Let N be an invariant vector field that is transverse to VE .

Let T denote the (2n − 1)-tuple (T2, . . . , T2n). Then ω(N, T) is constant under the

flow and so (d H ∧ σ)(N, T) = d H(N)σ (T) = d H(N)τ (T) is constant. Since H
is invariant, LX H = X(H) = 0, d H is also invariant. Thus τ(T) = constant, as

desired.

We now write down an expression for τ 2n−1 that is found in books on statistical

mechanics. In a coordinate patch (q, p) of T ∗M near x ∈ VE we consider any Rie-

mannian metric whose volume form is ωn (modulo ±n!). For example we can choose

ds2 = ∑{(dqi )2 + (dpi )
2}; since

√
g = 1 we have

vol2n = dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . dpn

Of course these local metrics do not agree on overlaps, but from Problem 4.4(6) our final
result will be independent of such choices. In any Riemannian metric, grad H = ∇H
is normal to the level sets H = constant, and so ∇ H/ ‖ ∇ H ‖ is a unit normal field to

these submanifolds. Then the (2n − 1) forms d S2n−1
V = i∇ H/‖∇ H‖ωn on T ∗M have the

property that they restrict to the (2n − 1) area forms on each H = constant. Whereas

d H is an invariant 1-form, the unit normal ∇ H/ ‖ ∇H ‖ is not invariant since the

metric ds2 is not invariant (why should it be?). We claim, however, that the restriction

τ 2n−1 of

σ 2n−1 :=‖ ∇ H ‖−1 d S2n−1 = i∇H /‖∇H ‖2ωn (4.56)

to VE is an invariant form for VE .

4.4(7) Show this. (Evaluate d H ∧ σ on (∇ H/ ‖ ∇ H ‖, T), for T orthonormal and

tangent to VE .)

The expression (4.56) can be “understood” heuristically as follows.
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∇H /‖∇H‖2

T ∗M
X

VE+1

VE

Figure 4.7

To flow from the level set VE to VE+1 along the gradient lines of H , in 1 second, we

solve the differential equations dx/dt = ∇ H/ ‖ ∇ H ‖2; see 2.1e. The right-hand side

is a vector field of length ‖ ∇ H ‖−1. The region between these level sets is invariant

under the Hamiltonian flow. A cylinder of gradient lines will have base area �S2n−1 and

altitude ‖ ∇ H ‖−1. This will be sent by the Hamiltonian flow into an oblique cylinder

of the same volume. Thus �S2n−1 ‖ ∇H ‖−1 is constant under the Hamiltonian flow,

as required.

4.4b. Time-Dependent Hamiltonians and Hamilton’s Principle

When H = H(q, p, t) depends explicitly on time we consider H as a function on the

extended phase space T ∗M × R. It is sometimes convenient to call the coordinates

qi = xi , pi = xi+n, t = x2n+1

Hamilton’s equations are still (4.48) but note now that

d H

dt
=

(
∂ H

∂qi

)
dqi

dt
+

(
∂ H

∂pi

)
dpi

dt
+ ∂ H

∂t
= ∂ H

∂t

and H is no longer a constant of the motion. Introduce new Poincaré forms on T ∗M×R

(for interpretation see section 16.4b) by

�1 = pi dqi − Hdt (4.57)

and

�2 = d� = dpi ∧ dqi − d H ∧ dt (4.58)

where now d f = (∂ f/∂qi )dqi + (∂ f/∂pi )dpi + (∂ f/∂t)dt , and so on.

Consider a vector field on T ∗M × R of the type

X = Xi ∂

∂qi
+ Xi+n ∂

∂pi
+ ∂

∂t

and thus along the integral curves of X we have

X =
(

dqi

dt

)
∂

∂qi
+

(
dpi

dt

)
∂

∂pi
+ ∂

∂t
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4.4(8) Show that Hamilton’s equations together with d H/dt = ∂ H/∂t are equiva-

lent to

iX� = 0 (4.59)

Such an X will again be called a Hamiltonian vector field. It is

X =
(

∂ H

∂pi

)
∂

∂qi
−

(
∂ H

∂qi

)
∂

∂pi
+ ∂

∂t
(4.60)

Let φX : T ∗M × R → T ∗M × R be the Hamiltonian flow generated by the field X
given by (4.60).

4.4(9) Show that

LX� = 0 (4.61)

for X Hamiltonian.

4.4(10) Let C be a closed curve in T ∗M × R. (C need not be the boundary of

any surface.)

q1, ,. . . qn

p
1
, . . . ,pn

C

C ′

t

X

X

X

X

Figure 4.8

Let C ′, as shown, be another closed curve that meets each orbit through C once and

only once (it need not be the push-forward of C). Show that∮
C

pi dqi − Hdt =
∮

C ′
pi dqi − Hdt (4.62)

(Hint: Look at the indicated surface with boundary swept out by the orbits through C)

Definition: Let C be any oriented compact curve in T ∗M × R. The action
associated to C is the line integral

S(C) =
∫

C
� =

∫
C

pi dqi − Hdt (4.63)
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Remark: As all physics students know, and as we shall see in Section 10.2, La-

grange’s equations result from Hamilton’s principle, namely that the first variation of

the “action”
∫

C L(q, q̇, t)dt vanishes for the actual dynamical path q = q(t) in config-

uration space. This integral should be thought of as being the integral of the Lagrangian

function L(q, q̇, t) in T M × R and where the curve C in T M × R is the lift of a curve

q = q(t) obtained by putting q̇ = dq/dt . Since we are restricting q̇ to be dq/dt in

T M × R, L(q, q̇, t)dt , though a 1-form on the lifted curve, is not to be considered

a 1-form on T M × R. On the other hand, along this lifted curve we do have, from

(4.49), Ldt = (pq̇ − H)dt = pdq − Hdt . This is the reason for calling the integral∫
pdq − Hdt the action integral in T ∗M × R. We shall not restrict our curves in

T ∗M × R to be lifted from M . Lagrange’s equations are simply the Euler–Lagrange

equations for
∫

Ldt , and we are now going to look at the result of putting the first vari-

ation of
∫

pdq − Hdt equal to 0. It is not necessary to consider the Euler– Lagrange

equations for this since pdq − Hdt is a 1-form on T ∗M ×R and we already know how
to differentiate integrals of forms from (4.33). We proceed to the details.

Consider a curve C0 = C0(u), a ≤ u ≤ b, in T ∗M × R parameterized by u = t (in

particular it is not a closed curve).

Definition: A variation of C0 is a map C of a rectangle in a (u, α) plane R
2 into

T ∗M × R such that C(u, 0) = C0(u).

u

b

a

α

∂/∂u

∂/∂α

α

C

t

q

p

C ( ,α)

αJ

C0

Figure 4.9

u need not be t when α 
= 0. Denote the curves u → C(u, α), α fixed, by Cα.

The vectors

C∗

(
∂

∂u

)
= ∂x(u, α)

∂u

are tangent to the varied curves and the vector field

C∗

(
∂

∂α

)
= ∂x(u, α)

∂α

at α = 0 is called the variation field. We denote it by J .
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We may compute the action along the varied curve Cα; call it S(α). Suppose now

we restrict ourselves to variations that change neither q nor time t at the endpoints
(as indicated in our diagram). Thus J has no ∂/∂q nor ∂/∂t component at t = a and

at t = b.

The first variation of action is by definition

S′(0) :=
[

d

dα

∫
Cα

pi dqi − Hdt
]

α=0

=
∫

C0

L∂x/∂α� (4.64)

4.4(11) Show that S′(0) = ∫
C0

i J �.

4.4(12) Suppose that S′(0) = 0 for all such variation fields J . C0 is parameterized by

t . Show then that the tangent vector T to C0 must satisfy iT � = 0 and thus C0 must be

a solution to Hamilton’s equations. This is Hamilton’s principle of stationary action
as formulated by Poincaré. (Hint: You may use the “fundamental lemma of the calculus

of variations”; if f is continuous and if
∫ b

a f (t)α(t)dt = 0 for all smooth functions α

that vanish at a and b, then f (t) = 0 for all a ≤ t ≤ b.) Classically one writes

δ

∫
pdq − Hdt = 0

iff C0 satisfies Hamilton’s equations.

4.4c. Poisson brackets

Given a time-independent function F on T ∗M we may associate a unique vector field

X F by

d F = −iX F ω

(when F = H is the Hamiltonian, X F = X is the Hamiltonian vector field). This

simply means that along the integral curves of X F we have dqi/dt = ∂ F/∂pi and

dpi/dt = −∂ F/∂qi . Suppose that G, XG is another pair, dG = −iXG ω. We define the

Poisson bracket of the functions F and G, written (F, G), by taking the derivative of
F as we move along the integral curves of G, (F, G) := XG(F). In particular, the rate

of change of a function F along a Hamiltonian flow is

d F

dt
= (F, H)

4.4(13) Show that X F generates canonical transformations, and

(F, G) = −ω(X F , XG) = −(G, F)

and in coordinates

(F, G) =
∑

i

∂(F, G)

∂(qi , pi )

4.4(14) Show, using Theorem (4.24), that i[X F ,XG ]ω = d(F, G), and thus the vector
field associated to (F, G) is −[X F , XG].



CHAPTER 5

The Poincaré Lemma and
Potentials

5.1. A More General Stokes’s Theorem

We shall accept the following technical generalizations of results already proven.

Let V p be a compact oriented submanifold (perhaps with boundary) of Mn and let

F : Mn → W m be a smooth map into a manifold W m . The image F(V ) in W need not

be a submanifold. It might have self-intersections and all sorts of pathologies. Still, if

β p is a form on W , it makes sense to talk of the integral of β over F(V ) and in fact

∫
F(V )

β p =
∫

V
F∗β p (5.1)

which generalizes (3.17). In a sense, the right-hand side is the definition of the left-hand

side. Then

∫
F(V )

dβ p−1 =
∫

V
F∗dβ p−1 =

∫
V

d F∗β p−1

=
∫

∂V
F∗β p−1 =

∫
F(∂V )

β p−1

Then if we define ∂ F(V ) = F(∂V ), we have the generalized Stokes’s theorem

∫
F(V )

dβ p−1 =
∫

∂ F(V )

β p−1 (5.2)

Actually one needs to integrate over manifolds with only “piecewise smooth” bound-

aries, such as a triangle, and also manifolds such as a solid cone. It is not easy to give

a careful description of these objects. It is important that Stokes’s theorem holds for

very general objects, basically by approximating the object and its boundary by, say,

manifolds with piecewise smooth boundaries ([A, M, R, box 7.2B]).
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5.2. Closed Forms and Exact Forms

A form β p is closed if dβ = 0. Thus

dβ0 = 0 ⇔ β0 is a constant function

dβ1 = 0 ⇔ (∂i b j − ∂ j bi ) = 0 in R
3 curl B = 0

dβ2 = 0 ⇔ (∂i b jk + ∂ j bki + ∂kbi j ) = 0 in R
3 div B = 0

A form β p is exact if β p = dα p−1, for some form α p−1.

The following observations are easy and important consequences of these definitions,

d2 = 0, and Stokes’s theorem.

1. Every exact form is closed.

2. The product of two closed forms is closed.

3. The product of a closed form and an exact form is exact. (You are asked to prove this in

Problem 5(1).)

4. The integral of an exact form over an orientable closed manifold (i.e., compact without

boundary) is 0.

5. The integral of a closed form over the boundary of an oriented compact manifold is 0.

Although every exact form is closed, β = dα ⇒ dβ = d2α = 0, it is not true that

every closed form is exact. A most important example is given by the 1-form

β1 = (x2 + y2)−1(xdy − ydx)

in R
2. First note that this form is not defined in all of R

2; certainly we must omit the

origin. Thus the manifold in question is R
2 − 0. One easily checks directly that β1 is

closed but it is easier to note that

β1 = d “arctan

(
y

x

)
” = d“θ”

This makes it seem as though β is in fact exact, but this is not so; the 0-form “θ” is not

a single-valued function, and that is why we have introduced the quotation marks! It is
single-valued if one introduces a “branch cut,” say the positive x axis. Thus β1 is exact

on the portion R
2−(positive x axis). In particular β is closed here. Clearly by choosing

a different branch cut we can see that dβ1 = 0 on all of R
2 − 0. But β1 cannot be

exact on all of R
2 − 0, for if we consider the closed curve C = x2 + y2 = 1, oriented

counterclockwise, then (dropping “ ”)

∮
C

β1 =
∮

C
dθ = 2π

and then observation 4 shows that β1 is not exact. Note that there is no contradiction

with observation 5 since the circle C is not the boundary of any compact surface in

R
2 −0. It is true that C = ∂ (unit disc) in R

2 but the unit disc has had its origin removed
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in R
2 − 0. Thus the crucial point is that C is a closed curve in R

2 − 0 but it is not the
boundary of a compact surface in R

2 − 0!

Let us say that a manifold Mn has first Betti number 0, written b1 = 0, if, basi-

cally, every closed oriented piecewise smooth curve C is the boundary of some com-

pact oriented “surface”; that is, there is some piecewise smooth oriented surface (with

boundary) V 2 and a map F :V 2 → Mn such that ∂ F(V ) = C . This concept, and its

higher dimensional analogues (to be discussed more thoroughly in Chapter 13) was

first introduced by Riemann. (The Italian mathematician Betti was a close friend of

Riemann’s.)

Theorem (5.3): Let Mn be a manifold with first Betti number 0. Then every closed
1-form β1 on Mn is exact.

P R O O F: The proof is essentially found in every calculus book in the case Mn =
R

3. We give a proof that uses our previously developed machinery for differenti-

ating integrals.

We wish to exhibit a function f such that d f = β1. Let x ∈ M and let y be a

fixed point in M . Fix an oriented curve C(y, x) that starts at y and ends at x and

define

f (x) :=
∫

C(y,x)

β1

We note first that f is in fact independent of the curve chosen to join y to x , for

if C ′(y, x) is another, then C − C ′, that is, C followed by C ′ with orientation

reversed, is a closed oriented curve. By hypothesis there is an oriented compact

surface F(V ) such that ∂ F(V ) = C and so

x

C ′ C

y

Figure 5.1

∫
C

β −
∫

C ′
β =

∫
C−C ′

β =
∮

∂ F(V )

β =
∫

F(V )

dβ = 0

We can now compute d f at the variable point x . Let vx be a vector at x . Take

any vector field v that coincides with vx at x , is defined in some neighborhood of
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the curve C(y, x) and which vanishes at y. If φt is the flow generated by v then

φtC(y, x) is a curve joining y to φt x , and we also have that dφt x/dt]t=0 = vx .

Then

d f (v) = d

dt
f {φt x}t=0 =

[
d

dt

∫
φt C(y,x)

β

]
t=0

=
∫

C(y,x)

Lvβ =
∫

C(y,x)

ivdβ + divβ =
∫

C(y,x)

divβ

= ivβx − ivβy = ivβx , since vy = 0.

Thus d f (v) = β(v), and so d f = β.

The following was the crucial ingredient of the proof.

Corollary (5.4): In any manifold Mn, if β1 is a 1-form whose integral over all
closed curves vanishes, then β1 is exact, β1 = d f .

If a p-form β p is exact, β p = dα p−1, we say that β p is derivable from the potential
α p−1.

5.3. Complex Analysis

In the complex plane M2 = C, we introduce the complex coordinate z = x + iy. Then

dz = dx + idy is a complex valued 1-form with values 1 and i , respectively on ∂/∂x
and ∂/∂y. We may also consider the complex conjugate 1-form dz = dx − idy, and

then

dz ∧ dz = −2idx ∧ dy

Let f (z, z) = a(x, y) + ib(x, y) be a complex valued function on some open subset

U of C. Then we can consider the 1-form

f (z, z)dz = (a + ib)(dx + idy) = (adx − bdy) + i(ady + bdx)

(This is not the most general 1-form since we have not included a term involving dz.)

If C , z = z(t), is a curve, we may form the integral∫
C

f dz :=
∫

C
(adx − bdy) + i

∫
C
(ady + bdx)

For exterior differential we get

d[ f dz] = (da ∧ dx − db ∧ dy) + i(da ∧ dy + db ∧ dx)

= (−ay − bx)dx ∧ dy + i(ax − by)dx ∧ dy

Thus

f dz is closed iff a and b satisfy the Cauchy–Riemann equations, in U , that is, iff f
is complex analytic or holomorphic.
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This can also be seen by the following formal calculation. By the chain rule we have

the two differential operators

∂

∂z
:= 1

2

(
∂

∂x
− i

∂

∂y

)

∂

∂z
:= 1

2

(
∂

∂x
+ i

∂

∂y

)

Then d[ f dz] = (∂ f/∂z)dz ∧ dz + (∂ f/∂z)dz ∧ dz = (∂ f/∂z)dz ∧ dz, and so f dz is

closed iff ∂ f/∂z = 0, that is, “ f does not depend on z,” and so f is complex analytic.

∂ f

∂z
= 0

is another form of the Cauchy–Riemann equations.

If f dz is closed and we put α(z) = ∫ z f dz, the integral from a fixed point to z
along an arbitrary path, then α is the potential, dα = f dz, provided it is single-valued,

that is, provided the integral is independent of the path chosen. From (5.3 ) this will be

the case provided U has first Betti number 0. We shall see in Section 13.3 that asking

b1 = 0 for a manifold is a weaker condition than demanding that the manifold be simply

connected. Simple connectivity is the usual condition imposed in complex analysis to

ensure single-valuedness of the potential α.

Note that to consider the behavior of f at infinity we should consider f as being

defined on the Riemann sphere (see Section 1.2d) except perhaps at ∞ itself, that is,

except at w = 1/z = 0. Since z is a complex analytic function of w, ∂z/∂w = 0, and

since dz/dw 
= 0 for our change of coordinates, we see from

∂

∂w
=

(
∂z

∂w

)
∂

∂z
+

(
∂z

∂w

)
∂

∂z

that

∂ f

∂z
= 0 iff

∂ f

∂w
= 0

This means that the notion of a function being complex analytic is well defined on the

Riemann sphere, independent of which coordinate z or w is used.

In the complex plane C, the residue of a function f plays an important role in

evaluating line integrals of f , but in the Riemann sphere it is the 1-form f dz that is

important, not its component f . For example, the function f (z) = 1/z has residue 1

at the simple pole z = 0, and so
∮

C dz/z = 2π i for any closed curve C circling once

z = 0 in the positive sense. But this curve also circles z = ∞ on the Riemann sphere,

and the function f = 1/z is described near ∞ by f (z) = 1/z = w near w = 0. Thus

the function f = 1/z has a simple zero at z = ∞; its “residue” there is 0. One might

then be mistakenly led to the contradiction that
∮

C dz/z = 0. The resolution lies with

the 1-forms, not the functions:∮
C

(
1

z

)
dz =

∮
C

wd
(

1

w

)
=

∮
C

(
− w

w2

)
dw = −

∮
C

(
1

w

)
dw

which is again 2π i since C circles ∞ in the negative sense. We associate a residue to
a 1-form, not a function!
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5.4. The Converse to the Poincaré Lemma

A closed 1-form β1 on Mn is exact if the first Betti number of Mn vanishes, that

is, if every closed oriented curve is the boundary of an oriented surface. On the 2

dimensional torus, neither closed curve C nor C ′ bounds a surface and thus we may

2π

2π

φ

θ

C ′

C ′

C

C

Figure 5.2

not expect that every closed 1-form is exact. In fact d“θ” and d“φ” are closed and∮
d“θ” = 2π = ∮

d“φ”.

The fact that exact forms are closed, that is, dd = 0, is usually called Poincaré’s
lemma. It should be appreciated that Poincaré utilized this result before the machin-
ery of exterior calculus had been developed! There is a partial converse to this result,

namely, every closed form is locally exact. Precisely

Theorem (5.5): If dβ p = 0, p ≥ 1, in a neighborhood U of x ∈ Mn, then there
is some perhaps smaller neighborhood U ′ of x and a (p −1) form α p−1 such that
β p = dα p−1 in U ′.

The following proof is basically a simple application of Cartan’s formula for Lie deri-

vatives. We give this proof because the same method is useful for other purposes.

The reader might enjoy more an older proof, as is given, for example, in the book by

Flanders [Fl].

P R O O F: It is sufficient to prove this result in the case Mn = R
n . This is because

a sufficiently small neighborhood U ′′ of x ∈ Mn is diffeomorphic to an open

ball V in R
n under a coordinate map φ : U ′′ → V . Since φ : U ′′ → V is a

diffeomorphism, φ−1 exists and β p = (φ−1 ◦ φ)∗β p = φ∗ ◦ φ−1∗β p. Then if β is

closed on M , φ−1∗β is closed on V ⊂ R
n . If we have the converse of Poincaré

on V ⊂ R
n then φ−1∗β = dα shows β = φ∗dα = dφ∗α as desired.

We may assume then that β p is a closed form on an open ball U of R
n . Consider

(as in 4.3b) the deformation φt x = (1− t)x; this time-dependent “flow” has φ0 =
the identity and φ1 is the map that sends every x to the origin. The velocity field

is v(t, y) = −y/(1 − t), for t 
= 1. First note that φ∗
0 is the identity map and φ∗

1 is
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the 0 map. Then considering β = β(x) as a time-independent p-form on R
n , we

have

β(x) = φ∗
0β(x) = φ∗

0β(φ0x) − φ∗
1β(φ1x)

=
∫ 0

1

d

ds
[φ∗

s β(φsx)]ds

To avoid subscripts upon subscripts upon. . . , let us introduce the following nota-

tion in this proof. We shall denote the vector v at x by v(x) and we shall sometimes

replace φt by φ(t). Also, for interior product we put iv = i{v}. Then the previous

expression for β(x) becomes, using (4.44), dβ = 0 and ∂β/∂t = 0∫ 0

1

φ∗
s d[i{v(φsx)}β(φsx)]ds =

∫ 0

1

d[φ∗
s i{v(φsx)}β(φsx)]ds

We should remark that this is not quite true. The vector field v(t, x) blows up at

t = 1 (but note that φ∗
1 = 0). We should take the integral from s = c to s = 0

and then let c → 1. It will be apparent in our final formula (5.6) that the factor

(1 − t)−1 disappears. We proceed as if this difficulty were not present.

We may take the operator d outside the s integral, yielding

β = dα p−1, α p−1 :=
∫ 0

1

φ∗
s [i{v(φsx)}β(φsx)]ds

Let us now write out the expression for α in detail. Put y = φs(x) = (1 − s)x. Then

(in coordinates y for R
n)

i{v(φsx)}β(s, y) = v j (y)b j K⇁(y)dyK = − y j

(1 − s)
b j K⇁(y)dyK

To take φ∗
s of this (p − 1)-form we must put everywhere y j = (1 − s)x j . We get

−x j b j K⇁((1 − s)x)dx K (1 − s)p−1. Putting τ = (1 − s) gives

α p−1 =
∫ 1

0

[τ p−1x j b j K⇁(τx)dx K ]dτ (5.6)

Note that the essential ingredient of the proof of the existence of a potential was

the fact that at any point 0 of a manifold Mn there is a neighborhood of 0 that can be
contracted to the point 0; that is, there is a deformation x �→ ψ(t)x = (1 − t)x that

collapses the neighborhood to the point 0 in 1 unit of time.

Note also that since all of R
n can be contracted to the origin, the result in R

n is

global; if dβ p = 0 in all of R
n then β p is globally exact (if p > 0).

Corollary (5.7): If div B = 0 in R
3 then B = curl A for some A.

(See Problem 5.5(2) at this time.)

Corollary (5.8): In Mn, a necessary and sufficient condition that one can solve
locally the system of partial differential equations

(∂i a j − ∂ j ai ) = bi j (with b ji (x) = −bi j (x) given)
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is that

∂i b jk + ∂kbi j + ∂ j bki = 0

5.5. Finding Potentials

In some simple situations one may exhibit potentials with very little effort. For ex-

ample, consider the simplest case of the electric field due to a charge q at the origin.

In spherical coordinates E = (q/r2)∂/∂r for r > 0. Using the euclidean metric in

spherical coordinates in R
3 − 0,

ds2 = dr 2 + r 2(dθ 2 + sin2 θdφ2)

we see that E = (q/r 2)dr = d(−q/r), for r > 0, exhibiting the scalar potential. The

2-form associated to E is the pseudoform

∗∗E = iE vol3

From Gauss’s law d∗∗E = 4πρ vol3 we see that ∗∗E is closed for r > 0 since the charge

density vanishes outside the origin. We compute directly a vector potential for E as

follows. In spherical coordinates,

vol3 = r 2 sin θdr ∧ dθ ∧ dφ

and so

∗∗E = i
(

q

r 2

∂

∂r

)
r 2 sin θdr ∧ dθ ∧ dφ = q sin θdθ ∧ dφ

Thus, for example, ∗∗E = d(−q cos θdφ) and A1 = −q cos θdφ is a possible choice for

potential. Note that spherical coordinates are badly behaved not only at the origin but

at θ = 0 and θ = π also, that is, along the entire z axis. Hence A
1 is a well-defined

potential everywhere except the entire z axis. Note however that we can also write

∗∗E = d[q(1 − cos θ)dφ], and since 1 − cos θ = 0 when θ = 0, this expression

A
1 = q(1 − cos θ)dφ (5.9)

is a well-defined potential everywhere except along the negative z axis!

We certainly do not expect to find a potential A
1 in the entire region R

3 − 0, for if

such an A
1 existed we would have∫∫

V
∗∗E =

∫∫
V

dA
1 =

∮
∂V

A
1 = 0

for any closed surface V 2 in R
3 − 0. But if we choose V 2 to be the unit sphere about

the origin we must have, by Gauss’s law, that
∫∫

V ∗∗E = 4πq! The singularities of A
1

prevent us from applying Stokes’s theorem to V .

We get the same result when we consider the magnetic field B
2 due to a hypothetical

magnetic monopole at the origin. This will be used when we discuss gauge fields in

Section 16.4. The vector potential has a Dirac string of singularities along the negative

z axis.
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Problems

5.5(1) Prove that the product of a closed and an exact form is exact.

5.5(2) Write out what (5.6) says in terms of vectors, for β2 in R
3.

5.5(3) Consider the law of Ampere–Maxwell in the case of an infinitely long straight
wire carrying a current j.

J
B

Figure 5.3

The steady state has ∂∗∗E/∂t = 0 and we are reduced to Ampere’s law
∮

∗∗B =
4π j for a curve as indicated, and dB2 = 0. An immediate solution is suggested,
∗∗B = 2 jdφ . Introduce appropriate coordinates, show that dB2 = 0, and exhibit
directly the vector potential A1 in R

3−wire. (You might wish to compare this with
the usual treatments in textbooks.)

5.5(4) The unit 3-sphere S3 ⊂ R
4 can be parameterized by three angles α, θ , and φ,

where θ and φ are the usual spherical coordinates on the 2-sphere S2(α) of
radius sin α.

ds= dα

αS2
(α)

S3⊂R
4

S2
(α)

θ

φ

N

Figure 5.4
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The Riemannian metric on S3 is “clearly”

ds2 = dα2 + sin2 α(dθ2 + sin2 θdφ2)

Put a charge q at the pole N of S3. E will certainly have the form E = E(α)∂/ ∂α.
Write down the resulting ∗∗E = iE vol3. What form must the function E = E(α) have
in order that d∗∗E = 0 for α 
= 0, π? Finish the determination of ∗∗E by computing∫

S(α)
∗∗E (note that essentially no integration is needed if you know the area of the

unit 2-sphere). Write down the electric covector E and verify dE = 0 and exhibit
the scalar potential for E, all for α 
= 0, π . Put B2 = 0. You have just verified
Maxwell’s equations in the region outside the two poles. Note that a “ghost”
charge of −q has appeared at the south pole!

One could consider placing a charge + q at the “north pole” of the projective
space RP3.

∗

∗

q

q

E E

E

E

S2

RP 3

RP 2

Figure 5.5

Since the “south pole” is now the same point, we have indicated the same
charge there. The “equator” is really a projective plane RP2, since RP3 is S3

with antipodal points identified. A 3-dimensional ε-neighborhood of RP2, that is,
points on RP3 that have distance < ε from RP2, has the indicated 2-sphere S2 as
boundary. (It is a 2-sphere since it is also the boundary of a 3-disc neighborhood
of the north pole.) Gauss’s theorem, applied to this neighborhood with boundary
S2 , shows that there is a total charge of −q inside S2. Note that there is a jump
discontinuity of E on RP2. This shows that a ghost surface charge −q must
be distributed on the “equator” RP2!

5.5(5) Show that in any closed manifold M3, the total charge vanishes!



CHAPTER 6

Holonomic and Nonholonomic
Constraints

6.1. The Frobenius Integrability Condition

Can one always find a surface orthogonal to a family of curves in R
3 ?

6.1a. Planes in R
3

Given a smooth nonvanishing vector field in R
3, by solving a system of ordinary differ-

ential equations one can always locally find a smooth family of integral curves, that is,

nonintersecting curves that fill up a region and are always tangent to the vector field.

Given a smooth family of 2-planes � in R
3, can one always find a smooth family of

integral surfaces, that is, nonintersecting surfaces that fill up a region and are everywhere

tangent to the planes? It is rather surprising that this is not always so! Suppose that one

could find such integral surfaces.

f = t1

n

n

C

f = t0

�

�

x(t1)

x(t0)

Figure 6.1

Let C, x = x(t) be a parameterized curve that is transverse to the family of supposed

integral surfaces (we can certainly find such a curve locally). Then locally we can define

165
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a function f = f (x) whose level surfaces are surfaces of the family, namely, the level

surface where f = t1 consists of the supposed integral surface that is pierced by the

transversal curve at parameter value t = t1. But then ∇ f must be along the given

normal n to the planes, n = λ∇ f for some function λ (an “integrating factor”). In

cartesian coordinates, the “normal” covector ν = ni dxi must satisfy ν = λd f and then

dν = dλ ∧ d f = (d log λ) ∧ ν, and we then recover Euler’s integrability condition;

if such integral surfaces exist, then

ν ∧ dν = 0, i.e., n • curl n = 0

This condition, given entirely in terms of the field of normals, must be satisfied if

integral surfaces are to exist.

Of course if dν = 0, ν = dg locally, and so n is normal to the surfaces g = constant.

Consider the planes � normal to the vectors

n = y
∂

∂x
− x

∂

∂y
+ ∂

∂z
∼ (y, −x, 1)T

Then ν = ydx − xdy + dz and so ν ∧ dν = −2dx ∧ dy ∧ dz �= 0; the vectors n are
not the normals to a family of surfaces!

Classically, in cartesian coordinates, the planes � orthogonal to the vector n would

be written

ν = ydx − xdy + dz = 0

meaning not that the form ν is the form 0 but rather that at each point (x0, y0, z0) we

are looking at all vectors A = (a1, a2, a3)T that satisfy

0 = ν(A) = iAν = y0a1 − x0a2 + a3

clearly a 2-dimensional plane at (x0, y0, z0). The collection of all these planes at all

points x in R
3 is called the distribution associated to the 1-form ν. (This is not to be

confused with the generalized functions also called distributions.)

In general in R
3 one would describe a family of planes by writing

ν = P1dx1 + P2dx2 + P3dx3 = 0 (6.1)

where P1, P2, and P3 are smooth functions. To “solve the total differential equation”

(6.1) means to find surfaces x = x(u1, u2) such that the pull-back of ν to these surfaces

vanishes identically, that is, Pi∂xi/∂uα = 0 for α = 1, 2. We have seen that ν ∧dν = 0

is a necessary condition for this system of partial differential equations for x = x(u1, u2)

to possess a 1-parameter family of solutions. (We shall see shortly that this condition

is also sufficient.) If we are given such a family of solutions, by taking a transversal

curve x = x(t) as earlier, this family of solutions can be described as the level sets

t = constant.

Definition: A k-dimensional distribution �k on Mn assigns in a smooth fashion

to each x ∈ Mn a k-dimensional subspace �k(x) of the tangent space to Mn at x .

An r -dimensional integral manifold of �k is an r -dimensional submanifold of

Mn that is everywhere tangent to the distribution. The distribution �k is said to be
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(completely) integrable if locally there are coordinates x1, . . . , xk, y1, . . . , yn−k

for Mn such that the “coordinate slices” y1 = constant, . . . , yn−k = constant are

k-dimensional integral manifolds of �k . Such a coordinate system (x, y) will be

called a Frobenius chart for M .

The fundamental question is clear. When is �k completely integrable?

6.1b. Distributions and Vector Fields

Suppose that we are given a distribution �k and a pair of vector fields X and Y on Mn

that are in the distribution X ∈ � and Y ∈ � at each point in an open set. Suppose now

that the distribution is integrable. Then the two vector fields are always tangent to the

integral manifolds. By the Corollary in 4.1c we conclude that the Lie bracket [X, Y]

is also in the distribution. We can describe this symbolically by saying that if �k is
integrable then

[�, �] ⊂ �

It will turn out that this condition is also sufficient for showing integrability!

6.1c. Distributions and 1-Forms

Let θ 1 be a 1-form that does not vanish at a point x ∈ Mn . The annihilator or null
space of θ at x is the (n − 1)-dimensional subspace of Mn

x defined by those vectors

X ∈ Mn
x such that θ(X) = 0. Classically one writes θ = 0 for this null space. (When

discussing distributions it is common to call a 1-form θ a Pfaffian; θ = 0 is then called

a Pfaffian equation.) If θ1, . . . , θr are r = n − k linearly independent 1-forms at each

point of an open subset of Mn, θ1 ∧ . . . ∧ θr �= 0, then at each point the intersection of

their null spaces forms an n − r = k dimensional distribution �k . Thus

X ∈ �k iff θ1(X) = . . . = θr (X) = 0

We may again write this distribution locally as θ1 = 0, . . . , θr = 0. We do not claim

that every distribution can be globally defined by r Pfaffians.

Definition: The distribution � is in involution if [�, �] ⊂ �, that is, if the

distribution is “closed under brackets.”

We know that an integrable distribution is in involution.

If �k is in involution, then for α = 1, . . . , r we must have that for any pair of vector

fields X, Y that are in the distribution (see (4.25))

dθα(X, Y) = X{θα(Y)} − Y{θα(X)} − θα([X, Y]) = 0

We say then that if � is in involution, then “dθα = 0 when restricted to the distribution,”

that is, when we allow dθα to be evaluated only on vectors of the distribution.

Conversely, suppose that dθα = 0 when restricted to �, α = 1, . . . , r. Then 0 =
dθα(X, Y) = X(0) − Y(0) − θα([X, Y]) shows that [X, Y] ∈ �, and so [�, �] ⊂ �.

We now give several rewordings of this result, all of which are important.
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Theorem (6.2): The following conditions are locally equivalent.

(i) � is in involution, that is, [�, �] ⊂ �.

(ii) dθα is the zero 2-form when restricted to �.

(iii) There are 1-forms λαβ such that dθα = ∑
β λαβ ∧ θβ .

(iv) dθα ∧ 	 = 0, where 	 = θ1 ∧ . . . ∧ θr .

P R O O F: We have already proved (i) ⇔ (ii). (iii) ⇒ (ii) since

dθα(X, Y) =
∑

β

λαβ ∧ θβ(X, Y)

=
∑

β

λαβ(X)θβ(Y) −
∑

β

λαβ(Y)θβ(X) = 0

Conversely, suppose that all dθα = 0 when restricted to �. Complete θ1, . . . , θr

locally to a basis for 1-forms by adjoining θr+1, . . . , θn . Let e1, . . . , en be the dual

basis for vector fields. Then θα(ei ) = 0 for α = 1, . . . , r and i = r + 1, . . . , n
shows that er+1, . . . , en spans �. Now expand dθα in terms of the basis θ1, . . . , θn .

dθα =
∑

1≤β≤r

λαβ ∧ θβ +
∑

r<i< j

μi j
α θi ∧ θ j (6.3)

for some coefficients λ and μ. Thus for r < i < j we have 0 = dθα(ei , e j ) = μi j
α

and so dθα = ∑
1≤β≤r λαβ ∧ θβ . This shows (ii) ⇒ (iii) and so (ii) ⇔ (iii).

It is immediate that (iii) ⇒ (iv). Assume (iv). From (6.3)

0 = dθα ∧ 	 =
∑

r<i< j

μi j
α θi ∧ θ j ∧ 	 =

∑
r<i< j

μi j
α θi ∧ θ j ∧ θ1 ∧ . . . ∧ θr

But the θ ’s are independent; hence μi j
α = 0 for r < i < j . Thus (iv) ⇒ (iii) and

we are finished.

In summary, we have seen that a distribution �k can locally be described by either

exhibiting k linearly independent vector fields

X1, . . . , Xk

that span �k at each point in a region, or by exhibiting r = n − k linearly independent

1-forms

θ1, . . . , θr

whose common null space is �k . The system is in involution if either

[�, �] ⊂ �

or dθα = ∑
β λαβ ∧ θβ for some 1-forms λαβ . In this case we write

dθα = 0 mod θ

meaning that dθα becomes 0 when all of the θα are put = 0.

We know that an integrable distribution is in involution. We now sketch a proof of

the converse (usually attributed to Frobenius).
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6.1d. The Frobenius Theorem

Let �k be any smooth distribution of k-planes in Mn and let (locally) {XA}, A =
1, . . . , k be smooth vector fields that span the distribution in some open set U of Mn .

Let φA be the local flow generated by the field XA. Given x ∈ U , we construct a

k-dimensional submanifold of Mn passing through x as follows.

Let Dk ⊂ R
k be a small disc about the origin of R

k and let t1, . . . , tk be coordinates

for R
k (for simplicity, we write indices on the t’s as subscripts). Define

� : Dk → Mn

by

�(t) = φk(tk) ◦ φk−1(tk−1) ◦ · · · ◦ φ1(t1)(x)

This is certainly defined if t2
1 + . . . + t2

k is small enough. We illustrate this for k = 2

D2

M n

�(x)

X2

φ1(t1)x

φ2(t2)◦φ1(t1)x(t  ,1

,

t2)

X1
x

�(D2
)

Figure 6.2

It should be clear (see Problem 6.1) that for the differential of � at t = 0, we have

�∗ : R
k
0 → Mn

x

�∗

(
∂

∂tA

)
= XA at x = �(0) (6.4)

and thus �∗Rk
0 = �k(x). Thus �(Dk) is tangent to �k at the single point x .

Definition: A smooth map of manifolds F : W k → Mn is an immersion and

F(W ) is an immersed submanifold provided

F∗ : W k
w → Mn

F(w)

is 1:1 (i.e., ker F∗ = 0) at each w ∈ W k .

In our case �∗ is 1:1 at 0 ∈ R
k and consequently 1:1 in some neighborhood of 0. Thus

the map � : Dk → Mn defines an immersed submanifold �(Dk) of Mn provided Dk

is small enough.
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Frobenius Theorem: (6.5): If the distribution �k is in involution

[�, �] ⊂ �

then each such immersed disc �(Dk) is an integral manifold of � and this dis-
tribution is completely integrable.

P R O O F: In the following computation we shall denote the vector X at x ∈ Mn

by X(x) rather than Xx . Since we are not using X as a differential operator there

should be no confusion.

The essential point is to show that if � is in involution then �k is tangent

to �(Dk) at each point of this immersed disc. We already know, without any
assumption, that � is tangent to the disc �(D) at x = �(0). From the definition

of � (and again denoting φt by φ(t))

�(t) = φk(tk) ◦ φk−1(tk−1) ◦ · · · ◦ φ1(t1)(x)

we see that �∗ takes the tangent vector ∂/∂tA at t into the vector

∂

∂h
[φk(tk) ◦ · · · ◦ φA(tA + h) ◦ · · · ◦ φ1(t1)(x)]h=0

= φk(tk)∗ ◦ · · · ◦ φA(tA)∗XA (at the point φk−1(tk−1) ◦ · · · ◦ φ1(t1)(x))

Mn

�(x)

X2

�(D2)

X2(φ2(t2)◦φ1(t1)x)

φ2(t2)∗X1(φ1(t1)x)

X1(φ1(t1)x)

φ1(t1+h)x

φ1( )x

X

x
1

t1

Figure 6.3

But this simply says that the tangent space to �(Dk) at �(t) has a basis given by

φk(tk)∗ ◦ · · · ◦ φ2(t2)∗X1(φ1(t1)x)

φk(tk)∗ ◦ · · · ◦ φ3(t3)∗X2(φ2(t2) ◦ φ1(t1)x)

. . .

Xk(φk(tk) ◦ · · · ◦ φ1(t1)x)

Thus we need only show that each flow φA(t) sends (via its differential) the distri-
bution �k into itself ! This will follow from [�, �] ⊂ � in the following manner.
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Let Y ∈ �(y). We must show that [φA(t)∗Y] ∈ �(φA(t)y). Let � be defined

by the Pfaffians θ1 = 0, . . . , θr = 0. We know that θα(Y) = 0, α = 1, . . . , r . Let

Yt := φA(t)∗Y and put X := XA. By construction, Yt is invariant under the flow

φA(t), and so

LX(Yt) = 0 along the orbit φA(t)y

Consider the real-valued functions

fα(t) = θα(Yt) = iYt θα, α = 1, . . . , r

Then, differentiating with respect to t

f ′
α(t) = X{iYt θα} = LX{iYt θα}, which by (4.24)

= iYt {iXdθα + diXθα} = iYt iXdθα

since iXθα = 0. Since � is in involution, from part (iii) of (6.2) we have

f ′
α(t) = iYt iX

( ∑
β

λαβ ∧ θβ

)
= iYt

( ∑
β

λαβ(X)θβ

)

=
∑

β

λαβ(X)θβ(Yt) =
∑

β

λαβ(X) fβ(t)

Thus the functions fα satisfy the linear system

f ′
α(t) =

∑
β

λαβ(X) fβ(t)

fα(0) = θα(Y) = 0

By the uniqueness theorem for such systems fα(t) = 0 and so θα(Yt) = 0. Thus

Yt ∈ � for all t , as desired. Then �k is tangent to �(Dk) at each point of this

immersed disc.

To show complete integrability we must introduce coordinates for which our

immersed discs are “slices” y1 = c1, . . . , yn−k = cn−k . The procedure is very

much like that followed in our introductory section (6.1a), where we introduced

a coordinate f = t by considering a curve transverse to the distribution. Here

we must introduce a transverse (n − k)-dimensional manifold W n−k and we can

let y1, . . . , yn−k be local coordinates on W . It can be shown, just as with integral

curves of a smooth vector field, that the integral discs, through distinct points of

W, will be disjoint if they are sufficiently small. This will be discussed more in

Section 6.2. We shall not go into details.

Problems

6.1(1) Verify (6.4).

6.1(2) Show that a 1-dimensional distribution in Mn is integrable. Why is this evident
without using Frobenius?
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6.2. Integrability and Constraints

Given a point on one curve of a family of curves, can one reach a nearby point on the same
curve by a short path that is always perpendicular to the family?

6.2a. Foliations and Maximal Leaves

We know that if a distribution �k on Mn is in involution, [�, �] ⊂ �, then the

distribution is integrable; in the neighborhood of any point of M one may introduce

“Frobenius coordinates” x1, . . . , xk, y1, . . . , yn−k for Mn such that the “coordinate

slices”

y1 = constant, . . . , yn−k = constant

are k-dimensional integral manifolds of �k . The integral manifold through a given

point (x0, y0), of course, also exists outside the given coordinate system and might

Figure 6.4

even return to the coordinate patch. If so, it will either reappear as the same slice or

appear as a different one. For example, in the usual model of the torus T 2 as a rectangle

in the plane (this time with sides of length 1) with periodic identifications, consider the

φ

1

1
θ

Figure 6.5

distribution �1 defined by dφ −kdθ = 0, where k is a constant. The integral manifolds

in this case are the straight lines in the rectangle with slope k. If k = p/q is a rational

number (we have illustrated the case k = 1/2) then the slice through (0, 0) is a closed
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curve winding q times around the torus in the θ direction and p times around in the

φ direction. On the other hand, if k is irrational, then the integral curve leaving (0, 0)

will never return to this point, but, it turns out, will lie dense on the torus. The integral

curve will leave and reenter each Frobenius chart an infinite number of times, never

returning to the same slice.

φ

θ

Figure 6.6

If a distribution �k ⊂ Mn is integrable, then the integral manifolds define a foliation
of Mn and each connected integral manifold is called a leaf of the foliation. A leaf that

is not properly contained in another leaf is called a maximal leaf. It seems clear from

the preceding example with irrational slope that the maximal leaf through (0, 0) is not

an embedded submanifold (see 1.3d); this is because the part of a maximal leaf that lies

in a Frobenius chart consists of an infinite number of “parallel” line segments. There

is no chance that we can describe all of these segments by a single equation y = f (x).

However, each “piece” of the leaf does look like a submanifold. The leaf through (0, 0)

is the image of the real line under the map F : R → T 2 given by θ → (θ, kθ); this is

clearly an immersion since F∗ is 1:1 (see 6.1d).

We have just indicated one way in which an immersed submanifold can fail to be an

embedded submanifold. There are two other commonly occurring instances.

F(0)

Figure 6.7

Both illustrated curves are immersions of the line R into the plane R
2. In the first

curve the map F is not 1 : 1 (even though F∗ is if the curve is parameterized so that

the speed is never 0), whereas in the second curve, F is 1 : 1 but F(0) is the limit of

points F(t) for t → ∞. In neither case can one introduce local coordinates x, y in R
2

near the troublesome point so that the locus is defined by y = y(x).

As we have seen in the case of T 2, a maximal leaf need not be an embedded sub-

manifold. Chevalley, however, has proved the following.
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Theorem (6.6): A maximal leaf of a foliated manifold Mn is a 1 : 1 immersed
submanifold; that is, there is a 1 : 1 immersion F : V k → Mn of some V k that
realizes the given leaf globally.

6.2b. Systems of Mayer–Lie

Classically the Frobenius theorem arose in the study of partial differential equations.

An important system of such equations is the “system of Mayer–Lie”; we are to find

functions yβ = yβ(x), β = 1, . . . , r , satisfying

∂yβ

∂xi
= bβ

i (x, y), i = 1, . . . , k (6.7)

with initial conditions

yβ(x0) = yβ
0

where b is a given matrix of functions. By equating mixed partial derivatives

∂2 yβ/∂x j∂xi = ∂2 yβ/∂xi∂x j and using (6.7) we get the immediate integrability
conditions [

∂bβ
i

∂x j
− ∂bβ

j

∂xi

]
=

r∑
α=1

[(
∂bβ

j

∂yα

)
bα

i −
(

∂bβ
i

∂yα

)
bα

j

]
(6.8)

We wish to show that (6.8) is also a sufficient condition for a solution to exist.

Let x1, . . . , xk be coordinates in R
k and y1, . . . , yr be coordinates in R

r . Then in

Mn = R
k × R

r we consider the distribution �k defined by the Pfaffians

θβ := dyβ −
∑

i

bβ
i (x, y)dxi = 0 (6.9)

In Problem 6.2(1) you are asked to show that these 1-forms are independent.

The Frobenius integrability condition dθβ = 0 mod θ is simply the statement that

dθβ becomes 0 when all of the θ ’s are put equal to 0. In our case

dθβ = −d
∑

bβ
i (x, y)dxi = −

∑
dbβ

i ∧ dxi

= −
∑

i

[ ∑
j

(
∂bβ

i

∂x j

)
dx j ∧ dxi +

∑
α

(
∂bβ

i

∂yα

)
dyα ∧ dxi

]

To put θα = 0 is to put dyα = ∑
k bα

k dxk , and so, mod θ ,

dθβ = −
∑

i j

(
∂bβ

i

∂x j

)
dx j ∧ dxi −

∑
α,i, j

(
∂bβ

i

∂yα

)
bα

j dx j ∧ dxi

= −
∑

i j

[
∂bβ

i

∂x j
+

(
∂bβ

i

∂yα

)
bα

j

]
dx j ∧ dxi

and thus dθβ = 0 mod θ is simply the statement that the 2-form dθβ above must be 0.

This means that the coefficients of dx j ∧ dxi , made skew symmetric in i and j, must
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vanish. This gives exactly the naive integrability condition (6.8). Hence the distribution

in R
k × R

r defined by (6.9) is completely integrable.

maximal leaf through 

R
r

0

x0

R
k

y

(x0 0,y )

Figure 6.8

Let V k be the maximal leaf through (x0, y0). One can easily see from (6.9) that the

distribution is never “vertical”: No nonzero vector of the form aβ∂/∂yβ is ever in the

distribution. It seems clear from the picture (and it is not difficult to prove) that this

implies that the leaf through (x0, y0) can be written in the form yβ = yβ(x). For these

functions we have that θβ = 0 when restricted to the leaf. Thus dyβ = ∑
bβ

i (x, y)dxi

and then ∂yβ/∂xi = bβ
i (x, y) as desired.

6.2c. Holonomic and Nonholonomic Constraints

Consider a dynamical system with configuration space Mn and local coordinates

q1, . . . , qn . It may be that the configurations of the system may be constrained to

lie on a submanifold of Mn . For example, a particle moving in R
3 = M3 may be

constrained to move only on the unit sphere. In this case we have a single constraining

equation F(x, y, z) = x2 + y2 + z2 = 1. We may write this constraint in differential

form d F = 0 = xdx + ydy + zdz. More generally we may impose constraints given

by r exact 1-forms, d F1 = 0, . . . , d Fr = 0, constraining the configuration to lie on an

n − r -dimensional submanifold V n−r of Mn , at least if d F1 ∧ . . . ∧ d Fr �= 0 on V n−r .

The constraints have reduced the number of “degrees of freedom” from n to n − r .

Still more generally, we may consider constraints given by r independent Pfaffians that

need not be exact

θ1 = 0, . . . , θr = 0 (6.10)

Definition: The constraints (6.10) are said to be holonomic or integrable if the

distribution is integrable; otherwise they are nonholonomic or nonintegrable.
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Of course, if the constraints are holonomic, then by the Frobenius theorem we may

introduce local coordinates x, y so that the system is constrained to the submanifolds

y1 = const., . . . , yr = const., and then the constraints can be equivalently written as

dy1 = 0, . . . , dyr = 0. Nonholonomic constraints are more puzzling. Consider the

classic example of a vertical unit disc rolling on a horizontal plane “without slipping.”

z

x

y

ψ
e2

e1

(x,y)

φ

Figure 6.9

To describe the configuration of the disc completely we engrave an orthonormal pair

of vectors e1, e2 in the disc and consider the endpoint of e1 as a distinguished point on

the disc. The configuration is then completely described by

(x, y, ψ, φ)

where (x, y) are the coordinates of the center of the disc, φ is the angle that e1 makes

with the vertical (positive rotations go from e1 to e2), and ψ is the angle that the plane

of the disc makes with the x axis. (The line of intersection of the disc and the xy plane

is directed such that an increase of the angle φ will roll the disc in the positive direction

along this line.) It is then clear that the configuration space of the disc is

M4 = R
2 × S1 × S1 = R

2 × T 2

The condition that the disc roll without slipping is expressed by looking at the motion

of the center of the disc. It is

θ1 : = dx − cos ψdφ = 0 (6.11)

θ2 : = dy − sin ψdφ = 0

It would seem that the constraints would reduce the degrees of freedom by 2, but in a
certain sense this is not so. We can see that the constraints are nonholonomic as follows:

dθ1 = sin ψdψ ∧ dφ yields

dθ1 ∧ (θ1 ∧ θ2) = sin ψdψ ∧ dφ ∧ dx ∧ dy �= 0

By (6.2), part (iv), the distribution is not integrable. Recall that in the case of integrable

constraints we have integral manifolds, the leaves V k , on which the system must remain.

If we move (from a configuration point p) a small distance in a direction that violates
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the constraints, that is, along a curve whose tangent vector is not annihilated by all of

the constraint Pfaffians θ1, . . . , θr , then we automatically end at a point q on a different
leaf. There is no way that one can move from p to q while obeying the constraints and

q

p

q′

Figure 6.10

remaining in the given Frobenius coordinate patch. It is possible that an endpoint q ′

lies on the same maximal leaf as p, but to go from p to q ′ while obeying the constraints

requires a “long” path, that is, a path that leaves the coordinate patch. This is the

meaning of the statement that in a holonomic system one has locally only n −r degrees

of freedom; we must stay on the (n − r)-dimensional leaf. It is also a fact that although

a maximal leaf can return to an infinite number of different slices globally (as in T 2

with irrational slope) it cannot return to every slice in the coordinate patch. Some points
in the patch cannot be reached from p while obeying the constraints.

This is not the case in our nonholonomic disc! Recall that the constraints demand

rolling without sliding. Consider the disc in an initial state at the origin and lined up

along the x axis. Now violate the constraints by sliding the disc in the y direction for

an arbitrarily small distance. If the system were holonomic we could not roll the disc

along a small path from the initial to the final configuration. But here we can!

z

y

x

Figure 6.11

We have indicated a path in Fig. 6.11. You should convince yourself that you can obey

the constraints and end up at a configuration that differs from the initial configuration by
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an increment in only one of the coordinates. We have illustrated the case when only y has

been changed. (A change in ψ only is very easy since dx = dy = dφ = 0 satisfies the

constraints; this is simply revolving the disc about the vertical axis.) Thus, although the

two constraints limit us “infinitesimally” to 2 degrees of freedom, we see that actually

all neighboring states in a 4-dimensional region are “accessible” (by means of piecewise

smooth curves) while obeying the constraints. In the general case of r nonholonomic

constraints in an Mn , there will be a set of states of dimension greater than n − r that

will be accessible from an initial state via short piecewise smooth paths obeying the

constraints. The actual dimension is given by “Chow’s theorem,” to be discussed in

Section 6.3g. We shall discuss a very important special case in thermodynamics in our

next section.

For an application of holonomy to the problem of parking a car in a tight spot, see

Nelson’s book [N, p. 34]

Problem

6.2(1) Show that the Pfaffians in (6.7) are linearly independent.

6.3. Heuristic Thermodynamics via Caratheodory

Can one go adiabatically from some state to any nearby state?

6.3a. Introduction

In this section we shall look at some elements of thermodynamics from the viewpoint

of Frobenius’s theorem and foliations. This was first done in 1909 by Caratheodory,

who attempted (at the urging of Max Born) an axiomatic treatment of thermodynamics.

His treatment had shortcomings; some were purely mathematical, stemming from the

local nature of Frobenius’s theorem. A careful axiomatic treatment of Caratheodory’s

approach has been given by J. B. Boyling [Boy]. My goal here is much more limited. I

only wish to exhibit the geometrical setup that gives, in my view, the simplest heuristic
picture for the construction of a global entropy, using the mathematical machinery

that we have already developed. (My first introduction to the geometrical approach

for a local entropy was from Bob Hermann; see his book [H].) I restrict myself to

systems of a very simple type; I employ strong restrictions, which, however, are not

uncommon in other treatments. I will use very specific constructions, for example, I

will make use of familiar processes such as “stirring” and “heating at constant volume.”

We will accept Kelvin’s version of the second law. This leads, through Caratheodory’s

mathematical characterization of a nonholonomic constraint, to the existence of the

global entropy.

For supplementary reading I suggest chapter 22 of the book of Bamberg and Stern-

berg [B, S], but it should be remarked that their thermodynamic entropy is again only

locally defined.
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6.3b. The First Law of Thermodynamics

Consider, for example, a system of regions of fluids separated by “diathermous” mem-

branes: membranes that allow only the passage of heat, not fluids. We assume the

system to be connected.

p1v1

p2v2

p3v3

pnvn

Figure 6.12

We assume that each state of the system is a thermal equilibrium state. Let pi , vi

be the (uniform) pressure and volume of the i th region. The “equations of state” (e.g.,

pivi = ni RTi ) at thermal equilibrium will allow us to eliminate all but one pressure,

say p1; thus a state, instead of being described by p1, v1, . . . , pn, vn , can be described

by the (n + 1)-tuple p1, v1, v2, . . . , vn . It is important to assume that there is a global

internal energy function U of the system that can be used instead of p1. Our states

then have n + 1 coordinates

v0 := U, v1, v2, . . . , vn

More generally, the state space is assumed to be an n + 1-dimensional manifold Mn+1

with local coordinates of this type; U , however, is a globally defined energy function.

In Section 6.3c we shall define the state space Mn+1 more carefully, but for the present

we shall only be concerned with local behavior.

A path in Mn+1 represents a sequence of states, each in equilibrium. Physically, we

are thus assuming very slow changes in time, that is, quasi-static transitions. We shall

also need to consider non-quasi-static transitions, such as, “stirring.” Such transitions

start at some state x and end at some state y, but since the intermediate states are not

equilibrium states there is no path in Mn+1 joining x to y that represents the transition.

These are “irreversible” processes. Schematically, we shall indicate such transitions by

a dashed line curve joining x to y.

On Mn+1 we assume the existence of a work 1-form W 1 describing the work done

by the system during a quasi-static process.

W 1 =
n∑

i=1

pi dvi =
n∑

i=1

pi (U, v1, v2, . . . , vn)dvi

Since we do not assume that W 1 is closed, the line integral of W 1 is in general dependent
upon the path joining the endpoint states.

We also assume the existence of a heat 1-form

Q1 =
n∑

i=0

Qi (U, v1, v2, . . . , vn)dvi
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(with again v0 = U ) representing heat added or removed from the system (quasi-

statically). Again Q1 is not assumed closed. We shall assume that Q1 never vanishes.

(In [B, S], Q1 is derived, rather than postulated as here.)

We remark that in many books the 1-forms Q1 and W 1 would be denoted by d̄ Q
and d̄W , respectively. We shall never use this misleading and unnecessary notation; Q1

and W 1 are in no sense exact.

The first law of thermodynamics

dU = Q1 − W 1

associates a “mechanical equivalent energy” to heat and expresses conservation of
energy.

6.3c. Some Elementary Changes of State

1. Heating at constant volume

state space

adiabatic

      stir at constant

volume
and so

    

along 

along 

U = v0

W(γ̇ ) = 0,

dU = Q

γ

M

γ III

y ′

x

y

γII

γII

v n

Q(γ̇ II) = 0

  dU =−W

v1

I

γ I

Figure 6.13

If γI is a path representing heating at constant volume, then dv1 = 0, . . . , dvn = 0,

and thus the work 1-form W vanishes when evaluated on the tangent γ̇I . From conser-

vation of energy dU = Q along γI .

2. Quasi-static adiabatic process. Since no heat is added or removed in such a process we

have Q(γ̇I I ) = 0 and so dU = −W .

3. Stirring at constant volume. This is an adiabatic process but since it is not quasi-static

we cannot represent it by a curve in state space. We schematically indicate it by a dashed

curve γI I I joining the two end states x and y′. Q and W make no sense for this process,

but work is being done by (or on) the system, the amount of work being the difference

of the internal energy U (y′) − U (x).

The preceding considerations suggest the following structure of the state space. We

shall assume that there is a connected n-manifold, the mechanical manifold V n , and
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a differentiable map π of Mn+1 onto V n having the property that the differential π∗ is

always onto. (Such a map is called a submersion.) Schematically

M

V

π−1
(v)

v

Figure 6.14

By the main theorem on submanifolds of Section 1.3d, if v ∈ V n then π−1(v) is a

1-dimensional embedded submanifold of Mn+1. We shall assume that each π−1(v) is

connected. The manifold V n will be covered by a collection of local coordinate systems,

typically denoted by v1, . . . , vn . V n takes the place of the volume coordinates used
before. The curves π−1(v) are the processes “heating and cooling at constant volume”

employed previously. Since we have assumed that each such curve is connected, we

are assuming that given any pair of states lying on π−1(v), one of them can be obtained

from the other by “heating at constant volume.” It is again assumed that the work 1-form

W 1 on Mn+1 is 0 when restricted to π−1(v). On the other hand, the heat 1-form Q1 is

not 0 when restricted to these curves. The first law then requires that dU = Q �= 0

for such processes. In particular it would be possible to parameterize each π−1(v) by

internal energy U . Then U, v1, . . . , vn forms a local coordinate system for Mn+1 (with

U a global coordinate).

6.3d. The Second Law of Thermodynamics

A cyclic process is one that starts and ends at the same state. The second law of
thermodynamics, according to Lord Kelvin, can be stated as follows.

In no quasi-static cyclic process can a quantity of heat be converted entirely into its

mechanical equivalent of work.

The second law of thermodynamics, according to Caratheodory (1909), says

In every neighborhood of every state x there are states y that are not accessible from

x via quasi-static adiabatic paths, that is, paths along which Q = 0.

Caratheodory’s assumption is weaker than Kelvin’s:

Theorem (6.12): Kelvin’s version implies Caratheodory’s.



182 H O L O N O M I C A N D N O N H O L O N O M I C C O N S T R A I N T S

P R O O F:

cool at constant volume

         

Q = 0

II

x

I

y

W = 0

Figure 6.15

Given a state x , take a process of type I by cooling at constant volume, W = 0,

ending at a state y. We claim that there is no quasi-static adiabatic process II going

from x to y. Suppose that there were. We would then have∫
I I

W =
∫

I I
Q − dU = −

∫
I I

dU =
∫

−I I
dU =

∫
−I

dU =
∫

−I
Q

But this would say that the heat energy pumped into the system by going from y
to x along −I , that is, by heating at constant volume, has been converted entirely
into its mechanical equivalent of work

∫
I I W by the hypothetical process I I ,

contradicting Kelvin.

Note in fact that no state on I between x and y is quasi-statically adiabatically

accessible from x .

An adiabatic quasi-static process is a curve characterized by the constraint Q1 = 0.

We know that if Q = 0 were a holonomic constraint then of course there would exist, in

any neighborhood of a state x , other states y not accessible from x along such adiabatic

paths, because the accessible points would all lie on the maximal leaf (integral manifold

of codimension 1) through x . Does the existence of inaccessible points (i.e., the second

law of thermodynamics) conversely imply that the distribution Q = 0 (the “adiabatic”

distribution) must be integrable? Caratheodory showed that this is indeed the case by

proving the following purely mathematical result.

Caratheodory’s Theorem (6.13): Let θ1 be a continuously differentiable non-
vanishing 1-form on an Mn, and suppose that θ = 0 is not integrable; thus at
some x0 ∈ Mn we have

θ ∧ dθ �= 0

Then there is a neighborhood U of x0 such that any y ∈ U can be joined to x0 by
a piecewise smooth path that is always tangent to the distribution.

PR O O F SK E T C H: An indication of why this should be is easily given. Since

θ = 0 is not integrable near x0, we know that there is a pair of vector fields X and
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Y defined near x0, always tangent to the distribution θ = 0 but such that [X, Y]

is not in the distribution.

[X,Y]

θ =0

x0

Figure 6.16

Let φ and ψ be the flows generated by X and Y respectively. From 4.1c we

know that the piecewise smooth integral curves

ψ(−√
t) ◦ φ(−√

t) ◦ ψ(
√

t) ◦ φ(
√

t)x0

have smooth segments tangent to the distribution θ = 0, and have final endpoints

lying on a curve whose tangent is [X, Y]. This direction is transverse to the

distribution. Thus, not only are points “along” θ = 0 accessible from x0, but a
curve of points transverse to θ = 0 is accessible also. It is not difficult to show

(using the machinery of the proof of the Frobenius theorem) that in fact all points

in some neighborhood of x0 are accessible (see [H]).

We thus conclude from Caratheodory’s mathematical theorem together with his

version of the second law that

Theorem (6.14): The adiabatic distribution Q1 = 0 is integrable.

Note that when the state space is 2-dimensional (with coordinates, say, p1 and v1)

this is a tautology since every 1-form in a 2-manifold defines an integrable distribution
of curves.

6.3e. Entropy

Since Q1 = 0 is integrable, we know from 6.1a that there are locally defined functions

S, called a local entropy, and λ �= 0, on the state space Mn+1 such that Q1 = λd S.

Since

Q

λ
= d S

we say that Q1 admits a local integrating factor λ (since d S is exact,
∫

Q/λ is locally

path-independent, that is, “integrable”). For thermodynamic purposes it is imperative
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that λ and the entropy S be globally defined, but the Frobenius theorem only yields local

functions. If, for example, the foliation defined by Q = 0 has leaves that wind densely

(as in a torus) then there is no way that a global function S can exist, since such an S must

be constant on each maximal leaf. It is easy to see, however, that Kelvin’s second law
of thermodynamics rules out the possibility of not only dense adiabatic leaves, but even
leaves that “double back”! For in the proof that “Kelvin implies Caratheodory,” we saw

that two states related by heating at constant volume cannot be joined by a quasi-static

adiabatic. This says that no π−1(v) can meet a maximal adiabatic leaf twice.

It might be thought that the space Mn+1 and the adiabatic foliation must then be of a

completely trivial nature. The following foliation of R
2 by curves Q1 = 0 gives some

indication of the complications that could arise.

x0

γ

L0

Figure 6.17

We have exhibited an “adiabatic” foliation of the plane M2 = R
2 consisting of two

horizontal bands of leaves separated by a nested sequence of “paraboliclike” leaves

asymptotic to two of the horizontal ones. The processes “heating at constant volume”

are the orthogonal trajectories of these leaves. We have depicted a particular leaf L0 and

a particular transversal curve γ . We consider V 1 = L0, with projection π : M2 → V 1

defined as follows: Move each point in the plane along the orthogonal trajectory through

that point until you strike the leaf L0. In particular, if we parameterize L0 by a coordinate

v and if we let v be constant on each orthogonal trajectory, then v becomes a global

“mechanical” coordinate on the state space M2.

Return now to our quest for a global entropy. We attempt to construct a function

S such that S is constant on each maximal adiabatic leaf Q = 0, as follows. As in

6.1a, we need a curve that is transverse to the leaves. Let x0 be a given point in Mn+1,

fixed once and for all, and let γ = γ (U ) be the curve π−1(π(x0)) obtained from x0

by heating and cooling at constant volume, parameterized by internal energy U . Since

Q �= 0 along this curve (we are heating or cooling), it is transverse to the adiabatic

leaves. This is our transversal! Let L be a leaf that strikes γ at the point γ (U ). We then

define S(x) = U for all x in this leaf. This definition makes sense since we have already
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seen that the leaf L cannot strike γ a second time. We have defined S for all states that
lie on adiabatic leaves that strike the basic transversal γ . If every maximal adiabatic
leaf on Mn+1 met the basic transversal γ then the function S would be globally defined.

A general foliation will not have this property. For example, in our illustrated foliation

of R
2, we have exhibited the basic transversal γ through x0 and it is clear that this

transversal does not meet any of the horizontal leaves at the top! Consequently, no state

y on one of these top leaves can be adiabatically deformed to have the same volume

coordinate as x0!

Sufficiently simple thermodynamical systems do not exhibit this behavior. Given two

states x0 and y, consisting of collections of contiguous bags of fluids, as in Fig. 6.12, we

ought to be able to “massage” the bags in state y, quasi-statically and adiabatically, so

that the final state y′ has the same volume coordinates as the state x0. Thus the adiabatic

leaf through y would indeed strike the transversal through x0 at the state y′.

γ

y

y′

x0
L0

Figure 6.18

Furthermore, if, for instance, U (y′) ≥ U (x0), then by stirring at constant volume

we could go adiabatically (but not quasi-statically) from x0 to y′. If U (y′) ≤ U (x0) we

could stir from y′ to x0. This would say that given any pair of states x and y, either y
is adiabatically accessible from x or x is adiabatically accessible from y, though not

necessarily in quasi-static transitions.

Thus we shall assume that a basic transversal will strike every adiabatic leaf; we are

then assured of the existence of a global entropy function S, which we assume smooth.

By construction, then, Q1 = λd S for some globally defined integrating factor λ. λ �= 0

since Q never vanishes. Since S = U on γ and dU = Q along γ , we see λ > 0. As

we shall see, S is non-decreasing for each adiabatic process. S is called an empirical
entropy.

6.3f. Increasing Entropy

Experience shows that if we start at a state y and “stir” the system adiabatically at

constant volume (this cannot be done quasi-statically) we shall arrive at a state x
having the property that no adiabatic process (quasi-static or not) can return us to y;

we cannot “unstir” the system.
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x

γ

y

Figure 6.19

In Figure 6.19 we have stirred from y to x . U (x) > U (y). Note that x can also be

reached from y by heating at constant volume.

We assume that if x and y are on π−1(v) and if U (x) > U (y), then there is no

adiabatic process, quasi-static or not, that will take us from x to y.

Theorem (6.15): If a state y results from x by any adiabatic process (quasi-static
or not), then S(y) ≥ S(x).

(Of course if the process is quasi-static then d S = Q/λ = 0 in the process.)

P R O O F: Suppose that S(x) > S(y) and that there is some adiabatic process

x → y leading from x to y.

assumed

   adiabatic

γ

x′

y′

x

y

Figure 6.20

By deforming adiabatically we may move x and y quasi-statically to x ′ and y′

on the basic transversal γ through x0. Then

S(x ′) = S(x) > S(y) = S(y′)

But along the basic transversal γ we have S = U , and so U (x ′) > U (y′). We

could then stir adiabatically from y′ to x ′. But then we could “unstir” by the

adiabatic going from x ′ to x to y to y′, a contradiction! Thus the adiabatic from

x to y cannot exist.
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By assuming the existence of an empirical temperature and by combining simple

systems into a single compound system (while introducing no “adiabatic” membranes)

one can show that there is a specific universal choice for the integrating factor λ, called

the absolute temperature T , that depends only on the empirical temperature. The

resulting empirical entropy function S is then the entropy

Q

T
= d S

This is indicated in most books dealing with thermodynamics, for example, [B, S]. A

careful mathematical treatment is given in Boyling’s paper [Boy].

6.3g. Chow’s Theorem on Accessibility

Let Yα, α = 1, . . . , n, be vector fields on an Mn that are linearly independent in the

neighborhood of a point P . Then any point on M sufficiently close to P is accessible

from P by a sequence of broken integral curves of the fields Yα; this was the significance

of the computation (6.5), when coupled with the inverse function theorem.

In our sketch of Caratheodory’s theorem (6.13) we have indicated a proof of the

following: If vector fields X1 and X2 are tangent to a distribution � on an Mn , but

[X1, X2] is not, then by moving along a sequence of broken integral curves of X1 and

X2 the endpoints trace out a curve tangent to [X1, X2], which is transverse to �. Thus

points on integral curves of [X1, X2] are accessible by broken integral curves of X1

and X2.

Let vector fields Xα, α = 1, . . . , r span an r -dimensional distribution � on some

neighborhood of P on an n-manifold Mn . Suppose that � is not closed under brackets.

Adjoin to the vector fields Xα the vector fields [Xα, Xβ] obtained from all the brackets.

It may be that the new system of vector fields is still not closed under taking brackets;

adjoin then all brackets of the new system, yielding a still larger system. Suppose that

after a finite number of such adjoinings one is left with a distribution D(�) that has

constant dimension s ≤ n and is closed under brackets, that is, is in involution. By

Frobenius there is an immersed integral leaf V s of this distribution passing through P .

From Caratheodory’s theorem (6.13), points of this submanifold that are sufficiently

close to P are accessible from P by broken integral curves of the original system Xα.

Further, no points off the maximal leaf V are accessible. This is the essential content

of Chow’s theorem. See [H] for more details.
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Geometry and Topology





CHAPTER 7

R
3 and Minkowski Space

7.1. Curvature and Special Relativity

What does the curvature of a world line signify in space–time?

7.1a. Curvature of a Space Curve in R
3

We associate to a parameterized curve C, x = x(t) in R
3, its tangent vector ẋ(t) =

(ẋ, ẏ, ż)T . When t is considered time, this tangent is the velocity vector v, with speed

‖ v ‖= v. Introduce the arc length parameter s by means of(
ds

dt

)2

=‖ ẋ ‖2= v2, s(t) =
∫ t

0

‖ ẋ(u) ‖ du

We then have the unit tangent vector T := dx/ds = ẋ dt/ds = v/v, that is, v = vT.

For acceleration a we have

a = v̇ = v̇T + v
dT

dt
= v̇T + v2 dT

ds

Since T has constant length, dT/ds is orthogonal to T and so is normal to the curve

C . If dT/ds �= 0, then its direction defines a unique unit normal to the curve called the

principal normal n

dT
ds

= κ(s)n(s) (7.1)

where the function κ(s) ≥ 0 is the curvature of C at (parameter value) s. Then the

acceleration

a = v̇T + v2κ(s)n (7.2)

lies in the osculating plane, the plane spanned by T and n. To compute κ in terms of

the original parameter t rather than s, note that

v × a = vT × (v̇T + v2κ(s)n)

= v3κT × n

191
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and so

κ = ‖ v × a ‖
v3

See Problems 7.1(1) and (2).

We define the curvature vector by

κ = dT
ds

= κn

We remark that when dealing with a plane curve, that is, a curve in R
2, a slightly

different definition that allows the curvature to be a signed quantity is usually used. If

T = (cos α, sin α)T is the unit tangent (where α is the angle from the x axis to the

tangent) then T⊥ = (− sin α, cos α)T is the unit normal resulting from a counterclock-

wise rotation of the tangent. Then dT/ds = κ̃T⊥ defines a signed curvature κ̃ = ±κ .

But then

dT
ds

= d

ds
(cos α, sin α)T = (− sin α, cos α)T dα

ds
gives the familiar

κ̃ = dα

ds
It is shown in books on differential geometry that κ and the osculating plane have

the following geometric interpretations. To compute κ(s) we consider the three nearby

points x(s −ε), x(s), and x(s +ε) on C . If these points are not colinear (and generically

they aren’t) they determine a circle of some radius ρε passing through x(s) and lying in

some plane Pε . Under mild conditions, it is shown that limε→0 Pε is the osculating plane

and ρ(s) = limε→0 ρε = 1/κ(s) is the radius of curvature of C at s. (If dT/ds = 0
at s, we say κ(s) = 0, ρ = ∞, and the osculating plane at s is undefined.) Then (7.2)

becomes

a = v̇T +
(

v2

ρ

)
n

the classical expression for the tangential and normal components of the acceleration

vector.

7.1b. Minkowski Space and Special Relativity

Minkowski space M4
0 is R

4 but endowed with the “pseudo-Riemannian” or “Lorentzian”

metric or “arc length” (as discussed in Section 2.1d)

ds2 = −c2dt2 + dx2 + dy2 + dz2 (7.3)

Here c is the speed of light, and the coordinates t = x0, x = x1, y = x2, z = x3

for which ds2 assumes the form (7.3) form an inertial coordinate system. (For phys-

ical motivation and further details see, for example, [Fr].) The metric tensor gi j =
〈∂/∂xi ,∂/∂x j 〉 is then

(gi j ) = diag(−c2, 1, 1, 1) (7.4)

Warning: Many books use the negative of this metric!
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Let x = (t, x) and let dx • dx be the usual dot product in R
3. Then

ds2 = −c2dt2 + dx • dx

Then a 4-vector, that is, a tangent vector to M4
0 ,

v = (v0, v)T = v0∂/∂t + vα∂/∂xα = v0∂/∂t + v

is said to be

spacelike if 〈v, v〉 > 0

timelike if 〈v, v〉 < 0

lightlike if 〈v, v〉 = 0

The path x = x(t) of a mass point in M4
0 is called its world line. Its tangent vector

dx/dt = (1, dx/dt)T = (1, v)T is timelike since

〈
dx

dt
,

dx

dt

〉
= −c2 + v • v = −c2 + v2

and, as we shall see, v < c. Thus the tangent vector to the world line of a mass particle

lies inside the light cone x • x = c2t2.

We shall call v =dx/dt the classical velocity vector.

The analogue of the arc length parameter in R
3 for the world line of a particle in

M4
0 is the proper time parameter τ defined by pulling back the tensor −c−2ds2 to the

curve

dτ 2 : = −c−2ds2 = dt2 − c−2dx • dx (7.5)

=
(

1 − v2

c2

)
dt2

Define the Lorentz factor γ by

γ :=
(

1 − v2

c2

)−1/2

= dt

dτ
(7.6)

An analogue of the unit tangent in R
3 is the velocity 4-vector u

u := dx

dτ
=

(
dt

dτ
,

dx
dτ

)T

= γ (1, v)T (7.7)

Note that

〈u, u〉 = γ 2(−c2 + v2) = −c2 (7.8)

We define, as usual, ‖ A ‖2:= 〈A, A〉 even though this may be negative! (When it

is negative we shall never use its square root ‖ A ‖.) A is said to be a unit vector if

‖ A ‖2= ±c2; u is a unit vector in the sense that one usually uses units in which the

speed of light c = 1. The physical interpretation of the proper time parameter τ along
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C

u

x

t

t22c.x x =
light cone

Figure 7.1

a world line C is as follows (see [Fr, p. 18]):

τ =
∫ (

1 − v2

c2

)1/2

dt

is the time kept by an “atomic clock” moving with the particle along the world line C .

In particular, coordinate time t is the proper time kept by an atomic clock fixed at the

spatial origin x = 0 of the inertial coordinate system.

Associated with any particle is its rest mass m0; this is an invariant (independent of

coordinates, i.e., observers).

The (linear) momentum P of the particle is the 4-vector

P := m0u = (m0γ, mv)T (7.9)

where

m := m0γ = m0

(
1 − v2

c2

)−1/2

is sometimes called the relativistic mass; m is interpreted as the mass of the moving

particle as viewed from the “fixed” inertial coordinate system. Note that m → ∞ as

v → c, and, as we shall see in (7.15), an infinite classical force would be required to

accelerate a mass to the speed of light. This is the justification for the assumption that

v < c for all massive particles.

Note that the momentum 4-vector has constant “length”

‖ P ‖2= 〈P, P〉 = −m2
0c2

If we define the classical momentum by p := mv (with a variable mass!) then we can

write P = (m, p)T and then 〈P, P〉 = −c2m2 + p2, and so

m2c2 = m2
0c2 + p2 (7.10)

The analogue of the curvature vector dT/ds in R
3 is the curvature or acceleration

4-vector

du

dτ
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The Minkowski force is the 4-vector defined by

f := d P

dτ
= d(m0u)

dτ
(7.11)

Thus

f = d

dτ
(m, p)T =

(
dm

dτ
, γ

dp
dt

)T

= ( f 0, γ fc)
T (7.12)

where fc := dp/dt is the classical force in R
3 and where f 0 is the t = x0 component

of f . Since 〈P, P〉 is a constant, f = d P/dτ must be orthogonal to P (and thus to u)

in the Minkowski metric

0 = 〈 f, u〉 = −c2 f 0γ + γ fc • γ v

that is,

f 0 =
(

γ

c2

)
fc • v (7.13)

The time component of the Minkowski 4-force is, except for a factor, the classical

power (rate of doing work). Finally

f = γ (c−2fc • v, fc)
T (7.14)

Note that f 0 = dm/dτ = γ dm/dt shows that

dm

dt
= c−2fc • v (7.15)

and so

d(c2m) = fc • dx

is the element of work done by the classical force. Classically this is the energy imparted

to the particle. This leads us to associate to a mass m an energy E = mc2 and a rest
energy m0c2. (7.10) becomes

E2 = E2
0 + c2 p2 (7.16)

and we have

P =
(

E

c2
, p

)T

Since E/c2 appears as the time component of the momentum 4-vector, we see that spe-

cial relativity unites the energy and classical momentum into a 4-vector, the momentum

4-vector.

The familiar startling effects of special relativity, such as length contraction and time

dilation, are consequences of the geometry of Minkowski space. Their explanation rests

on Einstein’s simple analysis of the concept of time and simultaneity. This analysis was

Einstein’s monumental contribution to special relativity, and gave meaning to the ad hoc

assumptions put forth previously by Lorentz, Poincaré, Larmor, and Fitzgerald; see [Fr].
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7.1c. Hamiltonian Formulation

Consider a mass particle moving in R
3 and suppose that the classical force is derivable

from a time-independent potential f c = −∇V . From (7.15), dm/dt = −c−2∇V • v =
−c−2dV/dt along the world line, and consequently

H := mc2 + V

is a constant of the motion and deserves the name total energy. In the phase space R
6,

V is a function of x = q alone, and from (7.10) mc2 = (m2
0c4 + p2c2)1/2 is a function

of p alone. From (7.10) we have 2mc2∂m/∂pα = 2pα, showing that ∂(mc2)/∂pα =
pα/m = vα, where α = 1, 2, 3. Then

dxα

dt
= vα = ∂(mc2)

∂pα

= ∂(mc2 + V )

∂pα

= ∂ H

∂pα

and

dpα

dt
= f c

α = − ∂V

∂xα
= − ∂

∂xα
(mc2 + V ) = − ∂ H

∂xα

and thus we are able to put the equations of motion in Hamiltonian form provided we

define the Hamiltonian H to be the total energy.

Problems

7.1(1) Compute the curvature of the helix x = cos ωt, y = sin ωt, z = kt , where ω and
k are constants.

7.1(2) Assume κ �= 0; then n is well defined and we can define the binormal vector B

to be the normal to the osculating plane, B = T × n. Show that dB/ds lies along
n, and hence the torsion τ is well defined by dB/ds = τ(s)n. Then show that
dn/ds = −κ(s)T − τ(s)B. (The equations for the arc length derivatives of T, n,

and B constitute the Serret–Frenet formulas.)

7.1(3) Show that the action for a particle with H = mc2 + V is∫
pαdxα − Hdt = −m0c2

∫
dτ −

∫
Vdt

7.2. Electromagnetism in Minkowski Space

How can E1 and B2 be united to yield a 2-form in space-time?

7.2a. Minkowski’s Electromagnetic Field Tensor

The Heaviside–Lorentz force law (3.36) becomes f = q[E + (v/c) × B] when we use

units for which the speed of light c is not necessarily 1. This spatial force vector can

be completed to a Minkowski force 4-vector by using the prescription (7.14)

f = γ (c−2f • v, f)T = γ q
(

c−2E • v, E +
(v

c

)
× B

)T
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The covariant expression for f , that is, the associated 1-form f 1, is, from (7.4),

f 1 = −γ q[ivE
1]dt + γ q[E

1 − iv/c(B
2)]

Recall that the velocity 4-vector is u = γ ∂/∂t + γ v. In Problem 7.2(1) you are asked

to show that f 1 can be written

f 1 = −qiu F2

where (7.17)

F2 := E
1 ∧ dt + c−1

B
2

is the electromagnetic field strength 2-form.

The velocity 4-vector u is intrinsic to the world line; since it is constructed using

proper time τ rather than coordinate time t , all inertial coordinate systems will agree on

the vector u even though their local coordinate expressions for it will differ. The Lorentz

force covector is intrinsic; this is a consequence of the assumption that q[E+(v/c)×B]

is an accurate discription of the classical force fc acting on a charged particle even when

moving at relativistic speeds! It follows then, from (7.17), that F2 is intrinsic; that is,

F2 is a covariant second-rank tensor! This skew symmetric tensor was first introduced

in 1907 by Minkowski.

From this point on we shall revert to units in which the speed of light is unity

c = 1

Written in full

F2 = (E1dx + E2dy + E3dz) ∧ dt (7.18)

+ B1dy ∧ dz + B2dz ∧ dx + B3dx ∧ dy

(Since the spatial part of the metric is euclidean we have Eα = Eα, etc.) If we write,

as usual, F2 = ∑
i< j Fi j dxi ∧ dx j , we see

(Fi j ) =

⎡
⎢⎢⎣

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤
⎥⎥⎦

The Lorentz force law (7.17) can then be written (from (2.76))

fi = q Fi j u
j (7.19)

Consider a second inertial coordinate system t ′, x′ (with identical orientation), repre-

senting an observer moving along the x axis of the first observer with constant speed v.

We assume that their spatial origins coincide when t = t ′ = 0. Elementary arguments

(as in [Fr]) show that y = y′ and z = z′. We shall then only be concerned with the rela-

tions between t, x and t ′, x ′. The basis vectors for the unprimed system are e0 = (1, 0)T

and e1 = (0, 1)T . The basis vector e′
0 is of the form (t, x)T in the unprimed system; it

must satisfy −t2+x2 = −1, and so it is of the form (cosh α, sinh α)T . Likewise, to main-

tain Lorentz orthogonality, e′
1 must be (sinh α, cosh α)T . Thus, assuming a linear coor-

dinate change, the coordinate systems are related by t = t ′ cosh α + x ′ sinh α and x =
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t ′ sinh α + x ′ cosh α. The spatial origin of the primed system, x ′ = 0, is moving so that

x = vt . Thus tanh α = v. This allows us to express sinh α and cosh α in terms of v,

yielding the usual expressions for the Lorentz transformations (with constant v and γ )

t = γ (t ′ + vx ′) x = γ (x ′ + vt ′) (7.20)

y = y′ z = z′

One can check immediately that under such a coordinate change the volume form

vol4 = dt ∧ dx ∧ dy ∧ dz = dt ′ ∧ dx ′ ∧ dy′ ∧ dz′

is unchanged.

I wish to emphasize that Lorentz transformations in general are simply the changes

of coordinates in R
4 that leave the origin fixed and preserve the form −t2 +x2 + y2 +z2.

If we make a Lorentz transformation (7.20), the local expression for the form F2 in

(7.18) will pull back to an expression F2 := E
′1 ∧ dt ′ + B

′2. In Problem 7.2(2) you are

asked to compute that

E ′
1 = E1 B ′

1 = B1

E ′
2 = γ (E2 − vB3) B ′

2 = γ (B2 + vE3) (7.21)

E ′
3 = γ (E3 + vB2) B

′
3 = γ (B3 − vE2)

showing, for example, that a pure electric field in a “fixed” system will yield both an

electric and a magnetic field when viewed from a moving system. Since (see Problem

7.2(3))

F ∧ F = −2E • B vol4 (7.22)

we see that E • B is an invariant of such Lorentz transformations! (If, however, we had

allowed a change of orientation, then E • B would be replaced by its negative since

F ∧ F is a true 4-form and vol4 is a pseudoform.)

7.2b. Maxwell’s Equations

In Minkowski space we have (see (4.40))

d = d + dt ∧ ∂

∂t

Then, for F2 = E
1(t, x) ∧ dt + B

2(t, x), we have

d F = dE ∧ dt + dB + dt ∧ ∂B

∂t
=

(
dE + ∂B

∂t

)
∧ dt + dB (7.23)

and so

d F = 0 ⇔

⎧⎪⎪⎨
⎪⎪⎩

dE = −∂B

∂t
and

dB = 0

⎫⎪⎪⎬
⎪⎪⎭

(7.24)

Thus d F = 0 is equivalent to the first pair of Maxwell’s equations.
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If there are no singularities in the field F2, then, since Minkowski space is simply

R
4, the converse to the Poincaré lemma assures us that F2 = d A1 for some 1-form A.

(Away from singularities, such an A1 will exist locally.) Write

F2 = d A1 (7.25)

A1 = φdt + A
1

where A
1 = Aα(t, x)dxα and where Greek indices run from 1 to 3. Then E

1 ∧dt + B
2 =

(d + dt ∧ ∂/∂t)(φdt + A1) = dφ ∧ dt + dA1 + dt ∧ ∂A1/∂t yields

E
1 = dφ − ∂A

1

∂t
and (7.26)

B
2 = dA

1

This yields the vector expressions E = ∇φ − ∂A/∂t and B = curl A. φ is the scalar

and A the vector potential. (In most physics books ∇φ occurs with a negative sign.)

Consider a charged fluid (with charge density ρ) moving in R
3 with local velocity

vector v. The current vector is j = ρv; ρ is the charge density as measured in the inertial

system x . If ρ0 = ρ0(t, x) is the rest charge density, that is, the density as measured by

an observer moving instantaneously with the fluid, then

ρ = ρ0γ

since the charge contained in a moving region must be independent of the observer and

yet volumes are decreased by a factor 1/γ when viewed from a system in (relative)

motion with speed v (see [Fr], p. 112). Thus j = ρ0γ v. Since ρ0 is, by definition,

independent of observer, we may construct an intrinsic 4-vector, the current 4-vector

J := ρ0u = (ρ0γ, ρ0γ v)T = (ρ, ρv)T = (ρ, j)T (7.27)

We may then construct the associated current 3-form

S
3 = iJ vol4 = i

(
ρ
∂

∂t
+ j

)
dt ∧ dx ∧ dy ∧ dz (7.28)

= ρdx ∧ dy ∧ dz − ( j1dy ∧ dz + j2dz ∧ dx + j3dx ∧ dy) ∧ dt

S
3 = σ 3 − j2 ∧ dt

In an important sense, S3 is more basic than J (see Section (14.1c)).

We may now consider the second set of Maxwell equations. Define the pseudo-2-

form ∗F (where the star is not bold) as follows (the reason for this notation will be

explained in Chapter 14):

∗F2 = −∗∗B ∧ dt + ∗∗E

(see (3.41)). Then, as in (7.23)

d ∗ F2 = d∗∗E −
(

d∗∗B − ∂∗∗E

∂t

)
∧ dt
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Gauss’s law and the law of Ampere–Maxwell then give

d ∗ F2 = 4π(σ 3 − j2 ∧ dt) = 4πS
3 (7.29)

In particular

dS
3 = 0 (7.30)

and this is a reflection of conservation of charge (see [F, p. 111]).

We wish to make two final remarks.

1. Maxwell’s equations are traditionally thought of as four independent axioms, but,

remarkably, special relativity says that this is not so. Consider (7.23). Suppose, for

instance, that every inertial observer notes that dB = 0. Then every inertial observer

will see the 3-form d F = (dE+∂B/∂t)∧dt , which is of the form iW vol4, where the 4-

vector W can have no time component, W 0 = 0. But under a Lorentz transformation we

will have W ′0 = W α(∂x ′0/∂xα), and thus unless W = 0, some Lorentz transformation

will yield a W ′0 �= 0. Thus, if every inertial observer sees dB = 0, then d F = 0 and so

Faraday’s law holds! Likewise, if Gauss’s law is observed by every inertial observer,
then so is Ampere–Maxwell. This is comforting, since Gauss’s law, for example, seems

less sophisticated than Ampere–Maxwell.

2. We wish to emphasize the Maxwell’s equations d F = 0 and d ∗ F = 4πS hold
universally, in all materials. Physicists and engineers usually introduce two material
dependent fields, in our language a pseudo-1-form H1 and a pseudo-2-form D2, together

with a material dependent current pseudo-3-form C
3, and then write for Maxwell’s

equations d F = 0 and d(−H ∧ dt + D) = 4πC. In the case of a “noninductive

material,” for example the vacuum, we have H = ∗∗B and D = ∗∗E and C = S, but

in general the macroscopic fields H and D are related to the true microscopic fields

B and E by complicated “constitutive relations.” We shall have no need for these new

fields.

Problems

7.2(1) Derive (7.17).

7.2(2) Derive (7.21).

7.2(3) Show (7.22) and show that F 2 ∧ ∗F 2 = (|B|2 − |E|2) vol4.

7.2(4) Show that (3.32) is equivalent to dS3 = 0.

7.2(5) All Lorentz transformations leave the 3 dimensional “unit hyperboloid” t 2 − x 2 −
y 2 − z 2 = 1 of Minkowski space invariant. Show that

dx ∧ dy ∧ dz
| t |

is a volume form on this hyperboloid that is invariant under Lorentz transforma-
tions. (Hint: H = t 2 − x 2 − y 2 − z 2 is an invariant function. Use the method
expressed by equation (4.53) of Hamiltonian mechanics.)



CHAPTER 8

The Geometry of Surfaces in R
3

The geometry or kinematics of this subject is a great contrast to that of the flexible line, and, in

its merest elements, presents ideas not very easily apprehended, and subjects of investigation

that have exercised, and perhaps overtasked, the powers of some of the greatest mathematicians.

Kelvin and Tait, Elements of Natural Philosophy

8.1. The First and Second Fundamental Forms
What is the length of a curve that leaves the north pole, ends at the south pole, and makes a

constant angle with each meridian of longitude?

8.1a. The First Fundamental Form, or Metric Tensor

Let M2 ⊂ R
3 be a parameterized surface in space, M2 = F(U ), where U ⊂ R

2 and

F∗ has rank 2. Frequently we shall write u1 = u and u2 = v.

∂/∂u2

u2

∂/∂u1

u1

x 3

x2

x1

F∗(∂/∂u2)

∂x/∂u2= 
∂x /∂u21 ∂x /∂u22 ∂x /∂u23= ( ),, T

u

F∗(∂/∂u1

1

)

∂x/∂u
 ∂x /∂u1 1 1 12 3∂x /∂u ∂x /∂u

= 
= ( ),, T

Figure 8.1

A curve x = x(t) that lies on M2 is the image of some curve uα = uα(t) and so

x = x[u(t)]. For velocity vector we have

dx
dt

=
(

∂x
∂uα

)
duα

dt
= xα

duα

dt

201
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where

xα := ∂x
∂uα

, α = 1, 2,

form a basis for the tangent space to M2 at each point. A pair of tangent vectors has a

euclidean scalar product

〈A, B〉 = 〈xα Aα, xβ Bβ〉 = gαβ Aα Bβ

where, as usual,

gαβ = 〈xα, xβ〉 =
3∑

i=1

(
∂xi

∂uα

)(
∂xi

∂uβ

)
(8.1)

We can then write, as in Section 2.7b,

ds2 = 〈dx, dx〉 = 〈xαduα, xβduβ〉 = gαβduαduβ (8.2)

and this quadratic form associated to the metric tensor is called the first fundamental
form. Note that we are, as usual, considering the coordinates uα as functions on M2,

and duα are 1-forms on M with duα(xβ Aβ) = Aα, and ds2 is simply another name for

the metric tensor ds2 = gαβduα ⊗ duβ since

gαβduα ⊗ duβ(A, B) = gαβ Aα Bβ

The reason for this notation will become clear in a moment when we shall use a picture

and ordinary arc length ds to write down, with no computations, the metric tensor for

the 2-sphere. But first, you must do it the hard way, from the definition (8.1).

The sphere of radius a can be parameterized (except at the poles) by colatitude

θ = u1 and the negative of the longitude, φ = u2. You are asked to show, in Problem

8.1(1), that for the sphere of radius a we have

ds2 = a2(dθ 2 + sin2 θdφ2) (8.3)

We define the length of a parameterized curve u = u(t) on M2 by

L =
∫

‖ dx/dt ‖ dt =
∫ [

gαβ(u(t))
(

duα

dt

)(
duβ

dt

)]1/2

dt

The cosine of the angle between tangent vectors A and B is given by

〈A, B〉
‖ A ‖‖ B ‖ (8.4)

and the angle between intersecting curves is the angle between their tangents. Thus the

coordinate curves v = constant and u = constant are orthogonal iff guv := g12 = 0; in

general they intersect at an angle

cos−1 guv

[guu gvv]1/2

When the coordinate curves are orthogonal we interpret ds2 = guudu2 + gvvdv2 as

an “infinitesimal” version of Pythagoras’s rule. On the sphere of radius a, for exam-

ple, we see immediately that (8.3) is the Pythagoras rule applied to the infinitesimal

curved triangle.



T H E F I R S T A N D S E C O N D F U N D A M E N T A L F O R M S 203

θ

θ

φ

a sin

d

φd

a
ds

θ

Figure 8.2

See Problem 8.1(2) at this time.

For element of area, from (2.72),

d S = √
gdu ∧ dv

See Problem 8.1(3).

Finally, we would like to make a remark on the classical notation dx appearing

in (8.2). Classically dx is the “infinitesimal vector” with components (dx, dy, dz)T ,

joining two infinitesimally distant points, and when we restrict the position vector x to

end on the surface M2 this vector dx is tangent to the surface. In our language, dx is a

mixed tensor; in local coordinates for M2,

dx = xα ⊗ duα

(classically the tensor product sign is omitted). We shall think of this mixed tensor

(linear transformation) as a vector-valued 1-form, that is, a 1-form whose value on

any tangent vector v is a vector, rather than a scalar. For this particular vector valued

1-form, the value is again the vector v,

dx(v) = (xα ⊗ duα)(v) := xα(duα(v)) = xαv
α = v

8.1b. The Second Fundamental Form

Whenever we discuss the normal to a surface we shall assume that one of the two

possible local normal fields has been chosen.

Let N = xu × xv/ ‖ xu × xv ‖ be the unit normal to M2 at a point (u1, u2). Given

any tangent vector X = xα Xα at (u1, u2), let uα = uα(t) be a curve on M2 having

X as tangent at uα = 0; Xα = duα/dt . Then the derivative of N with respect to X is

dN/dt = (∂N/∂uα)(duα/dt) = Nαduα/dt = Nα Xα (where again Nα := ∂N/∂uα)
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and this vector is a tangent vector to M2 since N is a unit vector. The assignment (the

minus sign being traditional)

X 
→ −Nα Xα = −Xα ∂N
∂uα

=: b(X)

defines then a linear transformation

b : M2
(u,v) → M2

(u,v)

(Note that under b, xα is sent into −Nα and that if we reverse the choice of normal field,
b will be sent into its negative.) Let (bα

β) be its matrix with respect to the basis {xα}
b(xβ) = xαbα

β = −Nβ (8.5)

These are called the Weingarten equations.

The bilinear form B associated to the linear transformation b is (as usual) defined

by B(X, Y) = 〈X, b(Y)〉 = 〈X, −NβY β〉 = −〈xγ X γ , NβY β〉. Thus, as a tensor, B is

given by the second fundamental form

−〈dx, dN〉 = −〈xγ , Nβ〉duγ ⊗ duβ

and the tensor product sign is usually omitted. Weingarten’s equation can be written in

terms of the vector-valued 1-form

dN =
[

∂N
∂uβ

]
⊗ duβ = −xαbα

β ⊗ duβ (8.6)

Thus, along any curve u = u(t) on the surface,

dN
dt

= −xαbα
β

(
duβ

dt

)

We may write for the second fundamental form, as in (2.39),

B = bαβduαduβ

where bαβ = gαγ bγ
β is the covariant tensor associated to the linear transformation b.

Then bαβ = B(xα,xβ) = 〈xα, b(xβ)〉 = −〈xα, Nβ〉, that is,

bαβ = −〈xα, Nβ〉 (8.7)

This expression is inconvenient for computations since it involves the derivative of the

unit vector N (which usually involves a complicated expression with square roots); we

shall exhibit now a more useful formula. Put

xαβ := ∂2x
∂uα∂uβ

Since N is a normal vector, 0 = ∂/∂uβ〈xα, N〉 = 〈xαβ, N〉+〈xα, Nβ〉 = 〈xαβ, N〉−bαβ ,

that is,

bαβ = 〈xαβ, N〉 (8.8)

which is the formula for computing B. In full, we have

bαβ =
(

∂2x

∂uα∂uβ
,

∂2 y

∂uα∂uβ
,

∂2z

∂uα∂uβ

)
(N 1, N 2, N 3)T

The linear transformation b may then be computed from bα
β = gαγ bγβ .
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Problems

8.1(1) Compute the metric for the sphere of radius a.

8.1(2) A “loxodrome” on a sphere of radius a is a curve that makes a constant angle ω

with each meridian of longitude. Usually it eventually winds around each pole.
Compute the length of such a loxodrome by using θ as a parameter. (The tangent
vector then has components (1, dφ/dθ) and you may use (8.4) to determine
dφ/dθ).)

8.1(3) Compute the area of the region on the Earth’s surface bounded by latitudes 0◦
and 30◦ and longitude 0◦ and 45◦.

8.1(4) Consider the surface z = x2 − 2y2 near the origin. Use x = u1, y = u2 for
local coordinates. Compute the matrices (gαβ) and (bα

β) at (0, 0). Save your
computations for problem 8.2(2).

8.1(5) Let M2 be a surface in R
3 and let x0 be a point on this surface. Choose new

cartesian coordinates for R
3 having x0 as origin and such that the new x1, x2

plane is the tangent plane to M at x0. Use x1 = u1 and x2 = u2 as local
coordinates near x0. Show that M near x0 is described by the equations

x3 = z(x1, x2) = (1/2)
∑

α,β=1,2

bαβ(0)xαxβ

+ higher order in x1, x2

exhibiting another geometric aspect of the second fundamental form.

8.2. Gaussian and Mean Curvatures

What do we mean by the curvature of a surface?

8.2a. Symmetry and Self-Adjointness

We recall from linear algebra that if A is a linear transformation in a vector space

with scalar product, then the adjoint A
∗ of A is the linear transformation defined by

〈AX, Y〉 = 〈X, A∗Y〉, and A is self-adjoint if A = A∗. In terms of the bilinear form A
associated to A, A is self-adjoint provided

A(X, Y) = 〈X, AY〉 = 〈AX, Y〉 = 〈Y, AX〉 = A(Y, X)

that is, a linear transformation A is self-adjoint iff the associated bilinear form A is
symmetric. In components, A is self-adjoint iff (Aαβ) is symmetric, Aαβ = Aβα. (You

should convince yourself from the transformation laws for covariant and mixed tensors

that such an equality is in fact independent of basis, whereas Aα
β = Aβ

α might hold in

some basis but not another; it makes no sense to say that a mixed tensor is symmetric.)

From (8.8) we see that the second fundamental form B is symmetric and thus the
linear transformation b : M2

u → M2
u is self-adjoint! As we shall now see, the special

eigenvalue behavior of a self-adjoint transformation will have remarkable geometric

consequences in the case of the linear transformation b.
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8.2b. Principal Normal Curvatures

Let x = x(s) define a curve C , parameterized by arc length, on the surface M2 in R
3.

The unit tangent at x(0) is then T = dx/ds = xαduα/ds. The curvature vector for C ,

as a space curve, at x(0) is

κ = κn = dT
ds

= xαβ

(
duα

ds

)(
duβ

ds

)
+ xα

d2uα

ds2

where n is the principal normal to C . The component of the curvature vector κ = κn
in the direction of the unit surface normal N is then

〈κn, N〉 = 〈xαβ, N〉
(

duα

ds

)(
duβ

ds

)

that is,

〈κn, N〉 = bαβ

(
duα

ds

)(
duβ

ds

)
= B(T, T) (8.9)

There are, of course, an infinity of curves on M2 that pass through x(0) with tangent T,

but (8.9) tells us that although these curves may have very different curvatures as space

curves, the component of the curvature vectors normal to the surface depends only on
the tangent T and is the value of the second fundamental quadratic form B on T!

In particular, let T be a unit tangent vector to M at a point p.

center of curvature

Plane

pC
M

N

T

κ

Figure 8.3
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Let P be the plane spanned by T and N at p. P cuts out a curve C on M , whose

unit tangent is T. C is a normal section of M and of course it is a plane curve, lying

as it does in P . Its curvature vector κ = κn (as a space curve) points from p towards

the center of curvature (at a distance κ−1). Thus, for this normal section, from (8.9)

B(T, T) = ±κ

where the + sign is used only if the curve C is “curving” toward the chosen surface

normal; for the indicated normal in our figure B(T, T) = −κ is negative.

Now keep p ∈ M fixed but rotate T in the tangent plane M2
p; the curvatures B(T, T)

will change in general. We define the principal (normal) curvatures of M at p by

κ1(p) = max B(T, T) (8.10)

κ2(p) = min B(T, T)

for unit T ∈ M2
p. The two directions Tα, α = 1, 2, yielding these extrema are called

the principal directions for M at p. But b is self-adjoint (i.e., B is symmetric), and

linear algebra (see Problem 8.2(1)) tells us the following:

Theorem (8.11): κ1 and κ2 are the eigenvalues of b and the corresponding prin-
cipal directions Tα are the eigenvectors

b(Tα) = καTα, α = 1, 2

If κ1 �= κ2 then automatically the principal directions are orthogonal.

(The orthogonality of the principal directions was known to Euler!)

Of course if κ1 = κ2 then all the normal curvatures at p coincide; p is then called

an “umbilic” point. The usual round 2-sphere consists entirely of umbilic points.

8.2c. Gauss and Mean Curvatures: The Gauss Normal Map

We now define two measures of curvature of a surface M2 at p.

Gauss curvature = K := det b = det(bαβ)

det(gαβ)
= κ1κ2

Mean curvature = H := tr b =
∑

bα
α = κ1 + κ2

Note that since b is sent into −b under a change of normal, H will be sent into its

negative but K is invariant under choice of normal!

Warning: Many authors define H to be the true average (κ1 + κ2)/2.

Before discussing the significance of these quantities, we need some experience with

computing them. See Problems 8.2(2), 8.2(3), and 8.2(4) at this time.

Note now the following. If A : R
n → R

n is a linear transformation and ωn is any

n-form, then

A∗ω = det(A)ω (8.12)
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This follows from (2.65), or directly

ω(Ae1, . . . , Aen) = ω(ei Ai
1, . . . , e j A j

n)

= ω(ei , . . . , e j )Ai
1 . . . A j

n

= ω(e1, . . . , en)εi ... j Ai
1 . . . A j

n = ω(e1, . . . , en) det A

If M2 ⊂ R
3 is a surface with given normal field, we define the Gauss (normal) map

n : M2 → unit sphere S2

by

n(p) = N(p), the unit normal to M at P

n 
N

p

S2

M2

( )p

Figure 8.4

Define the positive orientation of S2 by using the outward pointing normal. Let

vol2
M = iN vol3 and ω2 = vol2

S = in vol3 be the area forms for M2 and S2 respectively.

Let u, v, be local coordinates for M . We wish to compute the pull-back of ω2 under the

Gauss normal map. Note that the tangent plane to M2 at p is parallel to the tangent plane

to S2 at n(p) and we shall identify these two 2-dimensional vector spaces by parallel

translation in R
3. (Note that under this identification, ω2 at n(p) is the same as vol2

M at

p!) Thus, for example, ∂x/∂u and b(∂x/∂u) may be identified with tangent vectors to

S2, and b at p can be considered as a linear transformation of the tangent plane to S2

at n(p). By the geometric meaning of the differential of the map n : M2 → S2

n∗

(
∂x
∂uα

)
= ∂

∂uα
(N(u)) = ∂N

∂uα
(8.13)

and so, using (8.12),

(n∗ω2)

(
∂x
∂u

,
∂x
∂v

)
= ω2

(
n∗

∂x
∂u

, n∗
∂x
∂v

)

= ω2

(
∂N
∂u

,
∂N
∂v

)
= ω2

(
−b

(
∂x
∂u

)
, −b

(
∂x
∂v

))

= (det b)ω2

(
∂x
∂u

,
∂x
∂v

)
= K vol2

M

(
∂x
∂u

,
∂x
∂v

)

Thus

n∗ vol2
S = K vol2

M (8.14)

This tells us that the Gauss map is a local diffeomorphism in the neighborhood U of
any pεM2 at which K (p) �= 0, and furthermore, if U is positively oriented then n(U )

will be positively oriented on S2 iff K > 0.
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N(2)

n(2)

n(3)

n(4)

n(1)

N(4)

SM

4

3

2

1

Figure 8.5

(8.14) exhibits the Gauss curvature as a “magnification factor” for areas under the

normal map n : M2 → S2, provided we consider area “signed” by the orientation.

“signed” area of n(U) : =
∫

n(U )

vol2
S =

∫
U

n∗ vol2
S

=
∫

U
K vol2

M

and thus

lim
U→p

[signed area of n(U)/area of U] = K (p)

as the region U shrinks down to the point p. This was Gauss’s original definition of
K. Note that n reverses orientation iff the principal curvatures κ1 and κ2 at p are of

opposite sign, that is, iff M2 is “saddle-shaped” at p.

Problems

8.2(1) This problem gives a proof of the fundamental theorem on symmetric matrices.
Let b : R

n → R
n be any self-adjoint linear transformation with symmetric bilinear

form B. Let Sn−1 be the unit sphere in R
n and let f : R

n → R be the quadratic
function f(x ) = B(x , x ) = 〈x , bx 〉 but restricted to the unit sphere Sn−1. Since
Sn−1 is compact (for this it is important that the metric on R

n is positive defi-
nite; we could not use a Minkowski metric where the “unit sphere” is in fact a
hyperboloid), f takes on its minimum value at some e1 ∈ Sn−1. Let x = x (t) be
a curve on Sn−1 starting at x (0) = e1. Let ẋ denote the derivative with respect
to t at t = 0.

(i) Show that 〈ẋ , be1〉 = 0. Since any tangent vector to Sn−1 at e1 is of the form
ẋ , this shows that be1 is normal to Sn−1 at e1, that is, be1 = λ1e1 for some
real number λ1. Thus λ1 = f(e1). This argument shows in fact that every
critical point of f on Sn−1 is an eigenvector of b with a real eigenvalue and the
eigenvalue is simply the value of f.

Let E1 be the subspace of R
n spanned by e1 and let E⊥

1 be the orthogonal
subspace to E1.
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(ii) Show that b : E⊥
1 → E⊥

1 and thus the restriction of b to E⊥
1 is again a self-

adjoint linear transformation (which we shall again call b). Then f restricted to
the unit sphere Sn−2 := Sn−1 ∩ E⊥

1 will again have a minimum value λ2 ≥ λ1

attained at an eigenvector e2 ∈ E⊥
1 . Proceed then to the subspace orthogonal

to both e1 and e2, and so on. Induction will then show that b has a basis of
orthonormal eigenvectors.

8.2(2) Compute K and H at the origin for the surface in Problem 8.1(4).

8.2(3) What is the normal curvature for the direction y = x at the origin for the surface
z = x2 − 2y2 of Problem 8.1(4)?

8.2(4) Show that the normal curvature for a direction on an M2 that makes an angle θ

with the principal direction T1 is given by

κ(θ) = κ1 cos2 θ + κ2 sin2 θ

8.2(5) For a surface M 2 given in “nonparametric form” z = f(x , y) we can, of course,
introduce x = u and y = v as coordinates. Show that

K = det( fαβ)

W 2

and

H = W−3/2[(1 + f2
y ) fx x − 2 fx fy fx y + (1 + f2

x ) fyy ]

where W := 1 + f2
x + f 2

y

8.3. The Brouwer Degree of a Map: A Problem Set

Can you map a closed ball into itself so that every point is moved?

8.3a. The Brouwer Degree

In our previous section we discussed the Gauss normal map n : M2 → S2. The

situation of mapping a compact oriented manifold into another of the same dimension
plays an important and recurring role in mathematics and its applications. We shall

discuss the topological implications of this situation, first studied in detail by the Dutch

mathematician L. E. J. Brouwer around the turn of the twentieth century.

Since our manifolds are oriented, we shall make no distinction between forms and

pseudoforms.

Let φ : Mn → V n be a smooth map from one closed oriented manifold to another

of the same dimension. Let ωn be any n-form on V subject to the single condition that

it be normalized ∫
V

ω = 1

(Of course if
∫

V ω �= 0 we may trivially normalize it.) The (Brouwer) degree of φ is

defined by

deg(φ) =
∫

M
φ∗ω (8.15)
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Note that we may also write deg(φ) = ∫
φ(M)

ω; this tells us (in a sense to be clarified

later) how many times, algebraically, the image of M wraps around V.

Our first task is to show that deg(φ) is well defined, independent of the choice of

the form ω. We shall give only the barest sketch of this, relying on some “familiar” but

nontrivial facts.

Lemma (8.16): An n-form γ n on a closed oriented V n is exact iff its integral
vanishes ∫

V
γ = 0

P R O O F: Certainly if γ = dβn−1, then, since V has no boundary,
∫

V dβ = 0.

Suppose then that
∫

V γ = 0. We shall attempt to exhibitβ. Introduce a Riemannian

metric. We may assume that
∫

V voln = 1. Write βn−1 = iB voln for an as yet

undetermined vector field B. If we write γ = g voln in terms of a function g,

we shall be done if we can solve div B = g for B. We shall determine B by

writing B = grad f and then solving ∇2 f = g. It is a fact (see [W, p. 256]) that

the Laplace operator on a compact manifold has a uniformly complete system of

eigenfunctions; we have eigenfunctions {αk}, ∇2αk = −λkαk, 0 = λ0 < λ1 ≤
λ2 ≤ . . . , where λk → ∞, and any smooth f can be expanded in terms of them,

f = ∑
fkαk . This expansion converges pointwise, not just “in the mean.” The

only eigenfunction needed for the lowest eigenvalue λ0 = 0 is the function α0 = 1,

since
∫

V ‖ grad α0 ‖2 vol = ∫
V div[α0 grad α0] vol − ∫

V α0∇2α0 vol = 0 shows

that α0 must be constant. The higher eigenvalues might have (finite) multiplicity

greater than 1. We then expand g = ∑
gkαk . Then to solve ∇2 f = g we need

only solve for fk in the infinite system −λk fk = gk, k = 0, 1, . . .. This is trivial

except for k = 0. Note, however, that the “Fourier coefficient” g0 is the Hilbert

space scalar product (g, α0) = ∫
V g vol = ∫

V γ , which by assumption vanishes.

If we put f0 = 0, then the desired f has been exhibited. One can then show that

the resulting f is a solution to ∇2 f = g.

We can now show that deg(φ) is independent of the choice of ωn . This follows

immediately on noting that if ω′ is another choice, then, by the lemma, ω −ω′ is exact,

so φ∗(ω − ω′) is also exact and thus
∫

M φ∗(ω − ω′) = 0.

The geometric significance of the degree is given by the following.

Theorem (8.17): Let y ∈ V be a regular value of φ : Mn → V n; that is, φ∗ at
φ−1(y) is onto. (Recall that Sard’s theorem says that the regular values of φ are
dense in V .) For each x ∈ φ−1(y), φ∗ : Mx → Vy is also 1:1; that is, φ∗ is an
isomorphism. Put

sign φ(x) := ±1

where the + sign is used iff φ∗ : Mx → Vy is orientation-preserving. Then

deg(φ) =
∑

x∈φ−1(y)

sign φ(x) (8.18)
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Corollary (8.19): deg(φ) is an integer. From (8.15) we see that the sum in (8.18)
is independent of the choice of the regular value y. Finally, since (8.15) shows
that deg(φ) varies continuously with φ, and since it must be an integer, deg(φ)

remains constant under deformations of the map φ.

P R O O F: First, we claim that since y is regular there are only a finite number of
preimages x ∈ φ−1(y). We can see this as follows. It is known that compactness

implies that every infinite sequence of points has a convergent subsequence. Thus

if φ−1(y) were infinite we could find a sequence {xk} ⊂ φ−1(y) that converges

to some x∞. But then φ(x∞) = y and x∞ would be a regular point of M . Since

φ∗ : Mx∞ → Vy is 1:1, φ is (by the inverse function theorem) a diffeomorphism

on some neighborhood U∞ of x∞. But since xk → x∞, xk ∈ U∞ for all k ≥
some integer R. But then the two points xR and x∞ would both be sent to y by φ,

contradicting φ is 1:1 on U∞.

For the rest of the proof it is good to have a simple example in view to keep

track of the construction. We shall draw the case when V 1 = S is the unit circle in

the plane, and M1 is a simple closed curve in the plane outside S whose interior

holds the origin. The map φ : M → S moves each point of M radially toward the

origin until it strikes S. In this case the degree of φ is called the winding number
of the curve M about the origin.

Figure 8.6
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In our drawing we see that our indicated y is a regular value since the radial line

passing through y is never tangent to M . (The line L , on the other hand, is tangent

to M at a critical point of φ.) We have indicated the three inverse image points xi

of y. Each is contained in a neighborhood Wi that is projected diffeomorphically

by φ onto a neighborhood Vi of y on S. These Wi are indicated by thick segments

on M . The complement of the union of these sets on M is indicated by the fuzzy

set, and the projection of this complement on S is also made fuzzy. Note that only

the neighborhood W2 is such that its image has orientation opposite to that of S,

and so (8.18) would yield deg(φ) = 1 − 1 + 1 = 1. This is also obvious from the

choice y′ for regular value!

It is clear in our picture that the point y has a neighborhood Vy whose inverse

image consists of a disjoint union of neighborhoods of the preimages xi of y,

each being a diffeomorphic copy of Vy . This is the main fact that we shall need

in the general case. The proof of this requires a topological argument, which we

now present for those readers with a little background in topology.

Let xi , i = 1, . . . , N be the preimages of the regular y ∈ M and let Wi

be disjoint neighborhoods of the xi that are sent diffeomorphically by φ onto

neighborhoods Vi of y. Let Vy ⊂ (V1 ∩ V2 ∩ . . . ∩ VN ) be a neighborhood so

small that it does not meet the “fuzzy” set φ[M − (W1 ∪ W2 ∪ . . .∪ WN )]. (This is

possible for the following reasons: M −(W1 ∪W2 ∪ . . .∪WN ) is a closed subset of

the compact M and is hence itself compact. The continuous image of a compact

set is compact, and hence closed in V n . The point y is in the complement O of this

closed set, and O is indeed a neighborhood of y. Then define the neighborhood

Vy of y by Vy := O ∩ (V1 ∩ V2 ∩ . . . ∩ VN ). Vy has the property that its inverse
image under φ consists of disjoint neighborhoods Ui := (φ−1

O) ∩ Wi of xi , each
of which is diffeomorphic to Vy under φ.

Now we shall take advantage of the fact that we may compute deg(φ) by using

any normalized form on V n . Let ωn be a normalized form on V n whose support
lies in Vy , that is, ω = 0 outside Vy (e.g., we may use a “bump form” as in

3.2b) and let y1, . . . , yn be local coordinates in Vy . Under the diffeomorphism φ

restricted to each Ui , we may use the functions yα as coordinates in Ui (we are

really using yα ◦ φ) and the map φ : Ui → Vy is then the identity map in these
coordinates! Note that φ(Ui ) has the same orientation as Vy iff sign φ(xi ) = +1.

We then have, since φ∗ω = 0 outside the union of the Ui ’s∫
V n

ω =
∫

Vy

ω = 1

and

deg(φ) =
∫

M
φ∗ω =

∑
i

∫
Ui

φ∗ω =
∑

i

∫
φ(Ui )

ω =
∑

i

sign(xi )

∫
Vy

ω

as desired.

8.3(1) The volume form on the unit sphere Sn in R
n+1 is ir dx1 ∧ . . . ∧ dxn+1 =∑

(−1)i−1xi dx1 ∧ . . . d̂x i . . . ∧ dxn+1. Show that the antipodal map Sn → Sn has

degree (−1)n+1.
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8.3b. Complex Analytic (Holomorphic) Maps

Consider a map f : C → C given by analytic function Z = f (z) in the complex plane.

We consider C to be a complex 1-dimensional manifold; see Section 1.2d and Section

5.3. If we write z = x + iy and Z = u + iv, then this map may be considered as a map

F : R
2 → R

2 given by u = u(x, y) and v = v(x, y), u and v satisfying the Cauchy–

Riemann equations. The differential f∗ of the map f at a point z1 is a 1 × 1 matrix

operating on complex 1-vectors, obtained as usual from d f (z(t))/dt = f ′(z1)dz/dt ,
that is, at z1

f∗ = f ′(z1)

8.3(2) Let f : C → C be analytic. Show that the differential f∗ = f ′(z1) : C → C

as a complex 1 × 1 matrix is related to the real differential: R
2 → R

2 by

∂(u, v)

∂(x, y)
=| f ′(z1) |2

and thus f∗ is orientation-preserving if f ′(z1) �= 0.

Consider a polynomial map P : C → C of the complex plane to itself of the form

z = x + iy → Z = u(x, y) + iv(x, y) = P(z) = zn + an−1zn−1 + · · · + a0. C

is not compact and we therefore cannot discuss the Brouwer degree of this map. But

| z |n→ ∞ as | z |→ ∞ and since P behaves like zn for | z | large, we can see that

P extends to a continuous map (again called P) of the Riemann sphere (see Section

5c) into itself by putting P(∞) = ∞. (Note, e.g., that ez does not extend to such a

map; why?) We need to discuss the smoothness at ∞. Near z = ∞ we introduce the

coordinate w = 1/z, and then our map can be expressed in the form

w → W (w)

by

w = z−1 → (zn + an−1zn−1 + · · · + a0)
−1

= wn

(a0wn + · · · + an−1w + 1)
= W (w)

which is clearly smooth near w = 0. In fact W is an analytic function of w near w = 0.

We may now discuss the Brouwer degree of this polynomial map of the Riemann sphere

into itself.

8.3(3) Show that z = ∞ is neither a regular value nor a regular point of a polynomial

P if n = degree of P is > 1.

Deform the polynomial map by considering, for 0 ≤ ε ≤ 1, the smooth deformation

z → zn + ε(an−1zn−1 + · · · + a0). In the w patch this means w → wn/[1 + ε(a0w
n

+ · · · + an−1w)]. Note that this is smooth as a function of w and ε near w = 0, and so

we have defined a smooth deformation of the original polynomial map of the Riemann

sphere.

8.3(4) Show that the Brouwer degree of the nth-degree polynomial map of the Riemann

sphere is the same as that of the map z → zn, w → wn . Then the value Z = 1 shows

that this degree is n.
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8.3(5) Show that if F : Mn → V n has degree �= 0, then F is onto. Hence if P
is a nonconstant polynomial, then for some z1, P(z1) = 0. This is the fundamental
theorem of algebra.

By factoring the polynomial by (z−z1), we see that P has n (not necessarily distinct)

roots, and P(z) = (z − z1) . . . (z − zn).

8.3(6) Use this to show that 0 is a regular value of P iff P has distinct roots.

8.3c. The Gauss Normal Map Revisited: The Gauss–Bonnet Theorem

From (8.14) we see that if M2 is a closed submanifold of R
3 then

1

4π

∫
M

K d A = deg(n : M2 → S2) (8.20)

is the degree of the Gauss normal map and in particular is an integer! If we smoothly

deform M , this integer must vary smoothly and thus it remains constant, even though

K itself will change! Recall, again from (8.14), that u ∈ M is a regular point for the

Gauss map provided K (u) �= 0 and that n preserves orientation iff K (u) > 0. This,

together with (8.18), allows us to evaluate the left-hand side of (8.20), the so-called

total curvature of M , merely by looking at a picture, as follows.

8.3(7) Show that
∫

M K d A = 4π(1 − g) for a surface of genus g, that is, the surface

of a multidoughnut with g holes

a surface of genus 3

Figure 8.7

This Gauss–Bonnet theorem is remarkable; a deformation of the surface might
change K pointwise and likewise the area form, yet the total curvature

∫
M K d A remains

unchanged and is a measure of the genus of the surface!

8.3d. The Kronecker Index of a Vector Field

Let Mn be a closed submanifold of R
n+1. It is a fact that Mn is the boundary of a

compact region U of R
n+1, Mn = ∂U n+1. Then the orientation of R

n+1 together with

the outward-pointing normal defines an orientation of M . Let v be a unit vector field

defined along M ; it need not be tangent to M . It then defines a map v : Mn → Sn by

x ∈ Mn 
→ v(x) ∈ Sn (if v is always normal to M then this is the Gauss map).
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M

v

x
v(x)

S

Figure 8.8

We define the (Kronecker) index of v on M by

index of v := Brouwer degree of v : M → S

If v is any vector field on M that never vanishes on M , we define the index of v to be

the Kronecker index of v/ ‖ v ‖.

The following are four examples in the plane with M1 itself the circle.

index = 1 index = 1 index =    3−index =    1−

Figure 8.9

8.3(8) The vector fields on Sn analogous to the first two depicted in the figure above

are v(x) = x and −x, respectively. Compute their Kronecker indices.

8.3(9) Use the integral definition of the Brouwer degree to show that if v can be
extended to be a nonvanishing vector field on all of the interior region U n+1, then
index (v) = 0. Thus none of the four fields illustrated can be extended to be nonvanishing

on the disc.

8.3(10) Suppose that the unit vector field v on Mn can be extended to be a smooth

unit field on all of U except for a finite number of points {Pα}. Excise a small ball Bα

centered at each Pα from U . Then v has an index on Mn and also on each of the spheres
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∂ Bα (with normal pointing out of Bα). Show that the

index of v on Mn =
∑

α

(index of v on ∂ Bα)

We may then say that the index of v on M is equal to the sum of indices inside M .

We have an immediate important fact.

Theorem (8.21): If vt is a smooth family of nonvanishing vector fields on Mn

with v0 = v and v1 = w, then, since the index is an integer varying continuously
with t , we have

index(v) = index(w)

8.3(11) Let v be a unit vector field on Mn = Sn that never points to the center O.

Show that

index (v) = index (N) = +1

In particular, if the nonvanishing v is always tangent to M, then its index is +1.

8.3(12) The Brouwer fixed point theorem: Show that every smooth map φ of the
closed (n + 1)− ball Bn+1 = {xεR

n+1 :‖ x ‖≤ 1} into itself has a fixed point. (Hint: B
is a manifold with boundary Sn . Consider the vector field on B given by v(x) = vector

from x to φ(x). On Sn, v never points toward the outer normal.)

Here is a simpler proof of the Brouwer fixed point theorem. If there is no fixed

point, then the vector v from x to φ(x) is never 0. We can then get a smooth map

r : Bn+1 → Sn by letting r(x) be the point on Sn where the directed line from φ(x)

to x strikes Sn . Note that r is a retraction, that is, r(x) = x for all x on Sn . Let ωn be

any n-form on S = Sn such that
∫

S ω = 1. ω is a form on S and dω = 0; it need not

be defined on Bn+1. Then r∗ω is an n-form on Bn+1 that agrees with ω on S. Note that

r(S) = S = ∂ Bn+1. Then

1 =
∫

S
ω =

∫
S

r∗ω =
∫

∂ B
r∗ω =

∫
B

dr∗ω

=
∫

B
r∗dω =

∫
B

r∗0 = 0

This is a contradiction, as promised.

Now let u1, . . . , un be local coordinates for M . Just as in (8.13), since v(u) represents

both the vector at u and the position vector on Sn at v(u), we have

v∗

(
∂

∂uα

)
= ∂v

∂uα

8.3(13) Show that

index (v) = (An)
−1

∫
M

voln+1

(
v,

∂v
∂u1

, . . . ,
∂v
∂un

)
du1 ∧ . . . ∧ dun

where voln+1 is the volume form for R
n+1, An is the area of the unit sphere Sn , and we

are using the traditional notation expressing the integral of an n-form αn in terms of



218 T H E G E O M E T R Y O F S U R F A C E S I N R
3

generic local coordinates,
∫

M αn = ∫
M a1...n(u)du1 ∧ . . . ∧ dun . Note that

this expression for index (v) is in fact a general formula for computing the degree of
any smooth map v : Mn → Sn of any compact oriented Mn into Sn ⊂ R

n+1!

8.3(14) If v is nonvanishing but perhaps not unit, show that the integral on the right

becomes

(An)
−1

∫
M

‖ v(u) ‖−(n+1) voln+1

(
v,

∂v
∂u1

, . . . ,
∂v
∂un

)
du1 ∧ . . . ∧ dun

(This is not as completely trivial as it seems.) We then have

Kronecker’s Corollary (8.22): Let (n + 1) smooth functions f1, . . . , fn+1 be
defined on Mn and its interior U n+1 ⊂ R

n+1 with no common zeros on Mn. Let
det( f, d f ) be the determinant of the (n + 1) × (n + 1) matrix whose j th row is
( f j , ∂ f j/∂u1, . . . , ∂ f j/∂un). Then if∫

M
( f 2

1 + · · · + f 2
n+1)

−(n+1)/2 det( f, d f )du1 ∧ · · · ∧ dun �= 0

we may conclude that f1 = 0, . . . , fn+1 = 0, has a solution in U n+1.

8.3e. The Gauss Looping Integral

Let Cα : S1 → R
3, α = 1, 2, be a pair of nonintersecting smooth closed curves in

space, given by r = r1(θ) and r = r2(φ), respectively. Gauss wrote down an integral

describing how the curves “link.”

θ

φ

T 2

C1

r2

r12

r12

r1
0

C2

Figure 8.10

Consider the abstract torus T 2 = S1 × S1 with coordinates θ, φ, and the map

L : T 2 → S2 defined by

L(θ, φ) = r12(θ, φ)

r12(θ, φ)
:= [r2(φ) − r1(θ)]

‖ r2(φ) − r1(θ) ‖
The Gauss looping or linking number of C1 and C2 is defined to be the integer

Lk(C1, C2) := deg(L) : T 2 → S2
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8.3(15) Show that the formula of Problem 8.3(14) translates to Gauss’s integral

Lk(C1, C2) = (4π)−1

∫
C1

{ ∫
C2

r−3
12 (r12×dr12)

}
• dr1

= (4π)−1

∫ 2π

0

[ ∫ 2π

0

r−3
12

{
r12 ×

(
dr12

dφ

)}
dφ

]
•

(
dr1

dθ

)
dθ

where we choose the right-handed orientation for R
3.

8.3(16) Now let W 2 be any orientable surface in R
3 whose boundary is C1. Choose

the orientation of W so that ∂W 2 = C1. For the given orientation of R
3 this picks out

a preferred unit normal N to W .

Figure 8.11

It is a fact that C2 can always be moved slightly if necessary to ensure that it meets

W transversally. We may then consider the intersection number W 2 ◦ C2, defined to

be the signed number of intersections of C2 with W 2, an intersection carrying a + sign

only if C2 is traversing W 2 in the same direction as N. Then the linking number has the

following interpretation.

8.3(17) Show that

Lk(C1, C2) = W 2 ◦ C2

Hint: A current of I = 1 in C2 gives rise to a magnetic field at r1 given by the law

of Biot–Savart

B(r1) =
∮

C2

r−3
12 r12×dr2

See Feynman’s lectures [F, S, L, vol. II, pp. 14–10].

The intersection number W 2 ◦ C2 is a measure of how the curves link.

It should be remarked that two wires can have linking number 0 and yet be physically
inseparable, as is indicated in our last illustration.
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The preceding proof of 8.3(17) is very simple because of our acceptance of the

Biot–Savart law; that is, we are assuming that the preceding integral for B indeed does

satisfy Ampere’s law! This law itself follows from Maxwell’s equations, but the proof

is not trivial. There are, for example complications arising from the familiar potential

solutions of Poisson’s equation since a wire is a limiting case of a volume distribution

of current. A sketch of a purely mathematical proof, in terms of “solid angle,” can be

found in [C, J, p. 619 ff.] or in [Sp]. I prefer the following proof, which I learned from

Michael Freedman; it uses Theorem (8.17) directly instead of Gauss’s looping integral.

For this we shall replace the intersection number by another measure of linking. We

proceed as follows:

a
b

c

b ′ a ′

c′

C1

C2

Figure 8.12

Two linking curves are shown. Move C1 in a direction aa′ and keep moving it until

it is far removed from C2. We shall show that deg(L) : T 2 → S2 is the (algebraic)

number of times C1 cuts through C2 in this process.

First we must decide on a direction of motion. Pick any regular value of L : T 2 → S2.

This will be our direction! We have drawn (a, a′) as a preimage on T 2 of this regular

value; thus the segment from a ∈ C1 to a′ ∈ C2 is in this regular direction. We have

drawn the two other preimages (b, b′) and (c, c′). As we move C1 in this given direction,

in our picture, first b will hit b′, then a will hit a′, and finally c will hit c′, and these will

be the only meetings of these two curves in this example.

Look more closely at a and a′. We have the two tangents dr1/dθ and dr2/dφ at

a = r1(θ) and a′ = r2(φ), respectively.

Again, the vector aa′ is r12. Since r12/r12 is a regular value, it must be that L∗(∂/∂θ)

and L∗(∂/∂φ) are linearly independent, and of course they are orthogonal to r12. Thus

the vector r12/r12 = [r2(φ) − r1(θ)]/r12 is a regular point of the map L iff

vol

(
r12, L∗

(
∂

∂θ

)
, L∗

(
∂

∂φ

))

and hence

vol

(
r12, −dr1

dθ
,

dr2

dφ

)

are not 0, using, say, the right-hand orientation.

We shall say that C1 cuts C2 positively (resp. negatively) at r2(φ) if this “volume”

is positive (resp. negative).
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In our picture (a′ −a, −dr1/dθ, dr2/dφ) yields a positive cut. Similarly, b′ is again

a positive cut and c′ is a negative cut.

Thus the degree of the map L is precisely the number of times that the translated C1

cuts C2, and we say that the curves are linked if the number of cuts is �= 0. In our case

the net number of cuts is +1.

8.4. Area, Mean Curvature, and Soap Bubbles

How can you determine the pressure inside an irregular bubble?

8.4a. The First Variation of Area

How does the area of a surface change as we move it in space? We consider this very
heuristically at first. In the following picture we consider a very small curved rectangle

on a positively curved surface whose sides, of length l1 and l2, are made up of lines of

curvature; that is, they are in the two principal directions at the point p.

A

l

l
n

1

1

1

2

2

2

δ

nδ

ρρ

α

α

p

Figure 8.13

They are approximately arcs of circles of radius ρ1 and ρ2, the radii of principal

curvatures. The area is approximately A = l1l2. Move the whole rectangle in the normal

direction a distance δn. The area changes approximately by δA = δ(l1l2) = δl1l2+l1δl2.

But δl1 ∼ α1δn = (l1/ρ1)δn and likewise for δl2. Thus

δA ∼ A(ρ−1
1 + ρ−1

2 )δn = −AHδn

since the surface curves away from the normal. We now make a more careful study, for

any surface, where the displacement need not be normal to the surface and can have a

magnitude that varies on the surface. For this we simply consider a 1-parameter family

of surfaces M2(t) in R
3, a variation of an M2(0).
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M( )t

v(

(

)

)

t

t

M( )0

N

u1 u2, ,xx =

Figure 8.14

We assume that M(0) is a compact manifold, perhaps with boundary. We wish to

calculate how the area of M(t) varies with t . There is a technical complication due to the

fact that the surfaces M(t) need not be disjoint. Schematically, reducing dimensions by 1

1

2M(t

M( )

)

t

M( )0

v
N

Figure 8.15

In this case the unit normals to the various M(t) would not yield a well-defined

vector field in R
3, nor would the velocity (“variation”) field ∂x/∂t . To prevent these

complications we introduce an extra coordinate t to the existing R
3, as we did in 4.3b.

t t

u1

1

1

2

u2
x

2x 3x

M( )t

M( )t

M( )0

�

,

,

Figure 8.16
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If u1, u2 are local coordinates on the base surface M(0) and if we assign the same

coordinates to corresponding points of M(t), we then have a map �(u1, u2, t) =
(x(u1, u2, t), t) into R

4 = R
3 × R. There is then no trouble in extending the normals

to define a vector field (again called N) in some neighborhood of the image of �.

N( )t2

N( )t1

Figure 8.17

We may even keep the field N “horizontal,” that is, with no t component.

The same may be done with the velocity vectors v = ∂x/∂t . Finally we may add

∂/∂t to this horizontal field to yield the space–time variation field X = v + ∂/∂t , as in

(4.41).

We are now ready to compute the first variation of area. vol3 = dx1 ∧ dx2 ∧ dx3

can be considered a 3-form in R
4, and for area we have

A(t) =
∫

M(t)
iN(t) vol3

It would be possible to write down the Euler–Lagrange equations for this problem in

the calculus of variations since iN(t) vol3 = √
gdu1 ∧ du2 has a “Lagrangian”

L
(

uα, x j ,
∂x j

∂uα

)
=

{
det

∑
j

(
∂x j

∂uα

)(
∂x j

∂uβ

)}1/2

but it would be difficult to interpret geometrically the resulting expressions. We proceed

instead directly, taking advantage of our machinery for differentiating integrals of forms

in 4.3. From (4.43) we have

A′(t) =
∫

M(t)

∂

∂t
iN(t) vol3 +

∫
M(t)

ivdiN(t) vol3

+
∫

∂ M(t)
iviN(t) vol3

Look at each integral separately. First, since ∂N/∂t is tangent to M(t)∫
M(t)

∂

∂t
iN(t) vol3 =

∫
M(t)

i∂N/∂t vol3 = 0

Next, diN(t) vol3 = div N vol3, and the second integral becomes∫
M(t)

〈v, N〉 div N vol2
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Finally, in the last integral, use arc length s for parameter along ∂ M(t) and let n(s) be

the unit vector field that is tangent to M(t), normal to ∂ M(t), and points out of M(t);
thus in R

3, n(s) = (dx/ds) × N.

M( )t

N

n

dx
ds

Figure 8.18

Then ∫
∂ M(t)

iviN vol3 =
∫ L

0

iviN vol3

(
dx
ds

)
ds

=
∫ L

0

iN vol3

(
v,

dx
ds

)
ds

=
∫ L

0

vol3

(
N, v,

dx
ds

)
ds

=
∫ L

0

〈(
dx
ds

)
× N, v

〉
ds

=
∫ L

0

〈n, v〉ds

=
∮

∂ M(t)
〈n, v〉ds

Thus

A′(t) =
∫

M(t)
〈v, N〉 divN vol2 +

∮
∂ M(t)

〈n, v〉ds (8.23)

This formula confirms the rather obvious fact that there are two ways to increase the

area of a surface with boundary. First, if the normals to the surface are diverging we

should move the surface in the direction of the normals (note that this does not affect

the boundary integral). Second, we may move the boundary outward at the boundary.

It is important for many purposes to realize that div N can be replaced essentially

by the mean curvature of the surface.

div N = −H (8.24)
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P R O O F: We shall give first a very useful expression for the divergence of any

vector field in R
n .

If X is a vector field and if A is a vector at a given point in R
n , then the

expression in cartesian coordinates

DA(X) = 〈A,DX〉 := A j

(
∂ Xk

∂x j

)
∂k

is simply the derivative of X with respect to the vector A. We claim that div X is
the trace of the linear transformation LX : R

n → R
n defined by

LX(A) = DA(X) (8.25)

For, in our cartesian coordinates, tr LX = ∑
i 〈LX(∂ i ),∂ i 〉 = 〈(∂ Xk/∂xi )∂k,∂ i 〉 =∑

i ∂ Xi/∂xi = div(X), as desired.

To compute div N we compute tr (A → DAN), and linear algebra tells us that

we may compute the trace of a linear transformation using any basis! We choose

a basis adapted to the surface M2(t), namely e1 = ∂x/∂u1, e2 = ∂x/∂u2, and

e3 = N. Then from (8.5)

e1 → ∂N
∂u1

= −e1b1
1 − e2b2

1

e2 → ∂N
∂u2

= −e1b1
2 − e2b2

2

and we also have DNN is orthogonal to N.

Thus

div N = −b1
1 − b2

2 = −H

as claimed.

We then have Gauss’s formula for the first variation of area

A′(t) = −
∫

M(t)
H〈v, N〉 vol2 +

∮
∂ M(t)

〈n, v〉ds (8.26)

In the classical notation of the calculus of variations

δx = v(0) δxN := 〈δx, N〉 δxn := 〈δx, n〉
(8.27)

δA : = A′(0) = −
∫

M(0)

HδxN d S +
∮

∂ M(0)

δxnds

Note in particular that A′(0) depends only on v(0), that is, the velocity vector at points of

M(0). In other words, given a surface M(0) and a vector field v(0) defined along M(0),

extend v(0) in any smooth way you wish to be a vector field v in some neighborhood

of M(0). The flow generated by this vector field will define a variation M(t) of M(0),

and the first variation of area, A′(0), is given by Gauss’s formula and is independent of

the extension v chosen!
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8.4b. Soap Bubbles and Minimal Surfaces

Consider a soap bubble blown on a pipe with perhaps irregular rim. (For the following

physical considerations we shall use rather heuristic reasoning.)

Figure 8.19

By blowing air in very slowly (quasi-statically, so that air inside has spatially constant

pressure), the rate at which work is being done is given, in classical notation, by

δW = pδV

where V is the volume of the bubble and p is the difference in pressure, inside and out.

Consider a small piece of the soap film M(0) as it sweeps out a small “cylinder”

while being blown up for a short time.

M( )0

M( )t

δx δx= NN

Figure 8.20

The pressure will force a normal displacement of the film of small amount δx =
δxN N. It is not hard to see that the small volume swept out will be approximately

δV =
∫

M(0)

δxN d S
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We then have

δW = p
∫

M(0)

δxN d S

On the other hand, the work done against surface tension during the stretching of the

film is approximately

δW = 2σδA = −2σ

∫
M(0)

HδxN d S

Here σ is the coefficient of surface tension, the factor 2 arises since the film has an

inside and an outside surface, and we have used Gauss’s formula with δxn = 0 since the

displacements are normal to the surface. We conclude that
∫

M(0)
(p+2σ H)δxN d S = 0,

and this must hold for each piece M(0) of the bubble. Taking M(0) to be an “infinites-

imal” neighborhood of a point on the bubble, we conclude that p + 2σ H = 0 at each

point of the bubble. We then have Laplace’s formula for the pressure inside the bubble

p = −2σ H (8.28)

(An air bubble in water has only one surface, in this case p = −σ H ).

A soap bubble in equilibrium has spatially constant pressure inside (otherwise air

would be in motion). Thus

A soap bubble in equilibrium describes a surface of constant mean curvature H .

For a spherical bubble of radius R, H = κ1 + κ2 = −2/R if the outer normal is used.

Then p = 4σ/R; the larger the bubble the smaller the pressure!

A soap film spanning a wire frame has the same pressure on both sides, and so

p = 0. A soap film spanning a given curve C describes a surface with mean curvature
H = 0.

Any surface with mean curvature 0 is called a minimal surface. The name stems

from the fact that a soap film spanning a curve tries to adjust itself so as to minimize

its area. Mathematically we have the following.

Theorem (8.29): Let M2 be a compact surface in R
3 with boundary curve C =

∂ M. Then M is a minimal surface, H = 0, if and only if the first variation of area
vanishes δA = 0 for all variations of M that leave the boundary C fixed.

This variational problem was first successfuly investigated by Lagrange. Experimental

studies using soap films were carried out by the physicist Plateau.

The variational theorem is an immediate consequence of Gauss’s formula. First note

that the boundary integral vanishes since δx = 0 on C . Next note that at a point of

M away from C , the variation δxN is quite arbitrary; this assures us that if the surface

integral vanishes for all variations then we must have H = 0.

The preceding theorem assures us that a minimal surface yields a critical point for

the area functional. To investigate the nature of the critical point (minimum, maximum,

minimax, . . . ) one should look at the second variation A′′(0). One should also discuss

whether a minimum is relative or absolute. It turns out that a sufficiently small piece
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of minimal surface yields an absolute minimum for area (keeping its boundary fixed).

There are soap films that give a relative, though not absolute minimum for area. There

are minimal surfaces that do not give even a relative minimum (i.e., they are “unstable,”

but such unstable surfaces cannot be realized by soap films). It would be better to call

a surface with H = 0 a “stationary” surface, with no indication of minimality.

We conclude with two remarks. First, if H = κ1 + κ2 = 0 then K = κ1κ2 ≤ 0,

showing that a minimal surface is always saddle-shaped. Finally, a minimal surface of

the form z = f (x, y) satisfies, from Problem 8.2(5), the nonlinear partial differential

equation

(1 + f 2
y ) fxx − 2 fx fy fxy + (1 + f 2

x ) fyy = 0

the so-called minimal surface equation.

Problem

8.4(1) Let M2 be a minimal surface with boundary ∂M = C, and let M be given in
parametric form x = x(u, v). Consider the variation (“dilation”) of M given by

x = x(u, v; t) = (1 + t)x(u, v)

Note that this variation moves the boundary curve also.

(i) Show from A = ∫
M ‖ xu × xv ‖ dudv that A(t) = (1 + t)2 A(0).

(ii) Show that 2 area M2 = ∮
C vol3(N, x, dx/ds)ds = ∮

C det(N, x, dx).

This formula is due to H. A. Schwarz and has the remarkable consequence
that the area of any minimal surface spanning C is completely determined by
the normals to the surface at points of the boundary alone!

8.5. Gauss’s Theorema Egregium

Must every plane map of the Earth’s surface have distortion?

8.5a. The Equations of Gauss and Codazzi

Let M2 be a surface in R
3 with local coordinates u = u1 and v = u2. Then the vectors

xα = ∂x/∂uα, for α = 1, 2, give a basis for the tangent planes at each point of the

coordinate patch. Of course xαβ = ∂2x/∂uβ∂uα = xβα need not be tangent to M .

Decompose into tangential and normal parts

xαβ = ∂β∂αx = xγ �
γ
βα + 〈xαβ, N〉N

or

xαβ = xγ �
γ
βα + bαβN (8.30)
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where the coefficients �
γ
αβ = �

γ
βα are still to be determined. Now

〈xαβ, xμ〉 = 〈xγ , xμ〉�γ
βα = gγμ�

γ
βα =: �βα,μ

Note that

∂βgαμ = ∂β〈xα, xμ〉 = 〈xαβ, xμ〉 + 〈xα, xμβ〉 (8.31)

= �βα,μ + �βμ,α

We conclude ∂gαμ/∂uβ + ∂gβα/∂uμ − ∂gμβ/∂uα = 2�μβ,α = 2�τ
μβgτα and so

�τ
μβ = 1

2
gατ

(
∂gαμ

∂uβ
+ ∂gβα

∂uμ
− ∂gμβ

∂uα

)
(8.32)

the Christoffel symbols (“of the second kind”).

Thus all the coefficients in Gauss’s surface equations (8.30) have been evaluated in

terms of the first and second fundamental forms g and b. Gauss now took a further step

by calculating the consequences of the identity xαβγ = ∂γ ∂β∂αx = xαγβ . In Problem

8.5(1) you are asked to show that

xαβγ − xαγβ = xτ (Rτ
αγβ − U τ

αβγ ) + Vαβγ N

where (8.33)

Rτ
αγβ := ∂γ �τ

βα − ∂β�
τ
γα + �τ

γμ�
μ
βα − �τ

βμ�μ
γα

is now called the Riemann or Riemann–Christoffel curvature tensor. U and V are

given by

U τ
αβγ = bτ

γ bαβ − bτ
βbαγ

and

Vαβγ = �τ
αβbτγ + ∂γ bαβ − �τ

αγ bτβ − ∂βbαγ

We then conclude that

Rτ
αγβ = bτ

γ bαβ − bτ
βbαγ

and (8.34)

∂γ bαβ − �τ
αγ bτβ = ∂βbαγ − �τ

αβbτγ

The first equations are called Gauss’s equations and the second are called the equations

of Codazzi and Peterson.

Only after Problem 8.5(1) will the reader fully appreciate that we have been using

a very condensed notation that was not used at the time of Gauss. Gauss did not

use indices. He wrote ds2 = Edu2 + 2Fdudv + Gdv2 instead of gαβduαduβ , and

Ldu2 + 2Mdudv + Ndv2 instead of bαβduαduβ , and so on.

The equations (8.34) are integrability conditions, that is, conditions that must be

satisfied by gαβ(u, v) and bαβ(u, v) in order for these two matrices to be the first

and second fundamental forms for a surface in R
3. In fact, Bonnet showed that these

conditions are also sufficient to ensure the local existence in R
3 of a surface having a

prescribed gαβ(u, v) and bαβ(u, v).
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8.5b. The Theorema Egregium

Gauss’s calculation of the first equation in (8.34) led him to one of the most impor-

tant and surprising discoveries in all of mathematics. First , however, we need some

background.

We are all familiar with geographical maps

φ : S2
a → a portion of the plane R

2

where Sa is a portion of the sphere of radius a. (We shall not be concerned here with

the inaccuracies in approximating the Earth by a sphere.) Ideally one would hope for

a map that preserves distances, up to a constant factor that for simplicity we shall take

to be 1. The length of a curve x = x(t) on the Earth’s surface is

∫ 1

0

〈
dx
dt

,
dx
dt

〉1/2

dt

and its image in R
2 has length

∫ 1

0

〈
φ∗

(
dx
dt

)
, φ∗

(
dx
dt

)〉1/2

dt

We say that a local mapping φ : Mn → V n of Riemannian manifolds is a local
isometry if φ∗ preserves lengths of vectors

〈φ∗X, φ∗X〉V = 〈X, X〉M

for all tangent vectors X to M . Note that φ∗ then automatically preserves all scalar

products, thanks to the identity

〈X, Y〉 = 1

2
{‖ X + Y ‖2 − ‖ X ‖2 − ‖ Y ‖2}

If φ is a local isometry, then all lengths of curves, areas of regions, and angles between

curves are preserved; in other words the map is distortion-free. Since φ∗Mp → Vφ(p)

is then an isomorphism (i.e., 1–1 and onto), the inverse function theorem assures us

that φ itself is a local diffeomorphism in the neighborhood of each point of M .

A familiar example is when a flat sheet of paper is rolled up into a cylinder or a cone;

though the paper is “bent” there is basically no “stretching.” Although the distances

between points of the sheet are changed (considered as points in the ambient R
3), the

length of any curve on the flat sheet is the same as when it is rolled up; this is the

meaning of bending without stretching!

If φ is a local isometry, one may transplant a local coordinate system y near φ(p)

back to a coordinate system x near p by

xi (p) := yi (φ(p)) = yi ◦ φ(p)
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x2

y2

x1 y1

Figure 8.21

In terms of these associated coordinates, φ is given simply by yi = xi and so

φ∗
∂

∂xi
= ∂

∂yi

Since φ is assumed to be a local isometry

gV
i j (y) =

〈
∂

∂yi
,

∂

∂y j

〉
V

=
〈

φ∗
∂

∂xi
, φ∗

∂

∂x j

〉
V

=
〈

∂

∂xi
,

∂

∂x j

〉
M

= gM
i j (x)

that is, in the associated coordinates the metric tensors of M and V are identical at

corresponding points. But then the Christoffel symbols and the Riemann tensor, which

are defined in any Riemannian manifold using (8.32) and the second equation in (8.33),

are also identical at corresponding points since they are constructed from the metric

tensor alone!

Return now to our case of a surface M2 in R
3. Look carefully, with Gauss, at the

first equation in (8.34). We have

R12
12 : = g2α R1

α12 = g2α(b1
1 bα2 − b1

2 bα1)

= (b1
1b2

2 − b1
2 b2

1) = det b = K

But since R12
12 is expressible entirely in terms of the metric tensor we have

Gauss’s Theorema Egregium (8.35): The Gauss curvature

K = κ1κ2 = R12
12

is an isometry invariant. In particular, if a surface is bent without stretching, then
although the principal curvatures κ1 and κ2 may change, their product will not!

flat sheet

e1

e2

= 0 = HK

== 0 HK

κ2κ1= =0

κ1= 0

0

κ2=

,

,

N

a

a−1/

a−1/

Figure 8.22
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(Note that the mean curvature H is not invariant!) We have an immediate familiar

consequence for maps of the Earth. Since a sphere of radius a has K = 1/a2 �= 0

we conclude that every plane map of a portion of the Earth’s surface must introduce
distortions, that is, cannot be an isometry.

Gauss’s theorema egregium says that one measure of the curvature of a surface, K ,

can be expressed in terms of an object R12
12 that is completely determined by the metric

tensor of the surface. We call such an object intrinsic. In Equation (10.27) we shall

exhibit geometric intrinsic formulas for K . (We shall see later that R12
12 is essentially

the only independent component of Rαβ
γ δ .)

Riemann’s generalization Rα
βγ τ (the second equation in (8.33)) to n-dimensional

manifolds defines, as we shall see again, an intrinsic measure of curvature. Curvature,

in the space–time manifold of Einstein’s general theory of relativity, as we shall see in

Chapter 11, is a measure of the strength of the gravitational field.

Cartan generalized the notion of intrinsic curvature to general “vector bundles.” In

Yang–Mills’s gauge theories, as we shall see, curvature becomes a measure of the

“strength” of the gauge field.

This is just part of the legacy of Gauss’s discovery.

Problems

8.5(1) Using the surface equations (8.30) and the Weingarten equations (8.5), derive
the Gauss and the Codazzi–Peterson equations (8.34).

8.5(2) Compute the curvature of the sphere with metric (8.3) the hard way: that is, show
R12

12 = 1/a2 directly from the second equation in (8.33). Later on we shall have
much more efficient ways to compute.

8.6. Geodesics

How can we describe the “straightest” curves on a surface?

8.6a. The First Variation of Arc Length

Let C be a curve on a surface M2. We shall consider the first variation of arc length as

we vary the curve. A variation x of C is a map of a rectangle R2 = [0, L] × (−1, +1)

into M; x : R2 → M

α

α

α

C

C

C= 0

P

Q

1

L
s

−1

Figure 8.23
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The map is described by x = x(s, α), where x = x(s) = x(s, 0) is the original curve

C = C0 parameterized by arc length, whose length is L . On the other hand, s is not
assumed to be arc length parameter for the curves Cα, x = x(s, α), for fixed α �= 0,

since such a parameterization would force all the Cα to have the same length L . The

length of Cα is

L(α) =
∫ L

0

〈
∂x(s, α)

∂s
,
∂x(s, α)

∂s

〉1/2

ds

and so

L ′(α) =
∫ L

0

∂

∂α

〈
∂x
∂s

,
∂x
∂s

〉1/2

ds

=
∫ L

0

∥∥∥∥∂x
∂s

∥∥∥∥
−1〈 ∂2x

∂α∂s
,
∂x
∂s

〉
ds

Since s is arc length when α = 0, we have ‖ ∂x(s, 0)/∂s ‖= 1 and

L ′(0) =
∫ L

0

〈
∂2x

∂α∂s
,
∂x
∂s

〉
ds =

∫ L

0

〈
∂2x

∂s∂α
,
∂x
∂s

〉
ds

=
∫ L

0

∂

∂s

〈
∂x
∂α

,
∂x
∂s

〉
ds −

∫ L

0

〈
∂x
∂α

,
∂2x
∂s2

〉
ds

Thus we have the first variation of arc length formula

L ′(0) = 〈J, T〉Q − 〈J, T〉P −
∫ L

0

〈
J,

∂T
∂s

〉
ds (8.36)

where T = ∂x/∂s(s, 0) is the unit tangent to C = C0 and J = ∂x/∂α(s, 0) is the

variation vector along C .

T

P

Q
= xs

J = xα

Figure 8.24

C is said to be a geodesic if L ′(0) = 0 for all variations that vanish at the endpoints

P and Q, that is, x(0, α) = P and x(L , α) = Q for all α. For such variations J = 0 at

P and Q and the first variation vanishing yields∫ L

0

〈
J,

∂T
∂s

〉
ds = 0

Both T and J are tangent vectors to the surface M , but of course ∂T/∂s need not be.

Since the variations allowed are very general (except at P and Q)



234 T H E G E O M E T R Y O F S U R F A C E S I N R
3

T

P

Q
= xs

J = xα

Figure 8.25

we conclude, by the fundamental lemma of the calculus of variations, that if C is

a geodesic then 〈J, ∂T/∂s〉 = 0, 0 < s < L , for every vector J that is tangent to
M along the geodesic C . Thus ∂T/∂s must be normal to the surface M2 along C . But

∂T/∂s = κn; we have derived John Bernoulli’s characterization of geodesics of 1697:

Theorem (8.37): C on M2 is a geodesic iff C, when considered as a space curve,
has a principal normal n that is normal to M.

n

n

N

N

Figure 8.26

Thus if we cut out a circle on S2 by slicing the sphere with a plane, the resulting

circle will be a geodesic on S2 iff it is a great circle.

8.6b. The Intrinsic Derivative and the Geodesic Equation

Let X be a vector field defined along a curve C (parameterized by t) and tangent to M2.

dX/dt of course need not be tangent to M ; we define a new derivative

∇X
dt

:= dX
dt

−
〈

dX
dt

, N
〉

N (8.38)
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Thus ∇X/dt is the tangential part of dX/dt , that is, the projection of dX/dt into the

tangent space to M2 at the given point. ∇X/dt is called the intrinsic derivative (or

sometimes the covariant derivative) of X along the curve C . This new type of derivative

will be discussed in great detail shortly, but for the present we shall simply note that

∇T/ds is the projection of the curvature vector dT/ds = κn = κ of C , considered as

a space curve, into the tangent plane. We shall denote this tangent vector by κg and call

it the geodesic curvature vector; its magnitude κg is called the geodesic curvature.

Since dT/ds = κn is orthogonal to T, so is κg.

Geodesics are characterized by being curves x = x(s) for which

κg := ∇T
ds

= 0 (8.39)

A geodesic C is then a curve for which the derivative of the unit tangent has no
component tangent to the surface.

The first variation formula (8.36) then shows us that if C is any curve, we may

shorten it by moving the endpoints inward. If C is not a geodesic in a neighborhood of

some point C(s), we may also shorten it by moving a small portion near C(s) in the

direction of its geodesic curvature vector κg.

Finally, let us write out the geodesic equation ∇T/ds = 0 in local coordinates. For

our curve x = x(u(s))

T = dx
ds

=
(

∂x
∂uβ

)(
duβ

ds

)
= xβ

duβ

ds

d2x
ds2

= xβα

(
duα

ds

)(
duβ

ds

)
+ xβ

d2uβ

ds2

= (xγ �
γ
αβ + bαβN)

(
duα

ds

)(
duβ

ds

)
+ xγ

d2uγ

ds2

and so

∇T
ds

= xγ

[
d2uγ

ds2
+ �

γ
αβ

(
duα

ds

)(
duβ

ds

)]
(8.40)

Thus a curve u = u(s) parameterized by arc length is a geodesic iff

d2uγ

ds2
+ �

γ
αβ

(
duα

ds

)(
duβ

ds

)
= 0 (8.41)

The fundamental theorem on differential equations tells us that this system, that is,

duγ

ds
= T γ

dT γ

ds
= −�

γ
αβ(u(s))T αT β

has a unique solution uγ = uγ (s) for given initial data uγ (0) = uγ
0 and duγ /ds(0) =

T γ
0 . Furthermore, as we shall see in the next section, T(s) automatically will have

constant length, and thus s will automatically be the arc length parameter if we start

with a unit initial T. Thus there is a unique geodesic starting at each initial point with
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given initial unit tangent. Since the system is nonlinear, we may not insist that the
solution exist for all parameter values s!

A geodesic is a critical point for the length functional for curves joining two end-

points P and Q. In Chapter 12 we shall discuss the nature of the critical point but we

simply remark here that if P and Q are sufficiently close then there is a unique geodesic
joining them whose length is an absolute minimum. A great circle on the 2-sphere that

goes three-quarters of the way around the sphere is clearly a geodesic that does not

yield an absolute minimum for the length of curves joining the endpoints; in fact, as we

shall see in Chapter 12, it does not yield even a local minimum! A thorough analysis

of geodesics is given in Milnor’s book [M].

8.7. The Parallel Displacement of Levi-Civita

What should it mean to move a vector on a curved surface “parallel to itself” while it remains

tangent to the surface?

Let v be a vector field in R
n defined along a curve x = x(t). The derivative of this field

is another vector field dv/dt along the curve, defined, as usual, by

v′(t) = dv(t)

dt
= lim

h→0

[v(t + h) − v(t)]

h
We are clearly comparing a vector at one point, x(t), with another vector at the second

point x(t + h). This is possible because R
n , being an affine space, allows us to parallel

translate a vector at a given point to any other point in R
n . This process is not available

to us in a general manifold Mn; the use of a local coordinate system to define parallelism

(namely, keeping the components of a vector constant) would yield a definition strongly

dependent on the coordinates used. This is intimately related to our discovery in Section

2.4e that the obvious notion of the derivative of a vector field ∂v j/∂xk using coordinates

does not yield a tensor field.

If Mn ⊂ R
N is a submanifold of euclidean space, can we use the ambient space to

define the notion of derivative of a vector field? Consider, for example, a surface in

3-space. Let X be a tangent vector to M2 ⊂ R
3 at a point P . Given a second point Q

on M , we may consider the vector Y at Q obtained by parallel displacing X in R
3 to

the point Q. Of course Y in general will not be tangent to M at Q; in fact, it may even

be normal. If we used our previous definition to define the derivative dX/dt of a vector

field along a curve, we would only recover the derivative in R
3, yielding a vector field

along the curve that is not tangent to the surface. Levi-Civita remedied this, yielding

what we have called the intrinsic derivative ∇X/dt . If X is a vector field defined along

a curve C on M2 ⊂ R
3, X being tangent to M , we have defined ∇X/dt to be the

projection of dX/dt into the tangent plane to M . Writing

X = Xα(t)xα(u(t))

we get

dX
dt

= d Xα

dt
xα + Xαxαβ

duβ

dt
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The Gauss surface equations (8.30) then yield

∇X
dt

=
(∇ X γ

dt

)
xγ (8.42)

where

∇ X γ

dt
:= d X γ

dt
+

(
duβ

dt

)
�

γ
βα Xα

is the γ th component of the intrinsic derivative of X. (As such, it would be more

reasonable to write (∇X/dt)γ , but we have used the traditional notation.)

Given the parameterized C, u = u(t), and given an initial vector X0 tangent to M2 at

u(0), there is a unique tangent vector field X(t) to M along C that satisfies the system

of differential equations

∇ X γ

dt
= 0 (8.43)

with initial conditions X γ (0) = X γ
0 . This solution exists for all parameter time t

since the system is linear. The unique solution X is called the parallel translate or

displacement or transport of X0 along C , and (8.43) is called the equation of parallel

translation.

Equation (8.41) then tells us that the tangent vector to a geodesic parameterized by
arc length is parallel displaced along the geodesic.

Note that (8.43) merely tells us that dX/dt is always normal to the surface along the

curve when X is parallel displaced.

The notion of intrinsic derivative is seen, from (8.42), to involve only the metric ten-

sor, not the second fundamental form. This is the reason for the description “intrinsic.”

In particular, the notions of intrinsic derivative and parallel displacement make sense
on an abstract Riemannian surface, even though the original motivation relied on a

specific embedding M2 ⊂ R
3. Note also that the definition (8.43) makes sense in a Rie-

mannian manifold Mn of any dimension, since the definition of the Christoffel symbols

(8.32) makes sense in any Riemannian manifold. It is not immediate, without looking

at the transformation properties of the Christoffel symbols, that ∇ X γ /dt , as given in

(8.43), transforms as a contravariant vector, but this is indeed true. This discovery of

Christoffel, in 1869, was the real beginning of tensor analysis. It wasn’t until 1918 that

Levi-Civita interpreted the intrinsic derivative in the case of an embedded surface as

the tangential component of the usual derivative.

Since parallel displacement is intrinsic, if φ : Mn → V n is an isometry and if X is
parallel displaced along C of M , then φ∗X is parallel displaced along φ(C) in V .

Furthermore, if M2 ⊂ R
3 and W 2 ⊂ R

3 are two surfaces in space that are tangent

along a common curve C , we see from (8.38) that if X is parallel displaced along C in
M, then X is also parallel displaced along C in W.

For example, let M2 = S2 be the standard 2-sphere in R
3 and let C be a “small”

circle of latitude. We wish to parallel displace a tangent vector X0 along C ; we have

chosen X0 to be pointing north.
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Figure 8.27

Let V 2 be the cone that is tangent to S2 along C . Parallel translation along C of M is

the same as parallel translation along C considered as a curve on V . Any small portion

of the cone that omits the vertex is isometric with a portion of the flat plane, as we see

from cutting the cone along a generator and laying it out flat. This flattened version of

the cone will have an “opening angle” α that is easily computed from the latitude of C .

Parallel translation along C is then the same as on the flattened cone. In the flattened

cone one can introduce cartesian coordinates x, y, and in these coordinates the metric

of the cone is ds2 = dx2 + dy2. Clearly the Christoffel symbols for this flat metric

all vanish and the equations of parallel translation are simply d X γ /dt = 0; that is,

parallel translation in the flat plane is the usual parallelism of the euclidean plane.

We have indicated in our figure the parallel translation of X0 around the flattened cone,

returning to P with a final vector X f that makes the opening angle α with the generator

through P . When this flattened cone is then wrapped around the sphere again we see

that when X0 is parallel translated around the small circle of latitude C on the sphere,
the vector X does not return to itself but rather to a vector X f of the same length but
rotated through the opening angle α!

We should note that if C had been an equator of S2, then the tangent cone would have

been replaced by the tangent cylinder and then X0 would have then coincided with X f .

Since parallel displacement around a closed path does not necessarily return a vector

to itself we conclude that, in general,

parallel displacement from a point P to a point Q will be dependent upon the choice
of path joining P to Q!

P

X X

X

X

C

C

Q

′
′

Xf

Xf

X0

Figure 8.28
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For this reason it makes no sense to ask whether a vector at P is parallel to a vector

at Q; one can talk about parallelism only with respect to a specific path joining the two
points.

Finally, consider a pair of vectors X(t) and Y(t) defined along a curve u = u(t) of

a surface M2 ⊂ R
3 and tangent to M. Then, since ∇/dt is the tangential part of d/dt ,

we see

d

dt
〈X(t), Y(t)〉 =

〈
dX
dt

, Y
〉

+
〈

X,
dY
dt

〉

yields

d

dt
〈X(t), Y(t)〉 =

〈∇X
dt

, Y
〉

+
〈

X,
∇Y
dt

〉
(8.44)

(Although this important equation is in fact true in any Riemannian manifold, as we

shall see, we have derived it only in the case of an embedded surface in R
3.) In particular,

if both X and Y are parallel displaced along C we see that

〈X(t), Y(t)〉 is a constant under parallel displacement!

If we let Y = T be the unit tangent vector to a geodesic, we see that a vector parallel
displaced along a geodesic on a surface in R

3 will make a constant angle with the
geodesic.

Problems

8.7(1) The upper half plane {(x , y) : y > 0} can be endowed with a particular abstract
Riemannian metric, the Poincaré metric

ds2 = y−2{dx2 + dy2}
Parallel displace the initial vertical vector X = ∂/∂y at (0, 1) along the parameter-
ized horizontal curve C; x (t) = t, y(t) = 1; that is, solve the differential equations
(8.43).

8.7(2) (i) Let w be a unit vector, tangent to the surface, and defined along a curve C.
Show that ∇w/ds is orthogonal to w.

(ii) Let v be a vector that is parallel displaced along C and let θ := ∠(v, T) be
the angle that C makes with v. Recall that the geodesic curvature vector of
C is given by κg = ∇T/ds, with length κg . Show that

κg =
∣∣∣∣dθ

ds

∣∣∣∣
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CHAPTER 9

Covariant Differentiation and
Curvature

We saw in Section 2.4 that the partial derivatives ∂ jv
i of a vector field v do not form

the components of a tensor. For a covariant vector field α1 we did show that we can

construct a tensor by taking a combination of partial derivatives, ∂ j ak −∂ka j , the exterior

derivative, but that ∂ j ak by themselves do not yield a tensor. Our goal in this chapter is

to introduce an added structure to the notion of a manifold, a structure that will allow

us to form a generalized derivative, a “covariant” derivative, taking vector fields into

second-rank tensor fields.

9.1. Covariant Differentiation

9.1a. Covariant Derivative

Let us reformulate the concept of the intrinsic derivative of the last chapter.

Let M2 be a surface in R
3, and let v be a vector field that is tangent to M and defined

along a parameterized curve. Then the intrinsic derivative ∇v/dt was defined to be the

tangential part of the ordinary R
3 derivative dv/dt , and as such was again a tangent

vector field to M along the curve. We then define a covariant derivative as follows.

Let v be a tangent vector field to M defined now in some neighborhood of a point p, and

let X be a tangent vector to M at the single point p. Choose any curve on M through

p whose tangent at p is the vector X, and define the covariant derivative ∇Xv at p to

be the intrinsic derivative ∇v/dt . In terms of coordinates we easily get

(∇Xv)α =
(

∂vα

∂uβ
+ �α

βγ vγ

)
Xβ (9.1)

which is clearly independent of the curve chosen to realize the given tangent vector

X at p. The intrinsic derivative can then be expressed as the covariant dervative with

respect to the tangent field T = dx/dt to the curve

∇v
dt

= ∇Tv

241
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We have thus constructed the notion of a derivative of a tangent vector field v with

respect to a vector X at p; the result is again a tangent vector at p. It is furthermore

clear that if X is itself a tangent vector field, then ∇Xv is again a vector field. All

this was possible because M was a surface in R
3, one already has a notion of derivative

dv/dt in R
3, and one also has the notion of orthogonal projection into the tangent space

Mp in R
3.

A little reflection will show that we can again define ∇Xv when Mn is any sub-

manifold of any R
N , using exactly the same procedure. In fact the coefficients �, the

Christoffel symbols, are defined exactly as before.
Since the formulas for �α

βγ make sense for any Riemannian manifold Mn , indepen-

dent of whether or not it is embedded in some R
N , it is reasonable to try to define the

covariant derivative in a Riemannian Mn again by the Formula (9.1), and indeed this

does work. (In this case one would have to show, using the transformation properties of

the metric tensor, that the components (9.1) do transform as the components of a vector,

something that is geometrically immediate in the case of an embedded submanifold

of R
N .)

A covariant differentiation operation, defined fully in a moment, is also called a

connection.

The connection in a Riemannian manifold in which the �i
jk are given by the

Christoffel symbols is called the Levi-Civita connection, though Christoffel would

be the natural name to associate with this connection.

It is important that we develop the concept of covariant derivative even when the

manifold is not Riemannian. Later on we shall see that we shall need to differentiate

objects that are much more general than tangent vector fields, and then the Christoffel

symbols will be replaced by other quantities. For example, when discussing particle

physics we shall have to differentiate wave functions, and we shall see that it is natural

to define a covariant derivative in which the role of the Christoffel symbols is played

by the electromagnetic vector potential A! Part Three will be devoted to this concept of

covariant differentiation in a “vector bundle,” and the role of Christoffel symbols will be

played frequently by certain physical fields, that is, by extra structures that are foreign

to the unadorned notion of “manifold.” For the present we shall only be dealing with

quantities related to tangent vector fields. For this purpose, we generalize our preceding

situation as follows. (The reader should verify that the indicated properties are indeed

satisfied in the familiar case of a surface in R
3 with the Levi-Civita derivative.)

Definition: Let Mn be a manifold. An affine connection or covariant differen-
tiation is an operator ∇ that assigns to each pair consisting of a vector X at p
and a vector field v defined near p, a vector ∇Xv at p that satisfies

∇X(av+bw) = a∇Xv + b∇Xw (9.2)

∇aX+bYv = a∇Xv + b∇Yv

and

∇X( f v) = X( f )v + f ∇Xv (“Leibniz rule”)
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for all vector fields v and w, functions f , and real numbers a and b. We also

demand that if X is a smooth vector field then ∇Xv is also a smooth vector field.

From the second equation we have that if X = ∑
i X i ei then ∇X = ∑

i X i∇ei .

We shall write out what this says in terms of components. In our work up until now

we have always used local coordinates x to yield a basis∂/∂xi for the tangent vectors in

a patch U . For many purposes, however, it is advantageous to use a more general basis.

A frame of vector fields in a region U consists of n linearly independent smooth vector

fields e =(e1, . . . , en) in U . A special case is a coordinate frame, where ei = ∂/∂xi ,

for some coordinate system x in U . First note that a frame e usually is not a coordinate

frame, since [ei , e j ] is usually not 0 while [∂ i ,∂ j ] = 0. In fact we have

Theorem (9.3): A frame e is locally a coordinate frame iff

[ei , e j ] = 0 for all i, j

P R O O F: We need only show that this bracket condition implies the existence of

functions (xi ) such that ei = ∂/∂xi . Let σ be the dual form basis. From (4.25)

dσ i (e j , ek) = −σ i ([e j , ek]) (9.4)

and so dσ i = 0, for all i . Locally then each σ i is exact, σ i = dxi , for some

functions x1, . . . , xn . Since dx1 ∧ . . . ∧ dxn = σ 1 ∧ . . . ∧ σ n �= 0, we see, from

Corollary (1.16), that the x’s do form a local coordinate system. Since σ = dx it

follows that e = ∂/∂x .

Let now e =(e1, . . . en) be a frame of vector fields in a region U . We then have

X = e j X j and then from (9.2)

∇X(ekv
k) = X j eiω

i
jkv

k + X j e j (v
k)ek (9.5)

where ωi
jk is defined by

∇e j ek = eiω
i
jk (9.6)

In our surface case, when e j = ∂ j was a coordinate frame, we had ωi
jk = �i

jk .

Warning: As we shall see, it is not generally true that ω is symmetric in j and k,

ωi
jk �= ωi

k j .

Since X(vk) = dvk(X), we may rewrite (9.5) as

∇Xv = ei {dvi (X) + X jωi
jkv

k}
The symbols ωi

jk are called the coefficients of the affine connection, with respect to the

frame e. Using the dual basis σ of 1-forms, we have ∇Xv = ei {dvi (X)+ωi
jkσ

j (X)vk}
or

∇Xv = ei {dvi + ωi
jkσ

jvk}(X) (9.7)

We wish to emphasize that this makes sense in any frame e, and, as we shall see, for

many purposes it will be important to employ frames that are not coordinate. For the
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present, however, it is an unnecessary complication. (For example, in a general frame,

d f = f, j σ j for some coefficients f, j but f, j are not partial derivatives.)

For the remainder of this Section 9.1 we shall restrict ourselves to the use of coordinate
frames.

When the frame e is a coordinate frame, ei = ∂ i = ∂/∂xi , σ i = dxi ,

∇Xv = ∂ i

{
∂vi

∂x j
+ ωi

jkv
k

}
dx j (X)

that is,

(∇Xv)i =
[

∂vi

∂x j
+ ωi

jkv
k

]
X j (9.8)

just as in (9.1). Since ∇Xv is assumed to be a vector, we conclude that

∇ jv
i = vi

/j := ∂vi

∂x j
+ ωi

jkv
k (9.9)

form the components of a mixed tensor, the covariant derivative of the vector v.

9.1b. Curvature of an Affine Connection

In the surface case, from (8.33) we see that curvature is at least related to the commu-

tation of second covariant derivatives of vector fields. In Problem 9.1(1) you are asked

to verify Equation (9.11).

Theorem (9.10): Let Xp, Yp, and vp be vectors at a point p of Mn and let X, Y,
and v be any extensions of these vectors to vector fields in some neighborhood U
of p. Form the vector field

R(X, Y)v := ∇X(∇Yv) − ∇Y(∇Xv) − ∇[X,Y]v

in U. If we expand the vector fields in terms of a coordinate basis ∂, then

R(X, Y)v = {Ri
jkl XkY lv j }∂ i

where, as in (8.33), (9.11)

Ri
jkl := ∂kω

i
l j − ∂lω

i
k j + ωi

krω
r
l j − ωi

lrω
r
k j

Thus the value of the vector field R(X, Y)v at p is independent of the extensions
of X, Y, and v. From (9.11), the assignment

vp → R(Xp, Yp)vp

defines a linear transformation R(X, Y) : Mn
p → Mn

p called the curvature
transformation for the pair X, Y; its matrix is given by R(X, Y)i

j = Ri
jkl XkY l .

Consequently, Ri
jkl are the components of a mixed tensor of the fourth rank, the

Riemann tensor. We may write

R(X, Y) = [∇X, ∇Y] − ∇[X,Y] (9.12)
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where [X, Y] is the Lie bracket of the extended vector fields and [∇X, ∇Y] =
∇X∇Y − ∇Y∇X is the commutator bracket of the covariant derivatives.

(We have used the fact that since Ri
jkl XkY l are the components of a second-rank mixed

tensor for all X and Y, it must be that Ri
jkl are the components of a fourth-rank tensor.

See Problem 9.1(2).)

From its definition it is clear that R(X, Y) = −R(Y, X), that is,

Ri
jlk = −Ri

jkl (9.13)

9.1c. Torsion and Symmetry

Recall that the Lie bracket has components in a coordinate frame given by

[X, Y]i = X j∂ j Y
i − Y j∂ j X i = X(Y i ) − Y(Xi )

Compare this with the i th component of the difference of covariant derivatives. From

(9.8)

(∇XY − ∇YX)i = X j∂ j Y
i − Y j∂ j X i + X j (ωi

jk − ωi
k j )Y

k

Now if X and Y are vector fields then so are ∇XY − ∇YX and [X, Y]. We see that

their difference, at a point p, is a vector,

τ (X, Y)i := X j (ωi
jk − ωi

k j )Y
k

that depends (bilinearly) only on X and Y at p. In other words, we have a well-defined

“vector-valued 2-form” τ the torsion form, defined by

τ (X, Y) := ∇XY − ∇YX − [X, Y] (9.14)

(We started a discussion of vector-valued forms in Problem 4.3(5) and in Section 8.1a.

We shall discuss this notion in more detail in Section 9.3a.) In terms of a general frame,

τ = ei ⊗ τ i = 1

2
ei ⊗ T i

jkσ
j ∧ σ k

where T i
jk are the components of a mixed tensor, the torsion tensor. In a coordinate

frame, as we have seen,

T i
jk := ωi

jk − ωi
k j (9.15)

(This is rather surprising since, as we shall see, the ωi
jk themselves do not form the

components of a third-order tensor.)

We shall say that the connection is torsion-free, or symmetric, if the torsion tensor

vanishes identically, τ = 0. In this case we have

∇XY − ∇YX = [X, Y] (9.16)

The reason for the description “symmetric” is as follows. From (9.15) we see that in a
coordinate frame, T i

jk = 0 means that the connection coefficients are symmetric in the

two lower indices,

ωi
jk = ωi

k j (9.17)
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Warning: In a noncoordinate frame, (9.15) does not hold and consequently ω need
not be symmetric in the lower indices when the torsion vanishes.

The Levi-Civita connection for a Riemannian manifold is symmetric because the

Christoffel symbols satisfy �i
jk = �i

k j .

Problems

9.1(1) Verify (9.11).

9.1(2) Show that if Ai
jkl X

k Y l transforms as a mixed tensor Bi
j for all vectors X and Y,

then Ai
jkl transforms as a fourth-rank mixed tensor.

9.2. The Riemannian Connection

What distinguishes the Christoffel connection from the others?

In any manifold Mn with an affine connection, that is, with a covariant differentiation

operator ∇, we can consider parallel displacement of a vector Y along a parameterized

curve x = x(t), defined again by

0 = ∇Y
dt

= ∂ i Y
i
/k

(
dxk

dt

)
= ∂ i

{
∂Y i

∂xk
+ ωi

k j Y
j

}(
dxk

dt

)

Warning: The connection coefficients ωi
jk are usually denoted by �i

jk . We, how-

ever, shall reserve this notation for the Christoffel symbols, that is, the Levi-Civita

connection coefficients, with respect to a coordinate frame.

As we shall see later, there are an infinite number of distinct affine connections on any

manifold. (In R
3, e.g., one may choose functions ωi

jk arbitrarily in the single coordinate

patch.) If the manifold is Riemannian, however, there is one connection that is of special

significance in that it relates parallel displacement with the Riemannian metric in an

important way. In the case of a surface M2 in R
3, the Levi-Civita connection, first of

all, was symmetric, and second, had the property that parallel displacement preserved

scalar products of vectors (a consequence of Equation (8.44)).

Theorem (9.18): On a Riemannian manifold there is a unique symmetric con-
nection that satisfies

d

dt
〈X, Y〉 =

〈∇X
dt

, Y
〉

+
〈

X,
∇Y
dt

〉

for any pair of vector fields defined along a parameterized curve, and this con-
nection is the Riemannian connection; that is, in a coordinate frame, ωi

jk = �i
jk

are the Christoffel symbols (8.32).
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P R O O F: Consider the k th coordinate curve of a local coordinate system, param-

eterized by xk , and let X and Y be two vector fields defined in a neighborhood of

this curve. By hypothesis we have

∂

∂xk
(gi j X i Y j ) = gi j X i

/kY j + gi j X i Y j
/k

= gi j

[
∂ Xi

∂xk
+ ωi

kl Xl

]
Y j + gi j X i

[
∂Y j

∂xk
+ ω

j
kmY m

]

Comparing this with the product rule expansion of ∂/∂xk(gi j X i Y j ) we see that

(∂gi j/∂xk)Xi Y j − gi jω
i
kl XlY j − gi jω

j
km Xi Y m = 0. Changing dummy indices we

get [∂gi j/∂xk − gl jω
l
ki − gilω

l
k j ]Xi Y j = 0. Since this holds for all X and Y we

conclude that

∂gi j

∂xk
− gl jω

l
ki − gilω

l
k j = 0 (9.19)

If we define ωk j,i = gilω
l
k j we then see that (9.19) is the same as Equation (8.31)

in the surface case. If we now assume that ωi
k j is symmetric in k and j , as it is

in the surface case, we are again led to (8.32); that is, the connection coefficients

are indeed the Christoffel symbols. This shows that if a Riemannian connection

exists, it is given by the Christoffel symbols.

We can then define a connection in each coordinate patch by putting ωi
jk equal

to the Christoffel symbol �i
jk for that patch. Our uniqueness result (that we have

just proved) then shows that the local covariant derivatives in the patches agree

in each overlap and thus we have a connection defined globally.

The requirement d/dt〈X, Y〉 = 〈∇X/dt, Y〉 + 〈X, ∇Y/dt〉 easily implies the fol-

lowing. For two vector fields X and Y, and vector T, we may differentiate the function

〈X, Y〉 with respect to T and

T〈X, Y〉 = 〈∇TX, Y〉 + 〈X, ∇TY〉 (9.20)

The operation of covariant differentiation in a Riemannian manifold was introduced

by Christoffel in 1869, following Riemann’s paper of 1861 in which the curvature

tensor was introduced. Levi-Civita, Hessenberg, and Weyl systematized the notion of

manifold with an affine connection, independent of a Riemannian structure, in 1917

and 1918.

9.3. Cartan’s Exterior Covariant Differential

How can we express connections and curvatures in terms of forms?

9.3a. Vector-Valued Forms

Cartan extended the notion of the exterior derivative of a p-form to that of the exterior

“covariant” derivative of a “vector-valued p-form.” This remarkable machinery is, as we

shall see, ideally suited for computations involving the Riemann curvature tensor, and

also seems to be the natural language for dealing with the gauge fields of present-day

physics and the stress tensors of elasticity.
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Let A be a mixed tensor that is once contravariant and p times covariant and that is

skew symmetric in its covariant indices. Locally

A = ei ⊗
∑

J⇁

Ai
j1

. . . jp σ
j

1 ∧ . . . ∧ σ jp

Thus A is of the form A = ei ⊗ αi where αi is the p-form coefficient of ei . To A we

may then associate a vector-valued p-form, that is, a p-form (written A or α), whose

values are vectors rather than scalars

α(v1, . . . , vp) := eiα
i (v1, . . . , vp)

We shall make no distinction between the tensor A and its associated vector-valued
p-form α.

Vector-valued forms occur frequently in classical vector analysis. In terms of carte-

sian coordinates, dr = (dx1, dx2, dx3)T is the vector-valued 1-form with values

dr(v) = (dx1, dx2, dx3)T (v) = (dx1(v), dx2(v), dx3(v))T

= (v1, v2, v3)T

that is, dr is the form that assigns to each vector the same vector! This comes from

the mixed tensor (linear transformation) I = ∂ i ⊗ dxi whose matrix is the identity.

Physicists think of (dx1, dx2, dx3)T as a generic “infinitesimal” vector. The vector-

valued 2-form (introduced in Problem 4.3(5))

dS = (dy ∧ dz, dz ∧ dx, dx ∧ dy)T

assigns to any pair of vectors the vector whose components are the signed areas of the

parallelograms resulting from the projections of the vectors into the coordinate planes,

that is, dS(A, B) = A × B.

A vector-valued 0-form is of course simply a vector.

9.3b. The Covariant Differential of a Vector Field

If v is a vector field in a manifold Mn with affine connection, then we have seen that

the coordinate patch expressions

∇ jv
i = vi

/j := ∂vi

∂x j
+ ωi

jkv
k

fit together to define a mixed tensor field, which we shall call the covariant differential,
denoted by ∇v

∇v = ∂ i ⊗ ∇ jv
i dx j = ∂ i ⊗ vi

/j dx j (9.21)

This can be considered a vector-valued 1-form.

∇v(X) = ∂ i [(∇ jv
i dx j )(X)] = ∂ i [X j∇ jv

i ] (9.22)

that is,

∇v(X) := ∇Xv
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In particular, if e is any frame of tangent vectors, we have, from (9.6), ∇e j (ei ) = ekω
k
i j .

But ek ⊗ωk
r jσ

r is a vector-valued 1-form that has the same value when applied to ei . We

conclude that ∇e j = ek ⊗ωk
r jσ

r . Finally, if we define the local matrix ω of connection
1-forms by

ωk
j := ωk

r jσ
r

we then have (9.23)

∇e j = ek ⊗ ωk
j

Note that we may then write (9.7) in the form

∇Xv = ei {dvi + ωi
kv

k}(X) (9.24)

and consequently

∇v = ei ⊗ ∇vi (9.25)

where

∇vi := dvi + ωi
kv

k

It is immediate from (9.21) that if f is a smooth function, then (recall that we occasi-

onally prefer to write v f to the more usual f v)

∇(v f ) = v ⊗ d f + f ∇v (9.26)

which we shall again refer to as the Leibniz rule.

9.3c. Cartan’s Structural Equations

Let σ be the basis of 1-forms dual to a given frame e. Then dσ i can of course be written

down with no mention of a connection, but if there is a connection we can write dσ i in

the following manner. From (4.25) and (9.14)

dσ i (e j , ek) = e j {σ i (ek)} − ek{σ i (e j )} − σ i ([e j , ek])

= −σ i ([e j , ek]) = −σ i {∇e j ek − ∇ek e j − τ (e j , ek)}
= −σ i {erω

r
jk − erω

r
k j } + T i

jk = −{ωi
jk − ωi

k j } + T i
jk

where τ = 1/2er ⊗ T r
jkσ

j ∧ σ k is again the vector-valued torsion form. Then

dσ i = 1

2

∑
j,k

dσ i (e j , ek)σ
j ∧ σ k = −(ωi

jkσ
j ) ∧ σ k + 1

2
T i

jkσ
j ∧ σ k

In terms of

τ i =
∑
j<k

T i
jkσ

j ∧ σ k (9.27)

we can write

dσ i = −ωi
k ∧ σ k + τ i (9.28)

Equations (9.23) and (9.28) are Cartan’s structural equations.
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We shall abbreviate these as follows. Denote (as in (2.1)) the row matrix (e1, . . . , en)

by the matrix e and the column (σ 1, . . . , σ n)T by σ . The n × n matrix of connection

1-forms will be denoted by ω

ω = (ωi
j )

and the column vector of torsion 2-forms by τ .

τ = (τ 1, . . . , τ n)T

Then we may write

∇e = e ⊗ ω

and (9.29)

dσ = −ω ∧ σ + τ

By ω ∧ σ , for example, we mean the column matrix with 2-form entries (ω ∧ σ)i =∑
j ωi

j ∧ σ j , whereas dσ is the column (dσ 1, . . . , dσ n)T .

In our new notation, if v is a vector we may write v = e v where v is the column of

components of v, and then we may write (9.25) as

∇v = ∇(ev) = e ⊗ ∇v = e ⊗ (dv + ωv) (9.30)

9.3d. The Exterior Covariant Differential of a Vector-Valued Form

Let α be a vector-valued p-form. Locally we have (in terms of a frame e) α = ei ⊗αi ,

where each αi = ai
J⇁(x)σ J is a locally defined p-form. We define its exterior covariant

differential, the vector-valued (p + 1)-form ∇α, by demanding a Leibniz rule

∇α = ∇(ei ⊗ αi ) = (∇ei ) ⊗∧ αi + ei ⊗ dαi

where the product ⊗∧ is defined as follows:

(∇ei ) ⊗∧ αi = (ek ⊗ ωk
i ) ⊗∧ αi := ek ⊗ (ωk

i ∧ αi )

We drop this complicated notation and write ⊗ rather than ⊗∧. Thus

∇α = ek ⊗ (ωk
i ∧ αi ) + ei ⊗ dαi = ei ⊗ (dαi + ωi

r ∧ αr )

In abbreviated notation with the column of p-forms α = (α1, . . . αn) we may write

∇α = e ⊗ (dα + ω ∧ α) (9.31)

generalizing the vector field (i.e., vector-valued 0-form) case (9.30).

We have defined ∇α in terms of a local decomposition α = ei ⊗ αi . It is not clear

from this that ∇α is well defined, independent of the frame e, but in fact we shall see

later that this is indeed the case. We should remark that one can give a coordinate-free
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definition of ∇ that is in the same spirit as the formula (4.27) for the exterior derivative

of a scalar-valued exterior differential form

∇αp(Y0, . . . , Yp) =
∑

r

(−1)r∇Yr {αp(Y0, . . . , Ŷr , . . . , Yp)} (9.32)

+
∑
r<s

(−1)r+sαp([Yr , Ys], . . . , Ŷr , . . . , Ŷs, . . . , Yp)

where we have again extended the vectors Yr to be vector fields.

Notation: When dealing with vector-valued forms, we shall usually use Cartan’s

device of simply omitting the tensor product sign in equations such as (9.31); thus

(9.31) will now be written

∇α = e(dα + ω ∧ α) (9.31′)

Furthermore, Cartan used the notation d rather than ∇; for example, Cartan would write

his structure equation ∇e = e ⊗ ω as simply

de = eω

de would not be confused with an ordinary exterior derivative since it makes no invariant
sense to take the exterior derivative of a vector field; one must use a covariant derivative.

This notation is very convenient and is also used by many people, but we shall not use
it in this book.

9.3e. The Curvature 2-Forms

∇e = e ⊗ ω = eω is a row matrix of local vector-valued 1-forms ∇ei . We can then

take the exterior covariant differential again

∇∇e = ∇(eω) = (∇e)ω + edω

= e(ω ∧ ω + dω)

Thus if we define the local matrix θ of curvature 2-forms by

θ := dω + ω ∧ ω (9.33)

we have

∇∇e = e ⊗ θ = e θ

In full

θ i
j = dωi

j + ωi
k ∧ ωk

j (9.34)

Since the θ i
j are 2-forms we may expand

θ i
j = 1

2
Ri

jrsσ
r ∧ σ s (9.35)

for some coefficients Ri
jrs . You are asked to show in Problem 9.3(1) that when e = ∂

is a coordinate frame, then the Ri
jrs are given by Equation (8.33),

Ri
jkl := ∂kω

i
l j − ∂lω

i
k j + ωi

krω
r
l j − ωi

lrω
r
k j (9.36)
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that is, the Ri
jrs are the components of the Riemann curvature tensor! This of course is

the reason for calling θ the matrix of curvature 2-forms.

Consider now a vector field v = ev. We have ∇v = e(dv + ωv) and so from (9.30)

we have

∇∇v = e[d(dv + ωv) + ω ∧ (dv + ωv)]

Since ω is a matrix of 1-forms we then have

∇∇v = e[dωv − ω ∧ dv + ω ∧ dv + ω ∧ ωv]

that is,

∇∇v = e ⊗ θv = e θ v (9.37)

Note the remarkable fact that ∇∇v depends linearly on v and not at all on the deriva-
tives of v!

Some concluding remarks. Suppose that Mn is a manifold that (like R
n) can be cov-

ered by a single distinguished frame field e. (Such a manifold is called parallelizable.)

Define an affine connection by defining ω = 0 for the distinguished frame e, that is,

∇e = 0. Thus each of the vector fields ei is covariant constant, or globally parallel.

By construction the curvature of this connection vanishes, θ = 0. Mn is then said to

admit a distant parallelism. Consider the 1-forms σ dual to the frame e. In general the

forms σ will not all be closed. Then dσ = −ω ∧ σ + τ = τ and the connection in

general will have torsion. We thus see in this case of distant parallelism that torsion of

the connection is a measure of misclosure of the orbits of the distinguished frame fields

e (see Problem 4.1(3)).

Surveyors could introduce a frame of 3 orthonormal vectors in a small 3-dimensional

neighborhood of a point on the irregular Earth’s surface as follows: e3 is an upward

pointing unit vector defined by a plumb line, e1 is a horizontal unit vector pointing

magnetic north, and e2 = e3 × e1 points “west.” It is thus natural for surveyors to

introduce (locally) a distinguished frame of vectors defining a distant parallelism with

curvature 0, and this frame is not associated with any coordinate system; the torsion

does not vanish! (For example, σ 3 = λ(x)dφ where φ is the gravitational potential.)

When measuring, for instance, the difference in altitude of two nearby points they are

essentially computing
∫

C σ 3 along a curve joining the points. Note that if C = ∂U is

a closed curve, then
∮

C σ 3 = ∫∫
U dλ ∧ dφ = ∫∫

U τ 3 will not vanish in general; there

is bound to be a natural misclosure in geodetic measurements! For more discussion of

the use of Cartan’s machinery in geodesy see Grossman’s article [G].

Problems

9.3(1) Verify (9.36).

9.3(2) e ⊗ σ is a vector-valued 1-form that we have symbolically denoted by dr. (In
R

n it is the derivative of the vector-valued 0-form r, but on a general manifold it
isn’t the derivative of anything.) Show that ∇dr = e ⊗ τ = τ is the vector-valued
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torsion 2-form. (Cartan would write d2 p = ddp = τ , where p is the “position
vector.”)

9.4. Change of Basis and Gauge Transformations

What is a gauge transformation?

9.4a. Symmetric Connections Only

In the remainder of Part Two we shall be concerned almost exclusively with symmetric
connections, τ = 0. Cartan’s equations then become

∇e = e ω

and (9.38)

dσ = −ω ∧ σ

9.4b. Change of Frame

We have defined the connection coefficients ω = (ωi
jk) in terms of a given frame e. If

we demand that ∇ have a basis-free significance, we shall have to require the ω’s to

have a special transformation property under a change of basis.

Let e′ = eP (i.e., e′
i = e j P j

i ) be a change of basis, where P = P(x) is a nonsingular

n × n matrix function. Then for a vector v we have v = ev = e′v′ = ePv′. Thus

e′ = eP (9.39)

v′ = P−1v

and since eσ = I = e′σ ′ = ePσ ′, we see that σ = Pσ ′

σ ′ = P−1σ (9.40)

We demand that ∇ be well defined, independent of basis. Thus ∇e = eω and

∇e′ = e′ω′ must be compatible. Then ∇e′ = ∇(eP) = (∇e)P +ed P = eωP +ed P
must be the same as e′ω′ = ePω′. We must then have ωP + d P = Pω′, or

ω′ = P−1ωP + P−1d P (9.41)

This is the transformation rule for the matrix of connection 1-forms. In terms of two

coordinate frames, we have dx ′i = (∂x ′i/∂x j )dx j , and so P is the inverse Jacobian

matrix P = ∂x/∂x ′, and (9.41) states

ω′i
j =

(
∂x ′i

∂xr

)
ωr

s

(
∂xs

∂x ′ j

)
+

(
∂x ′i

∂xr

)(
∂2xr

∂x ′ j∂x ′s

)
dx ′s

If we write, as usual, ωi
j = ωi

k j dxk , then we could easily write out from this the

transformation rule for the connection coefficients ωi
k j , found in all books on tensor

analysis. We shall have no use for this expression. We do wish to point out that a linear
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transformation has a matrix that transforms as A′ = P−1 AP , that is, as the first term

in the right-hand side of (9.41). Thus ω does not transform as the matrix of a linear

transformation and consequently ωi
k j are not the components of a mixed tensor!

Look, on the other hand, at the matrix of curvature 2-forms θ . θ ′ = dω′ +ω′ ∧ω′ =
d(P−1ωP + P−1d P) + (P−1ωP + P−1d P) ∧ (P−1ωP + P−1d P). From P−1 P = I
we see d P−1 P + P−1d P = 0, or

d P−1 = −P−1d P P−1 (9.42)

You are asked in Problem 9.4(1) to put this in the expression for θ ′ and compare this

with θ = dω + ω ∧ ω, yielding finally

θ ′ = P−1θ P (9.43)

Thus the matrix of curvature 2-forms transforms as the matrix of a linear transforma-
tion! From (9.35) we can see from this that Ri

jrs are the components of a mixed tensor,

once contravariant and three times covariant.

This has the following consequence; if θ = 0 in some frame then θ = 0 in every
frame! The same cannot be said of the connection forms ω, as is evident from (9.41).

See Problem 9.4(2).

Let us look at ∇ applied to a vector field v. We have seen in (9.30) that ∇v = e(dv+
ωv). One checks immediately from this that ∇(ev) is indeed equal to ∇(e′v′). In terms

of the column matrices involved we have, from (9.25), ∇v = e∇v = e′∇′v′, where

∇′v′ = dv′ + ω′v′. This says that ∇′v′ = P−1∇v: that is, the column ∇v = dv + ωv

transforms as the column of components of a (contravariant) vector.

Let us introduce a more systematic notation. Let eU and eV be frames in open sets

U and V , respectively. We then have

eV = eU cU V (9.44)

in U ∩ V , where cU V (formerly P), the transition matrix function,

cU V : U ∩ V → Gl(n; R)

is a nonsingular matrix-valued function. Here Gl(n; R) is the general linear group,

the group of all nonsingular real n × n matrices. Of course cV U = c−1
U V . Then

σV = cV UσU

If v is a vector field in U ∩ V , then v = eUvU = eV vV says

vV = cV UvU (9.45)

is simply the transformation rule for the (column) components of a contravariant vector.

The components ω transform as

ωV = cV UωU cU V + cV U dcU V (9.46)

and for curvature

θV = cV UθU cU V (9.47)
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To say that ∇v is a vector-valued 1-form is to say the following: Put (dvU + ωUvU ) =
∇UvU , and so on. Then

vV = cV UvU implies ∇V vV = cV U∇UvU (9.48)

In other words, ∇V cV UvU = cV U∇UvU , or

∇V ◦ cV U = cV U ◦ ∇U (9.49)

We may then say that if v transforms as a vector then so does ∇v.

Finally a remark on physical terminology. A frame field eU can be considered as

giving a basis for the sections of the tangent bundle over the open set U ⊂ Mn; that

is the meaning of the expansion v(x) = eU (x)vU (x). Physics deals, as we shall see,

with other “vector bundles.” A frame of n “vectors” in physics is sometimes called an

n-bein. Thus a frame in Minkowski space is referred to as a 4-bein, or, in German, a

vier-bein. A local change of basis, such as eV = eU cU V , is called in physics a gauge
transformation. A connection is an example of a gauge field, to be discussed at great

length in Part Three. Equation (9.41) then tells how this particular gauge field transforms

under a “change of gauge.” Finally, (9.48) or (9.49) is said to exhibit covariance of the

operation of covariant derivative.

Problems

9.4(1) Prove (9.43).

9.4(2) Consider R
2 with the standard metric ds2 = dx2 + dy2. Thus gi j = δi j in the

coordinate frame e =(∂/∂x , ∂/∂y). Thus ω = 0 and θ = 0. Now introduce polar
coordinates e′ = (∂/∂r,∂/∂θ) = ([∂x/∂r ]∂/∂x + [∂y/∂r ]∂/∂y, . . .). Write down
the change of basis matrix P and use ω′ = P−1d P to give

ω′ =
[

0 −r dθ

dθ

r
dr
r

]

Verify that θ ′ = 0.

9.4(3) Let α = eUα
p
U be the local expression, in terms of the frame eU , of a vector-

valued p-form. If α is globally defined, we must have that αV = cVUαU ; that is,
α transforms as the components of a vector. If we define, as in (9.30), ∇UαU =
dαU + ωU ∧ αU , show that (9.49) holds again. This shows that ∇α, defined in
(9.30), is well defined.

9.5. The Curvature Forms in a Riemannian Manifold

Why bother with noncoordinate frames?

9.5a. The Riemannian Connection

Note that in a Riemannian manifold, one can take any frame and convert it to an
orthonormal frame by applying the Gram–Schmidt process. We shall see that many
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computations become much simpler if an orthonormal frame is employed. Let us look

first at the connection forms.

Let us express the fundamental relation (9.20) in terms of a general frame e. We

may write d〈ei , e j 〉(ek) = 〈∇ek ei , e j 〉+ 〈ei , ∇ek e j 〉 = 〈erω
r
ki , e j 〉+ 〈ei , erω

r
k j 〉, that is,

(dgi j )(ek) = gr jω
r
ki + girω

r
k j . But ωr

ki = ωr
i (ek) and ωr

k j = ωr
j (ek). We conclude that

dgi j = gr jω
r

i + girω
r

j . If we define, as usual,

ωi j := girω
r

j

then we have

dgi j = ωi j + ω j i (9.50)

as the basic relation for the compatibility of the connection with the Riemannian metric

(i.e., parallel displacement preserves scalar products).

In particular, if the frame is orthonormal, gi j = δi j , then the matrix of the connection
1-forms (with both indices down) is skew symmetric

ωi j = −ω j i (9.51)

for an orthonormal frame.

Look now at the curvature 2-forms in any frame. We define

θi j := girθ
r

j (9.52)

In an orthonormal frame of course we have ωi
j = ωi j , θ

i
j = θi j , and so forth. Thus in

an orthonormal frame we have θi j = dωi j + ωir ∧ ωr j = −dω j i − ω jr ∧ ωri = −θ j i .

Hence in an orthonormal frame the θ matrix, with both indices down, is also skew

symmetric. We claim that this is true in any frame! The matrix (θi j ) is, from (9.52), of

the form Gθ , where G is the matrix (gi j ). Under a change of basis θ transforms, from

(9.43), as θ ′ = P−1θ P , and the covariant tensor (gi j ) transforms as G ′ = PT G P . Thus

G ′θ ′ = PT G P P−1θ P = PT (Gθ)P . But this says that if Gθ is skew symmetric in one

frame (as it is in an orthonormal one) then it is skew symmetric in every frame.

θi j = −θ j i (9.53)

From (9.35) we see that for the purely covariant version of the Riemann curvature

tensor

Ri jrs = −R jirs (9.54)

is skew symmetric not only in the second pair of indices, but also in the first!

Theorem (9.55): Let e be an orthonomal frame field on a Riemannian mani-
fold Mn and let σ be the dual frame field. Then the Riemannian (Levi-Civita)
connection is given by the unique matrix ω of 1-forms that satisfies

dσ = −ω ∧ σ

and

ωi j = −ω j i
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P R O O F: Introduce local coordinates x in the region covered by the frame. The

Riemannian connection � in these coordinates is given uniquely by the Christoffel

symbols, �i
j = �i

k j dxk . Under the change of frame to the frame e, we get new

unique connection forms ω. Since the frame is orthonormal, ω is skew symmetric.

Since the torsion vanishes, the second Cartan structural equation gives dσ =
−ω ∧ σ . This shows the existence of the matrix ω. For the uniqueness of such ω,

see Problem 9.5(3).

9.5b. Riemannian Surfaces M2

Let e be an orthonormal frame over a portion of a 2- dimensional Riemannian manifold

M2. The matrix of Riemannian connection forms, ω = (ωi j ), is a skew symmetric 2 by 2

matrix of 1-forms. Thus ω12 = −ω21 and ω11 = ω22 = 0; ω is completely characterized
by the single entry ω12. The same is true of the matrix of curvature 2-forms θ = (θi j ).

Furthermore, θ12 = dω12 + ω12 ∧ ω22, that is,

θ12 = dω12 (9.56)

In particular, the curvature matrix of 2-forms is exact, θ = dω, in the entire region
covered by the orthonormal frame.

In Section 8.5 we discussed curvature, but always in the context of a coordinate

system, that is, the frame was always a coordinate frame. We should note a simple fact

about coordinates, in any dimension. If x is a coordinate system with origin at p and if

P is any nonsingular constant matrix, then x ′ = Px defines a new coordinate system

x ′ for which ∂ ′ = ∂(∂x/∂x ′) = ∂P−1. In particular, given any frame e at p, by an

appropriate choice of P we may find a new coordinate system x ′ such that ∂ ′= e at p;

thus if e is a frame field in a region holding p, we may always find a coordinate system

x ′ whose coordinate frame at the single point p is e!

Let e be an orthonormal frame at the point p of M2 (with dual frame σ ). Let x ′ be a

coordinate system whose frame∂ ′ coincides with e at p. Since this coordinate system is

orthonormal at p, we have, in the coordinate frame at p, θ ′
12 = θ ′1

2 = ∑
r<s R′1

2rsdx ′r ∧
dx ′s = R′12

12dx ′1 ∧ dx ′2 = R′12
12 vol2 = K (p) vol2, where K = R′12

12 is the Gauss

curvature of the Riemannian metric. But under the identity change of frame at p,∂ = e,

we have θ12 = θ ′
12. We thus have

θ12 = dω12 = Kσ 1 ∧ σ 2 = K vol2 (9.57)

in any orthonormal frame.

This is a remarkable formula for it says that one can compute the Gauss curvature

by simply computing the single 1-form entry ω12 in an orthonormal frame!

9.5c. An Example

Let us compute (using what we shall call Cartan’s method) the Gauss curvature of a

surface with a metric of the form

ds2 = du2 + G2(u, v)dv2 (9.58)
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This includes, for instance, the case of the sphere ds2 = a2dθ 2+a2 sin2 θdφ2 computed

in Problem 8.5(2). In fact, we shall see later that on any surface we can introduce local
coordinates in which the metric takes the form (9.58).

The coordinate frame ∂/∂u, ∂/∂v is orthogonal but not unit. For an orthonormal

frame we would have ds2 = σ 1 ⊗ σ 1 + σ 2 ⊗ σ 2, that is, ds2 = (σ 1)2 + (σ 2)2. (These

are not exterior products.) Clearly we should define

σ 1 = du and σ 2 = G(u, v)dv (9.59)

(i.e., e1 = ∂/∂u, e2 = G−1∂/∂v). We wish to find the unique ω12 = −ω21 satisfying

(9.55). Put then ω12 = a(u, v)σ 1 + b(u, v)σ 2 for as yet unknown functions a and b.

Then

dσ 1 = −ω12 ∧ σ 2 = −(aσ 1 + bσ 2) ∧ σ 2 = −aσ 1 ∧ σ 2

But dσ 1 = d(du) = 0, and so a = 0 and ω12 = bσ 2. Also

dσ 2 = −ω21 ∧ σ 1 = ω12 ∧ σ 1 = bσ 2 ∧ σ 1 = −bσ 1 ∧ σ 2

is to be compared with dσ 2 = d(Gdv) = Gudu ∧ dv = (Gu/G)σ 1 ∧ σ 2. Thus

b = −Gu/G and so

ω12 = −
(

Gu

G

)
σ 2 = −Gudv

θ12 = dω12 = −Guudu ∧ dv = −(Guu/G)σ 1 ∧ σ 2. From (9.57) we see

K = −Guu

G
for metric ds2 = du2 + G2dv2 (9.60)

The reader interested in elasticity might glance at this time at section g of the

Appendix, where Cartan’s methods are applied to Cauchy’s equations of equilibrium.

Problems

9.5(1) Use Cartan’s method to compute the Gauss curvature of the Poincaré metric
ds2 = y−2(dx2 + dy2) in the upper half plane and check your result by first
making a coordinate transformation and using formula (9.60) directly. Save your
calculations for later use.

9.5(2) A curve in the plane, y = f(x ), with f(x ) > 0, is revolved about the x axis yielding
a surface of revolution. Write down the metric of the surface in terms of x and
the angular parameter φ (using the pictorial infinitesimal version of Pythagoras’s
rule, as we illustrated for the 2-sphere in Section 8.1a). Compute the curvature.

9.5(3) To show uniqueness of the connection form matrix ω it is enough to show that
the only solution to ω∧σ = 0 and ωi j = −ω ji is ω = 0. Expand ωi j = ai jkσ k where
a is skew symmetric in (i j ). But 0 = ωi j ∧ σ j = ai jkσ k ∧ σ j then shows that a is
symmetric in ( jk). Show that such a three-index symbol a must vanish.
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9.6. Parallel Displacement and Curvature on a Surface

When is parallel displacement independent of path?

We saw in Section 8.7 that parallel displacement of a vector between two points of a

surface is path-dependent; that is, parallel displacement of a vector v0 around a closed

curve results in a final vector v f that might disagree with v0. This phenomenon is referred

to as holonomy (and, as we shall see, is indeed related to the concept of holonomic and

nonholonomic constraints studied in Chapter 6). We gave as an explicit example parallel

displacement around a small circle on the 2-sphere. There is a remarkable result, in the

case of surfaces, relating this holonomy vf �= v0 with Gaussian curvature.

Theorem (9.61): Let U ⊂ M2 be a compact region in a Riemannian surface
with piecewise smooth boundary ∂U. Assume that U can be covered by a single
orthonormal frame field e (e.g., U may be contained in a coordinate patch). Let
a unit vector v be parallel translated around ∂U, starting with an initial v0 and
ending with vf . e defines an orientation in U. Then the angle �α between v0 and
vf is given by

�α =
∫∫

U
K d S =

∫∫
U

Kσ 1 ∧ σ 2

P R O O F:

∂U

U


α

vf

v0

v
e2

e1

T

α

Figure 9.1

Parameterize ∂U , let T be the tangent, and let α = �(e1, v). Although α

(like v) is not single-valued on ∂U, dα = (dα/ds)ds is well defined and �α =
�(v0, v f ) = ∮

∂U dα. Now v = e1 cos α + e2 sin α and so

∇v = e(dv + ωv) = e1(dv1 + ω12v
2) + e2(dv2 + ω21v

1)

= e1(− sin αdα + ω12 sin α) + e2(cos αdα + ω21 cos α)

= (−e1 sin α + e2 cos α)(dα − ω12)
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To say that v is parallel displaced around ∂U is to say ∇v(T) = 0, that is, from

the preceding,

dα − ω12 = 0 along ∂U (9.62)

(meaning that dα(T) = ω12(T)). Then

�α =
∮

∂U
dα =

∮
∂U

ω12 =
∫∫

U
dω12

=
∫∫

U
θ12 =

∫∫
U

Kσ 1 ∧ σ 2

Note that from (8.14) we have the following:

Corollary (9.63): If M2 ⊂ R
3, then �α = the signed area of the spherical image

of U under the Gauss normal map.

A connection is said to be flat if the curvature = 0

θ = 0, or R(X, Y) = 0

for all vectors X and Y.

Corollary (9.64): Parallel displacement on a Riemannian surface is locally in-
dependent of path iff M2 is flat, that is, K = 0.

By “locally” we mean that we must restrict our closed path to be the boundary of

a compact region, C = ∂U , that is covered by an orthonormal frame. Consider, for

example, the Möbius band obtained by bending and sewing a flat strip of paper. Although

the usual picture of the band in R
3 appears curved, this 2-manifold with boundary has

K = 0 since K is a bending invariant. If, however, one parallel translates the vector e2

along the midcircle of the band one ends up with e2(1) = −e2(0).

e2(0) e2(1)

e1(1)C(0) 1( )0e C(1)

Figure 9.2

This does not contradict Theorem (9.61) since the midcircle C does not bound any

surface.

We remark further on the hypotheses of the theorem. It is crucial that there be an

orthonormal frame that covers U , for we measure the variation of v by comparing v
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with e1 along ∂U . This requires e to be defined at least along ∂U . In order for ω12

to be defined inside U we need, however, e to be defined in all of U . It turns out,

however, that this is not a serious constraint, at least in the case of an orientable U , for

the following reason. It can be shown that one can always find an orthonormal frame

in any noncompact orientable 2-manifold. (It is not true that one can always cover it

by a coordinate patch.) For example, given a closed orientable surface of genus g, if

one removes a disc, however small, one can always cover the remaining surface with

an orthonormal frame.

This has a remarkable consequence. Let M2 be a compact oriented surface, and let

U be a small region on M , covered by an orthonormal frame e, and with boundary an

oriented curve C = ∂U . The complementary region M − U is also a compact surface

whose boundary is the oppositely oriented curve −C . As mentioned, M − U can also

be covered by an orthonormal frame e′. Parallel displacement of a vector v around C
then gives an angular change �α = ∫∫

U K d S. But this vector is also being translated

around C = −∂(M − U ), and so �α′ = − ∫∫
M−U K d S, where α′ = �(e′

1, v). Thus

∫∫
M

K d S =
∫∫

U
K d S +

∫∫
M−U

K d S = �(α − α′)

But d(α − α′) = d�(e1, v) − d�(e′
1, v) = d�(e1, e′

1), and so

1

2π

∫∫
M

K d S = total number of revolutions that e′
1 makes (9.65)

with respect to e1 on going around C.

In particular,

1

2π

∫∫
M

K d S is an integer! (9.66)

Note that this “Gauss–Bonnet” theorem seems weaker than the Gauss normal map result

(8.20), which says that (1/4π)
∫∫

M K d S is an integer, but it should be appreciated that

(9.66) holds for any (perhaps abstract) closed oriented Riemannian surface, whereas

(8.20) holds only for surfaces embedded in R
3. (We shall see in Section 12.2a that the

real projective plane has a metric of curvature 1 that it inherits from the 2-sphere that

covers it twice. The area of RP2 is half that of the sphere, that is, 2π . Thus the integer

in (9.66) is in this case 1. This tells us that RP2 cannot be embedded in R
3 with this

metric of curvature 1!) In Part Three we shall spend a great deal of time discussing this

topological quantization rule and its generalizations and applications to physics. In

particular we shall identify the integer involved in (9.66).

Finally, some remarks about flat manifolds. Even a closed surface can be flat accord-
ing to our definition! The torus T 2 with the abstract Riemannian metric ds2 = dθ2+dφ2

clearly has curvature 0. This is certainly not the usual metric induced from an embedding

in R
3. In fact, we have the following:

Theorem (9.67): The induced metric on any closed surface M2 ⊂ R
3 must have

some point where K > 0.
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P R O O F: We shall merely give a sketch. Let x be a point of R
3 that is not on M2.

Since M is compact, there is a point y on M that is farthest from x (since every

continuous function on a compact space achieves its maximum and minimum at

points of the space). Then the 2-sphere centered at x and passing through y is

tangent to M at y

x y

M

S

Figure 9.3

and M lies entirely within the sphere. It should be geometrically clear that both

principal curvatures of M at y are of the same sign (since M must be bending

toward x at the farthest point) and of magnitudes greater than or equal to those of

the 2-sphere. Thus, at y we have KM ≥‖ y − x ‖−2> 0.

Although the flat metric on the torus is not that induced from an embedding in R
3, it

is remarkable that this metric is induced from the following embedding in R
4, the so-

called Clifford embedding:

x1 = cos θ, x2 = sin θ, x3 = cos φ, x4 = sin φ

for certainly then ds2 = ∑
(dxi )2 = dθ 2 + dφ2. Note also that this torus is in fact a

2-dimensional submanifold of the 3-sphere
∑

(xi )2 = 2 in R
4.

Problems

9.6(1) What is wrong with the following argument found in many books? A vector v
is parallel displaced around a small closed curve C = ∂U2 in an n-dimensional
manifold Mn. Then dvi = −ωi

jv j along C. Thus the total change in vi on going
around C is given by

�vi =
∮

C
dvi = −

∮
ωi

jv
j

= −
∫∫

U
d(ωi

jv
j)
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= −
∫∫

U
d(ωi

j)v
j − ωi

j ∧ dv j

= −
∫∫

U
[dωi

k + ωi
j ∧ ω j

k ]vk

= −
∫∫

U
θ i

k vk

= −
∫∫

U

1
2

Ri
krsvk dxr ∧ dxs

9.7. Riemann’s Theorem and the Horizontal Distribution

When is ds2 = ∑
(dx j )2?

9.7a. Flat metrics

Linear algebra tells us that a constant quadratic form Q = Qi j dxi dx j in R
n can always

be reduced to diagonal form Q = ∑
λi (dzi )2 by an orthogonal change of coordinates,

zi = Pi
j x j (see Problem 8.2(1)). If Q is positive definite, we can make a further (non-

orthogonal linear) transformation yi = zi
√

λi that will reduce Q to a sum of squares

Q = ∑
(dyi )2. We may say that a constant Riemannian metric can always be reduced

to the “flat” or “euclidean” form. Suppose now that we have a variable Riemannian

metric gi j (x)dxi dx j in a coordinate patch of an Mn . By the previous arguments, we

may always make a linear change of coordinates yi = Pi
j x j so that the metric will

take the form
∑

(dyi )2 at a single point, say the origin. Is it possible that by making

perhaps a non-linear change of coordinates y = y(x) we can put the metric in the

locally euclidean or flat form
∑

(dyi )2 in the entire coordinate patch, or at least in
some neighborhood of the origin?

It was for precisely such considerations that Riemann was led to introduce his

curvature tensor; we know that if one could introduce such coordinates y, then gi j = δi j

in those coordinates, the Christoffel symbols would vanish and so the curvature tensor

in the y coordinates would vanish. Since the curvature tensor is a tensor, it would have

to vanish in the x system as well; in order that a Riemannian metric can be reduced to

the locally euclidean form, the Riemann tensor must vanish. Riemann also noted that

the converse is also true. We shall now discuss all these matters from a more geometrical

viewpoint.

9.7b. The Horizontal Distribution of an Affine Connection

Parallel displacement of a vector v along a parameterized path C in Mn is described by

the local system of differential equations

dvi

dt
+ ωi

jk(x)vk

(
dx j

dt

)
= 0

The functions (x(t), v(t)) define a curve C ′ in the tangent bundle TM to M that lies

“over” the curve C (recall that (x, v) are local coordinates for TM).
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Figure 9.4

Since the projection map π : T M → M is of the form (x, v) → x , that is, since we

are allowing ourselves to use x for coordinates in both M and TM , the pull-back of the

connection forms ω on M to TM is given by the same expressions as ω in M

π∗(ωi
k) = π∗(ωi

jkdx j ) = ωi
jkdx j

For this reason we shall frequently omit the pull-back symbol π∗. Then parallel dis-

placement tells us that the lifted curve C ′ is that curve in TM over C having the property

that the following 1-forms in TM

μi := dvi + ωi
kv

k

vanish when restricted to C ′, μi [(dxr/dt)∂/∂xr + (dvr/dt)∂/∂vr )] = 0. We write

simply

μi = dvi + ωi
kv

k = 0 (9.68)

as the equations describing parallel displacement.
The Pfaffian equations μi = 0, i = 1, . . . , n, define a distribution H in TM . Since

μ1 ∧ . . .∧μn = dv1 ∧ . . .∧dvn + terms involving the dx j , we see that μ1, . . . , μn are

linearly independent, and thus the distribution is a distribution of n-planes in the 2n-

dimensional TM . Furthermore, it is clear that no nonzero “vertical” vector a j∂/∂v j ,

that is, a vector tangent to a fiber π−1(x), is never in this distribution. This implies that

at every point the n-plane distribution is complementary to the vertical n-planes that



R I E M A N N ’ S T H E O R E M A N D T H E H O R I Z O N T A L D I S T R I B U T I O N 265

are tangent to the fibers. There is usually no natural Riemannian metric in TM and thus

it makes no sense to talk of H as being orthogonal to the fibers; still, we shall refer to

H as being the horizontal distribution.

We should remark that although H has been defined using local coordinates and

while we certainly cannot expect the individual forms μi to have intrinsic meaning, the

distribution H does have global meaning since it has been constructed using parallel

displacement. Analytically, if μ′i = dv′i + ω′i
kv

′k are the forms in an overlapping

patch, then, under the change of frame ∂ ′ = ∂P in M , we have v′ = P−1v and then,

from (9.41)

μ′ = dv′ + ω′v′ = d(P−1v) + (P−1ωP + P−1d P)P−1v = d P−1v + P−1dv

+ P−1ωv + P−1d P P−1v = P−1(dv + ωv) = P−1μ

Thus μ = 0 iff μ′ = 0, and H is well defined. Hence

Theorem (9.69): A connection for M yields a distribution of n-planes H in TM
(the horizontal distribution) that is transverse to the fibers. A curve C ′ in TM
represents parallel translation of a vector along a curve C in M iff C ′ covers
C, πC ′ = C, and C ′ is tangent to the distribution H.

To say that v returns to itself after being parallel translated around a closed curve C
in M is to say that the “lift C ′ of C to TM via v,” that is, x = x(t), v = v(t), is itself a

closed curve tangent to H .

TM

cylinder over C1

leaf of through 

MC

C ′

C ′vf

vf

v0

v0

H

1

C1

x 0

v0x0,( )

Figure 9.5



266 C O V A R I A N T D I F F E R E N T I A T I O N A N D C U R V A T U R E

If the distribution H is integrable, and if we choose a closed curve C1 that is so small

that its lift C ′
1 lies in a Frobenius chart (see 6.1a), then C ′

1 will also have to be closed

since it will have to lie on a small portion of a leaf of the foliation; see the figure. This

need not be the case if the curve C is “long,” as illustrated. On the other hand, if H is

not integrable, we do not expect a closed curve C to have a closed lift C ′.
When is the horizontal distribution H integrable?

Theorem (9.70): The horizontal distribution H is integrable (and consequently
parallel displacement is locally independent of path), iff the curvature vanishes,
that is, Mn is flat.

P R O O F: H is defined briefly as μ = dv + ωv = 0. Then

dμ = d2v + dωv − ω ∧ dv = dωv − ω ∧ (μ − ωv)

= (dω + ω ∧ ω)v − ω ∧ μ = θv mod μ

where by “mod μ” we mean the result of putting μ = 0 (see 6.1c). Thus dμ =
θv = 0 mod μ if θ = 0. Thus H is integrable if the curvature vanishes. On the

other hand, if H is integrable, then, from Theorem (6.2),

0 = dμi ∧ μ1 ∧ . . . ∧ μn

= (θ i
jv

j − ωi
j ∧ μ j ) ∧ μ1 ∧ . . . ∧ μn

= θ i
jv

j ∧ μ1 ∧ . . . ∧ μn

= θ i
jv

j ∧ (dv1 + ω1
kv

k) ∧ . . . ∧ (dvn + ωn
rv

r )

= θ i
jv

j ∧ dv1 ∧ . . . ∧ dvn + terms where some dv j is missing

Hence θ i
jv

j = 0 for i = 1, . . . , n, and all v. Thus θ = 0.

9.7c. Riemann’s Theorem

Theorem (9.71): In a Riemannian manifold, one can introduce local coordinates
y such that the metric assumes the euclidean or “flat” form

ds2 = (dy1)2 + . . . (dyn)2

iff the curvature vanishes, θ = 0.

P R O O F: The “only if” part has already been discussed in 9.7a. Suppose now that

the curvature vanishes. Then the horizontal distribution H

μi = dvi + �i
kv

k = dvi + �i
jkv

kdx j = 0

is integrable. (Here � are the coefficients of the affine connection with respect to

the coordinate frame∂/∂x , that is, the Christoffel symbols.) Since H is transverse



R I E M A N N ’ S T H E O R E M A N D T H E H O R I Z O N T A L D I S T R I B U T I O N 267

to the fibers π−1(x) of TM , this means (as in the system of Mayer–Lie of Section

6.2b) that we may locally solve the system of partial differential equations

∂vi

∂x j
+ �i

jkv
k = 0 (9.72)

vi (x0) = vi
0 prescribed

In particular, given x0 and given n linearly independent vectors e0
1, . . . , e0

n at x0,

we may find vector fields e1, . . . , en coinciding with e0 at x0 and each satisfying

(9.72); that is, each is covariant constant

∇er

∂x j
:= ∇er

(
∂

∂x j

)
= 0 (9.73)

for all r and j . Thus if we let ω be the connection forms with respect to the new

frame e, we have ∇e = eω = 0, and so ω = 0.

Note that we have actually shown, so far, the following.

Theorem (9.74): For any affine connection with curvature 0, one can find a local
frame of covariant constant vector fields.

Finally, consider the 1-forms σ dual to the frame e. If the connection is sym-

metric, as it is in the Riemannian case, we have dσ i = −ωi
j ∧ σ j = 0, and

so each of the 1-forms σ i is closed and, by Poincaré, locally exact. Thus there

are local functions y1, . . . , yn such that σ i = dyi . This means that ei = ∂/∂yi .

In the Riemannian case, if the e0 had been chosen orthonormal at x0, then the

frame fields e would also be othonormal in the entire y coordinate patch since

d〈ei , e j 〉 = 〈∇ei , e j 〉 + 〈ei , ∇e j 〉 = 0. Since the coordinate frame ∂/∂y is

orthonormal we have ds2 = (dy1)2 + . . . (dyn)2.

A final remark. Let M2 be the frustum of a cone that is tangent to a small circle C
on the round 2-sphere. The cone is flat, yet we have seen, when first discussing parallel

displacement, that parallel displacement of a vector along C does not return the vector

to itself; there is no covariant constant vector field on the flat cone! This does not violate

Riemann’s theorem since that theorem only locally exhibits a flat frame.





CHAPTER 10

Geodesics

How rapidly do nearby geodesics separate?

10.1. Geodesics and Jacobi Fields

10.1a. Vector Fields Along a Surface in Mn

Let x :U ⊂ R
2 → Mn be a differentiable map of a rectangle in the plane into Mn . We

call this map a (parameterized) surface even though we put no demands on the rank of

the differential x∗; that is, ∂x/∂u1 and ∂x/∂u2 may be dependent.

u2

u1

∂/∂u2 U

∂/∂u1

∗ =x ∂x ∂u)(

v

u∂ ∂/ /2 2

∗ =x ∂x ∂u)( u∂ ∂/ /1 1

Mn

Figure 10.1

Let us again put u1 = u and u2 = v.

A smooth map v : U ⊂ R
2 → M that assigns to each (u, v) in the rectangle a

tangent vector v(u, v) to M at x(u, v) will be called a vector field along the surface x.

In particular, ∂x/∂u and ∂x/∂v are both vector fields along x that happen to be “tangent”

to the surface. Of course [∂/∂u,∂/∂v] = 0 in U , but we cannot talk of [∂x/∂u, ∂x/∂v]

since the two entries in the bracket are not vector fields on Mn . If they were vector

fields, we could consider their bracket, and if Mn had a torsion-free connection this

bracket could be expressed in terms of covariant derivatives (see (9.16)). Even when

they are not vector fields we still have that, for example, ∂x/∂v is defined along the

269
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orbit of ∂x/∂u, that is, the u-curves. The following is an important computational tool

that replaces (9.16).

Theorem (10.1): Let x be a surface in a manifold Mn with a symmetric connec-
tion. Then we have, as vector fields along the surface,

∇
∂u

(
∂x
∂v

)
= ∇

∂v

(
∂x
∂u

)

P R O O F: Let x1, . . . , xn be local coordinates for M . Then, for example, ∂x/∂v =
(∂xi/∂v)∂ i , where ∂ i = ∂/∂xi . If we fix v, then taking the covariant derivative

of ∂x/∂v along the u-curve gives, from Leibniz,

∇
∂u

((
∂xi

∂v

)
∂ i

)
=

(
∂2xi

∂u∂v

)
∂ i +

(
∂xi

∂v

)
∇∂x/∂u(∂ i )

Now ∂x/∂u = (∂x j/∂u)∂ j and using ∇∂j∂ i = ωk
ji∂k yields ∇/∂u((∂xi/∂v)∂ i )

= (∂2xi/∂u∂v)∂ i +(∂xi/∂v)(∂x j/∂u)ωk
ji∂k , which is symmetric in u and v since

ωk
ji = ωk

i j .

The next result is a replacement for Theorem (9.10).

Theorem (10.2): If w is a vector field defined along the surface,

∇
∂u

(∇w
∂v

)
− ∇

∂v

(∇w
∂u

)
= R

(
∂x
∂u

,
∂x
∂v

)
w

where R(∂x/∂u, ∂x/∂v) is the curvature transformation defined in Theorem (9.10).

P R O O F: w = wi (u, v)∂ i . Then

∇
∂u

(∇w
∂v

)
= ∇

∂u

{(
∂wi

∂v

)
∂ i + wi ∇∂ i

∂v

}

=
(

∂2wi

∂u∂v

)
∂ i +

(
∂wi

∂v

)∇∂ i

∂u
+

(
∂wi

∂u

)∇∂ i

∂v

+ wi ∇
∂u

(∇∂ i

∂v

)

and so

∇
∂u

(∇w
∂v

)
− ∇

∂v

(∇w
∂u

)

(10.3)

= wi

{ ∇
∂u

(∇∂ i

∂v

)
− ∇

∂v

(∇∂ i

∂u

)}
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But

∇∂ i

∂v
= ∇∂ i

{(
∂x j

∂v

)
∂ j

}
=

(
∂x j

∂v

)
∇∂j∂ i .

Thus

∇
∂u

{ ∇
∂v

(∂ i )

}
=

(
∂2x j

∂u∂v

)
∇∂j∂ i +

(
∂x j

∂v

)(
∂xk

∂u

)
∇∂k∇∂j∂ i

Then

∇
∂u

(∇∂ i

∂v

)
− ∇

∂v

(∇(∂ i )

∂u

)

=
{(

∂x j

∂v

)(
∂xk

∂u

)
−

(
∂x j

∂u

)(
∂xk

∂v

)}
∇∂k∇∂j∂ i

=
(

∂xk

∂u

)(
∂x j

∂v

)
{∇∂k ∇∂ j∂ i − ∇∂ j ∇∂k∂ i }

=
(

∂xk

∂u

)(
∂x j

∂v

)
R(∂k,∂ j )(∂ i )

= R
{(

∂xk

∂u

)
∂k,

(
∂x j

∂v

)
∂ j

}
(∂ i )

= R
(

∂x
∂u

,
∂x
∂v

)
(∂ i )

Putting this in (10.3) yields (10.2).

10.1b. Geodesics

We now return to the discussion of geodesics initiated in Section 8.6, but now we shall

carry out the calculation intrinsically and in an n-dimensional Riemannian manifold

Mn . Since our definition of covariant differentiation was tailored after the discussions

in that section it should come as no great surprise that we can essentially mimic the

calculations given there.

Let C be a curve in the Riemannian Mn . To “vary” C is to consider a surface

x :[0, L] × (−1, +1) → Mn parameterized by s and α

α

α

α

1

1

L
s

C

C

C0

P

Q

_

=

Figure 10.2
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such that x(s, 0) describes the original curve C . The varied curve Cα is given by

s �→ x(s, α), where s is arc length for α = 0, that is, along the base curve, but

not necessarily so when α �= 0. We proceed as in 8.6. The length of Cα is L(α) =∫ L
0

〈∂x/∂s, ∂x/∂s〉1/2ds.

Since M is Riemannian, we have

∂

∂α
〈v, w〉 =

〈∇v
∂α

, w
〉

+
〈

v,
∇w
∂α

〉

In the derivation of (8.36) we used ∂2x/∂α∂s = ∂2x/∂s∂α; this is now replaced by

(10.1), that is, ∇/∂α(∂x/∂s) = ∇/∂s(∂x/∂α). In Problem 10.1(1) you are asked to

show that

L ′(α) =
∫ L

0

〈
∂x
∂s

,
∂x
∂s

〉−1/2〈∇
∂s

(
∂x
∂α

)
,
∂x
∂s

〉
ds

and (10.4)

L ′(0) = 〈J, T〉Q − 〈J, T〉P −
∫ L

0

〈
J,

∇T
∂s

〉
ds

Here T = ∂x(s, 0)/∂s is the unit tangent along C , J = ∂x(s, 0)/∂α is the variation

vector, and P = x(0, 0) and Q = x(L , 0) are the beginning and endpoints of C .

We now shall call any parameterized curve C , x = x(t), a geodesic if

∇
dt

(
dx
dt

)
= 0 (10.5)

Note then that

d

dt

〈
dx
dt

,
dx
dt

〉
= 2

〈
dx
dt

,
∇
dt

(
dx
dt

)〉
= 0

This shows that ‖ dx/dt ‖= constant, and so the parameter t is, except for an additive
constant, proportional to arc length. We shall call such a parameter a distinguished or

affine parameter.

A geodesic thus gives, from (10.4), the first variation of the arc length.

10.1c. Jacobi Fields

Let C now be a geodesic, and let us vary C by curves Cα where each Cα is itself a
geodesic, parameterized by a parameter s that is proportional to arc length. The best

example to keep in mind is probably the family of great circles on the round 2-sphere

all passing through the north pole.

In talking about geodesic “separation” we are interested, as far as local coordinates x
go, in the behavior of a pair of points x(s, α) and x(s, 0) as we increase s, that is, as we

move along both geodesics at unit speed. The n-tuple xi (s, α)−xi (s, 0) has usually non-

linear behavior as a function of s. Jacobi’s equation, to be derived later, is the linear equa-

tion governing the linear approximation αJ = α[∂x(s, α)/∂α]α=0 to [x(s, α)−x(s, 0)].

Let us use the notation T = ∂x(s, α)/∂s for the tangents to the geodesics along the

curves and J = ∂x(s, α)/∂α for the variation vectors; although these usually are not

vector fields on M , they are vector fields along the surface of variation. A differential

equation satisfied by the variation vector field J(s, 0) can be obtained as follows.
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Since each Cα is a geodesic we have ∇T/∂s = 0 for all α. Thus, from (10.2) and

(10.1) we have

0 = ∇
∂α

(∇T
∂s

)
= ∇

∂s

(∇T
∂α

)
+ R(J, T)(T)

= ∇
∂s

{ ∇
∂α

(
∂x
∂s

)}
+ R(J, T)(T)

= ∇
∂s

{∇
∂s

(
∂x
∂α

)}
+ R(J, T)(T)

= ∇
∂s

(∇J
∂s

)
+ R(J, T)(T)

or
∇2J
∂s2

+ R(J, T)(T) = 0 (10.6)

This is Jacobi’s equation of geodesic variation. If we putα = 0, it is a (complicated)

second-order system of linear ordinary differential equations for J in terms of s. Any

field J along a geodesic C that satisfies (10.6) will be called a Jacobi field along C . It is

not difficult to see that a Jacobi field always arises as the variation vector field resulting

from varying the given geodesic by some 1-parameter family of geodesics. For such

matters see [M].

In the case of a 2-dimensional surface M2 this equation reduces to a simple form

discovered by Jacobi. Let C be a geodesic with unit tangent T and let T⊥ be a unit vector

field along C that is orthogonal to T. T is parallel displaced along C and, consequently,

so is T⊥ (why?). Let J be a Jacobi field along C . We may expand

J(s) = x(s)T + y(s)T⊥

where x and y are the tangential and normal components of J. Since ∇T/ds = 0 =
∇T⊥/ds, Jacobi’s equation becomes

∇2J
ds2

= d2x

ds2
T + d2 y

ds2
T⊥ = −R(xT + yT⊥, T)T

= −R(yT⊥, T)T = −y R(T⊥, T)T

Then

d2 y

ds2
= −y〈R(T⊥, T)T, T⊥〉

Let us express everything in terms of the orthonormal frame e1 = T, e2 = T⊥ along

C . Since 〈R(X, Y)Z, W〉 = Ri
jkl XkY l Z j Wi we see from (9.54) and (9.13) that

〈R(e2, e1)e1, e2〉 = R2
121 = R2121 = R1212 = K

Jacobi’s equation becomes

d2 y/ds2 + K y = 0 (10.7)

The function y represents, roughly, how the “normal” separation of nearby geodesics

is changing as we move along the geodesics. Consider, for example, the great circle C
of longitude zero on the 2-sphere defined by φ = 0, starting at the north pole θ = 0
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and ending at the south pole θ = π . We can vary C by the meridians of longitude

φ = constant; our parameter α = φ in this case. Equation (10.7) in this unit sphere

case becomes d2 y/dθ 2 + y = 0 and since y = 0 at θ = 0, the solution is y = A sin θ .

We see just from this that the geodesics that were originally separating at the north pole

tend to come together at the south pole. In fact, J = ∂x/∂φ, T = ∂x/∂θ , and T⊥ is

∂x/∂φ made unit. Then y =‖ ∂x/∂φ ‖ = sin θ .

In the n-dimensional case, J represents how the geodesics, in a 1-parameter family of

geodesics, are separating. It is not true, however, even in 2 dimensions, that if J(s0) = 0

for some arc length value s0, the geodesics have actually come together (as they did

in the round S2 case); it means only that the separation distance vanishes in the linear

approximation at s0.

From (10.7) it is clear that the sign of the Gauss curvature K is crucial for un-

derstanding the behavior of nearby geodesics on a surface. If K (u, v) > a−2 > 0 is

positive on M2 then the Sturm theory of differential equations tells us that if y(0) = 0

then y(s0) = 0 for some s0 < πa, and thus a family of geodesics that start at the same

point will meet again, in the linear approximation, before traveling a distance πa. On

the other hand, if K (u, v) ≤ 0, and if y(0) = 0, then y(s) will never vanish again

unless y is identically 0. This does not mean that a pair of geodesics starting out from

a point will not meet again; on the flat torus ds2 = dθ2 + dφ2, the geodesic φ = 0,

and the geodesic θ = 0 start at (0, 0) and meet repeatedly at (2πm, 2πn). It means

only that a 1-parameter family will not come together. There are similar statements

about the influence of the Riemannian curvature tensor on the “stability of geodesics”

in n dimensions. Arnold [A, p. 340 ff.] discusses the problem of long-range weather

prediction using an infinite-dimensional version of Jacobi’s equation.

10.1d. Energy

We have discussed geodesics in terms of yielding a critical point for the length functional∫ ‖ dx/dt ‖ dt , that is, first variation zero; in classical language δ
∫ ‖ dx/dt ‖ dt = 0.

It is not difficult to see (in fact the computation is even simpler) that one also gets

geodesics by varying the integrand ‖ dx/dt ‖2 instead

δ

∫ ∥∥∥∥ dx

dt

∥∥∥∥
2

dt = 0

(It should be noted that unlike the case of arc length, this integral depends on the

parameter t employed.) This new functional is called the action or energy for reasons

that will become apparent in the next section. Some books (e.g., [M]) discuss energy

rather than length, with final equations that are always rather similar to ours.

Problems

10.1(1) Derive (10.4).

10.1(2) Consider the Poincaré upper half plane, ds2 = y−2(dx2 + dy2). As in Problem
9.5(1) we have an orthonormal frame e1 = y∂/ ∂x , e2 = y∂/ ∂y. Show that
the vertical lines are geodesics, ∇e2/ds = 0, by using Cartan’s equations
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∇e2/ds = e1ω1
2(e2). Then J = ∂/ ∂x is a Jacobi field along the geodesic x = 0.

Verify that Jacobi’s equation (10.7) is indeed satisfied. Note that ‖ J ‖→ ∞ as
y → 0; that is, the vertical geodesics are separating as we approach the x axis.

10.1(3) Show that a Jacobi field J that is orthogonal to its geodesic at two distinct
parameter values s = 0 and s = s1 �= 0 (e.g., if J vanishes at s = 0 and
s = s1) must always be orthogonal to the geodesic. (Hint: Derive from (10.6)
a second-order differential equation that is satisfied by 〈J, T〉.)

10.2. Variational Principles in Mechanics

Consider a double planar pendulum with arms of different lengths. Is there always a periodic
motion where the top arm makes p revolutions and the bottom makes q?

In Section 4.4 we discussed analytical dynamics in phase space, that is, the cotangent

bundle T ∗M to the configuration space Mn . Our main purpose was to exhibit the

usefulness of both exterior differential forms and the fact that Hamiltonian mechanics

is, in a sense, the discussion of a particular vector field on T ∗M × R and its effect

on the symplectic form ω2. Hamilton’s variational principle in phase space, Problem

4.4(12), due, I believe, to Poincaré, was carried out using Lie derivatives to calculate

the variations. In the present section we shall return to these considerations, but we

shall emphasize more both the physical and geometric motivation and also the classical

language of the variational calculations. We shall also include the relation between

Hamilton’s principle and the geodesics on the configuration space. We shall defer the

tensorial properties of the variational calculus to Section 20.1.

We shall use a brief notation, omitting indices whenever possible; for example, we

shall write pdq rather than pi dqi .

10.2a. Hamilton’s Principle in the Tangent Bundle

The configuration space of a dynamical system is an n-dimensional manifold Mn . Let

q1, . . . , qn be local coordinates in Mn .

The kinetic energy is frequently of the form T = (1/2)gi j (q)q̇ i q̇ j , where gi j (q) is a

positive definite matrix constructed out of a metric tensor for Mn and also the masses
of the particles of the system. For example, in the case of a particle moving in the plane

with polar coordinates q1 = r and q2 = θ we have gθθ = mr 2 since

T = m

2

[(
dr

dt

)2

+ r 2

(
dθ

dt

)2]

It is sometimes convenient to use 2T to define a new Riemannian metric for Mn ,

ds2 = gi j (q)dqi dq j . Thus 〈q̇, q̇〉 = 2T . The momentum p is the covariant version of

the velocity, pi = gi j q̇ j . The obvious expression of Newton’s law of motion in the case

when the forces are derived from a potential, dpi/dt = −∂V/∂qi , makes no sense since

the right-hand side gives the components of the covector−dV , whereas the usual deriva-

tive of a covector (or a vector) along a curve has no intrinsic meaning. To remedy this we
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write the proposed “law” in contravariant form, dq̇k/dt = −gki∂V/∂qi = −(grad V )k ,

and then replace the ordinary derivative by an intrinsic or covariant derivative

∇q̇

dt
= − grad V (10.8)

In coordinates

dq̇i

dt
+ 	i

jk q̇ j q̇k = −gik ∂V

∂qk

It should not be surprising that Newton’s law can be put in the form of a variational

principle since the intrinsic derivative arose, in our treatment, when considering the

variation of arc length.

Consider a variation q = q(t, α) of a parameterized curve q = q(t) in M ; we write

q(t, α) = q(t) + αη(t) (10.9)

for some function η. Then ∂q(t, α)/∂α = η(t). Classically [∂q(t, α)/∂α]α=0 = η(t) is

written δq, and is called a virtual displacement. Then the first derivative of the integral∫ b
a V (q)dt is classically written

δ

∫ b

a
V (q)dt =

(
d

dα

)
α=0

[ ∫ b

a
V (q)dt

]

=
∫ b

a

[
∂V (q)

∂q

][
∂q

∂α

]
α=0

dt

=
∫ b

a

[
∂V (q)

∂q

]
ηdt =

∫ b

a

[
∂V (q)

∂q

]
δqdt

Consider now the variation of the kinetic energy
∫ b

a (1/2)〈q̇, q̇〉dt . The integrand is now

a function T of both q (which appears in the metric tensor) and q̇. We have computed

the first variation of the more complicated
∫ b

a 〈q̇, q̇〉1/2dt in (10.4). Essentially the same

computation (but easier!) will give

δ

∫ b

a

1

2
〈q̇, q̇〉dt = 〈δq, q̇〉(b) − 〈δq, q̇〉(a) (10.10)

−
∫ b

a

〈∇q̇

dt
, δq

〉
dt

We then see that Newton’s law (10.8) is equivalent to the variational principle

δ

∫ b

a
Ldt := δ

∫ b

a
(T − V )dt = 0 (10.11)

provided

δq = 0 at t = a and t = b

We now accept as a generalization Hamilton’s principle (10.11), for systems with a

general Lagrangian L = L(q, q̇, t), at least in the case where all the forces are derived
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from a potential. We shall write down the associated Euler–Lagrange equations using

classical notation.

L is a function in the extended tangent bundle T M × R of the configuration space

M . Then a variation (10.9) of a curve C in M will yield a variation of the velocities.

From (10.9), q̇(t, α) := ∂q(t, α)/∂t = q̇(t) + αη̇(t) and so

δq̇ = η̇ = (δq)
•

(10.12)

Thus a curve q(t) in M yields a lifted curve {q(t), q̇(t), t} in T M × R and we shall

consider a variation of this lifted curve that arises, from (10.12), as the lift of the variation

in M! We make no variation of the time parameter t . Then, in classical language (all

integrations going from t = a to t = b)

δ

∫
L(q, q̇, t)dt =

∫ {(
∂L

∂q

)
δq +

(
∂L

∂q̇

)
δq̇

}
dt

=
∫ {(

∂L

∂q

)
δq +

(
∂L

∂q̇

)
∂

∂t
(δq)

}
dt

=
∫ {(

∂L

∂q

)
δq + ∂

∂t

[(
∂L

∂q̇

)
(δq)

]}
dt −

∫ [
∂

∂t

(
∂L

∂ q̇

)]
δqdt

=
∫ {(

∂L

∂q

)
− ∂

∂t

(
∂L

∂q̇

)}
δqdt +

[(
∂L

∂q̇

)
(δq)

]∣∣∣∣
b

a

(10.13)

Since we assume that the variations vanish at the endpoints, δq(a) = δq(b) = 0, and

since the variations δq inside are arbitrary, we get Lagrange’s equations

∂L

∂q
− d

dt

(
∂L

∂ q̇

)
= 0 (10.14)

Since the parameter α no longer appears (we are evaluating the derivative at α = 0) we

have written d/dt rather than ∂/∂t .

10.2b. Hamilton’s Principle in Phase Space

(10.11), that is, Hamilton’s principle in T M , was the starting point of our treatment of

mechanics in Section 4.4a. It led, in Problem 4.4(12) to Poincaré’s version of Hamilton’s

principle in phase space T ∗M . In classical language,

δ

∫
pdq − Hdt = 0 (10.15)

They are equivalent (at least when the map p : T M → T ∗M given by p = ∂L/∂ q̇
is invertible) since Lagrange’s equations and Hamilton’s canonical equations (4.48)

are equivalent. However, the differences in these two versions of Hamilton’s principle

should be kept in mind.

In the variational principle leading to Lagrange’s equations earlier we considered a

curve q = q(t) in M , its unique lift to T M ×R (using q̇ = dq/dt), and variations in the

velocity variables that arose from the time derivatives of the variation of the coordinates,
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δq̇ = d/dt (δq).Thus a variation of the configuration space curve led to a unique

variation of the lifted curve in T M . The variations of q and q̇ are not independent!
In Poincaré’s version we deal directly with an arbitrary curve C , q = q(t), p = p(t),

lying in T ∗M × R, that does not necessarily correspond to a lifted curve in T M . Thus

if we solve for q̇ in terms of q and p = ∂L/∂ q̇, that is, when we look at the curve

in T M corresponding to C , q̇ is not necessarily dq/dt! Furthermore, the variations
δq and δp are arbitrary: We deal with variations that are not the lifts of variations of

curves in M . Although we do again require that δq = 0 at the endpoints, we make no
such requirements on δp. Not only this, in the phase space version we may even vary
the time parameter t , provided δt = 0 at the endpoints. Hamilton’s principle in T ∗M
is simpler; for one thing, pdq − Hdt is simply a 1-form in the space T ∗M × R, and it

is a simple matter to differentiate the integral of a form using the Lie derivative. This

is the reason why the symplectic form ω2 is conserved under the canonical flow.

Let us reproduce the derivation of (4.48), but given now in classical notation. Instead

of (10.12) one writes δ dq = d δq, and so forth. Then

δ

∫
pdq − Hdt =

∫
δpdq + pδdq − δHdt − Hδdt

=
∫

δpdq + pd(δq) −
(

∂ H

∂q
δq + ∂ H

∂p
δp + ∂ H

∂t
δt

)
dt − Hd(δt)

=
∫

δpdq + {d(pδq) − dpδq}

−
(

∂ H

∂q
δq + ∂ H

∂p
δp + ∂ H

∂t
δt

)
dt − {d(Hδt) − d Hδt}

=
∫ [

−dp −
(

∂ H

∂q

)
dt

]
δq +

[
dq −

(
∂ H

∂p

)
dt

]
δp

+
[
−

(
∂ H

∂t

)
dt + d H

]
δt +

∫
d[pδq − Hδt] (10.16)

Since δq = 0 = δt at the endpoints, the last integral vanishes. Since δq, δp, and δt
are now otherwise arbitrary, we conclude that δ

∫
pdq − Hdt = 0 is equivalent to

Hamilton’s equations.

10.2c. Jacobi’s Principle of “Least” Action

The kinetic energy T , as a function on T M , yields a Riemannian metric on M

〈
dq

dt
,

dq

dt

〉
= 〈q̇, q̇〉 = 2T

We have already defined L = T − V , and so, since p is the covector associated

to q̇, H = pq̇ − L = 〈q̇, q̇〉 − (T − V ) = T + V is the total energy. Assume that
H = H(q, p) is independent of time, ∂ H/∂t = 0. We know from Hamilton’s equations
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that H is a constant of the motion. Thus the trajectory C of the dynamical system, that is,

q = q(t), p = p(t) satisfying dq/dt = ∂ H/∂p and dp/dt = −∂ H/∂q in T ∗M , lies

on the constant energy locus

VE = {(q, p, t) : H(q, p) = constant E}
Furthermore, assume that d H �= 0 on VE (by Sard’s theorem this is generically so).

Then this locus VE is a 2n-dimensional submanifold of T ∗M × R. We shall assume
that the given trajectory C is such that E − V is always positive along C . Project the

curve C down into the configuration space M , obtaining the curve C ′, which describes

the spatial configurations traced out by the dynamical system. We shall now vary the

curve C in T ∗M × R as follows. In Figure 10.3 we illustrate the special case of the 1

dimensional harmonic oscillator with H = p2 + q2.

t
VE

0

0

C

C

α

lift of Cα
′

C ′

p

q

q

R=M 1

+T*M R

��t2

Figure 10.3

Let C ′
α be a variation of the curve C ′ always starting and ending at the same points

as C ′, that is, δq = 0 at the endpoints q(t1) and q(t2). We are going to lift the varied
curves C ′(α) to yield a variation of C that always lies on the hypersurface H = E , by

merely changing the speed at which we traverse C ′(α) in M . We do this as follows. The
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curve C ′(α) is some parameterized curve qα = q(τ ). Consider the velocity q̇ = dq/dτ

at the point q(τ ). This determines a specific pτ = ∂L/∂ q̇ in the momentum fiber over

q(τ ), that is, the vector space R
n of all covectors at q(τ ), but this point in the fiber

need not lie on H = E . The hypersurface H = E intersects this fiber in the quadratic

(n − 1)-dimensional ellipsoid T (p) = E − V (q(τ )) defined by the kinetic energy. We

may assume that the constant E −V (q(τ )) is positive, since this was true for the original

curve C . Thus pτ is a nonzero vector in the fiber R
n and so a unique positive multiple

of it will end on the ellipsoid T (p) = E − V (q(τ )). This is the new momentum that we
assign to the point q(τ ) on C ′

α; it is simply a positive multiple of the original pτ on C ′
α.

By doing this at each q(τ ) on Cα we define a lift of C ′
α that lies on H = E ; that is, we

have covered each C ′
α by a curve Cα representing a motion with total energy H = E .

By construction, each Cα starts at the same q and t = t1 as does C (with perhaps

different p) and although all end at the same q they needn’t all end at t = t2. The time

t = t2(α) is determined by the fact that the spatial locus C ′
α is given together with the

speed along this locus, since H = E .

Look now at Hamilton’s principle in phase space and the variational calculation

(10.16).

If all of the Cα ended at the same t = t2, then Hamilton’s principle would give

δ
∫

C pdq − Hdt = 0 since C = C(0) is a Hamiltonian trajectory, but now we can

expect the boundary term
∫

d[pδq − Hδt] to play a role. From (10.16)

δ

∫
C

pdq − Hdt = [pδq − Hδt]2
1

where 1 is the beginning point and 2 is the endpoint, all in T ∗M × R. But δq vanishes

at both ends, and δt = 0 at the beginning, and so

δ

∫
C

pdq − Hdt = −Eδt2

rather than 0. On the other hand, since our varied curves all lie on H = E , we have

directly

δ

∫
C

pdq − Hdt =
(
δ

∫
C

pdq
)

− Eδt2

Comparing these expressions gives the following:

Theorem (10.17): Consider all parameterized smooth curves C ′ in configuration
space M, q = q(t), starting at q0 and ending at q1, each parameterized so that the
total energy H is a given constant E along the path. Then

∫ q1

q0
pdq is a functional

of the path. A path C ′ is the projection of a Hamiltonian trajectory in T ∗M × R

(i.e., C ′ is the trace in M of a path of the dynamical system) iff

δ

∫
pdq = 0 at C ′

for all variations having H = E and δq = 0 at the given endpoints.
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This principle can be put in the following form. Along the curves q = q(t) in M
parameterized by time, we have pdq = p(dq/dt)dt =‖ q̇ ‖2 dt = 2T dt , where T is

the kinetic energy. Thus, vaguely speaking, the trace of the dynamical system point in

q-space is such that

δ

∫
T dt = 0

among all curves with the same total energy E . (Note, however, that the t interval of

integration changes for curves in a variational family.) This is the principle of least
action of Maupertuis and Euler (1744). Jacobi restated and proved the following

version, using the language of geodesics.

If we have H = E along the path, then T = H − V (q) = E − V (q). Now

ds =‖ q̇ ‖ dt =
√

2
√

T dt (10.18)

is the element of arc length in M given by the kinetic energy, and so
√

2T dt =√
2
√

T
√

T dt = √
T ds = [E − V (q)]1/2ds. We then have

Theorem (10.19): Jacobi’s Principle of “Least” Action
The trace in M of a Hamiltonian trajectory of constant total energy E is a

geodesic in M for the Jacobi metric given by dρ := √
T ds = [E − V (q)]1/2ds,

where ds is the standard metric given by the kinetic energy

δ

∫
dρ = δ

∫
[E − V (q)]1/2ds = 0

Note that this metric is only defined on the part of M where E > V (q) (i.e., where the

kinetic energy T is > 0). If V is bounded above on M , V (q) < B for all points of M
(e.g., if M is compact), then the metric makes sense for total energy E > B.

As we know, geodesics yield a vanishing first variation, but this need not be a

minimum for the “action”
∫ ‖ q̇ ‖2 dt .

10.2d. Closed Geodesics and Periodic Motions

A geodesic C on a manifold Mn that starts at some point p might return to that same

point after traveling some arc length distance L . If it does, it will either cross itself

transversally or come back tangent to itself at p. In the latter case the geodesic will

simply retrace itself, returning to p after traveling any distance that is an integer multiple

of L . In such a case we shall call C a closed geodesic. This is the familiar case of the

infinity of great circles on the round 2-sphere.

If a 2-sphere is not perfectly round, but rather has many smooth bumps, it is not

clear at all that there will be any closed geodesics, but, surprisingly, it can be proved

that there are in fact at least three such closed geodesics! The proof is difficult.

Closed geodesics in mechanics are important for the following reason. The evolution

of a dynamical system in time is described by a curve q = q(t) being traced out in

the configuration space M , and by Jacobi’s principle, this curve is a geodesic in the
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Jacobi metric dρ = [E −V (q)]1/2ds. Thus a closed geodesic in the configuration space

corresponds to a periodic motion of the dynamical system. A familiar example is given

by the case of a rigid body spinning freely about a principal axis of inertia.

Not all manifolds have closed geodesics.

Figure 10.4

The infinite horn-shaped surface indicated has no closed geodesics. It is clear that the

horizontal circles of latitude are not geodesics since the principal normal to such a curve

is not normal to the surface. Furthermore, it is rather clear that any closed curve on this

horn can be shortened by pushing it “north,” and such a variation of the curve will have

a negative first variation of arc length, showing that it could not be a geodesic. (One

needs to be a little careful here; the equator on the round 2-sphere is a geodesic and it

is shortened by pushing it north. The difference is that in this case the tangent planes

at the equator are vertical and so the first variation of length is in fact 0; it is the second
variation that is negative! We shall return to such matters in Chapter 12.)

One would hope that if a closed curve is not a geodesic, it could be shortened and

deformed into one. A “small” circle of latitude on the northern hemisphere of the sphere,

however, when shortened by pushing north, collapses down to the north pole. Somehow

we need to start with a closed curve that cannot be “shrunk to a point,” that is, perhaps

we can succeed if we are on a manifold that is not simply connected (see Section 21.2a).

But the circles of latitude on the horn-shaped surface in Figure 10.4 show that this is

not enough; there is no “shortest” curve among those closed curves that circle the horn.

We shall now “show” that if M is a closed manifold (i.e., compact without boundary)

that is not simply connected, then there is a closed geodesic. In fact a stronger result

holds. We shall discuss many of these things more fully in Chapter 21.

We wish to say that two closed curves are “homotopic” if one can be smoothly moved

through M to the other. This can be said precisely as follows. Let C0 and C1 be two

parameterized closed curves on Mn . Thus we have two maps fα : S1 → Mn , α = 0, 1,

of a circle into M . We say that these curves are (freely) homotopic provided these maps

can be smoothly extended to a map F : S1 × R → M of a cylinder S1 × R into M .

Thus

F = F(θ, t), with F(θ, 0) = f0(θ) and F(θ, 1) = f1(θ)
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S

S

S

1

t

0

Figure 10.5

Thus F interpolates between f0 and f1 by mapping the circle St into M by the map

ft(θ) = F(θ, t).
Clearly the circles of latitude on the horn are homotopic.

Homotopy is an equivalence relation; if C is homotopic to C ′ (written C ∼ C ′) and

C ′ ∼ C ′′, then C ∼ C ′′, and so on. Thus the collection of closed curves on M is broken

up into disjoint homotopy classes of curves. All curves C that can be shrunk to a point

(i.e., that are homotopic to the constant map that maps S1 into a single point) form a

homotopy class, the trivial class. If all closed curves are trivial the space M is said to

be simply connected.

On the 2-torus, with angular coordinates φ1 and φ2, the following can be shown. The

φ2

φ1

Figure 10.6

two basic curves φ2 = 0 and φ1 = 0 are nontrivial and are not homotopic. The closed

curve indicated “wraps twice around in the φ1 sense and once in the φ2 sense”; we write

that it is a curve of type (2, 1). Likewise we can consider curves of type (p, q). All

curves of type (p, q) form a free homotopy class and this class is distinct from (p′, q ′)
if (p, q) �= (p′, q ′).

Theorem (10.20): In each nontrivial free homotopy class of closed curves on a
closed manifold Mn there is at least one closed geodesic.

The proof of this result is too long to be given here but the result itself should not be

surprising; we should be able to select the shortest curve in any nontrivial free homotopy
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class; the compactness of M is used here. If it were not a geodesic we could shorten it fur-

ther. If this geodesic had a “corner,” that is, if the tangents did not match up at the starting

(and ending) point, we could deform it to a shorter curve by “rounding off the corner.”

Figure 10.7

Finally we give a nontrivial application to dynamical systems ([A, p. 248].

Consider a planar double pendulum, as in Section 1.2b, but in an arbitrary potential

field V = V (φ1, φ2). The configuration space is a torus T 2. Let B be the maximum

of V in the configuration space T 2. Then if the total energy H = E is greater than B,

the system will trace out a geodesic in the Jacobi metric for the torus. For any pair of

integers (p, q) there will be a closed geodesic of type (p, q). Thus, given p and q, if

E > B there is always a periodic motion of the double pendulum such that the upper

pendulum makes p revolutions while the lower makes q.

An application to rigid body motion will be given in Chapter 12.

Finally, we must remark that there is a far more general result than (10.20). Lyusternik

and Fet have shown that there is a closed geodesic on every closed manifold! Thus there
is a periodic motion in every dynamical system having a closed configuration space,
at least if the energy is high enough. The proof, however, is far more difficult, and not

nearly as transparent as (10.20). The proof involves the “higher homotopy groups”;

we shall briefly discuss these groups in Chapter 22. For an excellent discussion of the

closed geodesic problem, I recommend Bott’s treatment in [Bo].

10.3. Geodesics, Spiders, and the Universe

Is our space flat?

10.3a. Gaussian Coordinates

Let γ = γ (t) be a geodesic parameterized proportional to arc length; then ‖ dx/dt ‖
is a constant and ∇ẋ/dt = 0 along γ . There is a standard (but unusual) notation for

this geodesic. Let v be the tangent vector to γ at p = γ (0); we then write

γ (t) = expp(tv)

Then we have (10.21)

d

dt
[expp(tv)] = dγ

dt
is the tangent vector to γ at the parameter value t .
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The point expp(v) is the point on the geodesic that starts at p, has tangent v at p,
and is at arc length ‖ v ‖ from p.

Of course if t < 0, we move in the direction of −v. When v is a unit vector, t is arc

length along γ .

Since geodesics need not be defined for all t , expp(tv) may only make sense if | t |
is sufficiently small.

Given a point p and a hypersurface V n−1 ⊂ Mn passing through p, we may set up

local coordinates for M near p as follows. Let y2, . . . , yn be local coordinates on V
with origin at p. Let N(y) be a field of unit normals to V along V near p. If from each

y ∈ V we construct the geodesic through y with tangent N(y), and if we travel along

this geodesic for distance | r |, we shall get, if ε is small enough, a map

(−ε, ε) × V n−1 → Mn

by

(r, y) �→ expy(rN(y))

and it can be shown ([M]) that this map is a diffeomorphism onto an open subset of Mn

N

N

N

p= 0

V

p(rN(0))exp

Figure 10.8

if V n−1 and ε are small enough. This says, in particular, that any point q of M that is

sufficiently close to p will be on a unique geodesic of length r < ε that starts at some

y ∈ V and leaves orthogonally to V . If then q = expy(rN(y)), we shall assign to q the

Gaussian coordinates (r, y2, . . . , yn).

(As mentioned before, we recommend Milnor’s book [M] for many of the topics

in Riemannian geometry. We should mention, however, that Milnor uses an unusual

notation. For example, Milnor writes

A � B

instead of the usual covariant derivative ∇A B. Also Milnor’s curvature transformation
R(X, Y) is the negative of ours.)
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We can then look at the hypersurface V n−1
r of all points expy(rN(y)) as y runs through

V but with r a small constant; this is the parallel hypersurface to V at distance r .

Gauss’s Lemma (10.22): The parallel hypersurface V n−1
r to V n−1 is itself or-

thogonal to the geodesics leaving V orthogonal to V .

Put another way, this says:

Corollary (10.23): The distribution �n−1 of hyperplanes that are orthogonal to
the geodesics leaving V n−1 orthogonally is completely integrable, at least near
V .

This is a local result; �n−1 isn’t defined at points where distinct geodesics from V n−1

meet (look at the geodesics leaving the equator V 1 ⊂ S2).

PR O O F O F GA U S S’S L E M M A: Let γy be the geodesic leaving V n−1 at the point

y. It is orthogonal to V at y and we must show that it is also orthogonal to Vr at

the point (r, y). Consider the 1-parameter variation of γ given by the geodesics

s �→ γy,α (s) := expy(sN(y2 + α, y3, . . . , yn)), for 0 ≤ s ≤ r , emanating

from the y2 curve through y. The variation vector J, in our Gaussian coordinate

system, is simply ∂/∂y2. It is a Jacobi field along γ . By construction, all of these

geodesics have length r . Thus the first variation of arc length is 0 for this variation.

But Gauss’s formula (10.4) gives 0 = L ′(0) = 〈J, T〉(γ (r)) − 〈J, T〉(γ (0)) =
〈J, T〉(γ (r)). Thus γ is orthogonal to the coordinate vector ∂/∂y2 tangent to Vr

at (r, y). The same procedure works for all ∂/∂yi .

Corollary (10.24): In Gaussian coordinates r , y2, . . . , yn for Mn we have

ds2 = dr 2 +
n∑

α,β=2

gαβ(r, y)dyαdyβ

since 〈∂/∂r,∂/∂r〉 = 1 and 〈∂/∂r,∂/∂yα〉 = 0.

In particular, when V 1 is a curve on a surface M2, the metric assumes the form

ds2 = dr 2 + G2(r, y)dy2

promised in (9.58).

Corollary (10.25): Geodesics locally minimize arc length for fixed endpoints
that are sufficiently close.

This follows since any sufficiently small geodesic arc can be embedded in a Gaussian

coordinate system as an r curve, where all y’s are constant. Then for any other curve
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lying in the Gaussian coordinate patch, joining the same endpoints, and parameterized

by r

ds2 = dr 2 +
n∑

α,β=2

gαβ(r, y)
dyα

dr

dyβ

dr
≥ dr 2

since (gαβ) is positive definite. The restriction that the curve be parametrized by r can

be removed; see [M].

10.3b. Normal Coordinates on a Surface

Let p be a point on a Riemannian surface M2. Let e, f be an orthonormal frame at p. We

claim that the map (x, y) ∈ R
2 �→ �(x, y) = expp(xe+ yf) ∈ M is a diffeomorphism

of some neighborhood of 0 in R
2 onto a neighborhood of p in M2.

R
2 = Mp

p

f xe

e

+ yf

2

=

M

(x,y) p xe+ yf( )exp�

Figure 10.9

To see this we look at the differential �∗ at 0. From (10.21)

∂

∂x

∣∣∣∣
(x,y)=0

�(x, y) = ∂

∂x

∣∣∣∣
x=0

exp0(xe) = e

Thus �∗(∂/∂x) = e and likewise �∗(∂/∂y) = f, showing that � is a local diffeo-

morphism and thus that x and y can be used as local coordinates near p. These are

(Riemannian) normal coordinates, with origin p. We can now introduce the analogue

of polar coordinates near p by putting r 2 = x2 + y2 and x = r cos θ, y = r sin θ .

Thus if we keep θ constant and let r ≥ 0 vary, we simply move along the geodesic

expp[r(cos θe+ sin θ f)], whereas if we keep r constant, expp[r(cos θe+ sin θ f)] traces

out a closed curve of points whose distance along the radial geodesics is the constant

r . We shall call this latter curve a geodesic circle of radius r , even though it itself is

not a geodesic. We shall call (r, θ) geodesic polar coordinates. These are not good

coordinates at the pole r = 0.

We can express the metric in terms of (x, y) or (r, θ). In (x, y) coordinates we have

the form ds2 = g11dx2 + 2g12dxdy + g22dy2, whereas in (r, θ) we may write the

metric in the form ds2 = grr dr 2 + 2grθdrdθ + G2(r, θ)dθ2, for some function G.

Now by keeping θ constant we move along a radial geodesic with arc length given
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by r , and thus grr = 1. By exactly the same reasoning as in Gauss’s lemma this

radial geodesic is orthogonal to the θ curves r = constant; therefore grθ = 0 and

ds2 = dr 2 + G2(r ,θ)dθ 2. By direct change of variables x = r cos θ and y = r sin θ in

ds2 = g11dx2 + 2g12dxdy + g22dy2 we readily see that

G2 = r 2[g11 sin2 θ − g12 sin 2θ + g22 cos2 θ ]

where g11 = 1 = g22 and g12 = 0 at the origin, since (e, f) is an orthonormal frame.

Note then that G2(r, θ)/r 2 → 1, uniformly in θ , as r → 0; in particular G → 0 as

r → 0. Thus

∂G

∂r

]
0

= lim
G

r
= 1

Also, ∂2G/∂r 2 = −K G follows from (9.60). We then have the Taylor expansion along

a radial geodesic

G(r, θ) = r − K (0)
r 3

3!
+ · · · (10.26)

Thus the circumference L(Cr ) of the geodesic circle of radius r is

L(Cr ) =
∫ 2π

0

√
g

θθ
dθ = 2πr − 2π K (0)

r 3

6
+ · · ·

Likewise the area of the geodesic “disc” of radius r is

A(Br ) =
∫∫ √

gdrdθ =
∫∫

G(r, θ)drdθ = πr2 − π

12
K (0)r 4 + · · ·

These two expressions lead to the formulae, respectively, of Bertrand–Puiseux and of

Diguet of 1848

K (0) = lim
r→0

(
3

πr 3

)
[2πr − L(Cr )]

(10.27)

= lim
r→0

(
12

πr 4

)
[πr 2 − A(Br )]

telling us that the Gauss curvature K (p) is related to the deviation of the length and

area of geodesic circles and discs from the expected euclidean values. See Problem

10.3(1).

There are analogous formulae in higher dimensions involving the curvature tensor.

10.3c. Spiders and the Universe

The expressions (10.27) give a striking confirmation of Gauss’s theorema egregium
since they exhibit K as a quantity that can be computed in terms of measurements

made intrinsically on the surface. There is no mention of a second fundamental form

or of a bending of the surface in some enveloping space. A spider living on M2 could

mark off geodesic segments of length r by laying down a given quantity of thread and

experimenting to make sure that each of its segments is the shortest curve joining p to

its endpoint.
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+p

M2

Cr

Figure 10.10

Then it could lay down a thread along the endpoints, forming a geodesic circle Cr of ra-

dius r , and measure its length by the amount of thread used. Having already encountered

the formula of Bertrand–Puiseux in its university studies, the spider could compute an

approximation of K at p, and all this without any awareness of an enveloping space!

What about us? We live in a 3-dimensional space, or a 4-dimensional space–time. To

measure small spatial distances we can use light rays, reflected by mirrors, noting the

time required on our atomic clocks (see Section 7.1b). A similar construction yields ds2

for timelike intervals (see [Fr, p.10]). Our world seems to be equipped with a “natural”
metric.

In ordinary affairs the metric seems flat; that is why euclidean geometry and the

Pythagoras rule seemed so natural to the Greeks, but we mustn’t forget that the sheet of

paper on which we draw our figures occupies but a minute portion of the universe. (The

Earth was thought flat at one time!) Is the curvature tensor of our space really zero? Can

we compute it by some simple experiment as the spider can on an M2 ? Gauss was the

first to try to determine the curvature of our 3-space, using the following result of Gauss–

Bonnet. Consider a triangle on an M2 whose sides C1, C2, C3, are geodesic arcs. Parallel

ε1

ε1

ε2

ε3

vf

v

v

v0 = T1

C1

C2

C3

T2

T3

T3

Figure 10.11
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translate around this triangle the unit vector v that coincides with the unit tangent to C1

at the first vertex. Since T1 is also parallel displaced, we have v = T1 along all of C1.

Continue the parallel translation of v along the second arc; since this arc is a geodesic,

we have that v will make a constant angle with this arc. This angle is ε1, the first exterior

angle. Thus at the next vertex the angle from v to the new tangent T3 will be ε1+ε2. When

we return to the first vertex we will have ∠(v f , T1) = ε1+ε2+ε3. Thus 2π−∠(v0, v f ) =
ε1+ε2+ε3 and so∠(v0, v f ) = 2π−(ε1+ε2+ε3) = (the sum of the interior angles )−π .

But from (9.61) we have that ∠(v0, v f ) = ∫∫
K d S over the triangle. We conclude that∫∫

K d S = (the sum of the interior angles of the triangle

with geodesic sides ) − π (10.28)

This formula generalizes Lambert’s formula of spherical geometry in the case when

M2 is a 2-sphere of radius a and constant curvature K = 1/a2. Of course the interior

angle sum in a flat plane is exactly π and (10.28) again exhibits curvature as indicating

a breakdown of euclidean geometry.

Gauss considered a triangle whose vertices were three nearby peaks in Germany,

the sides of the triangle being made up of the light ray paths used in the sightings.

Presumably the sides, made up of light rays, would be geodesics in our 3-space. An

interior angle sum differing from π would have been an indication of a noneuclidean

geometry, but no such difference was found that could not be attributed to experimental

error.

Einstein was the first to describe the affine connection of the universe as a physical

field, a gauge field, as it is called today. He related the curvature of space–time to a

physical tensor involving matter, energy, and stresses and concluded that space–time is

indeed curved. We turn to these matters in the next chapter.

Problem

10.3(1) Use the first expression in (10.27) to compute the Gauss curvature of the round
2-sphere of radius a, at the north pole.

p

Cr

θ

r

Figure 10.12



CHAPTER 11

Relativity, Tensors, and Curvature

11.1. Heuristics of Einstein’s Theory

What does g00 have to do with gravitation?

11.1a. The Metric Potentials

Einstein’s general theory of relativity is primarily a replacement for Newtonian gravita-

tion and a generalization of special relativity. It cannot be “derived”; we can only spec-

ulate, with Einstein, by heuristic reasoning, how such a generalization might proceed.

His path was very thorny, and we shall not hesitate to replace some of his reasoning,

with hindsight, by more geometrical methods.

Einstein assumed that the actual space–time universe is some pseudo-Riemannian

manifold M4 and is thus a generalization of Minkowski space. In any local coordinates

x0 = t , x1, x2, x3 the metric is of the form

ds2 = g00(t, x)dt2 + 2g0β(t, x)dtdxβ

+gαβ(t, x)dxαdxβ

where Greek indices run from 1 to 3, and g00 must be negative. We may assume that

we have chosen units in which the speed of light is unity when time is measured by the
local atomic clocks (rather than the coordinate time t of the local coordinate system).

Thus an “orthonormal” frame has 〈e0, e0〉 = −1, 〈e0, eβ〉 = 0, and 〈eα, eβ〉 = δαβ .

Warning: Many other books use the negative of this metric instead.

To get started, Einstein considered the following situation. We imagine that we have

massive objects, such as stars, that are responsible in some way for the preceding

metric, and we also have a very small test body, a planet, that is so small that it doesn’t

appreciably affect the metric. We shall assume that the universe is stationary in the

sense that it is possible to choose the local coordinates so that the metric coefficients

do not depend on the coordinate time t , gi j = gi j (x). In fact we shall assume more. A

uniformly rotating sun might produce such a stationary metric; we shall assume that the

metric has the further property that the mixed temporal–spatial terms vanish, g0β = 0.

291
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Such a metric

ds2 = g00(x)dt2 + gαβ(x)dxαdxβ (11.1)

is called a static metric.

Along the world line of the test particle, the planet, we may introduce its proper
time parameter τ by

dτ 2 := −ds2

As in Section 7.1b, it is assumed that proper time is the time kept by an atomic clock

moving with the particle. Then(
dτ

dt

)2

= −g00 − gαβ

dxα

dt

dxβ

dt
We shall assume that the particle is moving very slowly compared to light; thus we

put the spatial velocity vector equal to zero, v = dx/dt ∼ 0, and consequently its unit

velocity 4-vector is

u := dx

dτ
=

(
dt

dτ

)[
1,

dx
dt

]T

∼
(

dt

dτ

)
[1, 0]T

or

u ∼ (−g00)
−1/2[1, 0]T

where, as is common, we allow ourselves to identify a vector with its components.

We shall also assume that the particle is moving in a very weak gravitational field

so that M4 is almost Minkowski space in the sense that

g00 ∼ −1

We shall not, however, assume that the spatial derivatives of g00 are necessarily small.

Thus we are allowing for spatial inhomogeneities in the gravitational field.

The fact that all (test) bodies fall with the same acceleration near a massive body

(Galileo’s law) led Einstein to the conclusion that gravitational force, like centrifugal

and Coriolis forces, is a fictitious force. A test body in free fall does not feel any force

of gravity. It is only when the body is prevented from falling freely that the body feels a

force. For example, a person standing on the Earth’s solid surface does not feel the force

of gravity, but rather the molecular forces exerted by the Earth as the Earth prevents

the person from following its natural free fall toward the center of the planet.

Einstein assumed then that a test body that is subject to no external forces (except the
fictitious force of gravity) should have a world line that is a geodesic in the space–time

manifold M4. Then, since dτ ∼ dt , the geodesic equation yields

d2xi

dt2
∼ d2xi

dτ 2
∼ −�i

jk

dx j

dt

dxk

dt
∼ −�i

00

In particular, for α = 1, 2, 3, we have

d2xα

dt2
∼ − �α

00 = −1

2
gα j

(
∂g0 j

∂x0
+ ∂g0 j

∂x0
− ∂g00

∂x j

)

= 1

2
gα j ∂g00

∂x j

= 1

2
gαβ ∂g00

∂xβ
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Thus

d2xα

dt2
∼

[
grad

(
g00

2

)]α

If now we let φ be the classical Newtonian gravitational potential, then we must

compare the preceding with d2xα/dt2 = [grad φ]α. (Note that physicists would write

this in terms of V = −φ.) This yields g00/2 ∼ φ+constant. We have assumed g00 ∼
−1; if we now assume that the gravitational potential φ → 0 “at infinity,” we would

conclude that

g00 ∼ (2φ − 1) (11.2)

Thus Einstein concluded that g00 is closely related to the Newtonian gravitational
potential! But then what can we say of the other metric coefficients? Surely they must

play a role although we have not yet exhibited this role. We then have the following

comparisons:

1. Newtonian gravitation is governed by a single potential φ. Newtonian gravitation is a

scalar theory.

2. Electromagnetism is governed by a 4-vector potential A; see (7.25). Electromagnetism

is a vector theory.

3. Einstein’s gravitation is governed by the 10 “metric potentials” (gi j ). Gravitation is then

a symmetric covariant second-rank tensor theory.

In (1), the potential φ satisfies a “field equation,” namely Poisson’s equation

∇2φ = −4πκρ (11.3)

where ρ is the density of matter and κ is the gravitational constant.

In (2), A can be chosen to satisfy a field equation of the form of a wave equation.

If is the d’Alembertian, the Laplace operator in Minkowski space, we have

A = 4π J

where J is the current 1-form, the covariant version of the current 4-vector in (7.27).

These matters will be discussed in more detail later.

What are the field equations satisfied by the (gi j )?

11.1b. Einstein’s Field Equations

Consider now, instead of a single test particle, a “dust cloud” of particles having a density

ρ. By dust we mean an idealized fluid in which the pressure vanishes identically. Lack

of a pressure gradient ensures us that the individual molecules are falling freely under

the influence of gravity. Each particle thus traces out a geodesic world line in M4. We

shall again restrict ourselves to static metrics (11.1).

First consider the Newtonian picture of this cloud in R
3. Follow the “base” path C0

of a particular particle and let δxt be the variation vector, which classically joins the

base particle at time t to a neighboring particle at time t .
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C0

δxt

δx0

Figure 11.1

From 4.1b we know (d/dt) ◦ δ = δ ◦ (d/dt), and so (d2/dt2) ◦ δ = δ ◦ (d2/dt2).

Thus from Newton’s law (in cartesian coordinates)

d2

dt2
(δxα) = δ

(
d2xα

dt2

)
= δ

(
∂φ

∂xα

)

= ∂2φ

∂xα∂xβ
δxβ

d2

dt2
(δxα) = ∂2φ

∂xα∂xβ
δxβ (11.4)

This is the equation of variation, a linear second-order equation for δx along C0.

Now look at the same physical situation, but viewed in the 4-dimensional space–

time M4.

u

C ′
0

J

τ == t 0

Figure 11.2

The particles now trace out world lines C ′ in M4 with unit 4-velocity u. The variation

4-vector Jτ “joins” the base particle at proper time τ to a nearby particle at the same
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proper time (we shall assume that all nearby particles have synchronized their atomic

clocks at an initial τ = 0 when t = 0). Since all of the world lines are geodesics,

parameterized by “arc length,” that is, proper time τ , the variation vector J is a Jacobi
field and satisfies ∇2 J/dτ 2 = −R(J, T )T . In a weak field and with small spatial

velocities, we expect again that τ is approximately the coordinate time t, τ ∼ t . Then

the Jacobi field J will essentially have no time component, J 0 ∼ 0, since it “connects”

events at a common time t . By again looking at the Christoffel symbols with our

smallness and static assumptions, we have (see Problem 11.1(1))

∇ J α

dτ
∼ d J α

dτ
∼ d J α

dt
(11.5)

and Jacobi’s equation becomes

d2 J α

dt2
∼ −Rα

0β0 J β

If we now put J β = δxβ and compare this with (11.4) we get

−Rα
0β0 ∼ ∂2φ

∂xβ∂xα

Consequently, since R j
k00 = 0,

∇2φ =
∑

1≤α≤3

∂2φ

∂xα∂xα
∼ −

∑
1≤a≤3

Rα
0α0 ∼ −

∑
0≤i≤3

Ri
0i0

In any Mn with an affine connection we define the Ricci tensor, by contracting the

full Riemann tensor

R jk := Ri
jik (11.6)

We shall show in Section 11.2 that R jk = Rkj in the case of a (pseudo)-Riemannian
manifold. We then have

∇2φ ∼ −R00

Poisson’s equation yields

∇2φ = −4πκρ ∼ −R00 (11.7)

for a slowly moving dust in a weak field. We see from this simple case that

space–time M4 must be curved in the presence of matter!

As it stands, (11.7) “equates” the 00 component of a tensor, the Ricci tensor, with what

is classically considered a scalar, a multiple of the density ρ. But in special relativity the

density is not a scalar. Under a Lorentz transformation, mass m0 gets transformed by

the Lorentz factor, m = m0γ (see (7.9)). Also, 3-volumes transform as vol3 = vol3
0/γ

“since length in the direction of motion is contracted.” Thus density transforms as

ρ = ρ0γ
2. This suggests that density is also merely one component of a second-rank

tensor. Indeed just such a tensor, the stress–energy–momentum tensor, was introduced

into special relativity. In classical physics there is the notion of the 3-dimensional

symmetric “stress tensor” with components Sαβ (see [Fr, chap. 6] for more details of

the following). Consider the case of a perfect fluid; here Sαβ = −pδαβ where p is the
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pressure. Let ρ be the rest mass–energy density of the fluid and let u be the velocity

4-vector of the fluid particles. Note that


i
j := gi

j + ui u j

projects each 4-vector orthogonally into the 3-space orthogonal to u. Then the stress–
energy–momentum tensor for the fluid is defined by

T i j := ρui u j + p(gi j + ui u j ) = (ρ + p)ui u j + pgi j (11.8)

In the case of a dust p = 0 and in the case of slowly moving particles the only

nonvanishing component of u is essentially u0 ∼ 1. Thus T has essentially only one

nonvanishing component T 00 ∼ ρ. Finally Ti j = gir g js T rs also has one component

T00 = ρ, since g00 ∼ −1.

Equation (11.7) then can be stated as R00 = 4πκT00. Clearly this suggests a tensor

equation, for all i, j

Ri j = 4πκTi j

These were the equations first proposed by Einstein in early November of 1915, for

all types of matter undergoing any motion, although his path to these equations was

far more tortuous than that indicated here. Furthermore, these equations are incorrect!

In special relativity the tensor T is known to have “divergence” 0, whereas the Ricci

tensor does not usually have this property. These equations need to be amended in

the same spirit as when Ampere’s law was amended by the addition of Maxwell’s

displacement current in order to ensure conservation of charge. We shall discuss these

matters in Section 11.2. Einstein arrived at the “correct” version at the end of that same

November with Einstein’s equations

Ri j − 1

2
gi j R = 8πκTi j (11.9)

In this equation we have introduced a second contraction of the Riemann tensor, the

(Ricci) scalar curvature

R := gi j Ri j = R j
j (11.10)

In order to handle the Einstein equations effectively we shall have to learn more

about “tensor analysis,” which was developed principally by Christoffel (covariant

differentiation, the curvature tensor) and by Ricci. We turn to these matters in our next

section.

11.1c. Remarks on Static Metrics

Some final comments.

1. Note that a light ray has a world line that, by definition, is always tangent to the light

cone and so ds2 = 0 along the world line. From (11.1) we conclude that −g00 =
gαβ(dxα/dt2)(dxβ/dt2) = c2, the square of the speed of light when measured using
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coordinate time t . Thus although the speed of light is by definition 1 when time is mea-

sured by using atomic clocks (i.e., proper time), its speed c measured using coordinate

time in a static universe varies and is given by

c =
√

(−g00) ∼
√

(1 − 2φ) ∼ (1 − φ)

Thus the coordinate speed of light decreases as the gravitational potential increases.

Einstein realized this in 1912, three years before his field equations, and before he was

aware of Riemannian geometry, and proposed then that c be used as a replacement for

the Newtonian potential!

2. Although the world line of a light ray is assumed to be a geodesic in space–time, its spatial
trace is not usually a geodesic in space! We have just seen that

√−g00 is essentially the

index of refraction. It can be shown (see [Fr]) that the spatial trace satisfies Fermat’s
principle of least time

δ

∫
dσ√−g00

= 0

where dσ 2 = gαβdxαdxβ is the metric of the spatial slice. This is the “reason” for the

observed curvature of light rays passing near the sun during a total eclipse.

3. We have given a crude heuristic “derivation” of (11.2), the relation between the metric

coefficient g00 and the classical Newtonian potential φ. Note that in the “derivation” of

∇2φ ∼ −R00 the Laplacian
∑

∂2φ/∂xα∂xα that appears uses the flat metric rather than

the correct Laplacian for the spatial metric

∇2φ = 1√
h

∂

∂xα

(√
hgαβ ∂φ

∂xβ

)

where we have put h = det(gαβ). In my book [Fr, p.22], I give a heuristic argument

indicating that the classical potential φ is related to g00 by

φ ∼ 1 − √−g00

rather than (11.2). These two expressions are very close when g00 is very near −1. The

advantage of this new expression for φ is that it satisfies an exact equation in any static

space–time, Levi-Civita’s equation

∇2
√−g00 = −R0

0

√−g00

where the Laplacian is the correct one for the spatial metric. g00 itself, without the

square root, does not satisfy any simple equation such as this. Poisson’s equation then

suggests an equation of the form 4πκρ∗ = −R0
0

√−g00. In the case of a perfect fluid

at rest, by using (11.8) and (11.9) it is shown [Fr, p. 32] that the “correct” density of

mass–energy is, in this case

ρ∗ = (ρ + 3p)
√−g00

4. Finally, in my book I give a heuristic “derivation” of Einstein’s equations that automat-

ically includes the term involving R. This is accomplished by looking at a spherical

blob of water instead of a dust cloud. This more complicated situation works because

it involves stresses, that is, pressure gradients, that were omitted in the dust cloud. The

derivation also has the advantage that it does not use Einstein’s assumption that free

test particles have geodesic world lines; rather, this geodesic assumption comes out as a

consequence of the equations.
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Two other books that I recommend for reading in general relativity are [M, T, W]

and [Wd].

Problems

11.1(1) Verify (11.5).

11.1(2) Show that in the Schwarzschild spatial metric, with coordinates r , θ , φ, and
constant m

gαβdxαdxβ =
(

1 − 2m
r

)−1

dr 2 + r 2(dθ2 + sin2 θdφ2)

the function U = (1 − 2m/r )1/2 satisfies Laplace’s equation ∇2U = 0.

11.2. Tensor Analysis

What is the divergence of the Ricci tensor?

11.2a. Covariant Differentiation of Tensors

In Equation (9.7) we have defined the covariant derivative ∇v of a vector field v; it is

the mixed tensor with components in a coordinate frame given by

∇ jv
i = vi

/j = ∂vi

∂x j
+ ωi

jkv
k (11.11)

(We must mention that many books use the notation vi
; j rather than vi

/j .) We have

also defined the exterior covariant differential of a (tangent) vector-valued p-form in

Section 9.3d, taking such a form into a vector-valued-(p + 1)-form. We are now going

to define, in a different way, the covariant derivative of a general tensor of type (p, q),

that is, p times contravariant and q times covariant, the result being a tensor of type

(p, q +1). In the case of a vector-valued p-form (which is of type (1, p)) the result will

be different from the exterior covariant differential in that it will not be skew symmetric

in its covariant indices and so will not be a form.

The covariant derivative of a scalar field f is defined to be the differential, ∇ f = d f ,

with components f/j := ∂ f/∂x j .

We have already defined the covariant derivative vi
/j of a contravariant vector field.

We define the covariant derivative ai/j of a covector field α so that the “Leibniz” rule

holds; for the function α(v) = aiv
i we demand ∂/∂x j (aiv

i ) = (aiv
i )/j = ai/jv

i +aiv
i
/j .

Using (11.11) we see that(
∂ai

∂x j

)
vi + ai

(
∂vi

∂x j

)
= ai/jv

i + ai

(
∂vi

∂x j
+ ωi

jkv
k

)

and so

∇ j ai = ai/j := ∂ai

∂x j
− akω

k
ji (11.12)

Note that ai/j is not skew in i, j .
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Finally, we define the covariant derivative of a tensor of type (p, q) by generalizing

(11.11) and (11.12)

T i1...i p
j1... jq/k := ∂

∂xk
T i1...i p

j1... jq

+T r i2...i p
j1... jq ω

i1

kr + T i1r ...i p
j1... jq ω

i2

kr + · · ·
−T i1...i p

r j2... jq ω
r
k j1

− T i1...i p
j1r ... jq ω

r
k j2

− · · · (11.13)

Thus one repeatedly uses the rules (11.11) and (11.12) for each contravariant and each

covariant index occurring in T .

One can show that this operation does indeed take a tensor field into another whose

covariance has been increased by one. Furthermore it has the following two important

properties.

1. Covariant differentiation obeys a product rule

(S...
... T

...
... )/k = S...

.../k T ...
... + S...

... T
...
.../k

2. Covariant differentiation commutes with contractions. For example, the covariant deriva-

tive of the mixed tensor T i
j is

T i
j/k = ∂T i

j

∂xk
+ T r

jω
i
kr − T i

rω
r
k j

which is a third-rank tensor. Contract on i and j to get a covector

T i
i/k = ∂T i

i

∂xk
+ T r

iω
i
kr − T i

rω
r
ki = ∂T i

i

∂xk

On the other hand, if we first contract on i and j in T , we get the scalar T i
i , whose

covariant derivative is (T i
i )/k = ∂/∂xk(T i

i ) again.

Warning: As a result of the presence of the connection coefficients, the covariant

derivative of a tensor with constant components in some coordinate system need not

vanish.

See Problems 11.2(1), 11.2(2), and 11.2(3) at this time.

11.2b. Riemannian Connections and the Bianchi Identities

The principal property of the Riemannian connection is expressed by

∂

∂xk
(gi j X i Y j ) = gi j X i

/kY j + gi j X i Y j
/k

and the left-hand side can now be written (gi j X i Y j )/k . On the other hand, we now know

that this latter should be

(gi j X i Y j )/k = gi j/k X i Y j + gi j X i
/kY j + gi j X i Y j

/k

This says that the metric tensor is covariant constant!

gi j/k = ∂gi j

∂xk
− gl jω

l
ki − gilω

l
k j = 0 (11.14)

See Problem 11.2(4) at this time.
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We define the divergence of a symmetric contravariant p-tensor field T to be the

symmetric (p − 1)-tensor

(Div T ) j2... jp = T i j2... jp
/ i (11.15)

We shall soon see that this agrees with div v when T is a vector v. See Problem

11.2(5) at this time.

We shall now derive two very important identities satisfied by the Riemann tensor.

At first we shall not restrict ourselves to Riemannian or even symmetric connections.

From Cartan’s structural equations (9.28) we have

0 = d(dσ) = d(−ω ∧ σ + τ) = −dω ∧ σ + ω ∧ dσ + dτ

= −dω ∧ σ + ω ∧ (−ω ∧ σ + τ) + dτ = −θ ∧ σ + dτ + ω ∧ τ

or, using problem 9.4(3)

∇τ = dτ + ω ∧ τ = θ ∧ σ (11.16)

We are especially concerned with the case of a symmetric connection (i.e., τ = 0).

Then

θ ∧ σ = 0 (11.17)

But then 0 = θ i
j ∧ σ j = 1/2Ri

jkrσ
k ∧ σ r ∧ σ j . This means that the coefficient of

σ k ∧ σ r ∧ σ j , made skew in k, r and j , must vanish. Since Ri
jkr is already skew in k

and r , this means

Ri
jkr + Ri

r jk + Ri
kr j = 0 (11.18)

Both (11.17) and (11.18) will be referred to as the first Bianchi identities, and we

emphasize that they require a symmetric connection.

Recall that we have defined the Ricci tensor by R jr = Ri
jir . From (11.18) we have

R jr = −Ri
r ji , since Ri

ir j = gim Rmir j = 0 from skew symmetry of R in m, i . But

Ri
r ji = −Ri

ri j = −Rr j . We have thus shown that

R jr = Rr j (11.19)

in a (pseudo-) Riemannian connection.

For our second identity we again start out with a general connection. Then dθ =
d(dω+ω∧ω) = d(ω∧ω) = dω∧ω−ω∧dω = (θ −ω∧ω)∧ω−ω∧(θ −ω∧ω) =
θ ∧ ω − ω ∧ θ , or

dθ + ω ∧ θ − θ ∧ ω = 0 (11.20)

which we call the second Bianchi identity, for all connections. Thus dθ i
j +ωi

m ∧θm
j

− θ i
m ∧ ωm

j = 0. Writing this out in a coordinate frame we get(
∂ Ri

jkr

∂xs

)
dxs ∧dxk ∧dxr +ωi

pm Rm
juvdx p ∧dxu ∧dxv − Ri

mabω
m
cj dxa ∧dxb ∧dxc = 0

Then (
∂ Ri

jkr

∂xs
+ Rm

jkrω
i
sm − Ri

mkrω
m
sj

)
dxs ∧ dxk ∧ dxr = 0
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But when the connection is symmetric,

(Ri
jmrω

m
sk + Ri

jkmωm
sr )dxs ∧ dxk ∧ dxr = 0

Subtracting this from our previous expression gives

Ri
jkr/sdxs ∧ dxk ∧ dxr = 0

Since Ri
jkr/s is already skew in k and r we conclude

Ri
jkr/s + Ri

jsk/r + Ri
jrs/k = 0 (11.21)

which we again call the second Bianchi identity for a symmetric connection. You are

asked to show in Problem 11.2(6) that a consequence of (11.21) is

∂ R

∂xs
= 2Ri

s/ i (11.22)

where R is the scalar curvature (11.10).

Note that the mixed tensor version of Einstein’s equation is Ri
j − (1/2)δi

j R =
8πκT i

j . In special relativity the tensor T has divergence 0 (see [Fr, p. 70]). Its di-

vergence, from Einstein’s equation, is given by 8πκT i
j/ i = Ri

j/ i − (1/2)δi
j/ i R −

(1/2)δi
j R/ i = Ri

j/ i − (1/2)R/j = 0! Thus the mysterious R term was included in

Einstein’s equation in order to ensure that Div T = 0 in general relativity also. See

Problem 11.2(7) at this time.

Warning: In the case of a velocity field, the divergence theorem gives
∫

U div v vol =∫
∂U 〈v, n〉d S. In particular, if div v = 0 we have a conservation theorem: The rate of flow

of volume into a region U equals the rate leaving the region. There is no analogue of this
for the divergence of a tensor! For example,

∫
U T i

j/ i vol makes no intrinsic sense; one

cannot integrate a covector T i
j/ i over a volume since one cannot add covectors based

at different points. In spite of this, many books refer to Div T = 0 as a conservation

law.

11.2c. Second Covariant Derivatives: The Ricci Identities

The covariant derivative of a vector field Z is a mixed tensor with components Zi
/j .

The covariant derivative of this mixed tensor is a tensor of third rank with components

Zi
/j/k , which is traditionally written

Zi
/jk := Zi

/j/k

We wish now to investigate Zi
/jk − Zi

/k j . Let X and Y be vectors at a point. Extend them

to vector fields. We have Z = Zi∂ i , and so on. Then

∇X(∇YZ) = ∇X(Zi
/j Y

j∂ i ) = (Zi
/j Y

j )/k Xk∂ i

= (Zi
/jkY j + Zi

/j Y
j

/k)Xk∂ i

Then, using symmetry of the connection,

[X, Y]i = (∇XY − ∇YX)i = X j Y i
/j − Y j Xi

/j
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we get

∇X(∇YZ) − ∇Y(∇XZ) = [(Zi
/jk − Zi

/k j )Y
j Xk + Zi

/j (XkY j
/k − Y k X j

/k)]∂ i

= (Zi
/jk − Zi

/k j )Y
j Xk∂ i + Zi

/j [X, Y ] j∂ i

= (Zi
/jk − Zi

/k j )Y
j Xk∂ i + ∇[X,Y]Z

or (Zi
/jk − Zi

/k j )Y
j Xk∂ i = R(X, Y)Z = (R(X, Y)Z)i∂ i = Ri

mkj XkY j Zm∂ i . Thus

Zi
/jk − Zi

/k j = Z m Ri
mk j (11.23)

the Ricci identities for a symmetric connection. Mixed covariant derivatives do not

commute. Note carefully the placement of the indices j and k! This placement is more

easily remembered if we write

∇k∇ j Z i − ∇ j∇k Z i = Zm Ri
mk j

In many books, the covariant derivative of a tensor is introduced before the notion of

curvature, and then (11.23) is used to define the curvature tensor.

Warning: We may write

∇∂ j X = Xi
/j∂ i = (∇ j X i )∂ i (11.24)

(Recall that ∇∂ j operates on vectors whereas ∇ j operates on the components of vectors.)

It is easily seen, however, that in general

∇∂ j ∇∂k X 
= (∇ j∇k X i )∂ i = Xi
/k j∂ i

It is true, however, that ∇∂ j ∇∂k X − ∇∂k ∇∂ j X =(Xi
/k j − Xi

/jk)∂ i = Xm Ri
mjk∂ i .The

second and third terms are equal by (11.23); the first and the third terms are equal by

(10.2) when u = x j and v = xk .

Problems

11.2(1) Show that the identity tensor δi
j is covariant constant, δi

j/k = 0.

11.2(2) Show directly from (9.19) that gi j/k = 0.

11.2(3) Show that the Codazzi equations in (8.34) say that bαβ/γ = bαγ/β .

11.2(4) Use gi jg jk = δi
k to show that gi j

/r = 0.

11.2(5) Show that for a surface M2 ⊂ R
3 with mean curvature H, grad H = Div b where

the second fundamental form b is now considered as contravariant, bi j .

11.2(6) Use (11.21) and contract several times to derive (11.22).

11.2(7) Let Ti j := ρui u j + p(gi j + ui u j) be the stress–energy–momentum tensor for a
perfect fluid. Show that Ti j

/j = 0 yields the two sets of equations

div(ρu) = −p div u

and

(ρ + p)∇uu = −(gradp)⊥
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where ⊥ denotes component orthogonal to u. The first equation replaces the
flat space conservation of mass–energy, ∂ρ/∂t + div(ρv) = 0; since div u mea-
sures the change in 3-volume orthogonal to u (see the 2-dimensional analogue
in 8.23), −p div u gives the rate of work done by the pressure during expan-
sion. The second equation is Newton’s law, with mass density ρ augmented
by a small pressure term p (really p/c2). Thus Ti j

/j = 0 yields the relativistic
equations of motion.

11.2(8) Show that in a symmetric connection, in the exterior derivative of a 1-form
dα1 = ∑

j<k (∂ jak − ∂k a j)dx j ∧ dxk , we may replace the partial derivatives by
covariant derivatives

dα =
∑
j<k

(ak/j − a j/k )dx j ∧ dxk

Show that if the connection is symmetric, then in the formula (2.55) one may
replace partial derivatives by covariant derivatives

(dαp)I =
∑
jK
⇁

δ
jK
I aK/j =

∑
jK
⇁

δ
jK
I ∇ jaK

11.3. Hilbert’s Action Principle

How does the scalar curvature R vary with the metric.

11.3a. Geodesics in a Pseudo-Riemannian Manifold

Geodesics play an important role in relativity. We know that a geodesic in a Riemannian
manifold is characterized by the property that there is a whole class of parameterizations

t such that ∇(dx/dt)/dt = 0 and all of these parameters are linear functions of the arc

length parameter.

In general relativity we deal with a pseudo-Riemannian manifold. In our heuristics

of relativity we needed to consider the world line of a “freely falling” moving body, and,

since such bodies always travel at a speed less than that of light, the path is timelike

(i.e., dτ 2 = −ds2 > 0). In terms of the proper time parameter τ we have, as the

equation of the geodesic, ∇(dx/dτ)/dτ = 0. For a spacelike geodesic we may use s
instead of τ as parameter. A light ray, being the path of a photon, is the limiting case

of a freely falling particle of vanishingly small mass; it is assumed that its world line

is also a geodesic, called a null geodesic since ds2 = 0. We may use neither s nor τ

for parameter. A parameter λ for a null geodesic, for which ∇(dx/dλ)/dλ = 0, will

be called, as before, a distinguished or affine parameter (see, e.g., [Fr, p. 92]).

11.3b. Normal Coordinates, the Divergence and Laplacian

Let p be a point in a (pseudo-) Riemannian manifold Mn and let e1, . . . , en be an

orthonormal frame at p. As in the 2-dimensional case considered in Section 10.3b, we

may then introduce normal coordinates y near p by defining � : (Rn = Mn
p) → Mn by

�(y) = expp(ei yi ), for all sufficiently small y. The differential �∗ : Mp → M again
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has the property that �∗(ei ) = ei , and so the coordinate vectors ∂/∂yi are orthonormal

at the origin p; (gi j (0)) = diag(±1, 1, . . . , 1). The arguments to be given later hold

in general, but we shall work in the case of a 4-dimensional space–time, as this is our

immediate concern.

It should be clear that the geodesic that starts at p with tangent vector eiλ
i is given

in these normal coordinates by the linear equations

yi (t) = λi t, i = 0, . . . , 3

It is also clear from the definition of the exponential map that ‖ dy/dt ‖2= λ2
1 + λ2

2 +
λ2

3 −λ2
0 is a constant along each of the geodesics starting at p and this constant vanishes

only for the null geodesics tangent to the light cone, a submanifold of the vector space

M4
p of codimension 1. By continuity, we conclude that t is a distinguished parameter

for each of the geodesics emanating from p. Since the preceding linear equations must

satisfy the geodesic equations

d2 yi

dt2
= −�i

jk(y(t))
dy j

dt

dyk

dt

we must have �i
jk(λ

0t, . . . , λ3t)λ jλk = 0 for all t . In particular this holds at p, that is,

t = 0, and for all λi . We conclude that

�i
jk(p) = 0 (11.25)

at the “pole” of the normal coordinate system. From (11.14) we have

∂gi j

∂yk
(p) = 0 (11.26)

All first partial derivatives of the metric tensor vanish at the pole!

As an application of the use of these coordinates, consider the divergence of a vector

field v. As in the Riemannian case

div v = (|g|−1/2)
∂

∂xi
[|g|1/2vi ]

At the pole of the normal coordinates we clearly have ∂/∂yi |g|(p) = 0 and thus at

the pole we have div v = ∂vi/∂yi . Consider now the scalar vi
/ i . At the pole vi

/ i =
∂vi/∂yi + v j�i

i j = ∂vi/∂yi . But div v and vi
/ i are well-defined scalars, independent of

coordinates; we conclude that in any coordinate system

div v = (|g|−1/2)
∂

∂xi
[|g|1/2vi ] = vi

/ i (11.27)

This in turn means that

∂vi

∂xi
+ vi ∂

∂xi
log|g|1/2 = ∂vi

∂xi
+ vk�i

ik

and so

∂

∂xk
log|g|1/2 = �i

ik (11.28)

which is a frequently used formula.
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We have already defined the gradient of a function f to be the contravariant vec-

tor (grad f )i = gi j∂ f/∂x j = gi j f/j . The Laplacian of f is then the scalar ∇2 f =
div grad f = (gi j f/j )/ i , or, since gi j

/k = 0,

∇2 f = gi j f/j i = gi j f/ i j (11.29)

Thus ∇2 f = gi j [∂/∂xi (∂ f/∂x j ) − �k
i j (∂ f/∂xk)], or

∇2 f = gi j

[
∂2 f

∂xi∂x j
− �k

i j

∂ f

∂xk

]
(11.30)

As an example, consider a surface M2 with local coordinates u1, u2, sitting in R
3,

with Cartesian coordinates x1, x2, x3. For each i, xi is a function on M . In Problem

11.3(1) you are to show that

∇2xi = H N i (11.31)

where ∇2 is the surface Laplacian, H is the mean curvature, and N is the unit normal.

In particular,

Theorem (11.32): M2 ⊂ R
3 is a minimal surface iff each coordinate function xi

is a surface harmonic function on M.

11.3c. Hilbert’s Variational Approach to General Relativity

Although the following approach will work in any dimension, we shall write out ev-

erything in the case of a 4-dimensional pseudo-Riemannian manifold M4.

Let R = gik Rik = gik R j
i jk be the scalar curvature. Since the determinant g = detgi j

is negative in a pseudo-Riemannian manifold, the volume form is√
(−g)d4x := √

(−g)dx0 ∧ dx1 ∧ dx2 ∧ dx3

We shall, with Hilbert, take the first variation of the functional∫
M

R
√

(−g)d4x

for a 1-parameter family of metrics. For our purposes, it will be more convenient to

vary the inverse of the metric

gi j
α = gi j

0 + αηi j (11.33)

ġi j = ηi j

where the dot denotes differentiation with respect to α at α = 0. We must compute[
d

dα

∫
R

√
(−g)d4x

]
=

∫
[R

√
(−g)]

•
d4x (11.34)

and where all integrals are over M . Now

[R
√

(−g)]
• = [gik Rik

√
(−g)]

•

= [gik Rik]
•√

(−g) + R[
√

(−g)]
•

(11.35)
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and

[gik Rik]
• = ġik Rik + gik Ṙik

We then need Ṙik . From (9.11), omitting some indices,

Rik =
(

∂�
j
ik

∂x j

)
−

(
∂�

j
i j

∂xk

)
+ �� − ��

and so

Ṙik =
(

∂�̇
j
ik

∂x j

)
−

(
∂�̇

j
i j

∂xk

)

+ �̇� + ��̇ − �̇� − ��̇

We shall compute everything at the pole of a geodesic normal coordinate system for

the base metric gik
0 . Since � = 0 at the pole

Ṙik =
(

∂�̇
j
ik

∂x j

)
−

(
∂�̇

j
i j

∂xk

)
(11.36)

at the pole. Although (�
j
ik) is not a tensor, we claim that (�̇

j
ik) is a third-rank tensor. To see

this we look at the transformation law (9.41) for a connection, ω′(α) = P−1ω(α)P +
P−1d P . Differentiating and putting α = 0 give ω̇′ = P−1ω̇P , and from this the

tensorial nature of �̇ follows. Thus at the pole we may write

Ṙik = �̇
j
ik/j − �̇

j
i j/k (11.37)

and since this is a tensor equation it holds everywhere, in every coordinate system. In

this equation, all covariant derivatives are with respect to the base metric at α = 0.

We may then write

gik Ṙik = (gik�̇
j
ik)/j − (gik�̇

j
i j )/k = div W (11.38)

where W r := gik�̇r
ik − gir �̇

j
i j .

Look now at the second term in (11.35), R[
√

(−g)]
•
. To differentiate a determinant

we use ∂g/∂gik = Gik where Gik is the cofactor of the entry gik . This is clear upon

expanding g by the k th column. But the inverse matrix satisfies gik = Gki/g = Gik/g,

and so

∂g

∂gik
= gik g

Likewise ∂g−1/∂gik = gik g−1, that is, ∂g/∂gik = −gik g. Thus

∂(−g)1/2

∂gik
= −1

2
gik(−g)1/2 (11.39)

and so
√

(−g)]
• = (∂(−g)1/2/∂gik)(∂gik/∂α) = −(1/2)gik

√
(−g)ġik . Thus

√
(−g)]

• = −1

2
gik

√
(−g)ġik (11.40)
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Finally

δ

∫
R vol4 =

[
d

dα

∫
R

√
(−g)d4x

]
α=0

=
∫ [

Rik − 1

2
gik R

]
ġik

√
(−g)d4x (11.41)

+
∫

div W
√

(−g)d4x

By choosing a variation ġik that vanishes outside some compact subregion of M and

applying the divergence theorem to a slightly larger region, we see that the last integral

vanishes. Thus

δ

∫
M

R vol4 =
[

d

dα

∫
M

R
√

(−g)d4x
]

α=0

=
∫

M

[
Rik − 1

2
gik R

]
ġik

√
(−g)d4x (11.42)

for all variations with compact support.

We define the (Hilbert) action for the gravitational field by

Sgrav =
∫

M
Lgravd4x := (8πκ)−1

∫
M

R vol4 (11.43)

(where κ is again the gravitational constant), a nonlinear functional of the metric tensor.

Let Snongrav be the action for the nongravitational fields that might be present, such as

the electromagnetic fields; it is given by some Lagrange density

Snongrav =
∫

M
Ld4x =

∫
M

L vol4

where L = L
√

(−g). The variational or functional derivative δS/δgik of a functional

S = ∫
M Ld4x of the metric is defined through

δS = δ

∫
M

Ld4x =
∫

M

(
δL

δgik

)
ġikd4x (11.44)

where the variation is assumed to have compact support. In other words, putting f, j :=
∂ f/∂x j , and so forth,

δL

δgik
= ∂L

∂gik
−

[
∂L

∂(gik
, j )

]
, j

+
[

∂L

∂(gik
, jr )

]
, jr

− · · ·

is the usual Euler–Lagrange expression. Thus, from (11.41)

δLgrav

δgik
= (8πκ)−1

[
Rik − 1

2
gik R

]√
(−g) (11.45)

The (stress)–energy–momentum tensor of the gravitational field is defined to be

0 (since gravitation is a fictitious field); that of the nongravitational fields, Tik , is de-

fined by

Tik

√
(−g) := −δLnongrav

δgik
(11.46)
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The total Lagrangian is L = Lgrav + Lnongrav, and so

δL

δgik
=

{
(8πκ)−1

[
Rik − 1

2
gik R

]
− Tik

}√
(−g)

Then Einstein’s equations (11.9) are equivalent to Hilbert’s action principle

δ

∫
M

[(8πκ)−1 R + L]vol4 = 0 (11.47)

It is natural to call R
√

(−g) the Lagrangian of the gravitational field.

To understand the geometric meaning of Einstein’s equations we must return to our

study of second fundamental forms and curvature. We proceed to these matters in our

next two sections.

Problems

11.3(1) Use Gauss’s surface equations to prove (11.31).

11.3(2) (i) Let v be a vector field in R
3 defined along a surface M 2 in R

3. If x 1, x 2, x 3,
are cartesian coordinates for R

3, we define the vector integral
∫∫

M vd S to
be the vector w with components wi = ∫∫

M vi d S. Show that if M 2 is a closed
surface with unit normal N, then∫∫

M
H Nd S = 0

We considered the special integral
∫∫

Nd S = ∫∫
dS directly before Euler’s

equation (4.45). For a closed surface M we have∫∫
M

Nd S = 0

since, for example,
∫∫

M N 1d S = ∫∫
M dy ∧dz = 0. Thus, for any closed surface

in R
3, not only is the surface average of N zero, which is geometrically “clear,”

but also this average, when weighted by the mean curvature, also vanishes!

11.3(3) Let

Lem := − 1
8π

Fi j F
i j
√

(−g)

define the Lagrangian for the pure electromagnetic field, with associated action

Sem := − 1
8π

∫
M

Fi j Frsgr i gsj
√

(−g)d4x

Show (recalling that Fi j is independent of the metric) that the stress–energy–
momentum tensor for the electromagnetic field is Minkowski’s

Ti j = 1
4π

[
Fik Fj

k − 1
4

gi j Frs F rs
]

(Recall that locally F 2 = d A1, where A is the covector potential; we shall see
later on that A is usually globally defined. Thus Sem can be expressed as a
functional of A and the metric. We shall see in Section 20.2c that δSem/δA = 0
is simply a statement of Maxwell’s equations in free space. Thus one obtains
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the equations of motion of the electromagnetic field, Maxwell’s equations, by
putting the first variation of the total action with respect to the potential equal to 0

δ

δAj
[Sgrav + Sem] = 0

Thus one varies the metric potentials in the total Lagrangian to obtain the gravi-
tational (Einstein) field equations and one varies the electromagnetic potentials
to obtain the electromagnetic (Maxwell) field equations!)

11.4. The Second Fundamental Form in the Riemannian Case

If you fold a sheet of paper once, why is the crease a straight line?

11.4a. The Induced Connection and the Second Fundamental Form

Let V r ⊂ Mn be a submanifold of a Riemannian manifold M . If we restrict the

Riemannian metric of M, 〈, 〉, to vectors tangent to V , we obtain a Riemannian metric

for V , the induced metric.

Let ∇ be the Riemannian connection for Mn and let V n−1 be an (n −1)-dimensional

hypersurface of M . Define a new connection for V as follows. Let X be tangent to V at

p and let Y be a vector field tangent to V near p. Let x1, . . . , xn and u1, . . . , un−1, be

local coordinates for M and V , respectively, near p. Then ∇XY = Xα∇Y/∂uα makes

N N

M

p

Y

Y

V

X

Figure 11.3

sense since Y is a vector field defined along V . Let N be a unit vector field along V n−1

that is normal to V and let Z be any vector field defined along V (it needn’t be tangent

to V ). Define, at p in V

∇V
XZ : = projection of ∇XZ into the tangent spaceVp (11.48)

= ∇XZ − 〈∇XZ, N〉N.

In particular, to the vector fields X and Y tangent to V we associate another tangent vec-

tor field ∇V
XY. One checks immediately that (9.2) is satisfied by ∇V and thus (11.48)

defines a connection for V n−1. We claim more: ∇V is the Riemannian connection for

the induced metric on V n−1. You are asked to prove this in Problem 11.4(1). Notice that

we have merely imitated Levi-Civita’s construction in the case of a surface V 2 ⊂ R
3.
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What is the generalization of the second fundamental form? We proceed as in Section

8.1b. In the following X, Y, Z, are tangent to V n−1 and N is a local unit normal to V .

We define

b : Vp → Vp

by

b(X) = −∇XN (11.49)

Put

B(X, Y) := 〈X, b(Y)〉
Extending X and Y to be fields on M , we have

B(X, Y) = 〈X, b(Y)〉 = 〈X, −∇YN〉 (11.50)

= Y(〈X, −N〉) − 〈∇YX, −N〉
= 〈∇YX, N〉 = 〈∇XY, N〉 = B(Y, X)

(why?). Then b is again a self-adjoint linear transformation; b has (n −1) real eigenval-

ues κ1, . . . , κn−1 called principal (normal) curvatures. The eigen directions are called

the principal directions, and they can always be chosen to be mutually orthogonal.

From (11.48) and (11.50) we have the Gauss equations

∇XY = ∇V
XY + B(X, Y)N (11.51)

generalizing the surface equations (8.30).

We shall say that V r ⊂ Riemannian Mn is geodesic at p provided every M-geodesic

through p, tangent to V at p, lies wholly in V . Thus all of the V -geodesics through p
are also M-geodesics!

p

Vr

Mn
p

Sr

Sn

p

Mn

r plane in

Figure 11.4

Then V (if connected) is made up of geodesic segments of M emanating from p,

tangent to an r -plane in Mn
p . A plane in R

3 and an equatorial r -sphere Sr in Sn are

examples. Unlike in these examples, it is not true in general that a V -geodesic starting
at a point different from p will still be an M-geodesic.

If V n−1 is geodesic at p, then at p

B(X, X) = 〈∇XX, N〉 = 0 (11.52)

since X can be extended to be the tangent to a geodesic of V that is then also a geodesic

of M . Thus the second fundamental form B of V at p is identically 0 if V is geodesic at p.
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As in the case of a V 2 ⊂ R
3, we define the mean curvature H of V n−1 ⊂ Mn by

H := tr b = κ1 + · · · + κn−1

and this is again significant for considering variations of the (n − 1)-volume of V n−1.

(In fact, you should be able to guess the generalization of Gauss’s formula (8.26).)

V n−1 ⊂ Mn is said to be a minimal submanifold of M if H vanishes at all points of V .

Note that if V is geodesic at every point p of V (we then say that V is totally geodesic)

then V is a minimal submanifold of M . Thus the equatorial Sn−1 ⊂ Sn is minimal in

Sn . (Note, however, that S2 does not have minimum area in S3!)

The other invariants
∑

α<β κακβ, . . . , κ1κ2 . . . κn−1, are also useful, though not to the

same extent as K and H for V 2 ⊂ R
3. The last invariant of b, det b = κ1κ2 . . . κn−1, is

not called the Gauss curvature. We shall talk more about some of these matters in our

next section on relativity.

11.4b. The Equations of Gauss and Codazzi

Mn has a connection ∇ and curvature tensor R; V n−1 has a connection ∇V and curva-

ture tensor RV

RV (X, Y) := [∇V
X, ∇V

Y] − ∇V
[X,Y]

How are their curvatures related? In other words, if X, Y, and Z are tangent to V n−1,

how are the vectors R(X, Y)Z and RV (X, Y)Z related?

RV (X, Y)Z is certainly tangent to V but there is no reason why R(X, Y)Z should

be. We can see their relation as follows.

Let ∂α = ∂/∂uα, α = 1, . . . , n − 1, be a local coordinate basis for V n−1. Since

these fields can be considered as vector fields defined along the submanifold V , we

have, from (10.2)

[∇∂α
∇∂β

− ∇∂β
∇∂α

]∂γ = R(∂α,∂β)∂γ

On the other hand,

[∇V
∂α

∇V
∂β

− ∇V
∂β

∇V
∂α

]∂γ = RV (∂α,∂β)∂γ

Now insert ∇∂α
∂γ = ∇V

∂α
∂γ + 〈∇∂α

∂γ , N〉N, and take second derivatives, using

∇∂β
N = −b(∂β). By a calculation entirely similar in spirit to Gauss’s and yours in

Problem 8.5(1) we get

[∇∂α
∇∂β

− ∇∂β
∇∂α

]∂γ

= [∇V
∂α

∇V
∂β

− ∇V
∂β

∇V
∂α

]∂γ + B(∂α,∂γ )b(∂β) − B(∂β,∂γ )b(∂α)
(11.53)

+
{

∂

∂uα
B(∂β,∂γ ) − B(∂β, ∇V

∂α
∂γ ) − ∂

∂uβ
B(∂α,∂γ ) + B(∂α, ∇V

∂β
∂γ )

}
N

The expression in the curly braces { } can be simplified. Our prescription (11.13) for

taking the covariant derivative of a covariant tensor field can be shown to be equivalent

to the following version of Leibniz’s rule. For any p-times covariant tensor T , for vector
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X, and for vector fields Y1, . . . , Yp, then T (Y1, . . . , Yp) is a scalar field and we may

differentiate it with respect to X. Then (11.13) says

XT (Y1, . . . , Yp) = (∇X T )(Y1, . . . , Yp)

+
∑

r

T (Y1, . . . , ∇X Yr , . . . , Yp) (11.54)

(with a similar rule for any mixed tensor). Apply this to the manifold V n−1 and the

covariant tensor B to get

∂

∂uα
B(∂β,∂γ ) = (∇V

∂α
B)(∂β,∂γ )

+B(∇V
∂α
∂β,∂γ ) + B(∂β, ∇V

∂α
∂γ )

Thus the expression in braces { } in (11.53) becomes, using (10.1),

(∇V
∂α

B)(∂β,∂γ ) − (∇V
∂β

B)(∂α,∂γ ) = Bβγ//α − Bαγ//β (11.55)

where we use the double slash // for covariant differentiation using the connection ∇V .

(This should be no surprise after Problem 11.2(3).) Then (11.53) can be written

R(∂α,∂β)∂γ = RV (∂α,∂β)∂γ

+ B(∂α,∂γ )b(∂β) − B(∂β,∂γ )b(∂α)

+ [Bβγ//α − Bαγ//β]N (11.56)

Finally, we may multiply by XαY β Z γ and sum over α, β, and γ to get

R(X, Y)Z = RV (X, Y)Z + B(X, Z)b(Y) − B(Y, Z)b(X) (11.57)

+ [(∇V
X B)(Y, Z) − (∇V

Y B)(X, Z)]N

which is a Riemannian generalization of (8.34).

On the right-hand side, only the last line is a vector normal to V . Since X, Y, and Z
are tangent to V , we have two consequences. First

〈R(X, Y)Y, X〉 = 〈RV (X, Y)Y, X〉
+ B(X, Y)〈b(Y), X〉 − B(Y, Y)〈b(X), X〉

or

〈R(X, Y)Y, X〉 = 〈RV (X, Y)Y, X〉 (11.58)

+ [B(X, Y)]2 − B(Y, Y)B(X, X)

Now note that if we make a substitution, X �→ X′ = aX+bY and Y → Y′ = cX+dY,

then it is easy to see that

〈R(X′, Y′)Y′, X′〉 = (ad − bc)2〈R(X, Y)Y, X〉
On the other hand, if we let ‖ X ∧ Y ‖ denote the area of the parallelogram spanned by

X and Y

‖ X ∧ Y ‖2 = ‖ X ‖2‖ Y ‖2 sin2 ∠X, Y

= ‖ X ‖2‖ Y ‖2 −〈X, Y〉2
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then under the substitution we have ‖ X′ ∧ Y′ ‖2= (ad − bc)2 ‖ X ∧ Y ‖2. Conse-

quently, if X and Y are independent and if we let X∧Y denote symbolically the 2-plane
spanned by X and Y, we then have that

K (X ∧ Y) := 〈R(X, Y)Y, X〉 ‖ X ∧ Y ‖−2 (11.59)

depends only on the plane X ∧ Y and not the basis X, Y itself. This number, which is a

function of 2-planes in the tangent spaces to Mn , is called the (Riemannian) sectional
curvature for the plane X ∧ Y. By taking X and Y to be orthonormal, (11.58) can be

written

KM(X ∧ Y) = KV (X ∧ Y) + [B(X, Y)]2 − B(Y, Y)B(X, X) (11.60)

which we shall call Gauss’s equation for the hypersurface V n−1 ⊂ Mn .

Our second consequence of (11.57) is what we shall call the Codazzi equation

〈R(X, Y)Z, N〉 = (∇V
X B)(Y, Z) − (∇V

Y B)(X, Z) (11.61)

We now will show that these two equations reduce to the surface equations of the

same name.

11.4c. The Interpretation of the Sectional Curvature

Suppose now that we consider a submanifold V r ⊂ Mn that need not be of codimension
1. We define, for any vector field Z defined along V and for any vector X tangent to V
at p

∇V
XZ := projection of ∇XZ into the tangent space V r

p

The induced connection for V r is again defined at p ∈ V by applying this formula in

the case that Z = Y is tangent to V .

The normal space to V r at p, (Vp)
⊥ ⊂ Mp now has dimension n − r ; let NA,

A = 1, . . . , n − r , be normal vector fields along V that are orthonormal. These will

exist in some small V -neighborhood of p. Then

∇V
XY := ∇XY −

∑
A

〈∇XY, NA〉NA (11.62)

For each normal NA we shall define a second fundamental linear transformation bA :

Vp → Vp by

bA(X) := −∇V
X(NA) (11.63)

(Note that although ∇XNA is orthogonal to NA, we need ∇V
XNA in order to assure that

it is tangent to V !) A calculation similar to that leading to (11.60) will now lead to

Gauss’s equations

KM(X ∧ Y) = KV (X ∧ Y) +
∑

A

{[BA(X, Y)]2 − BA(Y, Y)BA(X, X)} (11.64)

Now let X, Y be any orthonormal pair of vectors tangent to Mn at a point p. Consider

the 2-dimensional surface V 2 ⊂ Mn generated by all the geodesics of M that are

tangent to the 2-plane X ∧ Y at p. This surface is geodesic at p, and just as in (11.52),
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all second fundamental forms must vanish at p, bA = 0 at p. Thus, from (11.60)

KM(X ∧ Y) = KV (X ∧ Y). Putting X = e1, Y = e2, we see

KM(X ∧ Y) = KV (X ∧ Y)

= 〈RV (e1, e2)e2, e1〉 = RV
1212 = K

is the Gaussian curvature of V 2 with its induced Riemannian metric. Thus

Theorem (11.65): KM(X ∧ Y) is the Gaussian curvature of the 2-dimensional
geodesic disc V 2 generated by the geodesics of Mn that are tangent to the plane
X ∧ Y.

In the special case when M3 = R
3 and V 2 is a surface in R

3, KV (X, Y) is simply the

Gauss curvature KV = RV
1212 of V 2 and (11.60) says that 0 = K + (b12)

2 − b11b22 =
K − det b, since X and Y are orthonormal. This is Gauss’s theorema egregium. For the

Codazzi equations (11.61), in our V 2 ⊂ R
3 case, R = 0 and the right-hand side say,

from (11.55), bβγ//α = bαγ//β . From Problem 11.2(3) this is the usual Codazzi equation.

11.4d. Fixed Points of Isometries

Let � : Mn → Mn be an isometry. The fixed set, that is, the set F = {x ∈ M |�(x) =
x} of points left fixed by �, can consist perhaps of several connected pieces or “compo-

nents.” Consider two points x and y in F and consider the minimal geodesic γ joining

x to y. We know from (10.25) that such a minimal geodesic will exist if x and y are

sufficiently close, and furthermore this minimal geodesic is unique, again if x and y are

sufficiently close. Since the length of �(γ ) is the same as the length of γ , we see that

�(γ ) is again a minimal geodesic joining x to y. By uniqueness �(γ ) = γ , that is,

the entire minimal geodesic joining x to y lies in the fixed set F provided that x and

y are in F and sufficiently close. In other words, if two fixed points of an isometry are

sufficiently close, then the entire geodesic joining them is fixed. It is not difficult to see

then (see [K ] ) that in fact

the fixed set of an isometry consists of connected components, each of which is a

totally geodesic submanifold.

As an example, the isometry of the unit sphere x2 + y2 + z2 = 1 that sends (x, y, z)
to (x, y, −z) has the equator as fixed set. The “same” isometry of RP2 has fixed set

consisting of the “equator” and the “north pole.”

Problems

11.4(1) Let X, Y, Z, be tangent vector fields to Vn−1. Extend them in any way you wish
to be vector fields on Mn. Show that
(i) ∇V

X Y − ∇V
Y X is the Lie bracket [ X, Y] on V and thus the connection ∇V is

symmetric.
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(ii) Show that

X〈Y, Z〉 = 〈∇V
X Y, Z〉 + 〈Y, ∇V

X Z〉

and hence ∇V is the Levi-Civita connection for V .

11.4(2) If you fold a sheet of paper once, why is the crease a straight line?

11.5. The Geometry of Einstein’s Equations

What does the second fundamental form have to do with the expansion of the universe?

11.5a. The Einstein Tensor in a (Pseudo-)Riemannian Space–Time

Let e0, . . . , e3 be an “orthonormal” frame at a point of a pseudo-Riemannian M4. The

following relations can be found in [Fr, chap. 4]). There are sign differences from the

Riemannian case (considered in every book on Riemannian geometry).

Recall that a null vector X has 〈X, X〉 = 0. For any nonnull vector X we define its

indicator ε(X) = sign〈X, X〉. If ei is a basis vector we shall write ε(i) rather than

ε(ei ); thus ε(0) = −1.

The Ricci tensor in its covariant form defines a symmetric bilinear form

Ric(X, Y) := Ri j X i Y j

In particular (11.66)

Ri j = Ric(ei , e j )

The Ricci quadratic form can be expressed in terms of sectional curvatures

Ric(ei , ei ) = ε(i)
∑
j 
=i

K (ei ∧ e j ) (11.67)

that is, the Ricci curvature for the unit vector ei is (except for a sign) the sum of the

sectional curvatures for the (n − 1)-basis 2-planes that include ei . In particular, for a

Riemannian surface M2, Ric(e1, e1) = K (e1 ∧ e2) = K is simply the Gauss curvature.

The scalar curvature R is also the sum of sectional curvatures

R = Ri
i =

∑
i, j, with i 
= j

K (ei ∧ e j ) (11.68)

In the case of a surface R = K (e1 ∧ e2) + K (e2 ∧ e1) = 2K .

The Einstein tensor is defined to be

Gi j := Ri j − 1

2
gi j R (11.69)

with associated quadratic form G(X, X) = Ri j X i X j − (1/2)〈X, X〉R. One then has

that the Einstein quadratic form is again a “sum” of sectional curvatures, G(ei , ei ) =
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−ε(i)
∑

K (e⊥
i ), where e⊥

i is a basis 2-plane that is orthogonal to ei . For example, for

the timelike e0

G(e0, e0) = K (e1 ∧ e2) + K (e1 ∧ e3) + K (e2 ∧ e3) (11.70)

8πκT (e0, e0) = K (e1 ∧ e2) + K (e1 ∧ e3) + K (e2 ∧ e3)

The second equation follows from Einstein’s equation (11.9).

In particular, if we are dealing with an electromagnetic field, the energy–momentum

tensor (as given in Problem 11.3(3)) is

Ti j = 1

4π

[
Fik Fj

k − 1

4
gi j Frs Frs

]
(11.71)

Let us write out T00 = T (e0, e0) in the case of Minkowski space. (We continue to

use the convention that Greek indices run from 1 to 3 while the Roman run from 0

to 3; unfortunately this is counter to the notation in most physics books.) First, from

Equation (7.18), note that F0k F0
k = F0α F0

α = F0αgαβ F0β = Eα Eα = E2. Also

Frs Frs = 2(F0β F0β +∑
α<β Fαβ Fαβ). But F0β = gβα F0αg00 = Eβ and so 2F0β F0β =

−2Eβ Eβ = −2E2. Since F12 = B3, and so on, we have
∑

α<β Fαβ Fαβ = Bα Bα = B2,

and so

Frs Frs = 2(B2 − E2) (11.72)

Thus in Minkowski space, T00 = (4π)−1[E2 + (1/4)2(B2 − E2)], or

T00 = 1

8π
(E2 + B2) (11.73)

which is the classical energy density of the electromagnetic field (see Problem 11.5(1)).

In general, T00 is called the energy density of the nongravitational fields, as measured

in the frame e, and will be denoted by ρ

8πκρ = K (e1 ∧ e2) + K (e1 ∧ e3) + K (e2 ∧ e3) (11.74)

Einstein’s equation (11.69) says simply that the indicated sum of sectional curvatures
is a measure of the total nongravitational energy density!

11.5b. The Relativistic Meaning of Gauss’s Equation

In the space–time manifold M4 we may introduce local coordinates x0 = t, x1, x2,

and x3 in many ways. After such a selection has been made, the submanifolds V 3(t)
defined by putting x0 = the constant value t are called the spatial slices of the coordinate

system. These spatial slices are spatial in the sense that 〈X, X〉 > 0 for each nonzero

tangent vector to V (t). On the other hand, the “unit” normal N to V (t) will always be

a timelike vector, 〈N, N〉 = −1. Of course we could also consider other hypersurfaces,

such as, those where x1 = constant and N is then spacelike, but our main concern here

is with the spatial slices. The reader may refer to chapter 4 of [Fr] for further discussion.

Let N = e0 be the unit normal to the spatial slice V 3(t). Complete N to an or-

thonormal basis. We may consider the second fundamental form b of V (t), defined as

in Section 11.4. We must now, however, be very careful with “signs.” For example,
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if e is an “orthonormal” basis, then when we expand a vector in terms of this basis,

v = ∑
eiv

i , we get vα = 〈v, eα〉 but v0 = −〈v, e0〉! Thus for our spatial slice V (t) we

have, rather than (11.48),

∇XY = ∇V
XY − 〈∇XY, N〉N = ∇V

XY − B(X, Y)N (11.75)

This will then introduce minus signs into the Gauss equation (11.60)

KM(X ∧ Y) = KV (X ∧ Y) − [B(X, Y)]2 + B(Y, Y)B(X, X) (11.76)

We must now make a comment about self-adjoint linear transformations, for ex-

ample, b, in the case of our pseudo-Riemannian metric 〈 , 〉. When M is pseudo-

Riemannian, the proof in Problem 8.2(1) of the fundamental theorem on self-adjoint

transformations A : R
n → R

n fails because the scalar product is not positive definite.

The crucial point is that in this case the “unit sphere” 〈x, x〉 = 1 is really a hyper-

boloid, and is thus not compact; there is, e.g., no assurance that the continuous function

f (x) = 〈x, Ax〉 will attain its maximum at any point of this hyperboloid! Thus a self-
adjoint A need not have real eigenvalues! For example, in Minkowski 2-space with

metric diag(−1, 1) the linear transformation with matrix[
0 −1

1 0

]

is self-adjoint (since its covariant version is symmetric) with eigenvalues ± i . We,

however, are concerned here with the self-adjoint b that maps the tangent space to V (t)
into itself. Since V (t) is spacelike, V (t) is a Riemannian submanifold of the pseudo-

Riemannian space–time, and thus b will have 3 real eigenvalues, and the corresponding

eigenvectors, the principal directions, can be chosen orthonormal. By applying (11.76)

to an orthonormal basis of eigenvectors e1, e2, and e3 of b, we get

KM(eα ∧ eβ) = KV (eα ∧ eβ) + κακβ (11.77)

Put this now into (11.74), where the sectional curvatures K there are for M4, that is,

K = KM . Einstein’s equation becomes

8πκρ = KV (e1 ∧ e2) + KV (e1 ∧ e3) + KV (e2 ∧ e3)

+ (κ1κ2 + κ1κ3 + κ2κ3)

or, from (11.68)

8πκρ = 1

2
RV + (κ1κ2 + κ1κ3 + κ2κ3) (11.78)

We shall think of this as the geometric version of Einstein’s equation involving T00.

Let us put it in the proper perspective.

For a Riemannian surface V 2 ⊂ R
3 we have K = κ1κ2, which we may now write as

0 = 1

2
RV − κ1κ2

This is simply Gauss’s theorema egregium, and, as we have just seen, is a consequence

of the fact that the Einstein tensor G of the flat R
3 vanishes.
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Consider a 3-dimensional submanifold V 3 of the flat euclidean 4-space R
4. The

statement that the Einstein tensor G of R
4 vanishes can be written

0 = 1

2
RV − (κ1κ2 + κ1κ3 + κ2κ3) (11.79)

This is a 3-dimensional version of Gauss’s theorema egregium.

If we consider instead a 3-dimensional spacelike submanifold V 3 ⊂ M4
0 of Minkow-

ski space, then there is only a simple sign change, yielding

0 = 1

2
RV + (κ1κ2 + κ1κ3 + κ2κ3)

This is the theorema egregium for such a hypersurface of Minkowski space.

Consider now a 3-dimensional spatial section V 3 in the actual space–time manifold

M4 of our physical world. Einstein’s equation (11.78) then says that

the combination (1/2) RV +(κ1κ2+κ1κ3+κ2κ3) is not 0, as it was in Minkowski space,
but is rather a measure of the total nongravitational energy density of space–time!

Note that RV is an intrinsic measure of curvature of the spatial section V 3, since it is

constructed from the Riemann tensor of the Riemannian V 3. On the other hand, the

κα’s, being principal normal curvatures, measure how V 3 curves in the enveloping M4;

thus (κ1κ2 + κ1κ3 + κ2κ3) is a measure of extrinsic curvature. As J. A. Wheeler put it,

Einstein’s equation (11.78) may be stated as follows:

The sum of the intrinsic and the extrinsic curvatures of a spatial section is a measure
of the nongravitational energy density of space–time.

Finally, I wish to elaborate on (11.78), putting it in the spirit of Gauss’s theorema
egregium. Let p be a point of space–time and let N be a given unit timelike vector at

p. Let V 3 be any spacelike hypersurface that is orthogonal to N at p; only its tangent

plane at p is prescribed. V 3 will have a scalar curvature RV at p that depends strongly

on the choice of V 3. V 3 will also have normal principal curvatures κα at p, and these

again will depend on the choice of V 3. Gauss’s generalized theorema egregium states

that the combination (1/2)RV + (κ1κ2 + κ1κ3 + κ2κ3) does not depend on the choice

of V 3, but is in fact equal to the value G(N, N) = Ri j N i N j + (1/2)R of the Einstein

quadratic form for M4 evaluated on the given normal!

11.5c. The Second Fundamental Form of a Spatial Slice

Consider in space–time M4 a coordinate system in which the metric assumes the form

ds2 = g00(t, x)dt2 + hαβ(t, x)dxαdxβ (11.80)

Thus g0β = 0 and gαβ = hαβ is the Riemannian metric induced on the slice V 3(t)
defined by putting t constant. (Such coordinates always exist; e.g., if we take an initial
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slice V 3(0) and introduce Gaussian geodesic coordinates as in 10.3a, we can even make

g00 = −1!) As we proceed along the t-lines we may contemplate ∂/∂tgαβ(t, x).

∂

∂t
gαβ = ∂

∂t
〈∂α,∂β〉 =

〈∇∂α

∂t
,∂β

〉
+

〈
∂α,

∇∂β

∂t

〉

=
〈∇∂ t

∂xα
,∂β

〉
+

〈
∂α,

∇∂ t

∂xβ

〉

Put

φ := (−g00)
1/2

then N = φ−1∂ t is the unit normal to each spatial slice V 3(t).

∂(hαβ)

∂t
=

〈∇(φN)

∂xα
,∂β

〉
+

〈
∂α,

∇(φN)

∂xβ

〉

= φ

[〈∇N
∂xα

,∂β

〉
+

〈
∂α,

∇N
∂xβ

〉]
= −φ[bαβ + bβα]

Thus

∂hαβ

∂t
= −2bαβφ (11.81)

In words,

bαβ is essentially the measure of the rate of change of the spatial metric hαβ as one
moves along the normal to the slices, that is, in time!

It should be clear from this that the second fundamental form will play a crucial role

in discussing the expansion of the universe (see [Fr, chap. 12]).

Equation (11.81) is useful in the Riemannian V n−1 ⊂ Mn case as well. See Problem

11.5(2).

11.5d. The Codazzi Equations

So far, in this section, we have discussed mainly the geometry of the Einstein equation

G00 = 8πκT00, where T00 is the (nongravitational) energy density. We now wish to

discuss the geometry of G0β = 8πκT0β .

Recall that we have already demonstrated certain symmetries of the covariant Rie-

mann tensor; for example, Ri jkl is skew in (i j) and also in (kl). The former is Equation

(9.54). Using the Bianchi identity, you are asked in Problem 11.5(3) to show that there

is also the symmetry

Ri jkl = Rkli j (11.82)

Back to relativity. Assume a metric of the form (11.80). The Codazzi equations are

given in (11.61). If you write these out in coordinate form (as you are asked to in

Problem 11.5(4)) you will get

(−g00)
−1/2 R0γαβ = bγβ//α − bγα//β (11.83)
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the double slash again denoting covariant derivatives in V 3(t) (recall that b is a tensor

on V 3(t), not M4). Then

bμ
β//α − bμ

α//β = hμγ (bγβ//α − bγα//β) = hμγ φ−1 R0γαβ

where (hμγ ) is the inverse matrix to the 3-dimensional tensor (hαβ). Since (gi j ) is a

matrix of the form [−φ−2 0

0
(

hαβ
)

]

we may write

φ−1hμγ R0γαβ = φ−1gμγ R0γαβ = φ−1gμi R0iαβ = −φ−1 Rμ
0αβ

and so Rμ
0αβ = −φ(bμ

β//α − bμ
α//β). Then

R0β = Ri
0iβ = Rα

0αβ = −φ(bα
β//α − bα

α//β)

Since g0β = 0, Einstein’s G0β = 8πκT0β gives

8πκT0β = √
(−g00)(Hδα

β − bα
β)//α (11.84)

which perhaps should be called the Einstein–Codazzi equation.

In the case of electromagnetism, in Minkowski space, T0β = (8π)−1 F0k Fβ
k , and

F0k Fβ
k = F0α Fβ

α = −Eα Fβ
α = −Eα Fβα = Eα Fαβ = Eα Bαβ = the β th component

of iEB
2, that is, −E × B. By Problem 11.5(1), this is the negative of the momentum

density of the field. In general, −T0β is defined to be the β th component of the momen-
tum density of the nongravitational fields and the Einstein–Codazzi equation (11.84)

relates this to the second fundamental form of the spatial slice.

11.5e. Some Remarks on the Schwarzschild Solution

We refer the reader to [Fr, chap. 5] for details of the following.

The Schwarzschild solution is a static solution of Einstein’s equations corresponding

to the gravitational field exterior to a single spherically symmetric static mass ball (e.g.,

the region outside the sun) in an otherwise empty universe. It is not hard to see that the

metric for the entire universe must be of the form

ds2 = g00(r)dt2 + grr (r)dr 2 + r 2(dθ2 + sin2 θdφ2) (11.85)

in spherical coordinates r, θ, φ with the mass center at the origin. Note that dr does
not measure radial distance from the origin; the unknown

√
grr dr does! On the other

hand, r 2(dθ2 +sin2 θdφ2) is exactly the standard metric on the 2-sphere S2(r) of radius

r in R
3 (i.e., the sphere of constant Gauss curvature K = 1/r 2). This sphere has area

4πr 2. Thus r is a radial coordinate that is normalized not so that it is distance from

the origin but rather so that the 2-sphere r=a has area 4πa2.
The metric coefficient grr can be obtained as follows. From (11.78) we see that

RV + 2(κ1κ2 + κ1κ3 + κ2κ3) = 16πκρ, where V 3 is the spatial slice t = constant and

RV is the Ricci scalar curvature of V . But, from (11.81), the second fundamental form
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of a spatial slice vanishes in a static universe. We conclude that RV = 16πκρ and in

particular RV = 0 in the region outside the ball of matter.

We wish then to determine the metric coefficient grr on the spherically symmetric

V 3 with RV = 16πκρ(r). We may try to realize such a Riemannian V 3 as an embedded

3-manifold (again called V 3) in euclidean R
4 = R × R

3 with coordinates w, r, θ, φ,

which respects spherical symmetry, that is, is invariant under the rotation group SO(3)

acting on the space R
3.

w

matter

x y z space R3

r

vacuum

Figure 11.5

We assume a graph of the formw = w(r, θ, φ) = w(r). Thus the slicesw = constant are

simply 2-spheres, and the function w of r is to be determined so that RV = 16πκρ(r);

since we are interested here in the region exterior to the ball, we shall not be concerned

that ρ is not known explicitly as a function of r .

For the entire V 3 sitting in R
4, we may again apply Gauss’s equation (11.79), where

now the κ’s are the principal curvatures of V 3 ⊂ R
4. It is easy to compute the normal

curvatures for this 3-dimensional analogue of a surface of revolution, and in Chapter

5 of [Fr] it is shown that exterior to the ball, w takes a parabolic form, yielding the

Flamm paraboloid

w2 = 8m(r − 2m) and grr =
(

1 − 2m

r

)−1

where

m = κ

∫ a

0

4πr 2ρ(r)dr

is a measure of the “total mass” of the ball of coordinate “radius” a. Thus V 3 carries

the spatial metric (1 − 2m/r)−1dr 2 + r 2(dθ 2 + sin2 θdφ2).

In Problem 11.1(2) it was shown that U = (1 − 2m/r)1/2 is a solution to Laplace’s

equation in the spatial Schwarzschild metric, and, for large r, U is of the form U ∼



322 R E L A T I V I T Y , T E N S O R S , A N D C U R V A T U R E

1 − m/r . Thus 1 − (1 − 2m/r)1/2 is a good candidate for the “correct” gravitational

potential in the exterior region. As in Section 11.1c, this suggests that
√−g00 = 1−U =

(1 − 2m/r)1/2 and so g00 = −(1 − 2m/r). In [Fr] it is shown that this is in fact the

solution demanded by the remaining Einstein equations. Thus in the external region we

have the Schwarzschild solution

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr 2 + r 2(dθ2 + sin2 θdφ2) (11.86)

Problems

11.5(1) Consider the classical electromagnetic field in R
3, as in Section 3.5. Note that

E∧∗∗ E = E • Evol3, and so differentiating with respect to time gives ∂/∂t (E∧∗∗E) =
2E ∧ ∂∗∗ E/∂t . Likewise, we may compute ∂/∂t (B ∧ ∗∗B). Show that for a fixed
compact region U of R

3, we have

d
dt

1
8π

∫
U

E ∧ ∗∗ E + B ∧ ∗∗B = − 1
4π

∫
∂U

E ∧ ∗∗B −
∫

U
E ∧ j2 (11.87)

The integrand on the left-hand side is (8π)−1(E2 + B2) ≥ 0 and is the classical
energy density of the field. Note that

∫
U E1 ∧ j2 = ∫

U E • Jvol3 ∼ ∫
U E • ρvvol3

represents the rate at which the field does work on the charges in the current.
Then (4π)−1

∫
∂U E1 ∧ ∗∗B2 = ∫

∂U (4π)−1E × B • dS is interpreted as the flux of
energy through ∂U . Relativistically, energy is the same as mass. But the flux
of mass through a surface is given classically by the surface integral of the
momentum density. (For example, in the case of a fluid with mass density ρ we
have

∫
∂U ρv • dS = −d/dt

∫
U ρvol3.) Thus we may consider (4π)−1E × B, the

Poynting vector, to be the momentum density of the field. Equation (11.87)
is Poynting’s theorem.

11.5(2) In the Riemannian case one puts φ = (g00)1/2, but (11.81) still holds. Show
that

∂

∂t

√
det(hαβ) = −φH

√
det (hαβ)

(see (11.39)). Since
√

det(gαβ)dx1 ∧ . . . ∧ dxn−1 is the “area” form d Sn−1 for
Vn−1 we may write for the first variation of area

d
dt

∫
V(t)

d Sn−1 = −
∫

V(t)
φHd Sn−1

This is the (n − 1)-dimensional version of (8.26), but where is the boundary
term?

11.5(3) Prove (11.82).

11.5(4) Prove (11.83).



CHAPTER 12

Curvature and Topology: Synge’s
Theorem

In Problem 8.3(7) it was shown that if M2 is a closed surface in R
3 then its curvature

K and its “genus” g are related by

1

2π

∫
M

K d S = 2 − 2g (12.1)

This is the Gauss–Bonnet theorem. In particular, when M2 is a (perhaps) distorted torus

(i.e., a surface of genus 1), then (2π)−1
∫

M K d S = 0. Thus it is not possible to embed

the torus in R
3 in such a way that its Gauss curvature is everywhere positive. This is

not surprising; a few sketches of tori will “convince” one that there will always have

to be saddle points somewhere. However, in Part Three, we shall see that (12.1) is true

even for an abstract Riemannian metric (without any question of an embedding in R
3).

This is an example of a global or topological result, relating the purely “infinitesimal”

notion of curvature to the topological notion of the genus of the surface.

In this brief chapter we will discuss a relation between curvature and the topological

notion of simple connectivity, namely the theorem of J. L. Synge, one of the most

beautiful results in global differential geometry of the twentieth century. In the process

of proving Synge’s theorem, we shall derive a formula, also due to Synge, for the second

variation of arc length along a geodesic.

C
C

Figure 12.1
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In the figure, we have drawn a closed geodesic C , first on a surface with negative

curvature and then on a positively curved sphere. If we consider only variations of C
by smooth closed curves (where P = Q and the tangents match up at P), it is clear

from (10.4) that the first variation of arc length vanishes in both cases, the endpoint

contributions cancel in the case of a closed geodesic. Still, we can shorten the equator

C on the sphere by pushing it north! We could say that in the “space �S2 of all

smooth closed curves on S2,” the length functional L has first derivative 0 at the point

representing the equator C but C does not yield a relative minimum for L . We shall

see, from Synge’s formula, that in this case of positive curvature the second variation is
negative for the variation pushing C north, explaining why this geodesic is unstable. (A

slippery rubber band stretched along the equator would contract if disturbed slightly.)

It seems evident that the equator in the negatively curved surface is stable, yielding an

(absolute) minimum for L , and this will also follow from Synge’s formula.

12.1. Synge’s Formula for Second Variation

What does curvature have to do with the stability of a geodesic?

12.1a. The Second Variation of Arc Length

We first introduce a notation that will simplify the appearance of our calculations.

Consider, as in Section 10.1b, the variation of arc length. We have the tangent vector field

T = ∂x/∂s and the variation field J = ∂x/∂α, both defined along the 2-dimensional

variational surface. We shall write with some misgivings

∇TJ := ∇J
∂s

and ∇JT := ∇T
∂α

(12.2)

even though T and J are defined only along the variational surface. We shall also write,

for instance, ∇Tw rather than ∇w/∂s when w is a field defined along the variational

surface. Thus Lemmas (10.1) and (10.2) of Section 10.1 then take the form

∇TJ = ∇JT

and (12.3)

∇T∇Jw − ∇J∇Tw = R(T, J)w

We now return to our consideration of arc length variation, started in Section 10.1.

We suppose now that the base curve C0, given by α = 0, is a geodesic of length L .

Recall that the parameter s need be arc length only when α = 0.

We shall only be concerned with the case in which the first variation vanishes,

L ′(0) = 0. From (10.4) we see that this requires, in this case of a geodesic base curve,

that

〈J, T〉Q = 〈J, T〉P

From the first equation of (10.4) we have, in our new notation

L ′(α) =
∫ L

0

〈T, T〉−1/2〈∇TJ, T〉ds
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Then

L ′′(α) =
∫ L

0

[−〈T, T〉−3/2〈∇TJ, T〉2

+ 〈T, T〉−1/2{〈∇J∇TJ, T〉 + 〈∇TJ, ∇JT〉}]ds

Since ‖ T ‖= 1 when α = 0, and since ∇TJ = ∇JT

L ′′(0) =
∫ L

0

[−〈∇TJ, T〉2 + {〈∇J∇TJ, T〉 + 〈∇TJ, ∇TJ〉}]ds

Note that

〈∇TJ, ∇TJ〉 − 〈∇TJ, T〉2 =‖ ∇TJ ‖2 − ‖ ∇TJ ‖2 cos2 θ

where θ is the angle between ∇TJ and T. But this is simply the square of the area

‖ (∇TJ) ∧ T ‖2 of the parallelogram spanned by these two vectors. Thus

L ′′(0) =
∫ L

0

{〈∇J∇TJ, T〉+ ‖ (∇TJ) ∧ T ‖2}ds (12.4)

Look now at the first integrand

〈∇J∇TJ, T〉 = 〈∇T∇JJ, T〉 + 〈R(J, T)J, T〉
But 〈∇T∇JJ, T〉 = ∂/∂s〈∇JJ, T〉 − 〈∇JJ, ∇TT〉, and so

∫ L

0

〈∇T∇JJ, T〉ds = 〈∇JJ, T〉L
0

Equation (12.4) then becomes

L ′′(0) = 〈∇JJ, T〉L
0 +

∫ L

0

{〈R(J, T)J, T〉+ ‖ (∇TJ) ∧ T ‖2}ds

The statement, (9.54), that the covariant Riemann tensor is skew in the first two indices

translates to the statement

〈R(J, T)J, T〉 = −〈R(J, T)T, J〉
as one easily sees by expressing this in terms of components. Thus we finally have our

principal formula, dating from the year 1925.

Synge’s Formula (12.5): For a variation of a geodesic in which the first varia-
tion vanishes, 〈J, T〉Q = 〈J, T〉P , we have

L ′′(0) = 〈∇JJ, T〉L
0 +

∫ L

0

{‖ (∇TJ) ∧ T ‖2 −〈R(J, T)T, J〉}ds

Note also that when the variation is orthogonal to the geodesic, that is, when 〈J, T〉 =
0, then 〈∇TJ, T〉 = T〈J, T〉 − 〈J, ∇TT〉 = 0, and ‖ (∇TJ) ∧ T ‖2 becomes simply

‖ ∇TJ ‖2.
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Corollary (12.6): For an othogonal variation of a geodesic we have

L ′′(0) = 〈∇JJ, T〉L
0 +

∫ L

0

{‖ ∇TJ ‖2 −〈R(J, T)T, J〉}ds

Recall (from (11.59)) that in a Riemannian manifold Mn, ‖ A ‖≥ 0 for all A and

M has negative sectional curvature if 〈R(J, T)T, J〉 is negative whenever T and J are

linearly independent. Consider a geodesic C in such a space joining distinct points P
and Q. To see whether C locally minimizes arc length between P and Q we consider

a variation J that vanishes at P and Q. Thus the endpoint contribution vanishes in

Synge’s formula. If J and T are not everywhere dependent along C the integral will be

positive. If J = f (s)T along C , then the variation associated to J does not change the

curve C at all. From (12.5).

Corollary (12.7): In a negatively curved Riemannian Mn, a nontrivial variation
of a geodesic C joining distinct points P and Q yields L ′′(0) > 0 and so C is
stable, that is, locally minimizes arc length.

In the case of a closed geodesic, J need not vanish at P = Q, but both T and J match

up at P = Q, and so the first variation still vanishes. Furthermore, 〈∇JJ, T〉L
0 = 0.

We conclude that L ′′(0) ≥ 0, and = 0 only if J is a multiple of T along C ; this would

simply move the geodesic into itself.

Corollary (12.8): In a negatively curved Riemannian Mn, each closed geodesic
is stable.

12.1b. Jacobi Fields

We shall reconsider the case of distinct endpoints when the variation field J vanishes

at the endpoints and is orthogonal to T. Then, as we have seen,

〈∇TJ, T〉 = T〈J, T〉 − 〈J, ∇TT〉 = ∂〈J, T〉
∂s

= 0

and so ∫ L

0

‖ (∇TJ) ∧ T ‖2 ds =
∫ L

0

{〈∇TJ, ∇TJ〉 − 〈∇TJ, T〉2}ds

=
∫ L

0

〈∇TJ, ∇TJ〉ds

Synge’s formula then reads

L ′′(0) =
∫ L

0

{〈∇TJ, ∇TJ〉 − 〈R(J, T)T, J〉}ds (12.9)
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But 〈∇TJ, ∇TJ〉 = T〈J, ∇TJ〉 − 〈J, ∇T∇TJ〉 and the first term integrates to 0 since

J vanishes at the endpoints. We then have

L ′′(0) = −
∫ L

0

{〈∇T∇TJ + R(J, T)T, J〉}ds (12.10)

for variations that vanish at the endpoints and are orthogonal to the geodesic.
Note that if J is a Jacobi field, then L ′′(0) = 0. Thus, from Problem 10.1(3), if we

vary the geodesic C by a 1-parameter family of geodesics passing through P and Q,
both the first and the second variations vanish!

This has the following consequence. (Our treatment will be very brief; for a more

careful treatment see, e.g., [Do, p. 423].)

First note that given any vector field X = X(s) defined along a curve C , we can define

a variation of C having variation vector given by X. There are many ways of forming

such variations. For x(s, α) we may merely put x(s, α) = expx(s) αX(s); that is, x(s, α)

is the point on the geodesic starting at x(s) on C in the direction of X(s), and at distance

‖ αX(s) ‖ from x(s).

X(s)
Cα

x(1)

x(s)

C

x(0)

Figure 12.2

Suppose that there is a nontrivial Jacobi field J along the geodesic C that vanishes

at P and at some point P ′ between P and Q; we do not assume that J vanishes at Q.

We call P ′ a conjugate point to P along the geodesic C .

P ′′

P ′
P

QQ ′

Figure 12.3
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Using J we may construct a variation of the portion P P ′ of C as before. Note that

different variations having the same variation vector J at α = 0 will yield the same
second variation formula (12.10)! The varied curves Cα pass through P ′ and, by (12.10),

have the same length, to second order, as the arc P P ′ of the base curve C .

The varied curves Cα meet C = C(0) transversally if α is small enough; we see this

as follows. We have already mentioned that a Jacobi field can be realized by varying

C by geodesics Cα. If a geodesic Cα were tangent to the geodesic C at some point P ′,
then Cα would coincide with C and so J ≡ 0. Thus Cα is transversal to C at P ′.

Let then P ′′ be a point on Cα, and Q ′ a point on C , that are so close that there is a

unique minimal geodesic P ′′Q ′ joining them. Then the geodesic arc P ′′Q ′ is strictly

shorter than the broken arc P ′′ P ′ Q ′. This says then that the curve of broken arcs

P P ′′ Q ′ Q is shorter than the original geodesic P P ′ Q ′ Q = P Q. The broken P P ′′ Q ′ Q
can then be smoothed off to yield a smooth curve that is again shorter than C . We have

“shown” that

Theorem (12.11): If a geodesic arc C contains a point P ′ conjugate to the be-
ginning point P in its interior, then C is not a minimizing geodesic; that is, C is
not stable.

Thus a geodesic cannot be minimizing after passing a point conjugate to the initial
point!

In fact Marston Morse has shown the following (see [M]). Let us say that the point

P ′ conjugate to P has (Morse) index λ iff there are exactly λ linearly independent

Jacobi fields along C that vanish at both P and P ′. (This makes sense since the Jacobi

equation is linear in J.) Suppose that P ′
1, . . . , P ′

r are exactly the conjugate points to P
that are between P and Q, and that P ′

i has index λ(i). We define the (Morse) index of
C to be

∑
i λ(i), the sum of the indices of all conjugate points P ′ interior to P Q. Then

in a certain well-defined sense, there are essentially
∑

i λ(i) independent variations of
C that strictly decrease the arc length of C.

For example, consider on the n sphere the geodesic (great circle) C that starts at the

north pole P, passes through a point Q on the equator, goes all the way around to P
again, and continues on to the point Q.

P = P ′′

Q

Sn−1

Sn

Figure 12.4
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The first conjugate point to P is the south pole P ′; the next and last is P ′′ = P itself

(at arc length 2π ). For the arc P P ′ there is an (n − 1)-dimensional family of great

circles (parameterized by the equator Sn−1); these yield an (n − 1)-dimensional space

of Jacobi fields vanishing at P ′, and thus the index of the conjugate point P ′ is n − 1.

These geodesics also yield variations of the segment P P ′ P ′′, and so P ′′ is conjugate

to P with index n − 1. Thus the Morse index of the geodesic P Q P ′ P ′′Q is 2(n − 1);

there are basically 2n − 2 independent variations of C that decrease the length of C .

Problem

12.1(1) Use (11.82) and [R(J, T)T]a = Tb R a
bcd Jc Td to show that the Jacobi linear

transformation

J 
→ R(J, T)T

is self-adjoint.

12.2. Curvature and Simple Connectivity

How is positive curvature related to simple connectivity?

12.2a. Synge’s Theorem

Theorem (12.12): Let M2n be an even-dimensional, orientable manifold with
positive sectional curvatures, K (X ∧ Y) > 0. Then any closed geodesic is unsta-
ble, that is, can be shortened by a variation.

For example, the equatorial great circle on the round 2-sphere can be shortened by

pushing it north.

PR O O F O F SY N G E’S T H E O R E M: Let C, x = x(s), be a closed geodesic. We

first claim that we can find a unit vector field J along C that is normal to C and

parallel displaced along C . This is proved as follows. Since parallel translation

around C will send the geodesic tangent T into itself, parallel translation around

C will also take the (2n −1)-dimensional plane of vectors normal to T into itself.

Let T⊥ be the normal plane at x(0). Parallel translation around C will give a map

P : T⊥ → T⊥. This map is linear since the differential equations of parallel

translation are linear. We know that this map is an isometry; thus P is given by

an orthogonal matrix, PT = P−1. P cannot reverse the orientation of T⊥, for

if it did, since T is sent into itself, parallel translation would have reversed the

orientation of the 2n-dimensional tangent space to M at x(0), contradicting the

assumption that M is orientable. Thus det P = +1. But the eigenvalues of P
either are real or occur in complex conjugate pairs, and since there are 2n − 1 of

them, we conclude that there are an odd number of real eigenvalues. But each of

these must be ±1, and yet det P = (the product of all the eigenvalues) = 1. Thus
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there is at least one eigenvalue λ = +1. But this means that some normal vector

J must be sent into itself under the parallel translation; J(s) is a normal parallel

displaced vector along C!

We may then construct a variation of C by again considering the geodesics

tangent to the vectors J, that is,

x(s, α) := expx(s){αJ(x(s))}
By construction (∂x/∂α)(s, 0) = J(x(s)); that is, this variation has J as its

variation vector. Look at Synge’s formula (12.6). The boundary term vanishes

since we have a closed curve. Further, ∇TJ = 0 since J is parallel displaced.

Thus

L ′′(0) = −
∫ L

0

K (T ∧ J)ds (12.13)

since T and J are orthonormal. We conclude that L ′′(0) < 0. Since L ′(0) = 0 for

the geodesic we conclude that such a variation would decrease the length of the

curve for small α.

There are spaces with positive sectional curvatures. The usual paraboloid in R
3 has

positive curvature, and any deformation of it, if sufficiently small, will also. Likewise for

the unit sphere (which is compact). The unit sphere Sn ⊂ R
n+1 has sectional curvatures

all unity. To see this we use the Gauss equation (11.60) applied to M = R
n+1 and

V = Sn. Since KM = 0 for M euclidean we have KV (X, Y) = B(Y, Y)B(X, X) −
{B(X, Y)}2. For two orthogonal principal directions X = e1 and Y = e2 we would

have KV (e1, e2) = κ1κ2. But by symmetry, all principal curvatures for the round unit

sphere must coincide, κi = −1 (using the outward-pointing normal). Thus all sectional

curvatures for the unit n-sphere are +1.

For another example, consider the real projective n-space RPn . This is the space

resulting from the unit n-sphere when antipodal pairs are identified. Any tangent vector

X to RPn corresponds to a pair of tangent vectors, Y and −Y, to Sn at antipodal points.

These vectors have the same length, and thus there is no ambiguity in defining ‖ X ‖
to be the length in the Riemannian Sn of either of the tangent vectors ±Y “covering”

X. This defines a Riemannian metric for RPn. It should be clear that the 2:1 projection

(identification) map π : Sn → RPn is then a local isometry, and thus the Riemann

tensors of the two spaces agree at corresponding points, if we use local coordinates in

Sn that result from pulling back local coordinates in RPn (see Section 8.5b). Thus RPn

carries a Riemannian metric with sectional curvatures K = 1 again!

We have mentioned in Section 10.2d that if a compact manifold is not simply con-

nected, then among a free homotopy class of closed curves that cannot be shrunk to

a point, there will be a shortest curve and it will be a closed geodesic. Thus we have

Synge’s theorem of 1936.

Corollary (12.14): A compact, orientable, even-dimensional manifold with pos-
itive sectional curvatures is simply connected.
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12.2b. Orientability Revisited

The example RPn is especially interesting with regard to Synge’s corollary because

RPn is not simply connected! This can be seen as follows. An arc C ′ on Sn going

from the north to the south pole projects down to yield a closed curve C on RPn since

the north and south poles project to the same point (call it N ) on RPn. We claim that
C cannot be deformed to a point on RPn. Let C be parameterized, x = x(t), with

x(0) = x(1) = N . It should be clear that any deformation of C can be “covered” by a

deformation of C ′ on Sn, using the identification. Under a deformation of C, the point

N might move to another point Nα, and then the covered curve C
′
α would start at one

of the two points on Sn covering Nα and end at its antipodal point −Nα. If C could be

deformed to a point, then eventually we would have to cover this single point curve C1

at N1 by a whole arc on Sn going from a point over N1 to its antipode. This is impossible

since N1 is covered only by two points on Sn.

The fact that RP3 is not simply connected has the following application to mechanics

([A, p. 248]).

Theorem (12.15): A rigid body in R
3, fixed at one point and subject to any

potential field, has a periodic motion for any sufficiently large total energy E .

P R O O F: A rigid body in R
3 has the rotation group SO(3) as configuration space

(see Section 1.1d). For sufficiently large total energy H = E, the Jacobi metric

(10.19) defines a Riemannian metric on all of SO(3) in which the geodesics

represent the motions of the system. But SO(3) is topologically RP3 (see 1.2b,

Example vii). Since RP3 is not simply connected, there exists a closed geodesic,

and this corresponds to a periodic motion of the body.

Does the fact that RP2n is not simply connected contradict Synge’s Corollary 1?

RP2n is compact, even-dimensional, and has positive sectional curvatures. Thus even-
dimensional projective spaces cannot be orientable! This reaffirms the result of Problem

2.8(1).

Synge’s method has another striking consequence for orientability. First note that if
Mn is not orientable then there is some closed curve C that cannot be deformed to a
point (in particular M is not simply connected!) and such that orientation is reversed
on transporting an orientation around C. To see this, suppose that M is not orientable.

Then it must be that transporting an orientation around some closed curve must lead

to a reversal of orientation; otherwise it would be possible to transport an orientation

uniquely from a given point to every other point, implying that M was orientable. Let

now orientation be reversed upon traversing a closed curve C. If we deform C slightly

to a curve Cα, then, by continuity, orientation must be reversed also on traversing Cα.

Thus orientation would be reversed for every closed curve that is freely homotopic to

C (see Section 10.2d). But if we could deform C to a point curve C1, where orientation

cannot be reversed, we would have a contradiction.

Thus if Mn is not orientable, there is, from Section 10.2d, a closed geodesic C having

the property that orientation is reversed upon traversing C and C is the shortest curve
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in its free homotopy class. In Problem 12.1(1) you are asked to prove the following:

Corollary (12.16): If M2n+1 is a compact, odd-dimensional manifold with posi-
tive sectional curvatures, then M is orientable.

This shows that the odd-dimensional projective spaces are orientable.

Problem

12.2(1) Use Synge’s method to prove Corollary (12.16).



CHAPTER 13

Betti Numbers and De Rham’s
Theorem

When can we be certain that a closed form will be exact?

The lack of simple connectivity is but one measure of topological complexity for a

space. In this chapter we shall deal with others, the Betti numbers, and their relations

with the potentials for closed exterior forms initiated in Chapter 5. This subject is a part

of the discipline called algebraic topology.

13.1. Singular Chains and Their Boundaries

What does Stokes’s theorem say for a Möbius band?

13.1a. Singular Chains

The standard (euclidean) p-simplex in R
p is the convex set �p ⊂ R

p generated by

the p + 1 points

P0 = (0, . . . , 0), P1 = (1, 0, . . . , 0), . . . , Pp = (0, . . . , 0, 1)

∗P0

P0P0 P1P1

P2

u1u1

u2

333
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P0

P1

P2

P3

u1

u2

u3

Figure 13.1

We shall write

�p = (P0, P1, . . . , Pp)

A singular p-simplex in an n-manifold Mn is a differentiable map

σp : �p → Mn

of a standard p-simplex into M .

�p

σp

Mn

Figure 13.2

Note that a singular simplex is a special case of a parameterized subset discussed in

Section 3.1b. This is the natural object over which one integrates p-forms of M via the
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pull-back ∫
σ(�)

α p :=
∫

�

σ ∗ α p

We emphasize that we put no restriction on the rank of the map σp; for example, the

image of �p, which we shall also denote by σp, may be a single point of M .

Note that the k th face of �p

�
(k)
p−1 := (P0, . . . , P̂k, . . . , Pp)

that is, the face opposite the vertex Pk , is not a standard euclidean simplex, sitting as it

does in R
p instead of R

p−1. We shall rather consider it as a singular simplex in R
p. In

order to do this we must exhibit a specific map

fk : �p−1 → �p

of �p−1 into R
p, having the face as image. We do this in the following fashion. fk is

the unique affine map (i.e., a linear map followed by a translation of origin) of R
p−1

into R
p that sends P0 → P0, . . . , Pk−1 → Pk−1, Pk → Pk+1, . . . , Pp−1 → Pp.

If σ : �p → Mn is a singular simplex of M and if φ : Mn → V r is a differentiable

map, then the composition φ ◦ σ : �p → V r defines a singular simplex of V . In

particular σ ◦ fk : �p−1 → Mn defines a singular (p − 1)-simplex of M , the k th face

of the singular p-simplex σ .

We define the boundary ∂�p of the standard p-simplex, for p > 0, to be the formal
sum of singular simplexes

∂�p = ∂(P0, P1, . . . , Pp) :=
∑

k

(−1)k(P0, . . . , P̂k, . . . , Pp)

=
∑

k

(−1)k�
(k)
p−1 (13.1)

whereas for the 0-simplex we put ∂�0 = 0. For example, ∂(P0, P1, P2) = (P1, P2) −
(P0, P2) + (P0, P1).

Figure 13.3

�2 = (P0, P1, P2) is an ordered simplex; that is, it is ordered by the given ordering

of its vertices. From this ordering we may extract an orientation; the orientation of �2
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is defined to be that of the vectors e1 = P1 − P0 and e2 = P2 − P0. Likewise, each of its

faces is ordered by its vertices and has then an orientation. We think of the minus sign in

front of (P0, P2) as effectively reversing the orientation of this simplex. Symbolically,

Figure 13.4

In this way the boundary of �2 corresponds to the boundary as defined in Section

3.3a, and, in fact, Stokes’s theorem for a 1-form α1 in the plane says, for this � = �2,∫
∂�

α1 =
∫∫

�

dα1

A similar result holds for �3. �3 = (P0, P1, P2, P3) is an ordered simplex with orien-

tation given by the three vectors P1 − P0, P2 − P0, and P3 − P0. As drawn, this is the

right-hand orientation. ∂�3 has among its terms the “roof” (P1, P2, P3) and it occurs

with a coefficient +1. The orientation of the face +(P1, P2, P3) is determined by the

two vectors P2 − P1, and P3 − P1, which is the same orientation as would be assigned

in Section 3.3a.

∂�p, as a formal sum of simplexes with coefficients ±1, is not itself a simplex. It is

an example of a new type of object, an integer (p −1)-chain. For topological purposes

it is necessary, and no more difficult, to allow much more general coefficients than

merely ±1 or integers. Let G be any abelian, that is, commutative, group. The main

groups of interest to us are

G = Z, the group of integers

G = R, the additive group of real numbers

G = Z2 = Z/2Z, the group of integers mod 2

The notation Z2 = Z/2Z means that in the group Z of integers we shall identify any

two integers that differ by an even integer, that is, an element of the subgroup 2Z. Thus

Z2 consists of merely two elements

0̃ is the equivalence class of 0, ±2, ±4, . . .

Z2 = {0̃, 1̃} where

1̃ is the equivalence class of ± 1, ±3, . . .

with addition defined by 0̃+0̃ = 0̃, 0̃+1̃ = 1̃, 1̃+1̃ = 0̃. This of course is inspired by the

fact that even + even = even, even + odd = odd, and odd + odd = even. We usually write

Z2 = {0, 1} and omit the tildes .̃ Likewise, one can consider the group Zp = Z/pZ,
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the group of integers modulo the integer p, where two integers are identified if their

difference is a multiple of p. This group has p elements, written 0, 1, . . . , p − 1.

We define a (singular) p-chain on Mn , with coefficients in the abelian group G, to

be a finite formal sum

cp = g1 σ 1
p + g2 σ 2

p + · · · + gr σ r
p (13.2)

of singular simplexes σ s
p : �p → M , each with coefficient gs ∈ G. This formal

definition means the following. A p-chain is a function cp defined on all singular p-

simplexes, with values in the group G, having the property that its value is 0 ∈ G for

all but perhaps a finite number of simplexes. In (13.2) we have exhibited explicitly all

of the simplexes for which cp is (possibly) nonzero and

cp(σ
s

p ) = gs

We add two p-chains by simply adding the functions, that is,

(cp + c′
p)(σp) := cp(σp) + c′

p(σp)

The addition on the right-hand side takes place in the group G. In terms of the formal

sums we simply add them, where of course we may combine coefficients for any simplex

that is common to both formal sums. Thus the collection of all singular p-chains of

Mn with coefficients in G themselves form an abelian group, the (singular) p-chain
group of M with coefficients in G, written Cp(Mn; G).

A chain with integer coefficients will be called simply an integer chain.

The standard simplex �p may be considered an element of Cp(R
p; Z); this p-

chain has the value 1 on �p and the value 0 on every other singular p-simplex. Then

∂�p = ∑
k (−1)k�

(k)
p−1 is to be considered an element of Cp−1(R

p; Z).

A homomorphism of an abelian group G into an abelian group H is a map f : G →
H that commutes with addition (i.e., f (g + g′) = f (g)+ f (g′)). On the left-hand side

we are using addition in G; on the right-hand side the addition is in H . For example,

f : Z → R defined by f (n) = n
√

2 is a homomorphism. F : Z → Z2, defined

by F(n) = 0̃ if n is even and 1̃ if n is odd, describes a homomorphism. The reader

should check that the only homomorphism of Z2 into Z is the trivial homomorphism

that sends the entire group into 0 ∈ Z.

Let F : Mn → V r . We have already seen that if σ is a singular simplex of M then

F◦σ is a singular simplex of V . We extend F to be a homomorphism F∗ : Cp(M; G) →
Cp(V ; G), the induced chain homomorphism, by putting

F∗(g1 σ 1
p + · · · + gr σ r

p ) := g1 (F ◦ σ 1
p ) + · · · + gr (F ◦ σ r

p )

For a composition F : Mn → V r and E : V r → W t we have

(E ◦ F)∗ = E∗ ◦ F∗ (13.3)

If σ : �p → M is a singular p-simplex, let its boundary ∂σ be the integer
(p − 1)-chain defined as follows. Recall that ∂�p is the integer (p − 1)-chain ∂�p =∑

k(−1)k �
(k)
p−1 on �p. We then define

∂σ := σ∗(∂�) =
∑

k

(−1)kσ∗(�(k)
p−1) (13.4)
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Roughly speaking, the boundary of the image of � is the image of the boundary of �!

Finally, we define the boundary of any singular p-chain with coefficients in G by

∂
∑

r

grσ
r
p :=

∑
r

gr∂σ r
p (13.5)

By construction we then have the boundary homomorphism

∂ : Cp(M; G) → Cp−1 (M; G) (13.6)

If F : Mn → V r and if cp = ∑
gr σ r

p is a chain on M , then for the induced chain

F∗c on V we have ∂(F∗c) = ∂
∑

gr F∗ σ r = ∑
gr∂(F∗ σ r ) = ∑

gr (F ◦ σ r )∗(∂�) =∑
gr F∗[σ r

∗(∂�)] = F∗[
∑

grσ
r
∗(∂�)] = F∗ ∂cp. Thus

∂ ◦ F∗ = F∗ ◦ ∂ (13.7)

(Again we may say that the boundary of an image is the image of the boundary.) We

then have a commutative diagram

F∗
Cp(M; G) → Cp(V ; G)

∂ ↓ ∂ ↓
Cp−1(M; G) → Cp−1(V ; G)

F∗
meaning that for each c ∈ Cp(M; G) we have F∗ ∂cp = ∂ F∗ (cp).

Suppose we take the boundary of a boundary. For example, ∂∂(P0, P1, P2) =
∂{(P1, P2) − (P0, P2) + (P0, P1)} = P2 − P1 − (P2 − P0) + P1 − P0 = 0. This

crucial property of the boundary holds in general.

Theorem (13.8):

∂2 = ∂ ◦ ∂ = 0

P R O O F: Consider first a standard simplex �p. From (13.1)

∂∂�p =
∑

k

(−1)k∂(P0, . . . , P̂k, . . . , Pp)

=
∑

k

(−1)k
∑
j<k

(−1) j (P0, . . . , P̂j , . . . , P̂k, . . . , Pp)

+
∑

k

(−1)k
∑
j>k

(−1) j−1(P0, . . . , P̂k, . . . , P̂j , . . . , Pp)

= 0 (cancellation in pairs)

But then, for a singular simplex, ∂(∂σ ) = ∂(σ∗(∂�)), which, from (13.7), is

σ∗ ∂(∂�) = σ∗(0) = 0.

13.1b. Some 2-Dimensional Examples

1. The cylinder Cyl is the familiar rectangular band with the two vertical edges brought

together by bending and then sewn together. We wish to exhibit a specific integer 2-chain
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on Cyl. On the right we have the rectangular band and we have labeled six vertices. The

Figure 13.5

labels on the two vertical edges are the same, since the band is to be bent and the two

edges are to be sewn, resulting in Cyl. On the band we have indicated six singular 2-

simplexes. We shall always write a singular simplex with vertices in increasing order. For

example, (Q1, Q3, Q4) is the singular simplex arising from the affine map of the plane

into itself that assigns (P0, P1, P2) → (Q1, Q3, Q4). After the band is bent and sewn

we shall then have a singular 2-simplex on Cyl that we shall again call (Q1, Q3, Q4).

We have thus broken Cyl up into 2-simplexes, and we have used enough simplexes so

that any 1- or 2-simplex is uniquely determined by its vertices.

We wish to write down a 2-chain where each simplex carries the orientation indicated

in the figure. Since we always write a simplex with increasing order to its vertices, we put

c2 = (Q0, Q1, Q2) − (Q0, Q1, Q3) + (Q1, Q3, Q4) − (Q3, Q4, Q5)

+ (Q2, Q4, Q5) + (Q0, Q2, Q5)

Then

∂c2 = (Q0, Q3) + (Q3, Q5) − (Q0, Q5) + (Q2, Q4) − (Q1, Q4) + (Q1, Q2)

We write this as ∂c2 = B + C , where B = (Q0, Q3) + (Q3, Q5) − (Q0, Q5) and

C = (Q2, Q4) − (Q1, Q4) + (Q1, Q2). B and C are two copies of a circle, with

opposite orientations; B is the bottom edge and C the top. Denote the seam (Q0, Q2)

by A, and omitting all other simplexes, we get the following symbolic figure.
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Figure 13.6

Note that in the lower figure the result is the same as would be obtained if we think

of the cylinder as an oriented compact manifold with boundary, the boundary being then

oriented as in Section 3.3a.

In the upper figure we have a rectangle with four sides. By denoting both vertical

sides by the same curve A we are implying that these two sides are to be identified

by identifying points at the same horizontal level. The bottom curve B and the top C ,

bearing different names, are not to be identified. As drawn, the bottom B, the top C , and

the right-hand side A have the correct orientation as induced from the given orientation

of the rectangle, but the left-hand A carries the opposite orientation. Symbolically, if we

think of the 2-chain c2 as defining the oriented manifold Cyl, we see from the figure that

∂ Cyl = B + A + C − A = B + C

the same result as our calculation of ∂c2 given before with all of the simplexes. From

the rectangular picture we see immediately that all of the “interior” 1-simplexes, such

as (Q3, Q4), must cancel in pairs when computing ∂C2.

2. The Möbius band Mö. We can again consider a 2-chain c2

Figure 13.7

Note that the only difference is the right-hand edge, corresponding to the half twist

given to this edge before sewing to the left hand edge; see Section 1.2b (viii). This

c2 is the same as in the cylinder except that the last term is replaced by its negative

−(Q0, Q2, Q5). We can compute ∂c2 just as before, but let us rather use the symbolic

rectangle with identifications.
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Figure 13.8

The boundary of the oriented rectangle is now

∂ Mö = B + A + C + A = B + C + 2A

This is surely an unexpected result! If we think of the Möbius band as an integer 2-

Q2

C

C

C

B

B

B

2A

Q0

Figure 13.9

chain, as we did for the cylinder, then the “boundary,” in the sense of algebraic topology,

does not coincide with its “edge”, that is, its boundary in the sense of “manifold with

boundary.” As a chain, one part of its boundary consists of the true edge, B + C , but

note that although the point set B + C is topologically a single closed curve it changes
its orientation halfway around. It is even more disturbing that the rest of the boundary

consists of an arc A going from Q2 to Q0, traversed twice, and located along the seam

of the band, not its edge!

The reason for this strange behavior is the fact that the Möbius band is not orientable.

It is true that we have oriented each simplex, just as we did for the cylinder, but for

the cylinder the simplexes were oriented coherently, meaning that adjacent simplexes,

having as they do the same orientation, induce opposite orientations on the 1-simplex

edge that is common to both. This is the reason that ∂c2 on the cylinder has no 1-simplex

in the interior; only the edge simplexes can appear in ∂c2. On the Möbius band, however,

the oriented simplexes (Q0, Q1, Q2) and −(Q0, Q2, Q5) induce the same orientation to

their common (Q0, Q2) = −A since these two 2-simplexes have opposite orientations!

This is a reflection of the fact that the Möbius band is not orientable. We shall discuss

this a bit more in our next section.
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We have defined the integral of a 2-form over a compact oriented surface M2 in

Chapter 3, but we mentioned that the integral is classically defined by breaking up the

manifold into pieces. This is what is accomplished by construction of the 2-chain c2! Let

α1 be a 1-form on the cylinder, oriented as in Example (1). The integral of dα over Cyl

can be computed by writing Cyl as the 2-chain c2. Applying Stokes’s theorem to each

simplex will give∫∫
Cyl

dα1 =
∫

∂Cyl

α1 =
∫

B+C
α1 =

∫
B

α1 +
∫

C
α1

just as expected. However, for the Möbius band, written as c2,∫∫
Mo

dα1 =
∫

∂ Mo

α1 =
∫

B+C+2A
α1 =

∫
B

α1 +
∫

C
α1 + 2

∫
A

α1

This formula, although correct, is of no value. The integral down the seam is not intrinsic

since the position of the seam is a matter of choice. The edge integral is also of no value

since we arbitrarily decide to change the direction of the path at some point. It should not

surprise us that Stokes’s theorem in this case is of no intrinsic value since the Möbius

band is not orientable, and we have not defined the integral of a true 2-form over a

nonorientable manifold in Chapter 3. If, however, α1 were a pseudoform, then when

computing the integral of dα1 over the Möbius c2, Stokes’s theorem, as mentioned in

Section 3.4d, would yield only an integral of α1 over the edge B + C . The fact that B
and C carry different orientations is not harmful since the α that is integrated over B will

be the negative of the α that is integrated over C ; this is clear from the two simplexes

(Q0, Q1, Q2) and −(Q0, Q2, Q5).

13.2. The Singular Homology Groups

What are “cycles” and “Betti numbers”?

13.2a. Coefficient Fields

In the last section we have defined the singular p-chain groups Cp (Mn; G) of M with

coefficients in the abelian group G, and also the boundary homomorphism

∂ : Cp(M; G) → Cp−1 (M; G)

Given a map F : Mn → V r we have an induced homomorphism

F∗ : Cp(M; G) → Cp(V ; G)

and the boundary homomorphism ∂ is “natural” with respect to such maps, meaning that

∂ ◦ F∗ = F∗ ◦ ∂

We also have ∂2 = 0. Notice the similarity with differential forms, as ∂ takes the place

of the exterior derivative d! We will look at this similarity in more detail later.

Many readers are probably more at home with vector spaces and linear transforma-

tions than with groups and homomorphisms. It will be comforting to know then that in

many cases the chain groups are vector spaces, and not just abelian groups.
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An abelian group G is a field, if, roughly speaking, G has not only an additive

structure but an abelian multiplicative one also, with multiplicative identity element

1, and this multiplicative structure is such that each g �= 0 in G has a multiplicative

inverse g−1 such that gg−1 = 1. We further demand that multiplication is distributive

with respect to addition. The most familiar example is the field R of real numbers. The

integers Z do not form a field, even though there is a multiplication, since for example,

2 ∈ Z does not have an integer multiplicative inverse. On the other hand, Z2 is a field

if we define multiplication by 0̃ · 0̃ = 0̃, 0̃ · 1̃ = 0̃, and 1̃ · 1̃ = 1̃. In fact Zp is a field

whenever p is a prime number. In Z5, the multiplicative inverse of 3 is 2.

When the coefficient group G is a field, G = K , the chain groups C p(Mn; K )

become vector spaces over this field upon defining, for each “scalar” r ∈ K and chain

cp = (
∑

giσ
i

p) ∈ Cp(Mn; K )

rcp =
∑

(rgi )σ
i
p

The vector space of p-chains is infinite-dimensional since no finite nontrivial linear

combination of distinct singular simplexes is ever the trivial p-chain 0.

From (13.5) we see that when G = K is a field,

∂ : Cp(M; K ) → Cp−1 (M; K )

is a linear transformation.

Finally, a notational simplification. When we are dealing with a specific space Mn

and also a specific coefficient group G, we shall frequently omit M and G in the

notation for the chain groups and other groups to be derived from them. We then write,

for example, ∂ : Cp → Cp−1.

13.2b. Finite Simplicial Complexes

At this point we should mention that there is a related notion of simplicial complex with

its associated simplicial (rather than singular) chains. We shall not give definitions, but

rather consider the example of the Möbius band. We have indicated a “triangulation”

of the band into six singular 2-simplexes in Example (2) of the last section. Each of

these simplexes is a homeomorphic copy of the standard simplex, unlike the general

singular simplex. Suppose now that instead of looking at all singular simplexes on

Mö we only allow these six 2-simplexes and allow only 1-simplexes that are edges

of these 2-simplexes, and only the six 0-simplexes (i.e., vertices) that are indicated.

We insist that all chains must be combinations of only these simplexes; these form

the “simplicial” chain groups C̄ p. Then C̄0(Mö; G) is a group with the six generators

Q0, . . . , Q5; C̄1 has twelve generators (Q0, Q1), (Q0, Q2), . . . , (Q4, Q5); and C̄2 has

the six given triangles as generators. If we have a field K for coefficients, then these

chain groups become vector spaces of dimension 6, 12, and 6, respectively, and the

simplexes indicated become basis elements. In terms of these bases we may construct

the matrix for the boundary linear transformations ∂ : C̄ p → C̄ p−1. For example

∂(Q0, Q1) = Q1 − Q0 tells us that the 6 by 12 matrix for ∂ : C̄1(Mö; R) → C̄0 (Mö;

R) has first column (−1, 1, 0, 0, 0, 0)T . The simplicial chain groups are of course much
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smaller than the singular ones, but in a sense to be described later, they already contain

the essentials, as far as “homology” is concerned, in the case of compact manifolds.

13.2c. Cycles, Boundaries, Homology and Betti Numbers

Return to the general case of singular chains with a coefficient group G. We are going

to make a number of definitions that might seem abstract. In Section 13.3 we shall
consider many examples.

We define a (singular) p-cycle to be a p-chain z p whose boundary is 0. The collection

of all p-cycles,

Z p(M; G) : = {z p ∈ Cp|∂z p = 0} (13.9)

= ker ∂ : Cp → Cp−1

that is, the kernel ∂−1(0) of the homomorphism ∂ , is a subgroup of the chain group Cp

(called naturally the p-cycle group). When G = K is a field, Z p is a vector subspace

of C p, the kernel or nullspace of ∂ , and in the case of a finite simplicial complex this

nullspace can be computed using Gauss elimination and linear algebra.

We define a p-boundary βp to be a p-chain that is the boundary of some (p + 1)-

chain. The collection of all such chains

Bp(M; G) : = {βp ∈ Cp|βp = ∂cp+1, for some cp+1 ∈ Cp+1} (13.10)

= Im ∂ : Cp+1 → Cp

the image or range of ∂ , is a subgroup (the p-boundary group) of Cp. Furthermore,

∂β = ∂∂c = 0 shows us that Bp ⊂ Z p is a subgroup of the cycle group.

Consider a real p-chain cp on Mn , that is, an element of Cp(M; R). Then cp =∑
bi σ (i)

p , where bi are real numbers. If α p is a p-form on M , it is natural to define∫
cp

α p :=
∑

bi

∫
σ (i)

α p (13.11)

Then ∫
cp

dα p−1 =
∑

bi

∫
σ (i)

dα p−1 =
∑

bi

∫
∂σ (i)

α p−1 =
∫

∂cp

α p−1 (13.12)

We shall mainly be concerned with integrating closed forms, dα p = 0, over p-cycles
z p. Then if z p and z′

p differ by a boundary, z − z′ = ∂cp+1, we have∫
z
α p −

∫
z′

α p =
∫

z−z′
α p =

∫
∂c

α p =
∫

c
dα p = 0 (13.13)

Thus, as far as closed forms go, boundaries contribute nothing to integrals. When
integrating closed forms, we may identify two cycles if they differ by a boundary. This

identification turns out to be important also for cycles with general coefficients, not just

real ones. We proceed as follows.

If G is an abelian group and H is a subgroup, let us say that two elements g and g′

of G are equivalent if they differ by some element of H ,

g′ ∼ g iff g′ − g = h ∈ H



T H E S I N G U L A R H O M O L O G Y G R O U P S 345

Sometimes we will say g′ = g mod H . The set of equivalence classes is denoted by

G/H , and read G mod H . If g ∈ G we denote the equivalence class of g in G/H by

[g] or sometimes g + H . Such an equivalence class is called a coset. Any equivalence

class [ ] ∈ G/H is the equivalence class of some g ∈ G, [ ] = [g]; this g is called a

representative of the class but of course [g] = [g + h] for all h ∈ H . Two equivalence

classes can be added by simply putting [g+g′] := [g]+[g′]. In this way we make G/H
itself into an abelian group, called the quotient group. This is exactly the procedure

we followed when constructing the group Z2 = Z/2Z of integers mod 2.

We always have a map π : G → G/H that assigns to each g its equivalence class

[g] = g + H . π is, by construction, a homomorphism.

When G is a vector space E , and H is a subspace F , then E/F is again a vector

space. If E is an inner product space, then E/F can be identified with the orthogonal

complement F⊥ of F and π can be identified with the orthogonal projection into the

E F

v

E/F
0

π v = [v]

F⊥

Figure 13.10

subspace F⊥. If E does not carry a specific inner product, then there is no natural way

to identify E/F with a subspace of E ; any subspace of E that is transverse to F can

serve as a model, but E/F is clearly more basic than these nonunique subspaces.

Return now to our singular cycles. We say that two cycles z p and z′
p in Z p(M; G)

are equivalent or homologous if they differ by a boundary, that is, an element of the

subgroup Bp(M; G) of Z p(M; G). In the case of the cycles Z p and the subgroup Bp,

the quotient group is called the pth homology group, written Hp(M; G)

Hp(M; G) := Z p(M; G)

Bp(M; G)
(13.14)

When G = K is a field, Z p, Bp, and Hp become vector spaces. We have seen that Z
and B are infinite-dimensional, but in many cases Hp is finite-dimensional! It can be

shown, for example, that this is the case if Mn is a compact manifold. Before discussing

this, we mention a purely algebraic fact that will be very useful.

Theorem (13.15): If φ : G1 → G2 is a homomorphism of abelian groups and
if φ sends the subgroup H1 of G1 into the subgroup H2 of G2, then φ induces a
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homomorphism of the quotient groups

φ∗ :
G1

H1

→ G2

H2

P R O O F: The composition of the homomorphisms φ : G1 → G2 followed by

π : G2 → G2/H2 is a homomorphism π ◦ φ : G1 → G2/H2. Under this

homomorphism (g +h1) → φ(g)+φ(h1)+ H2 = φ(g)+ H2, since φ(h1) ∈ H2.

Thus π ◦ φ sends elements that are equivalent in G1 (mod H1) into elements that

are equivalent in G2 (mod H2) and so we then have a homomorphism of G1/H1

into G2/H2; this is the desired φ∗.

We then have the following topological situation. If Mn is a compact manifold, there

is a triangulation of M by a finite number of n-simplexes each of which is diffeomor-

phic to the standard n-simplex. This means that M is a union of such n-simplexes and

any pair of such simplexes either are disjoint or meet in a common r -subsimplex (vertex,

edge, ...) of each. (We exhibited a triangulation explicitly for the Möbius band in Section

13.1b). These simplexes can be used to form a finite simplicial complex, for any coeffi-

cient group G, just as we did for the Möbius band. Since C̄ p, Z̄ p, and B̄p are then finitely

generated groups, so is H̄p := Z̄ p/B̄p. Now any simplicial cycle can be considered a

singular cycle (i.e., we have a homomorphism from Z̄ p to Z p) and this homomorphism

sends B̄p to Bp. Thus we have an induced homomorphism of the simplicial homology

class H̄p to the singular homology class Hp. It is then a nontrivial fact that for compact

manifolds Hp = H̄p; that is, the pth singular homology group is isomorphic to the
pth simplicial homology group! (A homomorphism is an isomorphism if it is 1 : 1

and onto.) In particular the singular homology groups are also finitely generated (even

though the singular cycles clearly aren’t) and if G is a field K , Hp is finite-dimensional.

When G is the field of real numbers, G = R, the dimension of the vector space Hp

is called the pth Betti number, written bp = bp(M)

bp(M) := dim Hp(M; R) (13.16)

In words, bp is the maximal number of p-cycles on M, no real linear combination of
which is ever a boundary (except for the trivial combination with all coefficients 0).

Let F : Mn → V r be a map. Since, from (13.7), F∗ commutes with the boundary ∂ ,

we know that F∗ takes cycles into cycles and boundaries into boundaries. Thus F∗ sends

homology classes into homology classes, and we have an induced homomorphism

F∗ : Hp(M; G) → Hp(V ; G) (13.17)

Finally, we can see the importance of the homology groups. Suppose that F : Mn →
V n is a homeomorphism, then we have not only (13.17) but the homomorphism F−1

∗ :

Hp(V ; G) → Hp(M, G) induced by the inverse map, and it is easily seen that these two

homomorphisms are inverses. Thus F∗ is an isomorphism; homeomorphic manifolds
have isomorphic homology groups. We say that the homology groups are topological
invariants. Thus if we have two manifolds M and V , and if any of their homology

groups differ, for some coefficients G, then these spaces cannot be homeomorphic!

Unfortunately, the converse is not true in general; that is, nonhomeomorphic manifolds

can have the same homology groups.
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13.3. Homology Groups of Familiar Manifolds

Is projective 3-space diffeomorphic to the 3-torus?

13.3a. Some Computational Tools

Any point p ∈ Mn can be considered as a 0-chain. By the definition of the boundary

operator ∂p = 0, and each point is a 0-cycle.

A smooth map C : [0, 1] → M is a curve in M ; the image is compact since the

image of a compact space (e.g., the unit interval) under a continuous map is again

compact (see Section 1.2a). C of course can be considered a singular 1-simplex, and

we have ∂C = C(1)− C(0). If g ∈ G, the coefficient group, then ∂(gC) is the 0-chain

gC(1) − gC(0).

Suppose that C : [a, b] → M is a piecewise smooth curve. We may then break up the

interval [a, b] into subintervals on each of which the map is smooth. By reparameteriz-

ing the curve on each subinterval, we may consider the mappings of the subintervals as

defining singular simplexes. We may then associate (nonuniquely) to our original curve

a singular 1-chain, associating the coefficient +1 to each of the 1-simplexes. The bound-

ary of this chain is clearly C(b) − C(a), the intermediate vertices cancelling in pairs.

C(a)

C(b)

Figure 13.11

A manifold Mn is said to be (path-)connected if any two points p and q can be

joined by a piecewise smooth curve C : [0, 1] → M ; thus C(0) = p and C(1) =
q. This curve then generates a 1-chain, as in Figure 13.11. But then ∂C = q − p.

Likewise ∂(gC) = gq − gp, where gC is the 1-chain that associates g ∈ G to each

of the 1-simplexes. This shows that any two 0-simplexes with the same coefficient, in

a connected manifold, are homologous. Also, since a 1-chain is merely a combination

C = ∑
gi Ci , ∂C = ∑{gi qi − gi pi }, we see that no multiple gp of a single point is a

boundary, if g �= 0. Thus any particular point p of a connected space defines a 0-cycle

that is not a boundary, and any 0-chain is homologous to a multiple gp of p. We then have

H0(Mn; G) = Gp for M connected (13.18)

meaning that this group is the set {gp|g ∈ G}. For example, H0(Mn; Z) is the set

{0, ±p, ±2p, ±3p, . . .} and H0(Mn; R) is the 1-dimensional vector space consisting

of all real multiples of the “vector” p. This vector space is isomorphic to the vector

space R, and we usually write H0(Mn; R) = R. In particular, a connected space has



348 B E T T I N U M B E R S A N D D E R H A M ’ S T H E O R E M

0th Betti number b0 = 1. If M is not connected, but consists of k connected pieces,

then H0(Mn; R) = Rp1 + Rp2 + · · · + Rpk , where pi is a point in the i th piece. In this

case b0(M) = k.

(We should mention that in topology there is the notion of a connected space; M is

connected if it cannot be written as the union of a pair of disjoint open sets. This is a

weaker notion than pathwise connected, but for manifolds the two definitions agree.)

Next, consider a p-dimensional compact oriented manifold V p without boundary.

By triangulating V p one can show that V p always defines an integer p-cycle, which we

shall denote by [Vp]. For example, consider the 2-torus T 2.

B B

A

A

T 2

Q0

Q0 Q0

Q0

Q0 Q0

Q0Q0

Q1

Q1

Q2 Q2

Q3 Q3

Q4

Q4

Q 5 Q 6

Q 7 Q 8

Figure 13.12

If we associate the integer +1 to each of the eighteen indicated oriented 2-simplexes,

we get a chain [T 2], for example, [T 2](Q5, Q7, Q8) = −1.The boundary of this chain

is clearly 0

∂[T 2] = A + B − A − B = 0

and this same procedure will work for any compact orientable manifold.

On the other hand, consider a nonorientable closed manifold, the Klein bottle K 2.

This surface cannot be embedded in R
3 but we can exhibit an immersion with self-

intersections. This is the surface obtained from a cylinder when the two boundary edges

are sewn together after one of the edges is pushed through the cylinder. Abstractly, in

Figure 13.13
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terms of a rectangle with identifications, we have the following diagram; note especially

the directions of the arrows on the circle B.

B B

A

A

K2

Q0
Q0

Q0

Q0

Q0 Q0

Q0Q0

Q1

Q1

Q3 Q2

Q2 Q3

Q4

Q4

Q 5 Q 6

Q 7 Q 8

Figure 13.14

Orient each of the triangles as indicated and give to each oriented triangle the coef-

ficient +1, yielding a singular 2-chain [K 2]. Now, however, we have

∂[K 2] = A + B − A + B = 2B �= 0

[K 2] is not a cycle, even though the manifold has no boundary, that is, edge. This is a

reflection of the fact that we have not been able to orient the triangles coherently; the

Klein bottle is not orientable.

Note another surprising fact; the 1-cycle B = (Q0, Q2) + (Q2, Q3) − (Q0, Q3) is

not a boundary (using Z coefficients) but 2B is, 2B = ∂[K 2]! Note also that if we had

used real coefficients then B itself would be a boundary since then B = ∂(1/2)[K 2],

where this latter chain assigns coefficient 1/2 to each oriented 2-simplex. Furthermore,

if we had used Z2 coefficients, then [K 2] would be a cycle, since 2B = 0 mod 2. All

these facts give some indication of the role played by the coefficient group G.

The following theorem in algebraic topology, reflecting the preceding considerations,

can be proved.

Theorem (13.19): Every closed oriented submanifold V p ⊂ Mn defines a p-
cycle g[V p] in Hp(Mn; G) by associating the same coefficient g to each oriented
p-triangle in a suitable triangulation of V p.

Thus a p-cycle is a generalization of the notion of a closed oriented submanifold.
René Thom has proved a deep converse to (13.19) in the case of real coefficients.

Thom’s Theorem (13.20): Every real p-cycle in Mn is homologous to a finite
formal sum

∑
ri V p

i of closed oriented submanifolds with real coefficients.



350 B E T T I N U M B E R S A N D D E R H A M ’ S T H E O R E M

Thus, when looking for real cycles, we need only look at submanifolds.

Our next computational tool is concerned with deformations. In Section 10.2d we

discussed deforming closed curves in a manifold. In a similar fashion we can deform

submanifolds and more generally p-chains. We shall not go into any details, but merely

mention the

Deformation Theorem (13.21): If a cycle z p is deformed into a cycle z′
p, then

z′
p is homologous to z p, z′

p ∼ z p.

zp

cp+1

z′
p

Figure 13.15

This follows from the fact that in the process of deforming z p into z′
p one sweeps

out a “deformation chain” cp+1 such that ∂cp+1 = z′
p − z p.

Our final tool is the following. For a closed n-manifold Mn , we know from Section

13.2c that the singular homology groups are isomorphic to the simplicial ones. But in

the simplicial complex for Mn there are no simplexes of dimension greater than n. Thus,

Hp(Mn; G) = 0 for p > n (13.22)

13.3b. Familiar Examples

1. Sn , the n-sphere, n > 0. H0(Sn; G) = G since Sn is connected for n > 0. Since Sn is a

2-sided hypersurface of R
n+1 it is orientable, and since it is closed we have Hn(Sn; G) =

G. If z p is a p-cycle, 0 < p < n, it is homologous to a simplicial cycle in some

triangulation of Sn . (The usual triangulation of the sphere results from inscribing an (n+
1)-dimensional tetrahedron and projecting the faces outward from the origin until they

meet the sphere.) In any case, we may then consider a z p that does not meet some point

q ∈ Sn . We may then deform z p by pushing all of Sn − q to the antipode of q, a single

point. z p is then homologous to a p-cycle supported on the simplicial complex consisting

of one point. But a point has nontrivial homology only in dimension 0. Thus z p ∼ 0 and

H0(Sn; G) = G = Hn(Sn; G) (13.23)

Hp(Sn; G) = 0, for p �= 0, n

The nonvanishing Betti numbers are b0 = 1 = bn.

2. T 2, the 2-torus. H0 = H2 = G.
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B B

A

A

T 2

Q0

Q0

Q0

Q0

Q0 Q0

Q0Q0

Q1

Q1

Q2 Q2

Q3 Q3

Q4

Q4

Q5 Q 6

Q7 Q8

Figure 13.16

Orient each 2-simplex as indicated, as we did in Section 13.3a. ∂[T 2] = A + B −
A − B = 0, confirming that we have an orientable closed surface. Any 1-cycle can

be pushed out to the edge. It is clear that if we have a simplicial 1-cycle on the edge

that has coefficient g on, say, the simplex (Q1, Q4), then this cycle will also have to

have coefficient g on (Q0, Q1) and −g on (Q0, Q4), since otherwise it would have a

boundary. Thus a 1-cycle on the edge will have the coefficient g on the entire 1-cycle

A. Likewise it will have a coefficient g′ on the entire 1-cycle B. It seems evident from

the picture, and can indeed be shown, that no nontrivial combination of A and B can

bound. (For example, in Figure 13.16 we may introduce the angular coordinate θ going

around in the A direction. Then
∮

A “dθ” �= 0 shows that A does not bound as a real

1-cycle.) We conclude that

H0(T 2; G) = G = H2(T 2; G) (13.24)

H1(T 2; G) = G A + G B

In particular, H1(T 2; R) = RA + RB is 2-dimensional, b0 = b2 = 1, b1 = 2.

C

B

A

B ′

Q0

Figure 13.17
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In the figure we have indicated the basic 1-cycles A and B. The cycle B ′ is homol-

ogous to B since B − B ′ is the boundary of the cylindrical band between them. The

cycle C is homologous to 0 since it is the boundary of the small disc.

3. K 2, the Klein bottle. Look at integer coefficients.

Q0

Q0 Q0

Q0

B B

A

A

K 2

Figure 13.18

H0 = Z but H2 = 0 since ∂[K 2] = A + B − A + B = 2B �= 0, the Klein bottle

is a closed manifold but is not orientable. Again any 1-cycle can be pushed out to the

edge, z1 ∼ r A + s B, r and s integers. Neither A nor B bound, but we do have the

relation 2B ∼ 0. A satisfies no nontrivial relation. Thus A generates a group ZA and

B generates a group with the relation 2B = 0; this is the group Z2. Hence

H0(K 2; Z) = Z, H2(K 2; Z) = 0 (13.25)

H1(K 2; Z) = ZA + Z2 B

If we used R coefficients we would get

H0(K 2; R) = R, H2(K 2; R) = 0 (13.26)

H1(K 2; R) = RA

since now B = ∂(1/2)[K 2] bounds. Thus b0 = 1, b1 = 1, and b2 = 0.

4. RP2, the real projective plane. The model is the 2-disc with antipodal identifica-

tions on the boundary circle. The upper and lower semicircles are two copies of the same



H O M O L O G Y G R O U P S O F F A M I L I A R M A N I F O L D S 353

Q0Q0

A

A

RP2

Figure 13.19

closed curve A. One should triangulate RP2 but we shall not bother to indicate the trian-

gles. Orient all triangles as indicated. Clearly H0(RP2; Z) = Z. Since ∂[RP2] = 2A,

we see that the real projective plane is not orientable and H2(RP2; Z) = 0. A is a

1-cycle and 2A ∼ 0.

H0(RP2; Z) = Z, H2(RP2; Z) = 0 (13.27)

H1(RP2; Z) = Z2 A

With real coefficients

H0(RP2; R) = R, H2(RP2; R) = 0 (13.28)

H1(RP2; R) = 0

and b0 = 1, b1 = 0, and b2 = 0. RP2 has the same Betti numbers as a point!

5. RP3, real projective 3-space. The model is the solid ball with antipodal indenti-

fications on the boundary 2-sphere. Note that this makes the boundary 2-sphere into a

projective plane!

Q0 Q0

A

A

B2

B2

Figure 13.20
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Orient the solid ball using the right-hand rule. The upper and lower hemispheres B2

are two copies of the same projective plane RP2. Orient the identified hemispheres B2

as indicated. Note that the orientation of the ball (together with the outward normal)

induces the given orientation in the upper hemisphere but the opposite in the lower.

Orient the equator A as indicated.

H0(RP3; R) = R. A is a 1-cycle, but ∂ B2 = 2A and so H1(RP3; R) = 0. B2 is

not a cycle since ∂ B2 = 2A �= 0, and so H2(RP3; R) = 0. ∂[RP3] = B2 − B2 = 0.

Hence RP3 is orientable (see Corollary (12.14)) and H3(RP3; R) = R.

H0(RP3; R) = R = H3(RP3; R) (13.29)

all others are 0

RP3 has the same Betti numbers as S3! See Problem 13.3(1) at this time.

6. T 3, the 3-torus. The model is the solid cube with opposite faces identified.

C

B

B
B

A

S 2

F 2

T 2

C

A

A

B

A

CC

Figure 13.21

Note that the front, right side, and top faces (which are the same as the back, left

side, and bottom faces) F2, S2, and T 2 become 2-toruses after the identification. Orient

the cube by the right-hand rule. This induces the given orientation as indicated for the

drawn faces but the opposite for their unlabeled copies. Orient the three edges A, B,

and C as indicated. A, B, and C are 1-cycles. F2, S2, and T 2 have 0 boundaries just

as in the case of the 2-torus. ∂[T 3] = F2 + S2 + T 2 − F2 − S2 − T 2 = 0 and so T 3 is

orientable. We have

H0(T 3; Z) = Z = H3(T 3; Z)

H1(T 3; Z) = ZA + ZB + ZC (13.24′)

H2(T 3; Z) = ZF2 + ZS2 + ZT 2

Using real coefficients we would get b0 = 1, b1 = 3 = b2, b3 = 1.
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Problems

13.3(1) Compute the homology groups of RP3 with Z coefficients.

13.3(2) A certain closed surface M 2 has as model an octagon with the indicated iden-
tifications on the boundary. Note carefully the directions of the arrows.

Q0

Q0

Q0

Q0

Q0

Q0

Q0

Q0

C

C B

B

A

A

D

D

M2

Figure 13.22

Write down Hi (M 2; G) for G = R and G = Z. What are the Betti numbers? Is the
surface orientable?

13.4. De Rham’s Theorem

When is a closed form exact?

13.4a. The Statement of de Rham’s Theorem

In this section we shall only be concerned with homology with real coefficients R for a

manifold Mn . The singular chains Cp, cycles Z p, and homology groups Hp then form

real vector spaces.

We also have the real vector spaces of exterior differential forms on Mn .

Ap := all (smooth) p-forms on M
F p := the subspace of all closed p-forms

E p := the subspace of all exact p-forms

We have the linear transformation ∂ : Cp → Cp−1, with kernel Z p and image Bp−1

yielding Hp = Z p/Bp. We also have the linear transformation d : Ap → Ap+1 with

kernel F p and image E p+1 ⊂ F p+1, from which we may form the quotient

R
p := F p

E p
= (closed p-forms)/(exact p-forms) (13.30)
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the de Rham vector space. Rp is thus the collection of equivalence classes of closed p-

forms; two closed p-forms are identified iff they differ by an exact p-form. De Rham’s

theorem (1931) relates these two quotient spaces as follows.

Integration allows us to associate to each p-form β p on M a linear functional Iβ p

on the chains C p by Iβ p(c) = ∫
c β p. We shall, however, only be interested in this linear

functional when β is closed, dβ p = 0, and when the chain c = z is a cycle, ∂z = 0.

We thus think of integration as giving a linear transformation from the vector space of

closed forms F p to the dual space Z∗
p of the vector space of cycles

I : F p → Z∗
p

by (13.31)

(Iβ p)(z) :=
∫

z
β p

Note that
∫

z+∂c β p = ∫
z β p, since β is closed. Thus Iβ p can be considered as a linear

functional on the equivalence class of z mod the vector subspace Bp. Thus (13.31)

really gives a linear functional on Hp

I : F p → H ∗
p

Furthermore, the linear functional Iβ p is the same linear functional as I (β p + dα p−1),

since the integral of an exact form over a cycle vanishes. In other words, (13.31)

really defines a linear transformation from F p/E p to H ∗
p , that is, from the de Rham

vector space to the dual space of Hp. This latter dual space is commonly called the pth

cohomology vector space, written H p

H p(M; R) := Hp(M; R)∗ (13.32)

Thus

I : R
p → H p(M; R) (13.33)

In words, given a de Rham class b ∈ Rp, we may pick as representative a closed form

β p. Given a homology class z ∈ Hp, we may pick as representative a p-cycle z p.

Then I (b)(z) := ∫
z β p, and this answer is independent of the choices made. Poincaré

conjectured, and in 1931 de Rham proved

de Rham’s Theorem (13.34): I : R
p → H p(M; R) is an isomorphism. First, I

is onto; this means that any linear functional on homology classes is of the form
Iβ p for some closed p-form β. In particular, if Hp is finite-dimensional, as it is
when Mn is compact, and if

z (1)
p , . . . , z (b)

p b = the pth Betti number

is a p-cycle basis of Hp, and if π1, . . . , πb are arbitrary real numbers, then there
is a closed form β p such that∫

z p
(i)

β p = πi , i = 1, . . . , b (13.35)
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Second, I is 1:1; this means that if I (β p)(z p) = ∫
z β p = 0 for all cycles z p, then

β p is exact,

β p = dα p−1

for some form α p−1.

The number πi in (13.35) is called the period of the form β on the cycle z (i)
p . Thus

a closed p-form is exact iff all of its periods on p-cycles vanish.

A finite-dimensional vector space has the same dimension as its dual space. Thus

Corollary (13.36): If Mn is compact, then dim R
p = bp, the pth Betti number.

Thus bp is also the maximal number of closed p-forms on Mn, no linear combi-
nation of which is exact.

The proof of de Rham’s theorem is too long and difficult to be given here. Instead, we

shall illustrate it with two examples. For a proof, see for example, [Wa].

13.4b. Two Examples

1. T 2, the 2-torus. T 2 is the rectangle with identifications on the boundary.

BB

A

A

T 2

φ

2π

2π0
θ

Figure 13.23

R
0 consists of closed 0-forms, that is, constant functions, with basis f = 1.

R
1 consists of closed 1-forms. Certainly dθ and dφ are closed 1-forms and these

are not really exact since θ and φ are not globally defined functions, being multiple-

valued. Since H1(T 2; R) = RA + RB, A and B give a basis for the 1-dimensional

real homology. But then
∫

A dθ/2π = 1,
∫

B dθ/2π = 0,
∫

A dφ/2π = 0, and∫
B dφ/2π = 1, show that dθ/2π and dφ/2π form the basis in R

1 = H 1 = H ∗
1 that

is dual to the basis A, B!



358 B E T T I N U M B E R S A N D D E R H A M ’ S T H E O R E M

R
2 consists of closed 2-forms, but of course all 2-forms on T 2 are closed. dθ ∧ dφ

is closed and has period
∫ ∫

[T ]
dθ ∧ dφ = (2π)2. (Thus, in particular, it is not exact.)

Since H2(T 2; R) = R [T 2], we see that dθ ∧ dφ/4π 2 is the basis of R
2 dual to [T 2].

This was all too easy because θ and φ are almost global coordinates on T 2.

2. The surface of genus 2.

Q0

C

B

A

D

Figure 13.24

R
0 has generator the constant function f = 1. R

2 has generator any 2-form on

M2 whose integral over [M2] is different from 0, for example, the area 2-form in any

Riemannian metric. We need then only consider R1.

This surface can be considered as an octagon with identifications on the edges. This

can be seen as follows.

E

E E

Figure 13.25

In the first step we merely narrow the neck. In the second step we cut the surface

in two along the neck; the result is a left and a right torus, each with a disc removed,

the disc in each case having the original neck circle E as the edge. Of course these two

curves must be identified.

We now represent each punctured torus as a rectangle with identifications and with

a disc removed. All vertices are the same Q0.
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Figure 13.26

We now open up the punctured rectangles

C

D

B

B

A

A

E E

D

C

Figure 13.27

where again all vertices are the same Q0. Finally we may sew the two together along

the seam E , which now disappears

Q0

Q0

Q0

Q0

Q0

Q0

Q0

Q0

C

C B

B

A

A

D

D

M2

Figure 13.28

leaving the desired octagon with sides identified in pairs. (Note that this is not quite the

surface that appeared in Problem 13.3(2) because of the identifications on the sides B.)

From this diagram the first homology is clearly

H1(M2; R) = RA + RB + RC + RD, b1 = 4
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We now wish to exhibit the dual basis in R
1. Suppose, for instance, we wish to

construct a closed 1-form whose period on A is 1 and whose other periods vanish.

Take a thin band on M2 stretching from the interval pq on A to the same points on the

identified other copy of A.

Figure 13.29

Define a “function” f on M2 as follows. Let f = 0 to the “left” of the band, let

f = 1 to the “right” of the band, and let f rise smoothly in the band to interpolate.

This is not really a function on M2 since, for example, the side B is in both the left and

the right regions. It does define a multiple-valued function; we could have f starting

with the value 0 to the left, and f increases by 1 every time one crosses the band from

left to right. Although f is multiple-valued, its differential d f is a well-defined 1-form

on all of M2! By construction we have∫
A

d f = 1, and

∫
B or C or D

d f = 0

We have then exhibited the dual 1-form to the class A. Using other bands we can

construct the remaining dual basis forms for R
1.

Problem

13.4(1) (i) Show that every map F : S2 → T2 of a sphere into a torus has degree 0.
Hint: Use “dθ” ∧ “dφ” on T2 and show pull-back is exact.

(ii) Put conditions on a closed Mn to ensure that deg F : Mn → Tn must vanish.



CHAPTER 14

Harmonic Forms

14.1. The Hodge Operators

What are Maxwell’s equations in a curved space–time?

14.1a. The ∗ Operator

On a (pseudo-)Riemannian manifold Mn we introduce a pointwise scalar product be-

tween p-forms by

〈α p, β p〉 := αI⇁β I (14.1)

where, as usual, I = (i1, . . . , i p), and ⇁ denotes that in the implied sum we have

i1 < i2 < . . . < i p. It is not difficult to check that if e = e1, . . . , en is an orthonormal

basis for tangent vectors at a point, then σ 1, . . . , σ n is an orthonormal basis of 1-forms

and also that

σ I⇁ = σ i1 ∧ σ i2 ∧ . . . ∧ σ i p

yields an orthonormal basis for p-forms at the point for i1 < · · · < i p.

We now introduce a global or Hilbert space scalar product by

(α p, β p) :=
∫

M
〈α p, β p〉voln (14.2)

whenever this makes sense; this will be the case when M is compact, or, more generally,

when α or β has compact support.

We should remark at this time that the space of smooth p-forms on a Riemannian M
that satisfy (α p, α p) < ∞ form only a pre-Hilbert space since it is not complete; a limit

of square integrable smooth forms need not even be continuous! To get a Hilbert space

we must “complete” this space. We shall not be concerned here with such matters, and

we shall continue to use the inaccurate description “Hilbert space.” We shall even go a

step further and use this denomination even in the pseudo-Riemannian case, when (,)

is not even positive definite!

361
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If α1 is a 1-form, we may look at its contravariant version A, and to this vector we

may associate the pseudo (n −1)-form iA voln . In this way we associate to each 1-form

a pseudo (n − 1)-form. We are now going to generalize this procedure, associating

to each p-form α p a pseudo (n − p)-form ∗α, the (Hodge-) dual of α, as follows. If

α p = αI⇁dx I then

∗α p := α∗
J⇁
dx J

where (14.3)

α∗
J⇁

:= √|g|αK εK⇁ J⇁

If f is a function we have

∗( f α p) = f ∗ α p (14.4)

Written out in full

α∗
j1... jn−p

= √|g|
∑

k1<...<kp

αk1...kpεk1...kp j1... jn−p

and where the upper indices K in αK indicate that all of the covariant indices in α have

been raised by the metric tensor,

αk...r = gks . . . grtαs...t

For an important special case, the 0-form that is the constant function f = 1 has

∗1 = √|g|ε12...ndx1 ∧ . . . ∧ dxn = voln (14.5)

Note that for a given j1 < j2 < . . . < jn−p, there is at most one nonvanishing term

in the sum on the right side of (14.3), namely when k1 < . . . < kp is the complementary

multiindex to j1 . . . jn−p.

We then have

α p ∧ ∗β p = (α ∧ ∗β)12...ndx1 ∧ . . . ∧ dxn

and

(α ∧ ∗β)12...n = δ J K
12...nαJ⇁(∗β)K⇁ = ε J K αJ⇁

√|g|βLεL⇁K⇁

= √|g|αJ⇁β J = √|g|〈α p, β p〉
and so

α p ∧ ∗β p = 〈α p, β p〉 voln (14.6)

This shows that indeed * takes forms into pseudoforms and conversely.

We have claimed that * generalizes the map α1 → iA voln . To see this, iA voln =
iA

√|g|εI⇁dx I = √|g|A jε j K⇁dxk2 ∧ . . . ∧ dxkn

iA voln = ∗α1 (14.7)

Equation (14.3) is frequently awkward to apply; many times it is more convenient to

use directly (14.6) together with the following. Let e =(e1, . . . , en) be an orthonormal
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frame of vectors (allowing ‖ e1 ‖2= −1 in the case of a pseudo-Riemannian manifold);

as we have mentioned, σ I , for I = (i1, . . . , i p), are then also orthonormal and σ 1 ∧ . . .

∧ σ n = ± voln . Thus, from (14.6),

∗σ I = ±σ J (14.8)

where J = ( j1, . . . , jn−p) is complementary to I = (i1, . . . , i p).

Look, for example, at the electromagnetic field in a perhaps curved space–time

manifold M4. This will be discussed in more detail in Section 14.1c. We shall see there

that the field is again described in local coordinates (t, x) by the 2-form

F2 = E
1 ∧ dt + B

2

where

E
1 = E1dx1 + E2dx2 + E3dx3

and

B
2 = B23dx2 ∧ dx3 + B31dx3 ∧ dx1 + B12dx1 ∧ dx2

Then, using the space–time metric, ∗F2 will again be a 2-form, and so will be of the

form

∗F = ∗(E
1 ∧ dt) + ∗B

2 = [∗∗E
1] − [∗∗B

2 ∧ dt]

for some spatial 1-form ∗∗B
2 and some spatial 2-form ∗∗E

1. Let us find these forms in

the special case of Minkowski space, without using (14.3).

∗ takes p-forms into pseudo (4 − p)-forms. B
2 = B1dx2 ∧ dx3 + B2dx3 ∧ dx1 +

B3dx1 ∧ dx2, is a 2-form in Minkowski space–time. Since the coordinates are or-

thonormal and
√|g| = 1, we can probably avoid the use of (14.3). ∗(dx2 ∧dx3) has the

property that (dx2 ∧dx3)∧∗(dx2 ∧dx3) =‖ dx2 ∧dx3 ‖2 dt ∧dx1 ∧dx2 ∧dx3. Since

the dxα are orthonormal and ‖ dxα ‖2= +1 for α = 1, 2, 3, we see that ‖ dx2∧dx3 ‖2=
‖ dx2 ‖2‖ dx3 ‖2= +1, and so ∗(dx2 ∧ dx3) = dt ∧ dx1. Likewise for the other two

terms. We then have, from Equation (3.41),

∗B
2 = −(B1dx1 + B2dx2 + B3dx3) ∧ dt = −(∗∗B

2) ∧ dt

Note that ∗∗B
2 is simply the star operator in R

3 (which takes p-forms to (3− p)-forms)

applied to the 2-form B
2. In our older notation it is simply 〈 , B〉, as in Equation (3.41)!

Look now at the term E
1 ∧ dt = (E1dx1 + E2dx2 + E3dx3) ∧ dt . For example

∗(dx1 ∧ dt) = − ‖ dx1 ∧ dt ‖2 dx2 ∧ dx3 = dx2 ∧ dx3

since ‖ dt ‖2= −1. Thus ∗(E1 ∧ dt) = E1dx2 ∧ dx3 + E2dx3 ∧ dx1 + E3dx1 ∧ dx2,

that is,

∗(E
1 ∧ dt) = ∗∗E

1

where ∗∗E
1 = iE vol3 results from applying the star operator of R

3 to E
1.

This explains our use of the notation ∗F2 in Section 7.2b and the use of ∗∗ in Section
3.5c. This concludes our electromagnetic excursion for the moment.
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In Problem 14.1(1) you are asked to show that

∗(∗α p) = (−1)p(n−p)α if Mn is Riemannian (14.9)

− (−1)p(n−p)α if Mnis pseudo-Riemannian

It is sufficient to verify these for terms of the form σ I and to assume these are ortho-

normal.

Finally, note the following. If A is a vector and α is its associated 1-form, then ∗α

is a pseudo-(n − 1)-form, and if V n−1 ⊂ Mn is a transversally oriented hypersurface,

then ∫
V

∗α1 =
∫

V
iA voln =

∫
V
〈A, N〉d Sn−1 (14.10)

In particular ∫
V

∗d f =
∫

V
〈∇ f, N〉d Sn−1

for any function f , and this last integral is the “surface” integral of the normal deriva-
tive d f/dN over the hypersurface.

14.1b. The Codifferential Operator δ = d∗

Exterior differentiation d :
∧p Mn → ∧p+1 Mn sends p-forms to (p + 1)-forms; in

this section we shall exhibit an operator that decreases the degree of a form by one,

and, in the case of a compact manifold, serves as the pre-Hilbert space adjoint of d. We

thus want an operator

d∗ :

p∧
→

p−1∧
such that (14.11)

(dα p−1, β p) = (α p−1, d∗β p)

Now (dα p−1, β p) = ∫
M dα p−1 ∧ ∗β p. Consider first the Riemannian case; we may

then use the first equation in (14.9). Note then

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β

= dα ∧ ∗β + (−1)p−1(−1)(n−p+1)(p−1)α ∧ ∗ ∗ d ∗ β

= dα ∧ ∗β + (−1)n(p+1)α ∧ ∗ ∗ d ∗ β

and so

dα p−1 ∧ ∗β p = (−1)n(p+1)+1α ∧ ∗(∗d ∗ β) + d(α ∧ ∗β)

with a similar result for the non-Riemannian case. We then define whether M is compact
or not and whether or not M has a boundary

d∗β p : = (−1)n(p+1)+1 ∗ d ∗ β p Riemannian (14.12)

(−1)n(p+1) ∗ d ∗ β p pseudo-Riemannian
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and then

(dα p−1, β p) − (α p−1, d∗β p) =
∫

M
d(α p−1 ∧ ∗β p) (14.13)

at least if α or β has compact support. If Mn is a closed manifold, then d∗, as defined

in (14.12), is the pre-Hilbert space adjoint of d.
If M is a compact manifold with boundary ∂ M , let i : ∂ M → M be inclusion. Then

(dα p−1, β p) − (α p−1, d∗β p) =
∫

∂ M
α p−1 ∧ ∗β p (14.14)

and then d∗ is again the adjoint of d if we restrict ourselves to one of two types of

forms: those forms γ that are 0 when restricted to the boundary, that is, i∗γ = 0, or

those forms γ whose dual ∗γ is 0 when restricted to the boundary, i∗ ∗ γ = 0.

The operator d∗ is called the codifferential operator. The traditional notation for d∗

is δ

δ := d∗

but we shall avoid this notation since the symbol d∗ is more informative and we prefer
to reserve δ for the variational symbol.

We shall need a coordinate expression for the (p − 1)-form d∗β p.

Theorem (14.15): (d∗β p)K = −β j
K/j

We shall call the negative of the right-hand side the Divergence (with a capital D) of

the form β

(Divβ p)K := β j
K/j

although sometimes it will look more like a curl! Note that this is the same definition as

we gave for the Divergence of a symmetric tensor in Equation (11.15)! We only define

the Divergence of a tensor that is either symmetric or skew symmetric.

P R O O F: To show that two (p − 1)-forms γ and ρ are identical we need only

show given any small closed coordinate ball B (disjoint from ∂ M if M has a

boundary) then for all (p − 1)-forms α whose support lies in the interior of the

ball,
∫

B〈α, γ 〉∗1 = ∫
B〈α, ρ〉∗1, for if the volume integral of αI⇁(γ I −ρ I ) vanishes

for all smooth α and for each small ball, then γ − ρ = 0. We shall verify (14.15)

by showing that ∫
B
〈α p−1, d∗β p〉 ∗ 1 =

∫
B
〈α p−1, −Divβ p〉 ∗ 1

We may consider the new manifold-with-boundary B instead of M . For this

manifold the preceding integrals are inner products, and we must show, since α

vanishes on the boundary of the ball,

(α p−1, d∗β p) = (α p−1, −Divβ p)
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Using Problem 11.2(1)

(α p−1, d∗β p) = (dα p−1, β p) =
∫

B
〈dα, β〉 ∗ 1 =

∫
B
(dα)I⇁β I ∗ 1

=
∫

B
δ

j K
I⇁

αK⇁/jβ
I ∗ 1 =

∫
B
(δ

j K
I⇁

αK⇁β I )/j ∗ 1 −
∫

B
αK⇁δ

j K
I⇁

β I
/j ∗ 1

But

δ
j K
I⇁

β I = β j K (why?)

and so

(α p−1, d∗β p) =
∫

B
(αK⇁β j K )/j ∗ 1 −

∫
B
αK⇁β j K

/j ∗ 1

In the first integral, C j := αK⇁β j K = [(p − 1)!]−1αK β j K are the components of

a contravariant vector C, and then the integrand is the divergence of this vector.

But
∫

B div C ∗ 1 = ∫
∂ B〈C, N〉d S = 0, since C vanishes on ∂ B. Thus

(α p−1, d∗β p) = −
∫

B
αK⇁β j K

/j ∗ 1 =
∫

B
〈α, −Divβ〉 ∗ 1

as desired.

14.1c. Maxwell’s Equations in Curved Space–Time M4

We shall assume that the electromagnetic field is again described by an electromagnetic

2-form F2. In any local coordinates (t = x0, x) we may decompose F2 into a part that

contains dt and a part without dt ; thus F2 defines an electric 1-form E
1 and a magnetic

2-form B
2 through

F2 = E
1 ∧ dt + B

2

but of course this decomposition depends on the coordinates used. We postulate that

for any bounding 2-cycle z2 = ∂U 3 in space–time M4 we have∫
∂U

F2 = 0 (14.16)

If F is continuously differentiable, we conclude that
∫

U d F = 0. Since U can be chosen

to be an arbitrarily small hypersurface with arbitrarily chosen normal, we see that we

must then have

d F2 = 0

This is the first set of Maxwell equations. If we write, as usual, d = d + dt ∧ ∂/∂t ,
d F = 0 yields the usual Maxwell equations (3.39) and (3.40), together with their

primed differential versions. Note that the operator d is independent of the metric of

space–time.

We postulate that there is a current pseudo-3-form, with associated decomposition

S
3 = σ 3 − j2 ∧ dt
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Since the notion of the charge contained in a region is independent of the metric, S
3 is

assumed given independent of the metric. Of course, S
3 can be written in the form

S
3 = i J vol4

but the current 4-vector J will depend on the metric! It is for this reason that S3 is more

basic than J .

We then postulate that for any 3-cycle Z 3, bounding or not, we have∫
Z

S
3 = 0 (14.17)

If one applies this to the boundary of a solid space–time cylinder Z = ∂{V 3 × [0, T ]}
one sees that this is conservation of charge (this is Problem 14.1(4)).

We now postulate that ∫
∂U

∗F = 4π

∫
U

S
3 (14.18)

for all 3-chains U . Note that this is compatible with (14.17). This is the second set of

Maxwell equations. When S is smooth we see from the same argument as used after

(14.16) that S
3 is closed, dS

3 = 0. Since the periods of S
3 vanish, we conclude from

de Rham that S
3 is in fact exact, and postulate (14.18) says essentially that ∗F2 is a

“potential” for S
3!

d ∗ F2 = 4πS
3 (14.19)

Since ∗F is a pseudo-2 form we may define pseudoforms ∗∗E1 and ∗∗B2 by

∗F = −(∗∗B
2) ∧ dt + ∗∗E

1 (14.20)

It is no longer true that ∗∗E
1 and ∗∗B

2 are the Hodge duals (using the 3-space metric
gαβ of the spatial section t = constant), of the forms E

1 and B
2! If, for example,

g0β �= 0, ∗∗B2 may involve E as well as B!

In the smooth case the second set of Maxwell’s equations (14.19) are exactly as in

Minkowski space, that is, (3.42′) and (3.43′). Maxwell’s equations in curved space are
exactly as in flat space, once we accept ∗F as defining the fields ∗∗B

2 and ∗∗E
1.

14.1d. The Hilbert Lagrangian

The Hilbert action for Einstein’s theory is essentially
∫

M R ∗ 1. Although the curvature

matrix θ is a matrix of 2-forms, we haven’t expressed either the Ricci tensor (which

is symmetric) or the scalar curvature in terms of forms. Still it is possible to write the

action in terms of forms; although the expression is awkward, it does occur in physics

papers and the reader should be aware of it. We shall be very brief.

θa
b = Ra

b(r<s)dxr ∧ dxs is a matrix of 2-forms. Then ∗θ a
b is defined to be the

matrix obtained by taking the ∗ of each of the 2-forms, that is, ∗ does not affect the
indices a

b. Then

∗θa
b = |g|1/2 Ra

b
cd

ε(c<d)(r<s)dxr ∧ dxs
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and

dxa ∧ dxb ∧ ∗θab = Rab
cd |g|1/2ε(c<d)(r<s)dxa ∧ dxb ∧ dxr ∧ dxs

= Rab
cd |g|1/2εabrsε(c<d)(r<s)dx0 ∧ dx1 ∧ dx2 ∧ dx3

= Rab
cdεabrsε(c<d)(r<s) ∗ 1 = 2Ra<b

cdεabrsε(c<d)(r<s) ∗ 1

= 2Ra<b
ab ∗ 1 = Rab

ab ∗ 1 = R ∗ 1

Thus

R ∗ 1 = dxa ∧ dxb ∧ ∗θab

Problems

14.1(1) Verify (14.9).

14.1(2) Show that for any p-form β p

(Divβ p)K = β jK
/j = |g|−1/2∂/∂x j(|g|1/2β jK )

14.1(3) Note that if f and g are functions then ∇2 f = −d∗d f and if M is compact
( f, ∇2g) = ∫

M f∇2g ∗ 1. Apply Equation (14.14) in the case when Mn is a
compact manifold with boundary to obtain Green’s theorem∫

M
( f∇2g − g∇2 f) ∗ 1 =

∫
∂M

f ∗ dg − g ∗ d f

14.1(4) Show that (14.17) does imply conservation of charge.

14.2. Harmonic Forms

Among all closed forms with a given set of periods, which one has the smallest global norm?

14.2a. The Laplace Operator on Forms

In R
n with cartesian coordinates, the Laplacian of a function f is the familiar ∇2 f =∑

(∂2 f/∂xi∂xi ). We have given two equivalent invariant expressions for ∇2 on a Rie-

mannian manifold in Equations (2.89) and (11.29).

The Laplacian of a p-form field is a more complicated matter. Consider a vector

field A. In R
n with cartesian coordinates, one could define ∇2A to be the vector field

whose components (∇2A)i = ∑
j (∂

2 Ai/∂x j∂x j ) are simply the Laplacians of the

components of A, considered as functions. In R
3 this can be expressed in the usual

form found in physics books,

∇2A = grad div A − curl curl A (14.21)

We can write this expression in intrinsic form if we consider the covector α1 associated

to A, instead of A itself. Note first that from Equation (14.15)

d∗α1 = − div A
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and so the covariant version of the first term in (14.21) is −dd∗α. Furthermore, dα1

is the 2-form version of curl A. For any 2-form β2 = i(B) vol we have, from (14.12),

d∗β2 = (−1)(3)(3)+1 ∗ d ∗ β2 = ∗d ∗ β2. ∗β2 is the 1-form version of B and so d ∗ β2 is

the 2-form version of curl B and ∗d ∗ β2 is the 1-form version of curl B. Thus −d∗dα1

is the 1-form version of −curl curl A. Finally then (14.21) has as covariant version

∇2α1 = −(dd∗ + d∗d)α1

We shall define the Laplace operator 
 on p-form by the negative of the preceding,

that is,


 :

p∧
→

p∧
by 
 := dd∗ + d∗d (14.22)

Occasionally we shall write ∇2 := −
.

Note that from d2 = 0 and ∗ ∗ = ±1, we have

d∗d∗ = ±(∗d∗)(∗d∗) = 0 and so


 = (d + d∗)2 (14.23)

In Problem 14.2(1) you are asked to show the following in R
3, using brief explanations

as we did in deriving part 6 in the following


 in R
3

1. d∗ f 0 = 0.

2. d∗α1 = − div A.

3. d∗β2 = d∗iB vol3 = ∗icurlB vol3 is the 1-form version of curl B.

4. d∗γ 3 = d∗(∗g0) = − ∗ dg is the 2-form version of − grad g.

5. 
 f 0 = −∇2 f 0.

6. 
α1 is the 1-form version of curl curl A − grad div A.

7. 
β2 = is the 2-form version of curl curl B − grad div B.

8. 
(∗ f 0) = − ∗ (∇2 f ).

14.2b. The Laplacian of a 1-Form

Let α1 = ai dxi be a 1-form on a Riemannian Mn . We shall compute a coordinate

expression for 
α = (dd∗ + d∗d)α. First

dα =
∑
i< j

(∂i a j − ∂ j ai )dxi ∧ dx j =
∑
i< j

(a j/ i − ai/j )dxi ∧ dx j

=:
∑
i< j

ci j dxi ∧ dx j

(d∗c) j = −ci
j/ i = −a j

/ i
/ i + ai

/j i

where we have put

a j
/ i = gika j/k
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Thus

(d∗dα) j = −a j
/ i

/ i + ai
/j i

Also

d∗α = −ar
/r

and so d(d∗α) = −ai
/ i j dx j , that is, (dd∗α) j = −ai

/ i j . Thus

(
α) j = −a j
/ i

/ i + ai
/j i − ai

/ i j

By Ricci’s identity (11.23)

(
α) j = −a j
/ i

/ i + ak Ri
ki j = −a j

/ i
/ i + ak Rkj (14.24)

We conclude


α = (−a j
/ i

/ i dx j ) + (ak Rk
j dx j ) (14.25)

The first term in (14.24) looks, at first glance, as if we are taking the negative of the

usual Laplacian of the component function a j , but this is not so since a j/ i = ∂i a j −ak�
k
i j ,

and this connection coefficient would not occur in the covariant derivative of a function.

The first term in (14.25) is sometimes called a “rough” Laplacian, written ∇̃∇̃α. It differs

from the Laplacian 
α (defined first by Kodaira and independently by Bidal and de

Rham) by the second term in (14.25), which does not involve any derivatives of α!

(
α) j = −(∇̃∇̃α) j + ak Rk
j (14.26)

(14.25) and (14.26) are called Weizenböck formulae.

14.2c. Harmonic Forms on Closed Manifolds

Let Mn be a compact Riemannian (rather than pseudo-Riemannian) manifold. Then

the global inner product (,) is positive definite, for

(α p, β p) =
∫

M
α ∧ ∗β =

∫
M
〈α, β〉 ∗ 1

and at the pole of a geodesic coordinate system 〈α, α〉 = ∑
(aL⇁)2. Thus (α, α) ≥ 0,

and vanishes only if α vanishes identically.

We say that a form α p is harmonic if 
α = 0. For a function (i.e., 0-form) this

reduces to the usual notion.

Let Mn be a closed manifold. If we again denote the formal adjoint of an operator A
on forms by A∗, then since 
 = (d +d∗)(d +d∗), we see that 
 is formally self-adjoint,

∗ = 
. Furthermore,

(
α p, α p) = (dd∗α + d∗dα, α) = (d∗α, d∗α) + (dα, dα) =‖ dα ‖2 + ‖ d∗α ‖2

which is ≥ 0 in our Riemannian case. Thus


α = 0 iff dα = 0 and d∗α = 0 (14.27)

Harmonic forms on a closed manifold are both closed and coclosed!
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This is far different from the situation in R
n . For example, a closed 0-form is simply

a constant function, yet harmonic functions in R
n need not be constant; the real part of

any complex analytic function in the plane is harmonic!

The Laplace operator 
 :
∧p → ∧p

is an elliptic operator on a Riemannian

manifold (for the notion of ellipticity and for the proof of Hodge’s theorem later, see

[Wa, chap. 6]); the main ingredient is that the metric tensor is positive definite. In

Minkowski space, however, the Laplacian of a function becomes the d’Alembertian


 f = ∂2 f

∂t2
− ∇2 f

where ∇2 is the spatial Laplacian; 
 in this case is the wave-operator and is hyperbolic.

Difficult results in elliptic operator theory are needed for the following fundamental

result:

Hodge’s Theorem (14.28): Let Mn be a closed Riemannian manifold. Then the
vector space of harmonic p-forms

H
p =

{
h ∈

p∧
|dh = 0 = d∗h

}

is finite-dimensional, and Poisson’s equation


α p = ρ p

has a solution α iff ρ is orthogonal to Hp

(ρ p, h p) = 0 for all h p ∈ H
p

The finite dimensionality of Hp is a deep result on elliptic operators on closed manifolds.

On the other hand, it is easy to see the necessity of the condition on ρ in order that there

be a solution to Poisson’s equation; if 
α = ρ, then for h ∈ H
p,

(ρ, h) = (
α, h) = (α, 
∗h) = (α, 
h) = 0

The deep part is showing the sufficiency of this condition. Note also that in the case

p = 0, that is, when we are dealing with functions, the harmonic function h is then a

constant, and the condition on ρ is simply that∫
M

ρ voln = (ρ, 1) = 0

that is, ρ must have mean value 0 on M . This is of course necessary since∫
M


α0 voln = −
∫

M
div(grad α0) voln = 0

by the divergence theorem.

Suppose now that β p is an arbitrary p-form on the closed Mn . Let h1, h2, . . . , hr be

an orthonormal basis for the harmonic forms H
p. Then

β −
∑

j

(β, h j )h j =: β − h
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is orthogonal to Hp and so, by Hodge’s theorem, we can solve


α p = β p − h p

for α p. In other words, for any β p on Mn we can write

β p = d(d∗α p) + d∗(dα p) + h p (14.29)

Thus, any p-form β on the closed Mn can be written as the sum of an exact form d(d∗α)

plus a coexact form d∗(dα) plus a harmonic form. Hence

p∧
= d

p−1∧
+ d∗

p+1∧
+ H

p (14.30)

Note further that the three subspaces are mutually orthogonal

(dγ, d∗μ) = (dγ, h) = (d∗μ, h) = 0

(14.30) is called the Hodge decomposition of
∧p

.

Note that the decomposition (14.30) is unique. If we write β = dγ + d∗μ + h =
dγ ′+d∗μ′+h′, then orthogonality gives dγ −dγ ′ = 0, d∗μ−d∗μ′ = 0, and h−h′ = 0.

Note also that we are not saying, for example, that γ is unique, for clearly we can add

to γ p−1 any closed (p − 1)-form; we are only saying that dγ is a unique summand.

At first glance it might appear that (14.30) is a triviality, for we can see immediately

that H
p is the orthogonal complement in

∧p
to the direct sum of the exact and coexact

forms; if for some p-form h, (dγ, h) = 0 and (d∗μ, h) = 0 for all γ and μ, then indeed

d∗h = 0 = dh and so h is harmonic and thus [d
∧p−1 +d∗ ∧p+1

]⊥ = Hp. However,
∧p

is an infinite-dimensional space, and in infinite dimensions it is not necessarily true that

if A is a subspace then A+ A⊥ is the entire space! It is true that if A is a closed subspace

of a Hilbert space, then A+A⊥ is the entire space. Thus to get the decomposition (14.30)

one might first complete the pre-Hilbert space
∧p

to a Hilbert space, say the square

integrable forms on Mn; we would have to consider forms that are not even continuous,

and for such forms d is not defined! In any case [d
∧p−1 +d∗ ∧p+1

] would not be a

closed subspace. All these difficulties can be overcome by invoking elliptic operator

theory, and we refer the reader again to [Wa] for this difficult material.

In the case of a closed 3-manifold we have β1 = dφ0 + d∗μ2 + h1, that is,

B = grad φ + curl M + H

that is, a smooth vector field can be written as the sum of a gradient, a curl, and a vector

field that has both vanishing curl and divergence. Thus it is true that any vector field B
can be written as the sum of a vector field with vanishing curl and a vector field with

vanishing divergence. This version is also true in the noncompact R
3, at least when the

growth of B at infinity is controlled; this is the classical Helmholtz decomposition,

which is so useful in vector analysis.

14.2d. Harmonic Forms and de Rham’s Theorem

We now have the following picture illustrating the orthogonal Hodge decomposition

on a closed manifold.
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d
p +1∗∧

closed

H

d
p

p

−1∧

h( )β

β

co-closed

Figure 14.1

Any p-form β may be written in the form β p = dα p−1 + d∗γ p+1 + h p where h is

harmonic. In particular, since the decomposition is orthogonal,

Corollary (14.31): If β p is closed, dβ p = 0, on a closed manifold Mn, then

β p = dα p−1 + h p

where h p is harmonic.

Now β and β − dα are in the same de Rham class. Thus

Corollary (14.32): In each de Rham class [β] there is a unique harmonic repre-
sentative h(β). Thus there exists a unique harmonic p-form with bp prescribed
periods on a homology basis for the real p-cycles on Mn.

Riemann was aware of this in the case of a closed surface. A “proof” goes along

the following lines. Assume that one has a closed p-form β p on a closed manifold

Mn . (Closed 1-forms on an M2 with prescribed periods are easy to construct, as we

did in Section 13.4b.) The 1-parameter family of forms β p(ε) := β p + εdα p−1 are

closed, with the same periods, for all (p − 1)-forms α. This yields a variation of β with

δβ = dα. Suppose that β is the closed form with the prescribed periods whose norm is
a minimum. Dirichlet’s principle presumed that such a minimum norm element had to

exist. Look then at the first variation as we vary α

0 = δ(β, β) = 2(δβ, β) = 2(dα, β) = 2(α, d∗β)

Since this holds for all α we conclude that β is not only closed, it is coclosed, d∗β = 0,

and thus harmonic!
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It was pointed out by Weierstrass that Dirichlet’s principle was not always reliable,

and thus the indicated proof is defective.

Note that the (difficult) Hodge decomposition justifies the norm claim since ‖ β ‖2=
‖ dα ‖2 + ‖ h ‖2 shows that in the de Rham class [β], the harmonic representative h
has the smallest norm!

14.2e. Bochner’s Theorem

Let us say that Mn has positive Ricci curvature if the Ricci tensor is positive definite,

Ric(X, X) = Rik Xi Xk > 0 for all X �= 0

This is a weaker condition than positive (sectional) curvature since this quadratic form

represents a sum of sectional curvatures (see (11.67)).

Bochner’s Theorem (14.33): If the closed Riemannian Mn has positive Ricci
curvature, then a harmonic 1-form must vanish identically, and thus M has first
Betti number b1 = 0.

P R O O F: Let us compute, with Bochner, the Laplacian of the square of the point-

wise length 〈h, h〉 = hi hi of any harmonic 1-form h. First,

[grad〈h, h〉] j = 2hi/j h
i

and so

∇2 1

2
〈h, h〉 = (hi

/j hi )/j = hi
/j

/j h
i + hi

/j hi
/j

= hi
/j

/j h
i + hi/j h

i/j

By (14.25) we have, since 
h = 0, hi
/j

/j = hk Rki , and thus

∇2 1

2
〈h, h〉 = Ric(h, h) + hi/j h

i/j ≥ Ric(h, h) ≥ 0

But then 0 = ∫
M ∇2(1/2)〈h, h〉∗1 ≥ ∫

M Ric(h, h)∗1 shows, since Ric is positive

definite, that h = 0.

Bochner’s theorem should be compared to Synge’s corollary (12.14). Before doing

so, we need a general observation about closed curves.

A closed (oriented) curve C on Mn represents an element of the first homology

group H1(M; G) for any coefficient group G. If C is contractible to a point, then in the

process of shrinking, the curve will sweep out a surface, of which it is the boundary. In

other words, if a closed curve can be contracted to a point then this curve bounds, that

is, trivial as a 1-cycle. (In particular, if M is simply connected, then H1(M; G) = 0.)

The converse is not true.
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C
M

Figure 14.2

The edge C of the punctured torus M is clearly the boundary of the surface M , and

so is homologically trivial, but it seems rather clear (and can be proved) that C cannot

be shrunk to a point because of the presence of the “hole.”

As far as Betti numbers are concerned then, Bochner’s theorem is stronger than

Synge’s corollary since positive Ricci curvature is weaker than positive sectional cur-

vature, and also we do not require even dimensionality nor orientability, but it should

be kept in mind that simple connectivity is a stronger notion than b1 = 0.

Problems

14.2(1) Derive all those equations (1) through (8) that have not been discussed previ-
ously.

14.2(2) Show that 
 commutes with d, d∗, and ∗.

14.2(3) Show that if Mn is closed and orientable then bp = bn−p. This is a special case
of Poincaré duality. Why do we need orientability? Illustrate with b0 for the
2-torus and the Klein bottle.

14.3. Boundary Values, Relative Homology, and Morse Theory

What does topology have to do with the existence and uniqueness of physical fields?

The prime example of a manifold with boundary is the case of a bounded region in

R
3 with smooth boundary. If a fluid fills such a domain, with smooth walls forming

the boundary, then the velocity vector field v is tangent to the boundary. If the flow is

incompressible, then the velocity field has divergence 0. If further the flow is irrotational,

then the velocity has curl 0 and the resulting velocity 1-form field ν is harmonic. We

are interested in the existence of such fields and we shall find that with some type of

prescribed topological restriction the solution becomes unique.

Note that in a compact manifold with boundary, Equation (14.14) shows that the

operators d and d∗ are not necessarily adjoints, and it is no longer true that 
α = 0
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iff dα = 0 = d ∗ α. Furthermore, 
 is no longer self-adjoint. For physical problems

involving forms we shall reserve the term harmonic field for forms that satisfy

dα = 0 = d∗α

Thus a harmonic 0-field is constant, whereas a harmonic function, that is 0-form, of

course, need not be.

14.3a. Tangential and Normal Differential Forms

Let Mn be a compact Riemannian manifold with boundary.

A form α p on M is said to be normal to ∂ M , or simply normal, provided the restriction

i∗α of α to the boundary vanishes, i∗α = 0

where i : ∂ M → M is the inclusion map. Recall that this simply means that α(v, . . . , w)

= 0 when v, . . . , w are all tangent to ∂ M . If we suppose that ∂ M is locally defined in

the coordinate system x1, . . . , xn by putting xn = 0, then

α p is normal iff α p = dxn ∧ γ p−1

for some form γ .

For example, a 1-form α1 is normal provided α1 = an(x)dxn (no sum!) at points of

∂ M . If T is tangent to ∂ M , then 0 = α(T) = 〈a, T〉 shows that

α1 is normal iff a is normal to ∂ M

where a is the contravariant version of α1. If, however, βn−1 is an (n −1)-form, βn−1 =
iB voln , then β is normal provided β(T2, . . . , Tn) = voln(B, T2, . . . , Tn) = 0 for

tangent Ti ; and so

βn−1 = iB voln is normal iff B is tangent to ∂ M

A form α p is said to be tangent to ∂ M , or simply tangent, provided ∗α is normal,

i∗ ∗ α = 0.

Thus

α1 is tangent iff a is tangent to ∂ M

while

βn−1 = iB voln is tangent iff B is normal to ∂ M

Note that from the remark following (14.14), d∗ is the adjoint of d if we restrict

ourselves either to tangential or to normal forms!

In the following we shall quote, without proofs, the versions of Hodge’s theorem

that have immediate applications to physical problems. My principal guide for the ap-

plications has been the mimeographed NYU notes [B, F, G] by A. Blank, K. Friedrichs,

and H. Grad of 1957. For the (difficult) mathematics of harmonic forms on manifolds

with boundary, the reader may consult [D, S] and [Fk].
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14.3b. Hodge’s Theorem for Tangential Forms

Theorem (14.34): Let Mn be a compact manifold with boundary. Let z1, . . . , zbp

be a basis for the pth homology vector space Hp(M; R). Then there exists a unique
tangent harmonic p-form field α p

dα p = d∗α p = 0

with prescribed periods
∫

z α p on the given basis.

In other words, Hodge’s original theorem holds for tangential harmonic fields in the

case of a manifold with boundary!

Example 1: Let v be the velocity field for a steady incompressible, irrotational fluid flow

inside a closed surface V 2 of genus g. As we have seen, ν1 is harmonic, dν = d∗ν = 0,

and ν is tangent to ∂ M .

M

M

1 2

2V

z z

3

= ∂

Figure 14.3

We shall illustrate the case for genus 2. M3 is the solid “pretzel,” and ∂ M is the surface

of genus 2. It should be rather clear that a homology basis for H1(M; R) is given by

the two indicated 1-cycles circling the “holes.” The period of ν1 on a 1-cycle z,
∫

z ν1,

is called the circulation of v around z. Thus Hodge’s theorem yields the following

corollary, known to W. Thomson (Lord Kelvin).

Corollary (14.35): There exists a unique incompressible irrotational flow inside
a surface of genus g with prescribed circulations around the g holes.

In particular, if all circulations vanish, then the fluid must be at rest! This is the only

possibility in the case of a spherical surface since the solid ball has first Betti number 0.

Example 2: Let M3 be the region inside a closed conducting surface V0 and outside
closed conducting surfaces V1 and V2.
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Figure 14.4

We have drawn the case when V0 is a large ellipsoid, V1 is an interior 2-sphere, and

V2 is an interior 2-torus. Consider an electrostatic problem in which there are no charges

inside M3; of course there may be charges interior to V1 and/or V2 or exterior to V0.

Then the electric field inside M3 satisfies d∗E = 4πσ 3 = 0 and d∗∗E = ∗d ∗ ∗E =
∗dE1 = ∗[−∂B2/∂t] = 0, and so ∗E is a harmonic 2-form in M3. Since a tangential

component of E would give rise to currents, that is, moving charges, in a conductor, the

natural boundary condition for electrostatics is that E be normal to conducting surfaces.

Thus ∗E is a tangent harmonic 2-form field in M3.

Note that ∂ M3 = V0 +V1 +V2, and thus a plausible (and correct) basis for H2(M3; R)

is, for example, V1 and V2. Thus there exists a unique electric field in M3 with prescribed

periods
∫ ∫ ∗E over V1 and V2. But the integral of ∗E over Vi is 4π Qi , where Qi is the

total charge inside Vi .

Corollary (14.36): There exists a unique static electric field E in M3 with preas-
signed charges in the cavities V1 and V2. The field is thus independent not only of
charges outside V0 (“shielding”), but also of the exact placement of the charges
in V1 and in V2.

We should mention that Theorem (14.34) is a special case of a more general result.

First recall that to say that α p is “tangent” is to say that the restriction i∗(∗ α) of ∗α to

the boundary vanishes. More generally, we could ask for a harmonic field α p that has

prescribed periods and such that i∗(∗ α) is a prescribed form γ n−p on ∂ M . The special

case γ = 0 would make α a tangent form. We must put some restrictions on the form
γ for the following reason. On ∂ M we have dγ = di∗ ∗ α = i∗d ∗ α = 0, since α is

coclosed. Hence γ is closed. Furthermore, γ is only defined on ∂ M , but suppose that

zn−p is a cycle on ∂ M that bounds in M, that is, i∗z = ∂c, for some (n − p + 1)-chain c
on M . Then since the integral of γ over z is the same as the integral of ∗ α over z, this

integral must vanish, ∗ α being closed on M . The following notion is due to A. Tucker.

Definition (14.37): An admissible boundary value form γ r on ∂ M is a closed
form on ∂ M whose integral vanishes on every cycle zr on ∂ M that bounds on M .
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The generalization of (14.34) is as follows. (For more along these lines see [D, S].)

Theorem (14.38): There exists a unique harmonic field α p on M with prescribed
periods and whose dual ∗ α restricts on ∂ M to a prescribed admissible boundary
value form γ n−p.

The uniqueness of α is simple (and was known to Lord Kelvin in the case p = 1).

PR O O F O F U N I Q U E N E S S: Let α p be a solution and suppose β p is another with

the same periods and whose dual ∗ β has the same boundary values i∗ ∗ β = γ .

Then μ := α−β is a tangent harmonic field with 0 periods. Since dμp = 0, μp =
dν p−1 for some ν (this is elementary if p = 1; otherwise it requires de Rham’s

theorem). We wish to show that dν = 0. But

(dν, dν) =
∫

M
dν ∧ ∗dν =

∫
∂ M

(ν ∧ ∗dν) ±
∫

M
ν ∧ d ∗ dν

Since μ = dν is tangent, ∗ dν is normal and the boundary integral vanishes. Also

d ∗ dν = d ∗ μ = 0 since μ is harmonic.

14.3c. Relative Homology Groups

The topological “cycles” that we have been involved with so far are called absolute
cycles. Given a compact manifold Mn perhaps with boundary we can define a

relative p-cycle (mod ∂ M)

to be a p-chain on M whose boundary, if there is one, lies on ∂ M . Of course every

(absolute) cycle is also a relative cycle.

C
C

C

1
2

3

Figure 14.5

In Figure 14.5 the curves C1, C2, and C3 are all relative 1-cycles (mod ∂ M =
V0 + V1 + V2). We shall systematically disregard any chain that lies on ∂ M . That is
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why we may think of a relative cycle as a cycle; we may disregard its boundary since

it lies on ∂ M .

We shall say that two relative p-cycles c and c′ are homologous (mod ∂ M) provided

they differ by a true boundary plus, perhaps, a p-chain that lies wholly on ∂ M ; in other

words, a relative boundary is an absolute boundary plus any chain on ∂ M

c′
p ∼ cp if c′

p − cp = ∂wp+1 + vp, where vp ⊂ ∂ M

Figure 14.6

In Figure 14.6 we have drawn three more curves F1, F2, and F3, all lying on ∂ M ,

and also an oriented 2-chain W 2. Clearly ∂W = −C1 + F1 + C3 + F2 + C2 + F3. But

the F curves all lie on ∂ M , and so we may say

∂W = −C1 + C3 + C2 (mod ∂ M)

We could then say that C3 is homologous to C1 − C2 (mod ∂ M)

C3 ∼ C1 − C2 (mod ∂ M)

Thus only C1 and C2 are independent relative cycles. (Of course we could have used

C1 and C3, say.) Are there any more?

z

Figure 14.7
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Consider the absolute 1-cycle z that threads through the toroidal hole. It is an absolute

cycle of M that does not bound in M . However, as a relative 1-cycle it is trivial, that

is, it bounds, since it is easily deformed in M to lie on the torus V2 ⊂ ∂ M .

It can, in fact, be shown that C1 and C2 form a basis for the relative homology
group, H1(M, ∂ M; R), defined to be the relative cycles modulo the relative boundaries

H1(M, ∂ M; R) = RC1 + RC2

14.3d. Hodge’s Theorem for Normal Forms

Theorem (14.39): Let Mn be a compact manifold with boundary. Let c1, . . . , cr

be a basis for the relative p-cycles of M (mod ∂ M)

Hp(M, ∂ M; R) = Rc1 + · · · + Rcr

Then there exists a unique normal harmonic p- form α p with prescribed periods∫
ci

α p

Note that if c′ ∼ c(mod ∂ M), that is, if c′ − c = ∂w p+1 + u p, where u lies on ∂ M ,

then if α p is closed and normal∫
c′

α −
∫

c
α =

∫
u
α = 0

since α p = 0 when α is restricted to ∂ M! Thus the indicated periods do not change
when a ci is replaced by a homologous c′

i .

Example 2′: In Example 2 earlier, consider the electric field 1-form E1 for the elec-

trostatic field. It is a harmonic normal 1-form on M3. Thus we may prescribe the line

integrals
∫

C1
E1 and

∫
C2

E1. This means that instead of the charges in V1 and V2, the

electric field in M3 is uniquely determined equivalently by prescribing the electrostatic
potential differences between the “inside” and the “outside” conductors!

Example 1′: In Example 1, we may consider the velocity vector v as defining a 2-form

β2 = iv vol3. This is then a normal harmonic 2-form on M3.

Figure 14.8
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It should be “clear” that a basis for H2(M, ∂ M; R) is given, say, by the two discs

w1 and w2. Thus the harmonic normal β2 is determined by prescribing the fluid fluxes∫
wi

β2 = ∫
wi

v • dS, i = 1, 2, rather than the two circulations.

14.3e. Morse’s Theory of Critical Points

We give here another application of relative homology groups. We shall not need these

results for later portions of this book and so this section can be omitted, but this subject

forms one of the most outstanding mathematical contributions in the twentieth century.

We shall be very brief, referring the reader to Milnor’s book [M] and Bott’s expository

paper [Bo] for more details and applications.

0

Figure 14.9

We have indicated here the height function f = z on a bumpy torus. The critical

points are at levels 0 (minimum); 1, 2, and 3 (saddles); and 4 and 5 (maxima). For any

manifold Mn with smooth real-valued function f , let us put

Ma : = {x ∈ M | f (x) ≤ a}
M−

a : = {x ∈ M | f (x) < a}
We define

a value a of the function f as homotopically critical if some relative homology

group Hi (Ma, M−
a ) is nonzero.

(For simplicity we shall use the real numbers R for coefficient group, but any coefficient

field can be used.) We claim that the homotopically critical values in our example are

exactly the critical values in the sense of Section 1.3d. Thus in this example the critical
values are precisely the levels at which new relative cycles appear as we move “up”

the manifold from the minimum to the maximum.
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In our torus example, the relative maximum at level z = 4 has H2(M4, M−
4 ) = R and

we have exhibited a 2-disc e2 at the critical point that is a generator for this homology

group. We shall “prove” this later, but it should be plausible since any effort to slide

this disc entirely into the lower region M−
4 will require the boundary of the disc (which

lies below z = 4) at some time to pass through the critical point; that is, the boundary

will have to leave the lower region at some time. It should be clear that any 1-disc or

0-disc (point) on the level M4 can be pushed away from the critical point into the lower

region, so that Hi (M4, M−
4 ) = 0 for i �= 2.

At a noncritical level b, say z = 2.5, it is “clear” that any chain on Mb can be pushed

into M−
b by a deformation along the negative gradient lines, similar to the Morse

deformation of Section 2.1e. Thus Hi (M2.5, M−
2.5) = 0. In fact, if the regions Ma are

all assumed compact, and if there are no critical points x0 with d + ε ≥ f (x0) ≥ c − ε,

then it can be shown that a modified Morse deformation (which does not move points

x with f (x) ≤ c − ε) can deform Md diffeomorphically into Mc.

At the level z = 3, it is again “clear” that the part of any chain away from the saddle

point can be pushed down by following the negative gradient lines, but the critical point

itself remains fixed. There is no continuous way to push the entire indicated 1-disc

e1 below level z = 3; H1(M3, M−
3 ) = R with generator e1 and the value 3 is again

homotopically critical.

We have also indicated the remaining disc generators at the other homotopically

critical levels. At the minimum we have a 0-disc (point) since M−
0 is empty. We have

verified our claim.

Note that the height function on the 1-dimensional manifold pictured

z

x

Figure 14.10

has a critical point at z = 0, an inflection point, but it is clear that this does not yield

a homotopically critical value since any chain on z ≤ 0 can be slid below z = 0.

In a sense this critical point is inessential since a slight change in the function, say

by tilting the z axis very slightly (in the “correct” direction), will remove the critical

point. In our toral example all the ordinary critical values are homotopically critical,
and vice versa, and in fact as we shall see, this is true whenever the critical points are
nondegenerate in the sense of having nonsingular Hessian matrices of second partial

derivatives Hi j = (∂2 f/∂xi∂x j ),

det(Hi j ) �= 0.
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In this nondegenerate case we can, with Morse, write down the dimension of the

nontrivial relative cycle at the critical point as follows. Since the Hessian is nonsingular,

there is a maximal subspace of the tangent space at the critical point on which H is

negative definite, Hi jv
iv j ≤ 0. In terms of a Riemannian metric we are looking at the

sum of the eigenspaces corresponding to the negative eigenvalues of Hi
j = gik Hkj . The

dimension of the resulting subspace is called the (Morse-) index of the critical point,

λ := number of negative eigenvalues (counted with multiplicity) and represents crudely

the dimension of the space of directions, at the critical point, in which the function is
decreasing. Then the relative cycle is the λ-cell eλ starting out tangent to the subspace.

(We shall indicate in our next paragraph why eλ does not bound as a relative cycle.)

For example, for the critical point at level 4, we can introduce new local coordinates

x, y (with origin at the critical point) on the torus such that f = z = 4 − x2 − y2+
higher order, and so the Hessian is negative definite on the entire tangent space to T 2

at the critical point, the index is λ = 2, and the disc x2 + y2 < ε2 is the required

generator for ε sufficiently small. For the critical point at level 3, in local coordinates

f = z = 3 − x2 + y2+ higher order, the Hessian has the new x axis for negative

eigenspace, the index is λ = 1, and x2 < ε2 is the generating 1-disc.

Let us indicate why, for example, the relative 1-cycle e1 at level f = 1 is not
trivial. First note that near the critical point f = 1 − x2 + y2+ higher order. The

Morse lemma [M, p. 6] states that near a nondegenerate critical point, one may always

introduce coordinates so that f becomes exactly this form with the higher order terms

removed; thus in new coordinates, which we shall again call x, y, f is exactly

f (x, y) = 1 − x2 + y2

Look then at g(x, y) := f (x, y) − 1 = −x2 + y2. We are interested in relative cycles

of the region f ≤ 1 mod f < 1. Away from the critical point x = 0 = y any chain on

f ≤ 1 can be pushed down into f < 0, and so discarded. We are then only interested

in f ≤ 0 near the critical point. In terms of the new coordinates we may deal with

relative cycles on g = y2 − x2 ≤ 0, that is, the shaded region in Figure 14.11.

e1

e0

1

x x

y

y

∗

Figure 14.11
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Now any chain on this shaded region y2 ≤ x2 can be deformed to lie on the x axis,

with no point (x, y) with g < 0 ever leaving g < 0. Thus we are reduced to chains

on the segment of the x axis with |x | ≤ 1 modulo x �= 0. But x �= 0 on this segment

can be pushed into the boundary x = ±1. Thus we are interested in the relative cycles

of the segment |x | ≤ 1 modulo the boundary points. In the case of a critical point of

index λ we are interested in the relative homology of a closed λ-disc Bλ modulo its

boundary (λ − 1)-sphere Sλ−1. This rather clearly (as we shall see in Problem 22.3(3))

has only one nontrivial generator, Bλ, Hλ(Bλ, Sλ−1) = RBλ. In our toral case the only

nontrivial generator of relative homology at the level f = 1 is the indicated 1-cell e1,

as claimed.

The fact that the nondegenerate critical points are homotopically critical, and so

have topological significance, allowed Morse to give relations between the number of

critical points on M and the Betti numbers of M . Briefly we can proceed as follows.

Introduce the λth Morse type number

mλ := number of critical points of index λ

For bookkeeping purposes only we form the formal polynomial in a variable t with the

type numbers as coefficients, the Morse polynomial

M(t) :=
n∑

λ=0

mλtλ

We also have the Betti numbers bλ = dim. Hλ(M; R) and the formal Poincaré poly-
nomial

P(t) :=
n∑

λ=0

bλtλ

Morse’s Theorem (14.40): Let Mn be a closed manifold and f : M → R a
smooth function with only nondegenerate critical points. Then the Morse poly-
nomial dominates the Poincaré polynomial; there is a polynomial Q(t) with
nonnegative coefficients and

M(t) − P(t) = (1 + t)Q(t)

In particular we have the “weak” Morse inequalities

mλ ≥ bλ

and equality

n∑
λ=0

(−1)λmλ =
n∑

λ=0

(−1)λbλ

In particular, the total number of critical points on M is bounded below by the sum of
all the Betti numbers.
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In our toral example b0 = 1 = b2 and b1 = 2, while m0 = 1, m1 = 3, and m2 = 2

and

M(t) − P(t) = (1 + 3t + 2t2) − (1 + 2t + t2) = t + t2 = (1 + t)t

By writing out Q(t) = ∑n−1
λ=0 qλtλ with qλ ≥ 0 it is not hard to see that we can

successively derive the

Strong Morse inequalities (14.41)

m0 ≥ b0

m1 − m0 ≥ b1 − b0

· · ·
mn − mn−1 + · · · ± m0 = bn − bn−1 + · · · ± b0

PR O O F S K E T C H O F (14.40): For simplicity we assume that there is only one

critical point at each critical level (this is generically so). At any level f = a
(critical or not) we shall consider the space Ma , the Morse polynomial M(Ma; t),
for this space, and the Poincaré polynomial, again just for this space, and we shall

observe how these polynomials change, 
P , and so forth, as we pass through

a critical point. It is clear, since topology changes only when passing through a

critical point, that 
M and 
P are nonzero only when passing through a critical

point.

Let M(t) and P(t) have the value 0 on the empty set, that is, below the absolute

minimum At the absolute minimum we have a point and its index is 0. Thus on

passing from the empty set to the set consisting only of the minimum point we

have 
M = 1 and 
P = 1. (We shall keep our toral example in mind.) As we

continue to higher values of f we see the following. Consider passing though a

critical point of index λ at f = a, with its associated relative cycle, a disc eλ of

dimension λ. There are two possibilities:

1. The boundary of this disc is a (λ − 1)-cycle (sphere) that bounds in M−
a . (In the toral

example the boundary of the 1-cell e1 from the saddle at f = 1 is a pair of points that

clearly bounds a 1-chain on M−
1 .) Let then ∂eλ = ∂cλ where c lies on M−

a . Then eλ − cλ

is an absolute cycle on Ma . It cannot bound in Ma ; if it did, eλ − cλ = ∂cλ+1 would

yield that eλ = ∂cλ+1 + cλ and so eλ would be a trivial relative cycle, a contradiction.

Thus in this case we have 
M = tλ and also 
P = tλ and so 
(M − P) = 0.

2. The boundary of the disc is a (λ − 1)-cycle (sphere) S on M−
a that does not bound in

M−
a . But this says that S is a nontrivial (λ − 1)-cycle on M−

a that bounds in Ma . Thus

in this case 
M = tλ and 
P = −tλ−1, and so 
(M − P) = tλ + tλ−1 = (1 + t)tλ−1.

These two cases show that on crossing a critical point of index λ, M − P changes

either by 0 or by (1 + t)tλ−1. Since M and P start out equal on the empty set we have

demonstrated (14.40).
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Note that in case (1) we can say that the relative cycle eλ on Ma mod M−
a is com-

pletable to an absolute cycle on Ma . In this case we have shown that 
(M − P) = 0.

Thus

Corollary (14.41): If all the relative cycles from all the critical points are com-
pletable, then the Morse inequalities are equalities, mλ = bλ.

In our toral example the 2-cell at level f = 4 is the only relative cycle that is not

completable. This is reflected in m2 = 2 > b2 = 1 and m1 = 3 > b1 = 2.

If some critical points are degenerate, the Morse inequalities need not hold. In

Problem 14.3(4) you will study a smooth function on the 2-torus T 2 that has only 3

critical points. (Of course there are always a max and a min on any compact space.)

A final comment. For a continuous, nondifferentiable function on a closed manifold

M we still have the notions of the absolute maximum and minimum values, but we

cannot talk about minimaxes since we don’t have partial derivatives at our disposal.

Note, however, that we may define a homotopically critical value as earlier. We can

also define a homotopically critical point to be a point y, at level f (y) = a, such that

some homology group Hi (M−
a ∪ {y}, M−

a ) �= 0.

Problems

14.3(1) Consider a conducting surface of genus g bounding a region M 3

Figure 14.12

Let there be constant current loops in the exterior region, some of which
thread through the holes. Assume that the appropriate boundary condition is
that the normal component of B must vanish on the surface. Show that there is
a unique static magnetic field inside M3, determined completely by the currents
in the loops that thread the holes.

14.3(2) Show that d sends normal forms into normal forms and that d∗ sends tangent
forms to tangent forms.
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14.3(3) Let
∧

nor be the normal forms, and let
∧

tan be the tangent forms. It can be
shown that the global orthogonal decomposition that replaces the Hodge de-
composition (14.30) is

p∧
= d

( p−1∧
nor

)
+ d∗

( p+1∧
tan

)
+ harmonic p-fields

Show that these subspaces are indeed orthogonal.

14.3(4) We have drawn in Figure 14.13 a few level curves of a smooth function f on
the torus T2 having a max at f = 2, a min at f = −2, and a single other critical
point (at the four identified corners) at f = 0. It is clear that the corner point is
critical since the level curves comprising f = 0 intersect there (and so grad f
must vanish there).

∗

∗ ∗

∗ ∗

∗

min

max

f = 0 f = 0f = 0

f = 0

f = 0

f = 1

f = −1

Figure 14.13

Continue this picture periodically in the plane so that the corner point is at
the center. Show that from this center there are three directions for which the
function decreases as one leaves the critical point, each pair being separated
by a direction in which the function is increasing. This shows that the critical
point is degenerate. This critical point is of the type of a monkey saddle; see
[M, p. 8]. Find two independent relative 1-cycles in H1(T 2

0 ; T 2
0− ) emanating from

this critcal point. (In a sense, then, this critical point counts as 2 critical points
of index 1 each.)

14.3(5) Prove Morse’s lacunary principle: if in the nondegenerate case we have mλ−1

= 0 = mλ+1 for some λ, then mλ = bλ. (Hint: Write out the polynomial equation
M(t) − P(t) = (1 + t)Q(t) explicitly.)
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CHAPTER 15

Lie Groups

15.1. Lie Groups, Invariant Vector Fields and Forms

Is the unitary group SU (n) connected?

15.1a. Lie Groups

Let M(n ×n) be the set of all n ×n real matrices. As in Section 1.1d, we shall associate

to the matrix x the point in n2-dimensional euclidean space whose coordinates are

x11, x12, . . . , xnn . Topologically then, M(n × n) is simply euclidean n2 space! The

general linear group Gl(n, R) is the group of all real n × n matrices x = (xi j ) with

determinant det x �= 0. Since det x is an nth-degree polynomial in the coordinates, it is

a smooth function on M(n × n). Since the real numbers differing from 0 form an open

set in R, and since the inverse image of an open set under a continuous map is open,

Gl(n , R) is an open subset of M(n × n). (This says that if det x �= 0 then det y �= 0 if

y is sufficiently near x .) Topologically Gl(n, R) is an open subset of euclidean space,

and as such is an n2-dimensional manifold. It is clear from (xy)i j = ∑
xik yk j that the

product matrix has coordinates that are smooth functions of the coordinates of x and

y. From the formula for the inverse

x−1 = X

det x
where Xi j is the signed cofactor of x ji , and the fact that det x �= 0, we see that the

coordinates of x−1 are also smooth functions of those of x . This leads us to the concept

of a Lie group.

A Lie group is a differentiable manifold G endowed with a “product,” that is, a map

G × G → G (g, h) → gh

making G into a group. We demand that this map, as well as the “inversion map”

G → G g → g−1

be differentiable.

391



392 L I E G R O U P S

In the following examples, the reader should verify that the given manifolds are indeed

groups. For example, Gl(n, R) is a group because, first, det x �= 0 and det y �= 0 implies

det (xy) = (det x)(det y) �= 0, and second, det x−1 = (det x)−1 �= 0.

Examples:

1. G = R, the additive group of real numbers. The product here is addition of real

numbers. This group is commutative, or “abelian.”

2. G = R
+, the multiplicative group of positive real numbers. This is again abelian.

3. G = Gl (n, R), the general linear group of all n by n real matrices g with det

g �= 0. Similarly, we have the nonsingular complex matrices Gl(n, C). By writing

z jk = x jk + iy jk , we see that Gl(n, C) is a 2n2-dimensional open submanifold of

C
n2 = R

2n2

. The notation Gl(n) refers to either of the cases R or C. Gl(n) is not

abelian for n > 1.

4. G = Sl (n, R), the special linear group is the subgroup of Gl(n, R) of matrices x
with det x = 1. From Problem 1.1(3), we know that it is a submanifold of dimension

(n2 − 1). For any matrix group, the adjective special means that det x = 1.

5. G = O(n), the orthogonal group of all real n × n matrices x with xxT = I . (Thus

det x = ±1. ) O(n) is clearly a subgroup of Gl(n, R). In Section 1.1 we saw that

it is also a submanifold of dimension n(n − 1)/2. We also saw there that O(n) is

not connected, consisting of the subgroup SO(n), the rotation group, where det

x = +1, and the disjoint submanifold where det x = −1. We shall show in Example

(8) that, in fact, these two subsets are each connected. G = SO(2), the rotation group

of the plane, is especially easy to visualize. We are dealing with the matrices

R2(θ) =
[

cos θ − sin θ

sin θ cos θ

]
(15.1)

and as such, SO(2) is a curve parameterized by θ in R
4, defined by x11 = cos θ ,

x12 = − sin θ , x21 = sin θ , and x22 = cos θ . As a manifold this curve is diffeomorphic

to the circle S1 in the plane defined by x1 = cos θ and x2 = sin θ , and this is the way

we usually think of SO(2); to a rotation of the plane through an angle θ we associate

the point on the unit circle S1 at angle θ . Sometimes we think of SO(2) as the points

exp(iθ) = eiθ of the complex plane. To compose two rotations eiθ and eiφ we simply

multiply eiθeiφ = ei(θ+φ), that is, we add their angles. SO(2) is abelian, whereas

SO(n), for n > 2, is not.

6. G = U (n), the unitary group, consisting of complex n × n matrices z = (z jk)

with z† := zT = z−1. The overbar denotes complex conjugation; the dagger denotes

(hermitian) adjoint. The same type of argument that was used for O(n) in Section

1 will show that U (n) is a submanifold of complex n2 space or real 2n2 space, and is

thus a Lie group. We easily see that det z has absolute value 1. Note that U (1) is the

group of complex numbers z = eiθ of absolute value 1, and thus U (1) is isomorphic

with S1, that is, SO(2). U (1) is the only abelian unitary group.

7. G = SU (n) is the special unitary group; det z = +1.

8. G = T n is the abelian group of diagonal matrices of the form

z = diag[exp(iθ1), . . . , exp(iθn)] (15.2)
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This group is topologically S1 × · · · × S1, the topological product of n copies of the

circle, and as such is an n-torus. Since the circle is connected (each point can be

joined to the identity by a curve), it follows easily that T n is connected. From this we

may see that the far more complicated group U (n) is also connected! Before doing

so, we note the following.

As a manifold, a Lie group is very special for the following reason. A Lie group

always has two families of diffeomorphisms, the left and right translations. For

g ∈ G, these translations are defined by

Lg : G → G Lg(h) = gh

and (15.3)

Rg : G → G Rg(h) = hg

It is clear that the mapping inverse to Lg is simply Lg−1.

Theorem (15.4): U (n) is connected.

P R O O F: Note that T n is clearly a subgroup (and consequently a subset) of

U (n). The familiar “principal axes theorem” of linear algebra states that any

g ∈ U (n) can be diagonalized by a unitary matrix. (Proof: Each such g has

eigenvalues of absolute value 1. Let e1 be an eigenvector with eigenvalue

exp(iθ1). Let e⊥
1 be the orthogonal subspace to e1 in the Hermitian metric

〈v, w〉 = ∑
vkwk . Since g is an isometry, g sends e⊥

1 into itself and so g has

an eigenvector e2 in this subspace with eigenvalue exp(iθ2). Continue with this

process. In the eigenvector basis e1, e2, . . . , en, the linear transformation g has

matrix z = diag(exp(iθ1), . . . , exp(iθn)), as desired.) This means that given

g ∈ U (n), there exists an h ∈ U (n) such that h−1gh = z = diag(exp(iθ1), . . . ,

exp(iθn)). Then g = hzh−1. (This says that g ∈ (hT nh−1), i.e., g lies on the

diffeomorphic copy of T n that results from left translating T n by h and then

right translating by h−1.) Thus g can be joined to the identity by a curve, by

putting θ j (t) = (1 − t)θ j . U (n) is connected.

The subgroup T n of U (n) given by (15.2) is called a maximal torus of U (n). Any

conjugate hT nh−1 of this maximal torus is also called a maximal torus.

By the same type of reasoning we may deal with the rotation group.

Theorem (15.5): O(n) consists of two connected “components” and SO(n) is
the component holding the identity.

P R O O F: Consider first the case SO(2n). The principal axes theorem states

that any g ∈ SO(2n) is “conjugate” to a block “diagonal” matrix with 2 × 2

rotation matrices down the diagonal

g = diag[R2(θ1), . . . , R2(θn)] (15.6)

where R2(θk) is as in (15.1). This simply says that after a suitable orthogonal

change of basis in R
2n , the rotation takes on the form of rotations in n orthogonal

2-dimensional planes. In the case of SO(2n + 1) one adds a final diagonal
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entry of +1. We can arrive at this canonical form as follows. The possible real

eigenvalues of g ∈ SO(2n) are ±1, whereas the complex eigenvalues appear

in complex conjugate pairs. If +1 is an eigenvalue then it must be a double

eigenvalue since det g = 1. The eigenspace for this double eigenvalue is a 2-

plane E1 on which g takes the form R2(0). Likewise, if −1 is an eigenvalue, it

also must be a double root and we get a 2-plane E−1 on which g takes the form

R2(π). In both cases g leaves invariant the orthogonal complementary (2n−2)-

space. By continuing in this complementary subspace we either exhaust the

entire 2n-space or have left a remaining 2k-space R
2k on which g has only

complex eigenvalues. Let S2k−1 be the unit sphere in this subspace. The function

f (x) := 〈gx, x〉 takes on its minimum at some point x0 of the sphere. Now

gx0 does not lie along x0 since g has no real eigenvalue in R
2k . We claim

that the plane spanned by x0 and gx0 is sent into itself by g. By definition, g
sends x0 into this plane; where does it send gx0? Let x(t) be a curve on S2k−1

starting at x0 and put v = x ′(0). Then 0 = f ′(0) = 〈gv, x0〉 + 〈gx0, v〉 =
〈v, (gT + g)x0〉 = 〈v, (g−1 + g)x0〉 for all tangent v. Thus (g−1 + g)x0 = λx0

and so g2x0 = λgx0 − x0. Thus g sends g(x0) into the plane spanned by x0 and

gx0, as desired. But it is immediate that g takes the form R2(θ) on any invariant

2-plane. We may then continue with the complement of this plane in R
2k .

Finally, in the case SO(2n + 1), any g has +1 as an eigenvalue, with a

corresponding eigenvector. We proceed with the complementary R
2n as earlier.

We continue with the proof of Theorem (15.5). The collection of all rotations

of the form (15.6) (with a +1 included in the odd-dimensional case) forms again

an n-dimensional torus S1× · · · ×S1, a maximal torus T n of the rotation group.

One then proceeds as in the U (n) case to show that SO(n) is connected.

O(n) consists of the rotations SO(n) and the improper orthogonal matrices

O−(n) where the determinant is −1. But if we let h = diag(−1, 1, . . . , 1) ∈
O−, then left translation Lh by h is a diffeomorphism of O(n) that interchanges

SO(n) and O−(n), showing that these two subsets are diffeomorphic.

Our final example, although not as intrinsically important as the preceding ones,

will play an important role in our treatment because it will be possible to perform

explicit calculations. It is a nonabelian, noncompact, 2-dimensional Lie group.

9. G = A(1), the affine group of the line, consists of those real 2 × 2 matrices

[
x y
0 1

]

with x > 0. The manifold for A(1) can be considered as the “right half plane,” those

(x, y) ∈ R
2, with x > 0.

A matrix group is a subgroup of Gl(n) that is also a submanifold of Gl(n).

All of our previous examples are groups of matrices. Although there are important

Lie groups that cannot be realized as matrix groups, for our calculations we shall
occasionally pretend that our group is indeed a matrix group, since the constructions

and proofs are easier to visualize.
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15.1b. Invariant Vector Fields and Forms

Lie groups are special as manifolds for the following reason. Given a tangent vector Xe

to G at the identity e, we may left or right translate Xe to each point of G, by means of

the differentials

Xg := Lg∗Xe

resp. (15.7)

Xg := Rg∗Xe

yielding two nonvanishing vector fields on all of G! In fact, if we take a basis X1, . . . ,

Xn for Ge (the tangent space to G at e), then we can left or right translate this basis to

give n linearly independent vector fields, such as,

Lg∗X1, . . . , Lg∗Xn (15.8)

on all of G! In particular, every Lie group is an orientable manifold! Consider for

instance, a closed orientable surface M2 of genus g. We shall see in Section 16.2 that of

these surfaces only the torus (genus 1) can support even a single nonvanishing tangent

vector field. In fact T 2 supports two vector fields ∂/∂θ,∂/∂φ, and the torus is indeed

the commutative group S1 × S1 with multiplication

(θ1,φ1)(θ2,φ2) → (θ1 + θ2,φ1 + φ2)

Topologically, the only compact Lie group of dimension 2 is the torus. (The Klein bottle

is nonorientable and admits a nonvanishing vector field, but not two independent ones!)

We shall say that a vector field X on G is left (right) invariant if it is invariant under

all left (right) translations, that is,

Lg∗Xh = Xgh

resp. (15.9)

Rg∗Xh = Xhg

You should convince yourself that if Xe is given, then (15.7) exhibits the unique left

(resp. right) invariant field generated by Xe.

Similarly, for example, an exterior p-form α on G is left invariant if

Lg
∗αgh = αh (15.10)

and to get a left invariant form on all of G one translates a form at e over the entire

group by

αg := Lg−1
∗αe (15.11)

In the case of a matrix group, Lg∗Xh is especially simple. Let t 
→ h(t) be a curve of

matrices in G with h(0) = h and h′(0) = Xh . Since G ⊂ Gl (n), this curve is simply a

matrix h whose entries h jk(t) are smooth functions of the parameter t . h(t) describes

a curve in n2-dimensional euclidean space (real or complex). Then Xh , the tangent to
this curve, is simply the matrix whose entries are the derivatives at t = 0, h′

jk(0). There
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is no reason to believe that this new matrix h′ associated to the point (matrix) h will

belong to the group G (this will be illustrated in the case A(1) later). Then for the

constant matrix g, the curve t 
→ gh(t) will have for tangent vector at t = 0 the matrix

Lg∗Xh = gh′(0) = gXh

that is simply the matrix product of g and Xh .

Example: G = A(1), (Example (9)). We may consider A(1) either as a submanifold of

R
4 or as the right half plane, since the entries 0 and 1 at the bottom contribute nothing

to our knowledge of the matrix. Since[
x y
0 1

] [
x ′ y′

0 1

]
=

[
xx ′ xy′ + y
0 1

]

we see that the right half plane is endowed with a rather unusual multiplication given in

the top row of this matrix equation.

We shall identify [
x y
0 1

]
∈ A(1) with (x, y) ∈ R2

and for tangent vectors we identify[
dx
dt

dy
dt

0 0

]
with

(
dx

dt

dy

dt

)T

which is the tangent vector (dx/dt)∂/∂x + (dy/dt)∂/∂y. Now let us left translate the

vectors

∂

∂x
and

∂

∂y

at the identity e to the point (x, y). For ∂/∂x we consider the curve h(t) given by[
1 + t 0

0 1

]

whose tangent at e is ∂/∂x . Then, letting g be the matrix[
x y
0 1

]

we have

Lg∗
∂

∂x
= d

dt
(gh(t))}t=0 =

[
x 0

0 0

]

and this is indeed the left translate of ∂/∂x at the identity to the point (x, y)[
x y
0 1

] [
1 0

0 0

]

(Note that this matrix is not in A(1); it is a tangent vector to A(1)). Thus the left translate

of ∂/∂x to (x, y) is

X = x
∂

∂x
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To construct the left translate of ∂/∂y at (1, 0) to the point (x, y) we form[
x y
0 1

] [
0 1

0 0

]
=

[
0 x
0 0

]

The result is the vector x∂/∂y. Thus a basis for the left invariant vector fields on A(1)

is given by the pair

X1 = x
∂

∂x
X2 = x

∂

∂y
(15.12)

Next note that in any Lie group, if X1, . . . , Xn is a basis for the left invariant vector

fields and if σ 1, . . . , σ n is the dual basis of 1-forms, then this dual basis is automatically
left invariant, since

L∗
gσg(Xe) = σg{Lg∗Xe} = σg(Xg) = σe(Xe)

shows that L∗
gσg = σe. The same argument shows that if α p is any p-form whose values

on any p-tuple of left invariant vector fields are constant on G, then α is left invariant.
Thus the basis of left invariant 1-forms dual to (15.12) is given by

σ 1 = dx

x
σ 2 = dy

x
(15.13)

If α and β are invariant under left translations then so are dα and α ∧β. Thus in A(1)

σ 1 ∧ σ 2 = dx ∧ dy

x2
(15.14)

is a left invariant area form or left Haar measure; for any compact region U ⊂ A(1),

and for any g ∈ A(1) ∫ ∫
gU

dx ∧ dy

x2
=

∫ ∫
U

dx ∧ dy

x2

where gU := LgU is the left translate of the region U . This would not hold if the factor

x−2 were omitted.

Problems

15.1(1) For the group A(1), find the right invariant vector fields coinciding with ∂/∂x
and ∂/∂y at e, find the dual right invariant 1-forms, and write down the right
Haar measure.

15.1(2) R
4 can be identified with the space of all real 2×2 matrices, identifying x = (x1,

x2, x3, x4) with the matrix (again called x )[
x1 x2

x3 x4

]

Sl(2, R) can be considered as the submanifold M3 of R
4 defined by det(x ) = 1.

Sl(2, R)) acts linearly on R
4, g : R

4 → R
4, by g(x ) = gx (matrix multiplication).

(i) Compute the 4×4 matrix differential g∗ of g and show that det g∗ = 1. This
shows that the action of G on R

4 preserves the euclidean volume form.
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(ii) H(x ) := det (x ) is of course a function on R
4 that is invariant under the

action of G. Use Equation (4.56) to write down a left invariant volume 3-form
for all of Sl(2, R).

15.2. One Parameter Subgroups

Does eθ J = (cos θ)I + (sin θ)J look familiar?

A homomorphism of groups is a function

f : G → H

that preserves products

f (g1 g2) = f (g1) f (g2)

In Section 13.1, we defined the special case of a homomorphism when the groups were

abelian, and when the group “multiplication” was “addition.”

As an example, the usual exponential function f (t) = et defines (since es+t = eset)

a homomorphism

exp : R → R
+

of the additive group of the reals to the multiplicative group of positive real numbers.

Note that exp is also a differentiable map, and in this case it is 1:1 ( the homomorphism

is injective), and also onto (surjective). We then say that exp is an isomorphism of

Lie groups. exp is a diffeomorphism with inverse log: R
+ → R.

A 1-parameter subgroup of G is by definition a differentiable homomorphism (in

particular, a path)

g : R → G t → g(t) ∈ G

of the additive group of the reals into the group G. Thus

g(s + t) = g(s)g(t) = g(t)g(s) (15.15)

Consider now a 1-parameter subgroup of a matrix group G.

g′
(t)

g(t)

e

G

R

Figure 15.1
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As matrices g(t + s) = g(t)g(s), that is, gi j (t + s) = ∑
k gik(t)gkj (s). Differentiate

both sides with respect to s and put s = 0,

g′(t) = g(t) g′(0) (15.16)

Since g′(0) is a constant matrix, the solution to this is

g(t) = g(0) exp {tg′(0)}
where

exp(S) = eS := I + S + S2

2!
+ S3

3!
+ · · · (15.17)

It can be shown that this infinite series converges for all matrices S. Since g(0) = e for

any homomorphism g : R → G, we conclude that

g(t) = exp {tg′(0)} (15.18)

is the most general form for a 1-parameter subgroup of a matrix group G.

Equation (15.16) tells us how to proceed even if G is not a matrix group, for it really

says

g′(t) = Lg(t)∗g′(0) (15.19)

that is, the tangent vector X to the 1-parameter subgroup is left translated along the

subgroup. Thus, given a tangent vector Xe at e in G,

the 1-parameter subgroup of G whose tangent at e is Xe is the integral curve through

e of the vector field X on G resulting from left translation of Xe over all of G.

The vector Xe is called the infinitesimal generator of the 1-parameter subgroup.

Xe

X

X

X

Figure 15.2

For any Lie group G we shall denote the 1-parameter subgroup whose generator at

e is Xe, by

g(t) := etXe = exp tXe

just as we do in the case of a matrix group.
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For example, in A(1), to find the 1-parameter subgroup having tangent vector (a b)T

at the identity, we left translate this vector over A(1).

[a
b]

(1,0)

Figure 15.3

The left translate of (a∂/∂x +b∂/∂y) to the point (x, y) is, from (15.12), (ax∂/∂x +
bx∂/∂y). Then we need to solve

dx

dt
= ax x(0) = 1 (15.20)

dy

dt
= bx y(0) = 0

The solutions are clearly straight lines dy/dx = b/a, but to see the parameterization

we must solve (15.20) to get

x(t) = eat y(t) = beat

a
− b

a

(which never reaches the y axis).

x

y

Figure 15.4

In Problem 15.2(2) you are asked to get this from the power series.
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Problems

15.2(1) We shall see in the next section that

J =
[

0 −1
1 0

]

can be considered a tangent vector at the identity of the group Gl(2, R). Use
J2 = −I, J3 = −J, J4 = I, to show

eθ J = (cos θ)I + (sin θ)J i.e.,

exp

[
0 −θ

θ 0

]
=

[
cos θ − sin θ

sin θ cos θ

]

for all real θ . This 1-parameter subgroup of Gl(2, R) is the entire subgroup of
rotations of the plane, SO(2)!

Warning: It makes no more sense to say exp S = I + S for S small than it
does to say ex = 1 + x when x is a small number. For example, I + θ J is never
in SO(2) for any θ �= 0.

15.2(2) Compute

exp t

[
a b
0 0

]

directly from the power series.

15.2(3) Consider the differential equation

x ′(t) = dx (t)
dt

= A(t)x (t)

x (0) = x0

where A(t) is an n×n matrix function of t and x (t) is a column matrix. It is known
that if A is actually a constant matrix, then the solution is x (t) = exp(t A)x0;
this easily follows formally (i.e., disregarding questions of differentiating infinite
series term by term, etc.) from the power series expansion of exp(t A). In the
case of a 1 × 1 matrix function A(t) the solution is of course

x (t) = exp(

∫ t

0
A(τ )dτ)x0

We claim that this same formula holds in the n×n case provided that the matrix
A(t) commutes with its indefinite integral B(t) := ∫ t

0 A(τ )dτ for all t . Verify this
formally by looking at

x (t) := exp[B(t)]x0 =
[

I + B(t) + 1
2!

{B(t)B(t)} + · · ·
]

x0

and using B′(t) = A(t).
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15.3. The Lie Algebra of a Lie Group

What is the third Betti number of the eight-dimensional Sl(3, R)?

15.3a. The Lie Algebra

Let G be a Lie group. The tangent vector space Ge at the identity e plays an important

role; we shall denote it by the script g

g := Ge

and call it (for reasons soon to be discussed) the Lie algebra of G.

Let XR , R = 1, . . . , N , be a basis for g ; XR will also denote the left translation of

this field to all of G. Since any left invariant vector field is determined by its value at

e, the most general left invariant vector field is then of the form

X =
∑

vRXR

where the vR are constants.

Let σ R , R = 1, . . ., N be the dual basis of left invariant 1-forms on G; they are

determined by their values on vectors from g . The most general left invariant r -form

on G is of the form

αr =
∑

I⇁

ai1...ir σ
i1 ∧ . . . ∧ σ ir

It is again determined by its values on r -tuples from g . It is constant when evaluated

on left invariant vector fields and aI are constants.

Recall the notion of Lie derivative or Lie bracket of two vector fields on a manifold

M ; see Equation (4.4).

Theorem (15.21): The Lie bracket [X, Y] of two left invariant vector fields is
again left invariant.

P R O O F: A vector field X is left invariant iff σ(X) is constant on G whenever σ

is a left invariant 1-form. If σ is a left invariant 1-form then

dσ(X, Y) = −σ([X, Y]) (15.22)

Since dσ is left invariant, the left-hand side is constant.

We may then write

[XR, XS] = XT CT
RS CT

RS = −CT
S R (15.23)

for some structure constants CT
RS (dependent on the basis {XR}).

In Problem 15.3(1) you are asked to prove the following.
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Theorem (15.24): The Maurer–Cartan equations

dσU = −
∑
R<S

CU
RSσ

R ∧ σ S

= −1

2

∑
R,S

CU
RSσ

R ∧ σ S

hold, and d2σU = 0 yields the Jacobi identity

CU
RSC R

L M + CU
RMC R

SL + CU
RLC R

M S = 0

This Jacobi identity for left invariant 1-forms is also a consequence of a general Jacobi

identity for vector fields on any manifold Mn . If X, Y, and Z are any three vector fields

on a manifold, then as differential operators on functions f , [X, Y]( f ) = X(Y( f )) −
Y(X( f )), and so on. Then the following Jacobi identity is immediate.

[[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0 (15.25)

and in the case of a Lie group this gives (15.24) via (15.23).

We now make the vector space g = Ge into a “Lie algebra” by defining a product

g × g → g

as follows. Let X ∈ g , Y ∈ g . Extend them to be left invariant vector fields X′, Y′ on

all of G, and then define the product of X and Y to be the Lie bracket

[X, Y] := [X′, Y′]e

This product satisfies the relation [X, Y] = −[Y, X] and the Jacobi identity (15.25).

We shall see later on that there are three vectors X, Y, Z in the Lie algebra of

SO(3) that satisfy [X, Y] = Z and [X, Z] = −Y. Then [X, [X, Y]] = −Y, while

[[X, X], Y] = 0, and thus the Lie algebra product is not associative!

We shall consistently identify the Lie algebra g with the N (= dim G) dimensional

vector space of left invariant fields on G.

Classically the Lie algebra g was known as the “infinitesimal group” of G, for

classically a vector was thought of roughly as going from a point to an “infinitesimally

nearby” point. g then consisted of group elements infinitesimally near the identity! We

shall not use this picture.

15.3b. The Exponential Map

Theorem (15.26): For any matrix A, det eA = etr A.

P R O O F: Consider the matrix A as a linear transformation of complex n-space

C
n . If λ is an eigenvalue of A, Av = λv, then from the power series for eA

we see that eAv = eλv. Thus eA has eigenvalues exp(λ1), . . . , exp(λn), where

λ1, . . . , λn are the eigenvalues of A. Then, since the determinant is the product

of the eigenvalues

det exp A =
∏

exp λi = exp
∑

λi = exp tr A
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Theorem (15.27): The map exp : g → G sending A 
→ eA is a diffeomorphism
of some neighborhood of 0 ∈ g onto a neighborhood of e ∈ G.

P R O O F: We shall give two proofs. For a matrix group, look at the differential of

the exponential map applied to a vector X ∈ g .

exp∗(X) = d

dt
(exp tX)t=0 = d

dt

(
I + tX + 1

2
t2X2 + · · ·

)
t=0

= X

Thus exp∗ : g → g is the identity and exp is a local diffeomorphism by the

inverse function theorem.

If G is not a matrix group we would proceed as follows. Given X at e, etX =
exp(tX) is a curve through e whose tangent vector at t = 0 is the vector X (recall

that etX is the integral curve through e of the left invariant vector field X). Thus

again exp∗(X) = X, and we proceed as previously.

Remark: In a general Lie group, the 1-parameter subgroup exp(tX) is the integral

curve of a vector field on G, and thus it would seem that this need only be defined for

t small. In this case of a left invariant vector field on a group, it can be shown that the

curve exists for all t , just as it does in the matrix case.

15.3c. Examples of Lie Algebras

1. G = Gl (n, R). Let M(n×n) be the vector space of all real n×n matrices; M(n×n) ≈ n2

dimensional Euclidean space. For A ∈ M(n × n)

det eA = etrA > 0

and therefore

exp : M(n × n) → Gl (n, R)

Since dim M(n × n) = n2 = dim Gl (n, R), we see that the Lie algebra of Gl(n, R) is

gl (n, R) = M(n × n)

We shall now use the fact that if G is a matrix group, that is, a subgroup of Gl(n),

then its Lie algebra g , being the tangent space to the submanifold G of Gl(n, R), is the
largest subspace of M(n × n) such that exp : g → G.

2. G = SO(n). First we need two elementary facts about the exponential of a matrix.

Since eAe−A = (I + A + A2/2! + · · ·)(I − A + A2/2! − · · ·) = I we conclude

(eA)−1 = e−A

Next, from the power series it is evident that for transposes,

(exp A)T = exp(AT )

It is clear then that if A is skew symmetric, AT = −A, then

(exp A)−1 = (exp A)T
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and so exp A ∈ O(n). Also, since det eA = etr A = 1 for a skew A, we see eA ∈ SO(n).

Thus the skew symmetric matrices exponentiate to SO(n) and the Lie algebra of SO(n)

is a vector subspace so(n) of gl(n) that contains the subspace of skew symmetric

matrices.

Conversely, suppose that for some matrix A ∈ so(n), that eA ∈ SO(n). Thus

exp(A) = exp(−AT )

Since exp is a local diffeomorphism it is 1 : 1 in a neighborhood of 0 ∈ gl(n). Thus if

eA is close enough to the identity then

A = −AT

that is, A is skew symmetric. Thus so(n),

the Lie algebra of SO(n), is precisely the vector space of skew symmetric n × n
matrices.

One can also see this by looking at the tangent vector to a curve g(t) in SO(n) that

starts at e. Since ggT = e, we have g′(0) + g′(0)T = 0, showing that g′(0) is skew

symmetric.

3. G = U (n), the group of unitary matrices, u−1 = u†, where † is the hermitian adjoint, that

is, the transpose complex conjugate. Then note that if A is skew hermitian, A† = −A,

then eA ∈ U (n) from the same reasoning. We conclude that

u(n) is the vector space of skew hermitian matrices.

4. G = SU (n), the special unitary group of unitary matrices with det u = 1. Since a skew

hermitian matrix A has purely imaginary diagonal terms we conclude that det eA = etr A

has absolute value 1. However if A also has trace 0 we see that eA will lie in SU (n).

su(n)is the space of skew hermitian matrices with trace 0

5. G = Sl(n, R), the real matrices g with det g = 1

sl(n, R) is the space of all real matrices with trace 0

15.3d. Do the 1-Parameter Subgroups Cover G?

Given g ∈ G, is there always an A ∈ g such that eA = g? In other words,

is the map exp : g → G onto?

It can be shown that this is indeed the case when G is connected and compact. (It is

clear that a 1-parameter subgroup must lie in the connected piece of G that contains

the identity.) Sl(2, R) is not compact. For g ∈ Sl (2, R)

g =
[

x y
z w

]
xw − yz = 1

that is, the coordinates x , y, z, w satisfy the preceding simple quadratic equation. This

locus is not compact since, for example, x can take on arbitrarily large values. You are
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asked, in Problem 15.3(2), to show that any g in Sl(2, R) with trace< −2 is never of

the form eA for any A with trace 0, that is, for any A ∈ sl(2, R).

This result is somewhat surprising since we shall now show that Sl(2, R) is con-

nected!

g =
[

x y
z w

]

in Sl(2, R) can be pictured as a pair of column vectors (x z)T and (y w)T in R
2 spanning

a parallelogram of area 1. Deform the lengths of both so that the first becomes a unit

vector, keeping the area 1. This deforms Sl(2, R) into itself. Next, “Gram–Schmidt” the

second so that the columns are orthonormal. This can be done continuously; instead

of forming v − 〈v, e〉e one can form v − t〈v, e〉e. The resulting matrix is then in the

subgroup SO(2) of Sl(2, R); that is, it represents a rotation of the plane. We have shown

that

we may continuously deform the 3-dimensional group Sl(2, R) into the 1-dimensional
subgroup of rotations of the plane, all the while keeping the submanifold SO(2)

pointwise fixed!

This last group, described by an angle θ , is topologically a circle S1, which is connected.

This shows that Sl(2, R) is connected.

In fact we have proved much more. Suppose that V k is a submanifold of Mn . (In the

preceding SO(2) = V 1 ⊂ M3 = Sl (2, R).) Suppose further that V is a deformation
retract of M ; that is, there is a continuous 1-parameter family of maps rt : M → M
having the properties that

1. r0 is the identity,

2. r1 maps all of M into V
and

3. each rt is the identity on V.

Then, considering homology with any coefficient group, we have the homomorphism

r1∗ : Hp(M; G) → Hp(V ; G), since r will send cycles into cycles, and so on; see

(13.17). If z p is a cycle on M and if r1(z p) bounds in V , then z p bounds in M since

under the deformation, z p is homologous to rt(z p); see the deformation lemma (13.21).

Thus r1∗ is 1 : 1. Furthermore, any cycle z′
p of V is in the image of r1∗ since z′

p = r1(z′
p).

Thus r1∗ is also onto, and hence

Theorem (15.28): If V ⊂ M is a deformation retract, then V and M have
isomorphic homology groups

Hp(M; G) ≈ Hp(V ; G)

Since SO(2) is topologically a circle S1, we have

Corollary (15.29): H0(Sl(2, R), Z) ≈ Z ≈ H1(Sl(2, R), Z) and all other ho-
mology groups vanish.
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Problems

15.3(1) Prove (15.24).

15.3(2) Let A be real, 2 × 2, with trace 0. The Cayley–Hamilton theorem for a 2 × 2
matrix says that A satisfies its own characteristic equation

A2 − (trA)A + (det A)I = 0

hence

A2 = −ρ I ρ := det A

(The proof of the Cayley–Hamilton theorem for a 2 × 2 matrix can be done by
direct calculation. One can also verify it in the case of a diagonal matrix, which
is trivial, and then invoke the fact that the matrices that can be diagonalized
are “dense” in the set of all matrices, since matrices generically have distinct
eigenvalues.) Show that

e A =
{

(cos
√

ρ)I + (
√

ρ)−1(sin
√

ρ)A if ρ > 0

(cosh
√|ρ|)I + (

√|ρ|)−1(sinh
√|ρ|)A if ρ < 0

and, of course, e A = I + A if ρ = 0. Conclude then that

tr e A ≥ −2

Thus, in particular

g =
[−2 0

0 − 1
2

]

is never of the form e A for A ∈ sl(2, R). In particular, this g does not lie on any
1-parameter subgroup of Sl(2, R).

15.3(3) (i) Does Sl (n, R) have an interesting deformation retract? Is Sl (n, R) con-
nected?

(ii) What are the integer homology groups of the 8-dimensional manifold
Sl (3, R)?

(iii) What can we say about Gl (n, R)? Is it connected?

15.4. Subgroups and Subalgebras

How can one find subgroups of G by looking at g ?

15.4a. Left Invariant Fields Generate Right Translations

Let X be a left invariant vector field on the Lie group G. If Xe is the value of X at e,

then

exp (tXe)
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is the 1-parameter subgroup generated by Xe. We know that this curve is the integral

curve of the field X that starts at the identity e. Since X is left invariant, the integral

curve that starts at the generic point g ∈ G must be the curve g(t) := Lg exp(tXe) =
g exp(tXe).

On the other hand, X, as a vector field on a manifold G, generates a flow φt : G → G
(at least if t is small enough), whose velocity field is again X. Thus it must be that

φt(g) = g exp(tXe). Hence

Theorem (15.30): The flow generated by the left invariant field X is the 1-
parameter group of right translations

φt(g) = g exp(tXe)

e

e

Xe

Xg
g

tXe

etXe

g

Figure 15.5

Since a right invariant vector field Y is then automatically invariant under the flow

generated by a left invariant field X, we conclude that their bracket vanishes

[Xleft, Yright] = 0 (15.31)

Of course, by the same reasoning, right invariant fields generate left translations.

15.4b. Commutators of Matrices

Recall that the Lie algebra g , as a vector space, is simply the tangent space to G at e,

but as an algebra it is identified with the left invariant vector fields on G. (Of course

this is merely a convention; we could have used right invariant fields just as well.) If

X ∈ g and Y ∈ g , then their Lie bracket

[X, Y] = LXY ∈ g

is given by the Lie derivative, or, as first-order differential operators

[X, Y]( f ) = X(Y f ) − Y(X f )

associated with the left invariant fields X and Y.

If G is a matrix group, each X ∈ g is itself a matrix (not in G but rather in the

tangent space to G at e). For example, we have seen that if G = SO(n) then X is a

skew symmetric matrix. We claim then that [X, Y] is merely the commutator product
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of the matrices

[X, Y] = XY − Y X (15.32)

To see this we use Theorem (4.12). We have, at e = I ∈ Gl (n, R)

[X, Y] = lim
t→0

{φY
−t ◦ φX

−t ◦ φY
t ◦ φX

t (I ) − (I )}
t2

where φX
t refers to the flow generated by X, and so on. Since X and Y are left invariant,

their flows are right translations,

φX
t (g) = g exp(tX)

Thus

[X, Y] = lim
t→0

{exp(tX) exp(tY) exp(−tX) exp(−tY) − I }
t2

(15.33)

In Problem 15.4(1) you are asked to show that this indeed does reduce to the commutator

of the matrices.

This shows, for example, that if X and Y are skew symmetric matrices then so is

XY − Y X .

15.4c. Right Invariant Fields

All that we have said about left invariant fields can be redone for right invariant ones.

Right invariant fields (“right fields” for short) generate left translations. We have defined

the Lie algebra g to be essentially the vector space of left fields, and then

[Xi , X j ] = XkCk
i j

What would this become if we had used right fields instead?

Let {X j (e)} be a basis for Ge and extend them to left fields {X j (g)} on all of G,

Xi (g) = Lg∗Xi (e)

Let {Yi (e)} coincide with the X’s at e and extend them to right fields on G,

Yi (g) = Rg∗Yi (e) = Rg∗Xi (e)

e g

X(e) = Y(e)
X(g) Y(g)

Figure 15.6
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We are interested in the “right” structure constants

[Yi , Y j ] = Yk Dk
i j

We calculate these for a matrix group, though the result holds in general.

The flow generated by Yi consists of left translations. Repeating the steps going into

Problem 15.4(1), but using right fields Y, we see

[Y1, Y2]right = Y2Y1 − Y1Y2

as matrices. We conclude (since Y = X at e)

[Yi , Y j ] = −YkCk
i j

and the right structure constants are merely the negatives of the left!
By “Lie algebra” we shall always mean the algebra of left invariant fields.

15.4d. Subgroups and Subalgebras

We are interested in subgroups of a Lie group. (We have already discussed 1-parameter

subgroups.) For example SO(n) is a subgroup

SO(n) ⊂ Gl (n, R)

of the general linear group and it is an embedded submanifold (we showed this in

Section 1.1d). For a subgroup H ⊂ G to qualify as a Lie subgroup we shall demand

that H , if not embedded, is at least an immersed submanifold. The 2-torus, consisting

of points

(eiθ , eiφ) ∈ S1 × S1

is a 2-dimensional abelian group

(eiθ , eiφ) ◦ (eiα, eiβ) = (ei(θ+α), ei(φ+β))

with a 1-parameter subgroup

H = (eirt , eist)

where r and s are real numbers. As discussed in Section 6.2a, if s/r is irrational this

curve winds densely on the torus; thus H in this case is an immersed, not embedded

submanifold. This is not a closed subset of the torus since its closure (obtained by

adjoining its accumulation points) would be the entire torus, but it still qualifies as a

Lie subgroup.

The tangent space gl(n, R) to Gl(n, R) consists of all n × n matrices, whereas the

tangent space so(n) consists of skew symmetric n × n matrices.
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n R

(

(

(

n)

SO(n)

)

)

Gl n R,

,gl 

so

Figure 15.7

Let X and Y be skew symmetric matrices. Left translate them over all of Gl(n, R).

Since the resulting vector fields are tangent at g ∈ SO(n) to SO(n), so is their bracket

[X, Y]. In particular [X, Y]e ∈ so(n). This says that so(n) is not only a vector subspace

of gl(n, R), it is a subalgebra.

In general, if H is a subgroup of G, then the Lie algebra h of H is a subalgebra of

g . The converse of this is also true and of immense importance.

Theorem (15.34): Let G be a Lie group with Lie algebra g . Let h ⊂ g be a
vector subspace of g that is also a subalgebra

[h, h] ⊂ h .

Then there is a subgroup H ⊂ G whose Lie algebra is the given h ⊂ g .

Example: For any n × n real matrices X and Y their commutator XY − Y X has trace

0. Thus the traceless n × n matrices form a subalgebra of gl(n, R) and there is a

corresponding subgroup; it is, of course, Sl(n, R).

P R O O F: Given the vector subspace h ⊂ g , left translate h over all of G, yielding

a distribution �. Let X1, . . . , Xr be left invariant fields spanning � everywhere.

Since h is a subalgebra

[Xi , X j ] ∈ �

Thus � is in involution and is then completely integrable by the theorem of

Frobenius. From Chevalley’s theorem (6.6), we can construct the “maximal leaf”

of this foliation passing through the identity; that is, there is a manifold V r and

a 1 : 1 immersion F : V r → G such that H := F(V ) is always tangent to the

distribution � and passes through e ∈ G. We claim that H is a subgroup of G;

that is, H is closed under the G operations of multiplication and taking inverse.



412 L I E G R O U P S

Let h1 and h2 be in the leaf H . By the definition of �, left translation of H
by h1 must send the leaf into another (perhaps distinct) leaf h1 H of the foliation,

h1h2 ∈ h1 H .

e

h1

h2

h1H

H

.

.

.

Figure 15.8

However h1e = h1 shows that h1 is in both leaves H and h1 H and since H is

maximal it must be that H = h1 H . In particular h1h2 ∈ H , as desired. A similar

argument (Problem 15.4(2)) shows H is closed under taking inverses.

Problems

15.4(1) Use (15.33) and (15.17) to show [X, Y ] = XY − Y X as matrices. (You needn’t
justify (legitimate!) manipulations with infinite series.)

15.4(2) Show that H is closed under taking inverses.

15.4(3) Show that the skew hermitian n × n matrices (A† = −A) with trace 0 form
a subalgebra of gl(n, C). Identify the subgroup. Is there a group whose Lie
algebra consists exactly of the hermitian matrices?



CHAPTER 16

Vector Bundles in Geometry
and Physics

On the Earth’s surface, the number of peaks minus the number of passes plus the number of

pits is generically 2.

16.1. Vector Bundles

What is a “twisted product”?

16.1a. Motivation by Two Examples

1. Vector fields on M. A section of the tangent bundle T Mn to Mn is simply a vector

field w on M . Locally, that is, in a coordinate patch (U ; u1, . . . , un), w is given by

its component functions w1
U (u), . . . , wn

U (u) with respect to the coordinate basis ∂/∂u,

but of course these functions are defined only on U , not all of M . In another patch V ,

the same field is described by another n-tuple w1
V (v), . . . , wn

V (v). At a point p in the

overlap U ∩ V these two n-tuples are related by

wi
V (p) = [cV U (p)]i

jw
j
U (p)

where cV U = ∂v/∂u is the Jacobian matrix. Thus a section of TM serves as a general-

ization of the ordinary notion of an n-tuple of functions F = ( f 1, . . . , f n) : Mn → R
n

defined on an n-manifold, where now we assign a different n-tuple of functions in each

patch, but we insist on a recipe telling us when two n-tuples are describing the same

“vector” at a point common to two patches. The bundle TM is, in a sense, the home in

which all the sections live.

Not all n-tuples are to be considered as tangent vectors, for there are other bundles

“over” M . The cotangent bundle T ∗M uses a different recipe; its cV U is [∂u/∂v]T .

2. The normal bundle to the midcircle of the Möbius band.

Consider the Möbius band Mö2 (a 2-manifold whose boundary is a single closed

curve) and the midcircle submanifold M1 = S1. We are interested in the collection of

all tangent vectors to Mö along S1 that are normal to S1. We shall call this collection

the normal bundle N (S1) to S1 in Mö. Clearly we have a map

π : N (S1) → S1

that sends each normal vector to the point in S1 where it is based.

413
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e

�

e

e

S1

2Mö

V

V

UU

U

U

M1= S1

Figure 16.1

It should be clear that we cannot find a continuous normal vector field to S1 that is

everywhere nonzero, since if it points down at the left endpoint it must point up at the

right endpoint because of our identifications. We have illustrated this with the normal

field Ψ. If we wished to describe this field by a “component” � we might proceed as

follows.

Select (arbitrarily) smooth nonvanishing normal vector fields eU and eV over patches

U and V of S1, U and V being chosen so that their union is all of M . Then at any point

p ∈ U ∩ V we have

eV (p) = eU (p)cU V (p)

where cU V is a smooth nonvanishing 1×1 matrix defined in U ∩ V . Note that this is the

same notation that we used when talking about the tangent bundle; see equation (9.44).

Also note that we may describe the nonvanishing of the “matrix” cU V as saying that

cU V : U ∩ V → Gl (1, R)

Let Ψ be a smooth normal field to S1. Then in U we have Ψ(p) = eU (p)ψU (p)

and in V,Ψ(p) = eV (p)ψV (p), for smooth functions ψU and ψV . In the overlap

Ψ(p) = eU (p)ψU (p) = eV (p)ψV (p)

and so

ψV (p) = cV U (p)ψU (p)

where cV U = c−1
U V . Thus a normal vector field to S1 ⊂ Mö2 is described not by a

single “component” function ψ on S1, but by a component function ψU in U and by a

component function ψV in V , both related by the transition matrix cV U .

Note that the local fields eU and eV allow us to say that the normal bundle N (S1) is

locally a product, in the following sense. The part of the bundle consisting of normal

vectors based in the patch U is diffeomorphic to U × R under the map �U : U × R →
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N (S1) defined by �U (p, ψ) = eU (p)ψ . Similarly �V : V × R → N (S1) makes the

part of N (S1) based in V into a product.

Although N (S1) is locally a product, it is globally twisted, for the entire N (S1) is not

itself a product S1 × R. There is no continuous way to assign a unique normal vector

to a pair (p, ψ) for ψ a fixed real number, as p ranges over all of S1. N (S1) is thus a

twisted product of S1 and R.

If we were to consider the vectors normal to a curve M1 in a Riemannian manifold

W n , we would have to find (n − 1) local normal fields eU
1 , . . . , eU

n−1 in each patch U of

M1, and a normal field Ψ would then be described by an (n − 1)-tuple of components

ψ1
U , . . . , ψn−1

U . We shall consider this in Section 16.1d.

To generalize the notion of a K -tuple of functions on Mn we introduce the general

notion of a vector bundle over M .

16.1b. Vector Bundles

A (real or complex) rank K vector bundle E over a base manifold Mn consists of a

manifold E (the bundle space) and a differentiable map, projection

π : E → M

such that E is a local product space in the following sense.

E

π
−1U

π

U
M

Figure 16.2

There is a covering of Mn by open sets {U, V, . . .}. There is a K -dimensional vector
space (the fiber) R

K or C
K (and for definiteness we shall assume it to be R

K ) equipped
with its standard basis

e1, . . . , eK

We demand that for each open set U in the covering

U × R
K is diffeomorphic to the “part of the bundle over U,” π−1U
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that is, there are diffeomorphisms

�U : U × R
K → π−1U

(16.1)

�U (p, y) ∈ π−1(p)

(In the case of the tangent bundle E = T Mn , if eU is a frame in U then �U (p, y) =∑
1≤i≤K eU

i yi .) A point s ∈ π−1(U ) then is represented, via �−1
U , by a point p in

U and a K -tuple of real numbers y, the latter being the fiber coordinates of s. For

π(s) ∈ (U ∩ V ), we demand that the two sets of fiber coordinates be related by a

nonsingular linear transformation

cV U (p) : U ∩ V → Gl(K )

that depends differentiably on p

yV = cV U (p)yU

that is, (16.2)

yi
V = cV U (p)i

j y j
U

Note that each fiber over p, π−1(p), is a K -dimensional vector space but it is not
identified with R

K until the patch U holding p is specified; only then can we use �−1
U

to make the identification. (In the tangent bundle we can not read off the components
of a vector until we have picked out a specific frame.) Note also that in the name “rank

K vector bundle,” K refers to the dimension of the fiber, not the bundle space E .

A (cross) section of E is a differentiable map

s : M → E

such that s(p) lies over p, that is,

π ◦ s = identity : M → M

Locally, over U , one describes a section s by giving its vector components yU (p),

subject to the requirement (16.2) in an overlap. In a triple overlap we have

yW (p) = cW V (p)yV (p) = cW V (p)cV U (p)yU (p)

and so cWU = cW V cV U . Thus the transition functions {cV U } satisfy

cV U (p) = cU V (p)−1

and (16.3)

cW V (p)cV U (p)cU W (p) = I

Conversely, let M be a manifold with a covering {U, . . .}, and suppose that we are

given matrix-valued functions cV U in each overlap

cV U : U ∩ V → Gl(K )

that satisfy (16.3). Then we may construct a vector bundle over M whose transition

functions are these cV U as follows. Take the disjoint collection of manifolds

{U × R
K , V × R

K , . . .}
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one for each patch. These are to be considered disjoint even though the patches can

overlap. Now we make identifications:

(p, yU ) ∈ (U × R
K ) is to be identified with

(p′, yV ) ∈ (V × R
K ) iff p′ = p and yV = cV U (p)yU

It can be shown that the resulting identification space E is indeed a K -dimensional

vector bundle over M with {cV U } as transition matrices. This is the procedure we used

for construction of the tangent bundle; from Xi
V (x) = (∂xi

V /∂x j
U )X j

U we see, from

(16.2), that

cV U (x) = ∂xV

∂xU
(16.4)

Tangent bundle T

On the other hand, for the cotangent bundle, aV
i = aU

j ∂x j
U/∂xi

V =∑
j [(∂xU/∂xV )T ]i j aU

j

shows that

cV U (x) =
(

∂xU

∂xV

)T

=
[(

∂xV

∂xU

)−1]T

(16.5)

Cotangent bundle T ∗M

Two bundles whose transition matrices are inverse transposes are said to be dual vector

bundles.

If E and E ′ are vector bundles over the same base manifold M , then the tensor
product bundle E ⊗ E ′ is defined to be the vector bundle with transition matrices

cV U ⊗ c′
V U . This means the following. A point in π−1(U ) has vector components

yU = (y1
U , . . . , yK

U ), a point in π ′−1(U ) has vector components zU = (z1
U , . . . , zL

U ), and

a point in the tensor product bundle has the K L vector components

(yU ⊗ zU )iα := yi
U zα

U (16.6)

and by definition

(cV U ⊗ c′
V U )(yU ⊗ zU ) := (cV U yU ) ⊗ (c′

V U zU )

For example, the mixed tensors, once contravariant and once covariant (i.e., the linear
transformations), form the vector bundle T M ⊗ T ∗M.

16.1c. Local Trivializations

A bundle space E is locally a product manifold. The diffeomorphisms �U : U ×R
K →

π−1(U ) that exhibit the local product structure allow one immediately to exhibit K
sections eα(p) := �U (p, eα) over U , where again e1 = (1, 0, . . . , 0)T , and so on, and

these sections are linearly independent in the sense that at each p ∈ U the vectors eα(p)

in the vector space π−1(p) (the fiber over p) are independent. The eα form a frame of

sections.

Note that one frequently proceeds in the reverse direction. For example, we made

the collection of vectors normal to the midcircle of the Möbius band into a rank 1 vector
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bundle by first picking out distinguished “sections”; this then defined the maps �. In

general, suppose that we have two manifolds E and Mn and a map π : E → M of E
onto M . Suppose that each π−1(p) is a vector space ≈ R

K . Suppose further that there

is a covering {U, V, . . .} of M and there are smooth maps eU
α : U → E, α = 1, . . . , K

such that π ◦eU
α is the identity map on U and the eα(p) are independent for each p ∈ U .

Define then �U : U × R
K → π−1(U ) by �U (p, eα yα) = eα(p)yα. By construction,

each �U is a diffeomorphism that is linear on the “fiber” R
K for p fixed. Then in an

overlap U ∩ V we may define cV U (x) : R
K → R

K by the linear map

yV = cV U (p)yU := �−1
V ◦ �U (p, yU )

(16.2) is then automatically satisfied and we have made E into a vector bundle over

Mn and the eU
α yield a frame of sections over U .

We shall frequently denote a point of M by x , rather than p; we are not implying

that x is a local coordinate, though that will often be the case. The most general cross

section over U is then of the form

Ψ = eU
α ψα

U (x)

where the ψα
U (x) are component functions. We abbreviate this with matrix notation

Ψ(x) = eU (x)ψU (x)

eU (x) = (eU
1 (x), . . . , eU

K (x))

ψU (x) =

⎡
⎢⎣

ψ1
U (x)
...

ψ K
U (x)

⎤
⎥⎦

If Ψ is a cross section over U ∩ V , then in U ∩ V we have

Ψ(x) = eU (x)ψU (x) = eV (x)ψV (x) (16.7)

ψV (x) = cV U (x)ψU (x)

If we can find a frame e of sections over all of M , we say that the bundle is a product
bundle, or is trivial. In this case

�(x; ψ1, . . . , ψ K ) =
k∑

α=1

eα(x)ψα

yields a diffeomorphism

� : M × R
K → E

making E globally a product manifold. In particular,

a 1-dimensional vector bundle (a line bundle) with a single nonvanishing global
section is a trivial bundle.
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In a nontrivial bundle, the maps �U : U × R
K → π−1(U ) make the portion of the

bundle over U into a trivial bundle; each �U is thus called a local trivialization.
We shall see in Section 16.2 that the tangent bundle to the 2-sphere T S2 does not

even possess a single nonvanishing section and so TS2 is not trivial. On the other hand,

the tangent bundle TG to a Lie group has a frame of global sections given by left

translating a basis of g over all of G; thus the tangent bundle to a Lie group is trivial!
(Remark: If the tangent bundle to a manifold M is trivial, we say that M is paral-

lelizable.)

Note that every vector bundle E has a global section, the zero section, defined locally

in each U by ψ1(x) = 0, . . . , ψ K (x) = 0. In Problem 16.1(1) you are asked to give

the 1-line proof.

16.1d. The Normal Bundle to a Submanifold

Consider a Riemannian manifold V n+K and a submanifold Mn ⊂ V . We define the

normal bundle N(M) to M in V to consist of those tangent vectors to V that are based

on M and are orthogonal to M .

V

M

nK

nK

n1

n1

Figure 16.3

(In the figure, M is drawn as a curve.) It should be “clear” that if U ⊂ M is small

enough one can find K smooth fields nU
1 , . . . , nU

K of normal vectors to M that are

linearly independent at each point of U . Then, if

π : E = N(Mn) → M

denotes the normal bundle

� : U × R
K → π−1(U )

is again defined by

�(x : λ1, . . . , λK ) =
∑

α=1,...,K

nU
α (x)λα
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The λ’s are the components of a normal vector in the patch U . In a patch V we

would have a new frame {nV
α } and in an overlap U ∩ V the frames would be related by

a K × K matrix function nV = nU cU V , and a normal vector would have two sets of

components λU and λV related by λV = cV UλU , where cV U (x) = c−1
U V (x) ∈ Gl(K , R).

If we had chosen the frames nU and nV to be orthonormal, then cU V (x) ∈ O(K ).

For example, the normal line bundle to the 2-sphere M2 = S2 ⊂ R
3 = V 3 is

trivial, N (S2) = S2 × R, since we have a global nonvanishing section given by the

outward-pointing unit normal.

As we have seen, the normal bundle to the central circle M = S1 of the Möbius

band V 2 is not trivial.

The normal bundle N (S1) to the indicated circle S1 ⊂ RP2 is clearly itself an infinite

P2

S1

R

Figure 16.4

Möbius band (the lengths of the vectors are not bounded). For this S1 ⊂ RP2, N(S1)

is not trivial.

If we use as model of RP2 the disc with antipodal points identified, this S1 can be

deformed into a diameter. N (S1) is not trivial.

S1

P2

Figure 16.5

Let C, x = x(t), 0 ≤ t ≤ 1, be a closed curve in R
3. Its normal bundle is a rank-2

vector bundle over C . Pick an orthonormal frame n = n(0) of two normal vectors

nα at p = x(0). Transport this frame continuously around all of C , always remaining

orthonormal and orthogonal to C , arriving at p = x(1) but with perhaps a different

frame n(1) from the original. Since R
3 is orientable, and since the tangent T has returned

to itself, it must be that n(0) and n(1) define the same orientation in the normal plane

at p. This means that n(0) and n(1) are related by an SO(2) matrix g, n(0) = n(1)g.

We are now going to redefine the normal framing along the last ε seconds of the curve

so that the framings match up at t = 0 and t = 1. Since SO(2) is connected, we

can find a curve of 2 × 2 matrices g = g(s), 1 − ε ≤ s ≤ 1, in SO(2), such that
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g(1 − ε) = I and g(1) = g. Now redefine the normal frame on the last part of C by

putting m(s) = n(s)g(s), yielding a framing with agreement at t = 0 and t = 1. (By

choosing the curve g(s) to have s-derivative 0 at s = 1 − ε and at s = 1 we can even

make the framing smooth.) The normal bundle to a closed curve in R
3 is trivial!

Problems

16.1(1) Show that the zero section is indeed always a section.

16.1(2) RP 3 is the solid ball with boundary points identified antipodally. Is the normal
bundle to the circle S1 ⊂ RP 3 trivial?

S1

P3

Figure 16.6

16.1(3) Is the normal bundle to RP 2 in RP 3 trivial?

Figure 16.7

16.1(4) Is the normal bundle to a closed curve in an Mn trivial? (Consider the cases M
orientable and M not orientable.)

16.2. Poincaré’s Theorem and the Euler Characteristic
Can you comb the hair on a sphere so that the directions vary smoothly and such that no hair

sticks straight out radially?

Before discussing further properties of general vector bundles, we shall acquaint our-

selves with the most important result on the sections of the tangent bundle to a surface.
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For further discussion the reader may consult Arnold’s book on differential equations

[A2, chap. 5].

16.2a. Poincaré’s Theorem

Let M2 be a closed (compact without boundary) surface and let v be a tangent vector

field to M having at most a finite number of points p where the vector field vanishes,

v(p) = 0. Generically this is so for the following reasons. The vanishing of a vector

field requires, locally, the simultaneous vanishing of two functions v1 and v2 of the two

coordinate variables x and y, and generically these two zero sets intersect in isolated

points. Compactness (as in the proof of Theorem (8.17)) then demands that there be

only a finite number of zeros.

Let p be a zero for v. We may assume that p is the origin of a local coordinate

system x, y. Let S be a small coordinate circle, x2 + y2 = ε2, where by “small” we

mean that p is the only zero inside S. Introduce a Riemannian metric in the coordinate

patch. For example you may wish to use ds2 = dx2 + dy2. We may orient the patch by

demanding that x, y be a positively oriented system. We may then consider the angle

that v makes with the first coordinate vector ∂x = ∂/∂x at each point (x, y) on S

θ(x, y) = �(∂x , v) := cos−1

{ 〈∂x , v〉
‖ ∂x ‖‖ v ‖

}

We then have the following situation. Let S0 be a unit circle in an (abstract) R
2; S0 is

parameterized by an angle φ. We then have a map S → S0 defined by φ(x, y) = the

preceding angle θ(x, y). This map has a Brouwer degree, called, as in Section 8.3d,

the (Kronecker) index of v at the zero p, written jv(p) = j (p). Of course it simply

represents the number of times that v rotates as the base of v moves around the circle
S1. As such

j (p) = 1

2π

∫
S

dθ(x, y) (16.8)

In Section 8.3d we have illustrated the indices of four vector fields at the origin of

M2 = R
2.

We have made several rather arbitrary choices in the previous procedure, a Rieman-

nian metric, a coordinate system, and a closed curve S in the patch enclosing the zero.

But the index varies continuously with the choices, and since it is an integer, it is in

fact independent of the choices.

In particular we may replace the circle S by a piecewise smooth triangle enclosing

the zero.

Note that we may compute the index even when the field v does not vanish inside

the curve S, but the index will then be 0; see Problem 8.3(9).

Finally, note that we may also consider a vector field that is smooth in a region except

for an isolated “singular” point p; for example, the electric field grad(1/r) of a charge

in R
3 is smooth everywhere except at the charge. By the same procedure as at a zero,

we may again define the index jv(p) of the vector field at the singularity.

By a singularity of a vector field v we shall mean any point at which v is not smooth

or at which v = 0.
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A zero of a smooth vector field is not a singularity in the ordinary sense. In our present

situation it is called a singularity because the direction field defined by the vector is

undefined at a zero.

Poincaré’s Theorem (16.9): Let v be a vector field with perhaps a finite number
of singularities on a closed surface M2. Then the sum of the indices of v at the
singular points ∑

p

jv(p) = χv(M)

is in fact independent of the vector field and is a topological invariant χ .

For reasons discussed in the next section, χ will be called the Euler characteristic.

Before looking at the proof, let us look at some examples on the 2-sphere. The vector

field∂/∂θ tangent to the lines of longitude on the 2-sphere has a singularity at the north

and south poles. At the north pole the field looks like the “source” in Section 8.3d of

index 1 while the south pole is a “sink,” also of index 1. Thus χ(S2) = 2 in this case. We

can also consider the vector field ∂/∂φ tangent to the parallels of latitude, again with

singularities at the poles. The indices are easily seen again to be both +1, verifying the

theorem. Poincaré’s theorem implies the following, which we have mentioned many

times in the past:

Corollary (16.10): Every vector field on S2 has a singularity. Thus every smooth
section of the tangent bundle of the 2-sphere must be zero somewhere, and hence
this bundle is not a product bundle.

This has been paraphrased as “You can’t comb the hair on a 2-sphere.”

In our two fields ∂/∂θ and ∂/∂φ on S2, both fields had two singularities. We shall

now exhibit a field on S2 with a single singularity (zero) with, of course, index +2.

N

Figure 16.8

This field is obtained from a parallel field∂/∂u in the u, v plane by stereographically

projecting (from the north pole) the field onto the tangent sphere. We have drawn the
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integral curves rather than the vector field itself. At the right of the figure we have

shown a view from the top, and one easily sees that the index at the north pole is indeed

+2. We can investigate this analytically as follows.

Consider the sphere as the Riemann sphere, as in Section 1.2d. In the complex w

plane C tangent to the sphere at the south pole, we have the velocity field of the flow

dw/dt = 1, that is, du/dt = 1 and dv/dt = 0. When we stereographically project this

flow onto the Riemann sphere we get the parallel-like flow near the south pole w = 0.

Near the north pole z = 0 we get

dz

dt
=

(
dz

dw

)(
dw

dt

)
= −

(
1

w2

)
= −z2

As we go around the path z = eiθ about z = 0, the vector −z2 = −e2iθ makes 2

circuits, yielding the desired index 2.

P R O O F O F P O I N C A R É’S T H E O R E M: The following proof is due to Heinz Hopf,

who also proved the higher-dimensional version. We shall discuss this in Section

16.2c.

We shall first prove the theorem in the case when M2 is orientable; in the

following section we shall then discuss briefly the nonorientable case.

Choose any Riemannian metric for all of M2 (see Section 3.2d).

Let v and w be two vector fields on M , each having a finite number of singu-

larities. Some singularities of v may coincide with those of w.

We know that M can be triangulated (see Section 13.2c). By choosing the

triangles to be very small (e.g., by subdividing them) and by moving them around

slightly, we may insist that (i) each triangle lies completely in some coordinate

patch (xα, yα); (ii) the singularities of v and w lie in the interiors of triangles, not

on edges or vertices; and (iii) there is at most one singularity of v and at most one

singularity of w in the interior of any triangle. Then if 
 is a triangle lying in a

patch (xα, yα), we have the Kronecker index integers

jv(
) := 1

2π

∮
∂


dθv

and

jw(
) := 1

2π

∮
∂


dθw

where θv(xα, yα) = �(∂/∂xα, v) and θw(xα, yα) are computed with the chosen

Riemannian metric. Note that if 
 lies in two patches, both coordinate systems

will yield, as we know, the same indices. Then

χv :=
∑



jv(
) := 1

2π

∑



∮
∂


dθv

and

χw :=
∑



jw(
) := 1

2π

∑



∮
∂


dθw
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are the sums of the indices for the two vector fields, since, for example, if v has

no singularity in 
 then jv(
) = 0. Thus their difference is

χv − χw = 1

2π

∑



∮
∂


{dθv − dθw}

Now θv(xα, yα) and θw(xα, yα) depend strongly on the coordinate patch used.

�α

�β

v

∂α

∂β

θα

θβ

Figure 16.9

For example, if 
α and 
β are adjacent triangles in patches (xα, yα) and

(xβ, yβ), then the angle that v makes with the first coordinate vector ∂/∂xα is

different from the angle it makes with the first coordinate vector∂/∂xβ . However,

θv(xα, yα) − θw(xα, yα) = �(w, v)

is the same as the difference constructed in the β patch, since the preceding

difference is merely the angle from w to v, which is determined by the Riemannian

metric, independent of patch! Taking the differential of both sides

dθv − dθw = d�(w, v)

is a well-defined 1-form on each edge of each ∂
, independent of the patch used.

Then

χv − χw = 1

2π

∑



∮
∂


d�(w, v)

Since M is assumed orientable, we may assume that the coordinate patches

have positive overlap Jacobians, and thus adjacent triangles 
α and 
β will have

the same orientation. But then∑



∮
∂


d�(w, v) = 0

because each common edge will be traversed twice in opposite directions. Thus

χv = χw, as desired, and their common value will be called χ(M).

Note that if F : M2 → V 2 is a diffeomorphism, then F∗ will take the vector

field v on M into a vector field F∗v on V , and it is easy to see that the index

of v at p is the same as the index of F∗v at F(P). Hence χ(M) = χ(V ) is a

diffeomorphism invariant.

We shall now see how this integer is related to the topology of M2.
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16.2b. The Stiefel Vector Field and Euler’s Theorem

We now know that we may evaluate χ(M2) on any closed orientable surface by looking

at any vector field with a finite number of singularities and summing the indices. Stiefel

constructed the following vector field on any M2.

Take again a triangulation of M2. Imagine that M2 is the sea level surface of a planet;

we shall now construct a mountain range on the planet.

Figure 16.10

Put a mountain peak of height 2 at each vertex, a pit at the “midpoint” of each

triangle at sea level 0, and a mountain pass of height 1 at the midpoint of each edge.

The height of the land above sea level then defines a function on M2, and if we are

careful there will be a maximum at each vertex, a minimum at each face midpoint, and a

minimax (saddle) at each edge midpoint. In the right-hand of the figure we have drawn

the gradient lines for this function. The gradient vector has a zero at each peak, pass,

and pit, and the indices there are +1, −1, and +1, respectively. Thus for this vector field

χ = no. peaks − no. passes + no. pits

and we have proved

Euler’s Theorem (16.11): For all triangulations of the closed M2 we have that
the Euler characteristic

χ(M2) := no. vertices − no. edges + no. faces

is independent of the triangulation.

From the triangulation of the 2-torus in Section 13.3a we see that χ(T 2) = 0. Thus

it would not contradict Poincaré’s theorem if there were a field on the torus with no

singularities, and of course there is, v = ∂/∂θ .

We conclude with three brief remarks.

Consider the projective plane RP2. It is nonorientable, but it is “covered” twice by

the orientable 2-sphere, since RP2 is S2 with antipodal points identified. (We shall

discuss coverings more in Section 21.2.) Thus we have a 2 : 1 map π : S2 → RP2 that

locally is a diffeomorphism.
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Figure 16.11

Consider any vector field v on RP2. There is a unique vector field w on S2 such that

π∗ w = v. In the figure, RP2 is the upper hemisphere with antipodal identifications

on the equator, and v is the vector field on RP2 that rotates around the “north pole”

(there is no south pole on RP2). The field w rotates around both poles on S2. The

singularity on RP2 at the pole has index +1 and it is covered by two singularities on

S2, each with the same index +1. Thus
∑

jv = 1 and
∑

jw = 2. On the other hand,

it is evident that if we take a triangulation of RP2 where each triangle is small, in

the sense that each triangle will be covered by two disjoint triangles on S2, then the

Euler characteristics, computed via vertices, edges, and faces, as in (16.11), will satisfy

2 = χ(S2) = 2χ(RP2). Thus Poincaré’s theorem holds on the nonorientable RP2 also

and χ(RP2) = 1. This illustrates a general fact (discussed in Section 21.2d):

Each nonorientable manifold Mn has a “2-sheeted” orientable covering manifold

whose Euler characteristic is 2χ(Mn).

This allows us to prove Poincaré’s theorem for nonorientable surfaces as well.

Second, Hopf has proved the n-dimensional version of Poincaré’s theorem. To a

vector field v on an Mn with an isolated singularity p, we may again assign an index

j (p) by taking a small (n − 1)-sphere and considering again the Kronecker index of v
on this Sn−1. We may look at a triangulation of Mn and define the Euler characteristic

χ(Mn) = (no. 0-simplexes) − (no. 1-simplexes) + (no. 2-simplexes)

− · · · + (−1)n (no. n-simplexes)

and we again have

Hopf’s Theorem (16.12): For any closed Mn and any vector field v on Mn with
isolated singularities, we have

∑
jv(p) = χ(Mn).

The proof is considerably more difficult (see [G, P] or [M2])

Finally, a necessary condition for there to exist a vector field on Mn without any singu-

larities is clearly χ(Mn) = 0. Hopf has also shown that this is sufficient; if χ(Mn) = 0

then there is some v on Mn with no singularities. One may again consult [M2].
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Problems

16.2(1) Let M 2
g be a surface of genus g. Let it stand on a table and let h be the

h

M 2
g

Figure 16.12

function on M 2
g measuring the height above the table. By looking at the vector

field grad h on M 2
g , show that

χ(M2
g ) = 2 − 2g

16.2(2) Consider a function with only nondegenerate critical points (in the sense of
Morse, Section 14.3e) on a surface M 2. Its gradient vector at a critical point
has Kronecker index 1, −1, or 1 if it is, respectively, a minimum, saddle, or max-
imum (see Figure 8.9). Show that the Poincaré–Stiefel pits − passes + peaks
theorem, together with Problem 16.2(1), yields Morse’s equality in Theorem
14.40.

16.3. Connections in a Vector Bundle

How can the tangent bundle to an orientable surface be considered a complex line bundle?

16.3a. Connection in a Vector Bundle

Let π : E → Mn be a rank-K vector bundle (real or complex). We shall introduce the

concept of a connection for such a bundle by imitating the procedure used in Section

9.3 for the tangent bundle.

A section Ψ of E assigns to each trivializing patch U ⊂ Mn (i.e., patch over which

E is trivial) components ψU such that in an overlap

ψV = cV UψU

A vector-valued p-form, in Section 9.3, associated to each p-tuple of tangent vectors
to M another element of the same tangent bundle TM over the same point. An E-valued

p-form will associate to each p-tuple of tangent vectors v1, . . . , vp to M at x ∈ M an

element of the bundle E over x .
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An E-valued p-form � assigns to each trivializing patch U ⊂ Mn a K -tuple of

ordinary exterior p-form ψU , such that in an overlap we have

ψV = cV U ψU (16.13)

For example, if α p is a globally defined p-form on Mn , and if Ψ is a global section

of E , then � := α p ⊗ Ψ defines a p-form section of E by

ψU (v1, . . . , vp) = α p(v1, . . . , vp)Ψ

A connection ∇ for E is an operator taking sections Ψ of E into E-valued 1-forms

∇Ψ such that the Leibniz rule holds; if f is a function, then

∇(Ψ f ) = (∇Ψ) f + Ψ ⊗ d f (16.14)

Let e = (e1, . . . , eK ) be a frame of sections of E over the trivializing patch U . Then

∇eα is an E-valued 1-form, and thus is of the form

∇e = e ⊗ ω

or (16.15)

∇eα = eβ ⊗ ωβ
α

where

ω = (ωα
β) =

(
n∑

i=1

ωi
α

β(x)dxi

)

is some K × K matrix of 1-forms on U . (We shall try to use consistently Greek letters

α, β, and so on, or Roman capitals for fiber indices 1, . . . , K and Roman lowercase

i, j . . . for Mn indices 1, . . . , n.) We shall also frequently omit the tensor product sign.
Note that the connection coefficients ωα

iβ have a mixture of fiber and manifold indices.

Here we are assuming that (xi ) are local coordinates for U ⊂ M . For a section Ψ = eψ ,

we have by Leibniz

∇(Ψ) = ∇(eαψ
α) = ∇(eψ) = (∇e)ψ + e(dψ)

that is,

∇Ψ = ∇(eψ) = e ⊗ ∇ψ

where

∇ψ = dψ + ωψ (16.16)

In full,

∇ψα = dψα + ωα
βψ

β

The boldfaced ∇ operates on sections, whereas ∇ = ∇U operates on the components
of sections over the patch U .
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Suppose now that Ψ is a section over U ∪ V . In order that ∇ be well defined, we

require in U ∩ V what physicists call covariance, that is,

ψV = cV UψU ⇒ ∇V ψV = cV U∇UψU (16.17)

where cV U is the K × K matrix cV U = (cβ
V Uα) in Gl(K ). As in Section (9.4b) this

requires

ωV = c−1
U V ωU cU V + c−1

U V dcU V (16.18)

Note that in our conventions

ψV = cV UψU (16.19)

eV = eU c−1
V U = eU cU V

As usual, we define the covariant derivative ∇XΨ of the section Ψ of E with

respect to the tangent vector X on Mn by

∇X(Ψ) := (∇Ψ)(X) = (e ⊗ ∇ψ)(X) (16.20)

= e[∇ψ(X)]

Thus

∇XΨ = e[dψ + ωψ](X) (16.21)

= e[X(ψ) + ω(X)ψ]

where

ωα
β(X) = ωα

iβdxi (X) = ωα
iβ Xi

Then

∇XΨ = eα

(
Xi ∂ψα

∂xi
+ Xiωα

iβψ
β

)

We then write

∇XΨ = e∇Xψ

∇Xψ = Xi∇iψ

where (16.22)

∇iψ
α = ∂ψα

∂xi
+ ωα

iβψ
β

We have defined the covariant differential on sections of E (in a sense, on 0-forms
whose values are in E). As in Section 9.3d, we now let ∇ send E-valued p forms into

E-valued (p+1)-forms by defining the exterior covariant differential (again denoted

by ∇)

∇(Ψ ⊗ α p) = ∇Ψ ∧ α p + Ψ ⊗ dα p (16.23)

where, as in 9.3d, we write ∧ rather than ⊗∧.
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Curvature is introduced as before

∇2(e) = ∇(e ⊗ ω) = e ⊗ θ

where

θ = dω + ω ∧ ω (16.24)

θα
β = dωα

β + ωα
γ ∧ ωγ

β = 1

2
Rα

βi j dxi ∧ dx j

Note the mixture of indices in the curvature tensor.

There is no notion of torsion in a connection for a general vector bundle.

As a simple example, consider the normal 2-plane bundle to a curve M1, x = x(t)
in R

3. If ν = ν(t) is normal to M along M , we wish ∇ν = (∇ν/dt)dt to be a normal

vector valued 1-form on M . Let d be the usual differential operator for R
3; it is the

covariant differential for the tangent bundle for R
3 with the usual euclidean flat metric.

We should then put

∇ν := dν−〈dν, T〉T (16.25)

where T is the unit tangent to M . For a local description, let n1 and n2 be two normal

vector fields along M that are orthonormal. Then the prescription (16.25) translates to

∇ν = 〈dν, n1〉n1 + 〈dν, n2〉n2

In particular, since dn1 is orthogonal to n1, ∇n1 = nαω
α

1 = 〈dn1, n2〉n2, shows that

ω1
1 = 0 and ω2

1 = 〈dn1, n2〉 = 〈dn1/dt, n2〉dt . When t = s is arc length along the

curve M , and when n1 is chosen to be the principal normal n to the curve, then, as in

Problem 7.1(2), n2 = T × n1 is the binormal B, and −〈dn1/ds, n2〉 is the torsion τ of

the space curve. Thus ∇n = −Bτ(s)ds and ∇B = nτ(s)ds.

16.3b. Complex Vector Spaces

Quantum mechanics deals almost exclusively with complex wave functions and K
component wave functions, in other words, with sections of complex vector bundles.

(We shall consider quantum mechanics in Section 16.4.)

Consider the complex plane C with coordinate z = x + iy. C is a 1-dimensional

vector space because we allow complex scalars, but C can also be thought of as a real

2-dimensional vector space R
2,

z = x + iy ⇔
[

x

y

]

and addition of complex numbers corresponds to vector addition in R
2. The interesting

thing about C is that it has a fascinating product

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1 y2) + i(x1 y2 + x2 y1)

Of course, this can be expressed entirely in real terms[
x1

y1

]
◦

[
x2

y2

]
=

[
x1x2 − y1 y2

x1 y2 + x2 y1

]
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In particular, multiplication in C by the unit i translates in real terms to a linear trans-

formation

J : R
2 → R

2

whose matrix is

J =
[

0 −1

1 0

]

with, naturally, J 2 = −I . Similarly, complex K space, C
K , the vector space (with

complex scalars) of complex K -tuples

z = (z1, . . . , zK )T = (x1 + iy1, . . . , xK + iyK )T

can be considered as R
2K under the identification

z ⇔ (x1, y1, x2, y2, . . . , xK , yK )T = x

and then multiplication by i in C
K , z �→ i z, is translated into a linear transformation

J : R
2K → R

2K with matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

1 0 0

0 −1

1 0

0
. . .

0 −1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.26)

again with J 2 = −I .

Note that J : R
2K → R

2K is an isometry with respect to the usual metric

〈x, x′〉 = 〈Jx, Jx′〉
since it merely rotates each coordinate plane xα, yα through 90 degrees.

Now let F2k be any real even-dimensional vector space with an inner product 〈, 〉
and let

J : F → F

be any linear isometry of F (orthogonal transformation) that is also an anti-involution,

that is,

J 2 = −I

Clearly the eigenvalues of J are ±i , and so det J = 1. Thus J ∈ SO(2k) and assumes

the form (15.6) in suitable orthonormal coordinates (x1, y1, x2, y2, . . . , xk, yk). But J
is skew symmetric,

〈Jx, x′〉 = 〈J 2x, Jx′〉 = 〈x, −Jx′〉
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Equation 15.6 tells us that in these coordinates J has matrix (16.26), since each θk must

be π/2. Then one can introduce complex coordinates in F by putting zα = xα + iyα,

and J : F → F then corresponds to multiplication by i .

In particular, R
2 with J as earlier can be considered a complex 1-dimensional vector

space C
1 = C, which can be called a complex line.

16.3c. The Structure Group of a Bundle

In a vector bundle each cU V (x) ∈ Gl(n). We have seen that for a Riemannian manifold

Mn , we may choose cU V (x) ∈ O(n) by using orthonormal frames. In a general bundle,

it may be possible to choose the cU V (x) such that they all lie in a specific Lie group G

cU V : U ∩ V → G

We then say that G is the structure group of the bundle.

Let M2 be an oriented Riemannian surface. We can cover M by patches U, V, . . .

each of which supports a positively oriented orthonormal frame {eU }, {eV }, . . . of tan-

gent vectors. Suppressing the patch index,

eU = (e1, e2)

is a positively oriented orthonormal frame in U . It is then clear that each transition

matrix for E = TM is a rotation matrix

cU V (x) =
[

cos α(x) − sin α(x)

sin α(x) cos α(x)

]
∈ SO(2)

We may say that the orthonormal frames have allowed us to reduce the structure group

from Gl(2, R) to SO(2).

16.3d. Complex Line Bundles

Define J acting on the tangent planes of an oriented surface, J : M2
p → M2

p, simply

to be rotation through a right angle in the positive sense; thus

Je1 = e2 (16.27)

Je2 = −e1

and of course J 2 = −I . It is clear that J is globally defined; in an overlap U ∩ V the

action of J using the frame eV coincides with the action of J using eU . Thus J allows
us to consider each fiber in T M2 as a complex line! The real vector

e1 ∈ M2
p ≈ R

2

can be considered as a complex basis vector

e : = e1 ∈ M2
p ≈ C

1

of the complex line M2
p. Then

ie = Je1 = e2
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In terms of these bases eU = eU
1 , eV = eV

1 , . . . , the previous SO(2) transition matrices,

cU V (p), become simply the complex numbers

cU V (p) = eiα(p)

e1

e2

M2

M 2
p ≈ R

2 ≈ C
P

Figure 16.13

The tangent bundle to an oriented Riemannian surface can be considered as a complex
line bundle! The structure group of this bundle is now U (1), the unitary group in 1
variable!

The Riemannian connection for M2 is a connection for the real 2-dimensional tangent

bundle. In terms of the orthonormal frames eU , eV , . . . , we have

∇ei = e j ⊗ ω j
i = e j ⊗ ω j i

and we also know ωi j = −ω j i ; thus

∇e1 = e2 ⊗ ω21 (16.28)

A connection matrix for a complex line bundle would be a 1×1 matrix, that is, a single

1-form, which we shall denote by ωc(c for complex). We should then have, in our line

bundle version of T M2 (where e = e1)

∇ce = e ⊗ ωc

and since e2 = ie1 we can rewrite (16.28) as

∇ce = ∇e1 = ie1 ⊗ ω21 = e1 ⊗ iω21

or
∇ce = e ⊗ ωc (16.29)

ωc : = iω21 = −iω12

Does this mean that ωc = −iω12 defines a connection for this complex line bundle

version of T M2? For this to be true we certainly must have that ∇c commutes with

multiplication by complex constants

∇c(iψ) = i∇cψ

for any cross section ψ (i.e., any vector field on M2). For example

∇c(ie) = ∇e2 = e1 ⊗ ω12 = ie1 ⊗ (−iω12)

= i(e ⊗ ωc) = i∇ce

as desired. This connection will be discussed further in Problem 18.2(2).
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What is the curvature for this complex line bundle connection? It is the single 2-form

θ c = dωc + ωc ∧ ωc = dωc

= d(−iω12) = −idω12 = −iθ12

or

θ c = −iθ12 = −i Kσ 1 ∧ σ 2 (16.30)

where again K is the Gauss–Riemann curvature R12
12 of M2.

Problem

16.3(1) If ∇ and ∇′ are connections for bundles E and E ′ respectively over M then a
connection for E ⊗ E ′ can be given by

∇′′
X(Φ ⊗ Ψ) = (∇XΦ) ⊗ Ψ + Φ ⊗ (∇′

XΨ)

for local sections Φ = eaφ
a and Ψ = e′

R�R. Show that for Λ = ea ⊗ e′
RλaR

∇′′
j(λ

aR) = ∂ j(λ
aR) + ωa

jb λbR + ω′R
jSλaS

16.4. The Electromagnetic Connection

What does the electromagnetic field have to do with parallel displacement of a wave function?

16.4a. Lagrange’s Equations without Electromagnetism

In Section 10.2a we showed that Lagrange’s equations for a massive particle, dp/dt =
∂L/∂q, with p = ∂L/∂ q̇, follow from Newton’s equations ∇q̇/dt = − grad V . Al-

though both sides of Newton’s equations are contravariant vectors along the extremal

q = q(t), it is not true that both sides of Lagrange’s equations are covectors along the ex-

tremal, since dp/dt is an ordinary derivative (rather than a covariant derivative) and also

∂L

∂qk
= 1

2

{
∂gi j (q)

∂qk

}
q̇ i q̇ j − ∂V

∂qk
(16.31)

is not a covector field because of the first term. To remedy this we may consider the

covariant derivative of the momentum covector

∇ pi

dt
= ∇{gi j q̇ j }

dt
= gi j

{∇q̇ j

dt

}
= −gi j g

jk ∂V

∂qk

that is,
∇ p

dt
= −∂V

∂q
(16.32)

This is a geometric version of Lagrange’s equations; the left side differs from dp/dt
in that a covariant derivative is used; the right side uses the potential function V rather

than Lagrangian L .
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Let us verify that (16.32) really reproduces Lagrange’s equations, by computing

what dpi/dt − p j�
j
ki q̇

k = −∂V/∂qi , that is, dpi/dt = p j�
j
ki q̇

k − ∂V/∂qi , says.

dpi

dt
= g jr q̇r 1

2
g js

{
∂gsk

∂qi
+ ∂gsi

∂qk
− ∂gki

∂qs

}
q̇k − ∂V

∂qi

= 1

2
q̇s q̇k

{
∂gsk

∂qi
+ ∂gsi

∂qk
− ∂gki

∂qs

}
− ∂V

∂qi

= 1

2
q̇s q̇k

{
∂gsk

∂qi

}
− ∂V

∂qi
= ∂L

∂qi

from (16.31). Combining this with

pi = gi j q̇
j = ∂

∂q̇ i

{
1

2
grsq̇

r q̇s

}
= ∂T

∂q̇ i
= ∂L

∂q̇ i

then yields Lagrange’s equations, as promised. It is important that ∂V/∂ q̇ = 0.

16.4b. The Modified Lagrangian and Hamiltonian

Consider a charged particle moving in an M3 with no external electromagnetic field

present. Let L = L(x, ẋ) = T − V be the Lagrangian. The particle then obeys La-

grange’s equations dp/dt = ∂L/∂x , where p := ∂L/∂ ẋ is the kinematical momen-

tum, that is, the covariant version of the velocity.

Suppose now that an electromagnetic field is present also. The particle then suffers

not only the original force −∂V/∂x but also an additional Lorentz force whose con-

travariant version is e(E+v × B). This additional force is not the gradient of a potential

and so we cannot get the complete Lagrangian equations of motion merely by adding

a new potential term V ′ (although we could if the magnetic field were not present). It

turns out, though, that we can write the equations in Lagrangian and Hamiltonian forms

if we make a more sophisticated change. For this purpose we shall consider a massive

charged particle, moving perhaps relativistically in R
3.

We shall first make some heuristic remarks (inspired by comments of Weyl [Wy,

pp. 52, 99]) concerning the notion of the Lagrangian in particle mechanics and the

changes when an electromagnetic field is present. Unlike the total energy T +V , which

is frequently a constant of the motion, the Lagrangian T −V seemingly was introduced

merely to make Lagrange’s equations take a simpler mathematical form. Although

introduced long ago, I feel that its physical significance could not be appreciated before

the introduction of special relativity.

Introduce units for which the speed of light is unity, c = 1. Special relativity associates

to the world line of a massive particle its energy-momentum 4-vector P = (E, p)T . E =
m ∼ m0 + (1/2)m0 v2 + . . . , which, except for a constant m0, reduces to the classical

kinetic energy T for low speeds. If the classical force is derivable from a classical

backround potential V, fc = −∇V , special relativity suggests that we should augment

the energy E by V , yielding a “total energy” H := E + V ∼ m0 + (T + V ), as

in section 7.1c. We may then form, as a first attempt, the “total energy momentum

4-vector” (H, p)T . Put H0 := H − m0 ∼ T + V . The 1-form associated to (H, p)T ,
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i.e., the total energy momentum covector is then

pαdxα − Hdt = pαdxα − H0dt − m0dt

which is the extended Poincaré 1-form or action 1-form (4.57) augmented by a term

−m0dt which does not alter the equations of motion. Along the world line, this 1-form

is [
pα

(
dxα

dt

)
− H0

]
dt − m0dt = Ldt − m0dt

The Lagrangian action integrand Ldt is, except for a disposable exact differential,

the total energy-momentum 1-form, in the sense of special relativity, along the world

line! This, I believe, explains the significance of the Lagrangian in the principle of least

action!

There is a disquieting feature of the above argument; we took a 4-covector pαdxα −
Edt and added to its time component −E a scalar −V . This violates “Lorentz covari-

ance”; one cannot add a scalar to one component of a covector. (This does not mean that

the above procedure is invalid; it makes perfectly good sense if we agree to use only

those Lorentz transformations that do not involve time, for example the usual changes

of spatial coordinates traditionally used in non-relativistic mechanics.)

The situation is much more satisfactory when the backround field is the electromag-

netic field, with covector potential A = φdt + Aαdxα or vector potential (−φ, A)T .

In this case −V = eφ can be added to −E provided we add eA to p, since it makes

Lorentz sense to add two 4-vectors together! The resulting covector, the total energy-

momentum 1-form is simply

(pα + eAα)dxα − (E − eφ)dt − m0dt

with Lagrangian

Ldt =
[
(pα + eAα)

(
dxα

dt

)
− (E − eφ)

]
dt − m0dt

This also suggests that if one has a classical dynamical system, with Hamiltonian H and

no electromagnetism, then to get the Hamiltonian equations when electromagnetism is

introduced one simply defines a new Hamiltonian by H ∗ := H − eφ and new momenta

by p∗
α := pα + eAα. But then

pα
∗dxα − H ∗dt = pαdxα − Hdt + e(Aαdxα + φdt)

and the extended Poincaré 2-form should be redefined to be

�∗ := d(pα
∗dxα − H ∗dt) = � + eF (16.33)

(It can then be shown that Hamilton’s equations are now iX�∗ = 0, where X =
(dx/dt)∂/∂x +(dp/dt)∂/∂p+∂/∂t uses the original p rather than the augmented p∗.)

We are now finished with our heuristic discussion and we proceed with our formal

verification of these hopes.
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Theorem (16.34): Let H = H(q, p, t) be the Hamiltonian for a charged par-
ticle when no electromagnetic field is present. Let an electromagnetic field be
introduced. Define a new canonical momentum variable p∗ in T ∗M × R by

p∗
α := pα + eAα(t, q)

and a new Hamiltonian

H ∗(q, p∗, t) := H(q, p, t) − eφ(t, q) = H(q, p∗ − eA, t) − eφ(t, q)

Then the particle of charge e satisfies new Hamiltonian equations

dq

dt
= ∂ H ∗

∂p∗ and
dp∗

dt
= −∂ H ∗

∂q
and

d H ∗

dt
= ∂ H ∗

∂t

P R O O F: Compare the solutions of the original system

dq

dt
= ∂ H

∂p
and

dp

dt
= −∂ H

∂q

and the new system

dq

dt
= ∂ H ∗

∂p∗ and
dp∗

dt
= −∂ H ∗

∂q

At a point (q, p, t) = (q, p∗ − eA, t) we have

∂ H ∗

∂p∗ = ∂ H(q, p∗ − eA)

∂p∗ = ∂ H(q, p)

∂p
= dq

dt

and so the velocities dq/dt are identical in both systems.

Denote −∂ H/∂q by f , the force in the original system. Then

dpα
∗

dt
+ ∂ H ∗

∂qα
=

(
dpα

dt
+ e

d Aα

dt

)
+ ∂ H

∂qα
+ ∂ H

∂pβ

[
∂(−eAβ)

∂qα

]
− e

∂φ

∂qα

=
(

dpα

dt
+ e

d Aα

dt

)
− fα − e

(
dqβ

dt

)(
∂ Aβ

∂qα

)
− e

∂φ

∂qα

But(
dqβ

dt

)(
∂ Aβ

∂qα

)
=

(
dqβ

dt

)
(∂α Aβ) =

(
dqβ

dt

)
[(∂αAβ − ∂β Aα) + ∂β Aα]

=
(

dqβ

dt

)
[Fαβ + ∂β Aα] = (v × B)α + (∂β Aα)

(
dqβ

dt

)

= (v × B)α + d Aα

dt
− ∂ Aα

∂t
Thus

dpα
∗

dt
+ ∂ H ∗

∂qα
= dpα

dt
− fα − e

[
(v × B)α − ∂ Aα

∂t
+ ∂φ

∂qα

]

= dpα

dt
− fα − e[(v × B) + E]α
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Hence dp∗/dt = −∂ H ∗/∂q is equivalent to the original system augmented by

the Lorentz force, as desired.

The Lagrangian L and the Hamiltonian H are related by L(q, q̇) = pq̇ − H(q, p).

Along a lifted curve q̇ = dq/dt we then have

L(q, q̇)dt = pdq − H(q, p)dt

In terms of our new Hamiltonian, we should define

L∗(q, q̇)dt := p∗dq − H ∗(q, p∗)dt

= (pα + eAα)dqα − [H(q, p) − eφ]dt (16.35)

= [pαdqα − H(q, p)dt] + e[φdt + Aαdqα]

Corollary (16.36): A particle in an electromagnetic field satisfies Lagrange’s
equations ∂L∗/∂q − d/dt (∂L∗/∂ q̇) = 0 with new Lagrangian

L∗(q, q̇) = L(q, q̇) + e[φ + Aαq̇α]

that is,
L∗dt = Ldt + e[φdt + A] = Ldt + eA1

16.4c. Schrödinger’s Equation in an Electromagnetic Field

In the present section we shall remove the mass term from the metric; that is, the kinetic

energy of a particle is the familiar

T = 1

2
m〈q̇, q̇〉 = p2

2m

Consider a charged particle, of mass m, moving in a potential field V in R
3, with no

external electromagnetic field present. If we neglect spin, the electron is commonly

represented in quantum mechanics by a wave function

ψ(x) = ψ(x, t)

a complex-valued time-dependent function on R
3.

Schrödinger’s equation states that the wave functions evolve in time according to

ih̄
∂ψ

∂t
= Hψ (16.37)

where the Hamiltonian operator H is defined as follows.

The Hamiltonian of a particle in classical mechanics is given by

H(x, p) = p2

2m
+ V (x) (16.38)

where p is the canonical momentum. Schrödinger then postulates that in Cartesian
coordinates the canonical momenta pα are represented by the differential operators

pα = −ih̄
∂

∂xα
(16.39)
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The potential V is simply the multiplicative operator ψ �→ V (x)ψ , and (16.38) be-

comes, in Cartesian coordinates in R
3,

ih̄
∂ψ

∂t
= −

(
h̄2

2m

)∑
α

∂2ψ

(∂xα)2
+ V ψ (16.40)

If the particle has charge e and there is an additional external electromagnetic field

present, then (16.34) says that (16.38) should be replaced by

H(x, p∗) = (p∗
α − eAα)

2

2m
+ V (x) − eφ

and the canonical momenta p∗
α should be replaced, when x are Cartesian coordinates,

by p∗
α = −ih̄∂/∂xα. Schrödinger’s equation becomes

ih̄
∂ψ

∂t
= 1

2m

∑
α

[
−ih̄

∂

∂xα
− eAα

]2

ψ + V ψ − eφψ (16.41)

If we write this in the form

ih̄
[

∂

∂t
−

(
ie

h̄

)
φ

]
ψ = −

(
h̄2

2m

) ∑
α

[
∂

∂xα
−

(
ie

h̄

)
Aα

]2

ψ + V ψ

we may then write

ih̄∇0ψ = −
(

h̄2

2m

) ∑
α

∇α∇αψ + V ψ

where

∇0 : = ∂

∂t
−

(
ie

h̄

)
φ

and (16.42)

∇α : = ∂

∂xα
−

(
ie

h̄

)
Aα

We may write, instead of the last two definitions,

∇ j := ∂

∂x j
−

(
ie

h̄

)
A j (16.43)

We then have the following situation. We originally thought of ψ as being a complex

function on R
4, that is, a section of the trivial complex line bundle over R

4. Schrödinger’s

equation involves the vector potential A1 = A j dx j = φdt + Aαdxα. The vector

potential is not uniquely determined; we may, if we wish, use a different choice A1
U

in each of several patches U in R
4. If we do so, then in each patch U we shall have

a different Schrödinger equation, satisfied by a local solution ψU . This is precisely
the situation we met when we considered sections of a complex line bundle over R

4!

Equation (16.43) then takes on the appearance of a covariant derivative

∇ jψ := ∂ψ

∂x j
+ ω jψ

where (16.44)

ω j := −
(

ie

h̄

)
A j
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If ω is to be a connection, what is the bundle? Consider two choices AU and AV in

overlapping patches of R
4. In these patches we have

ωU = −
(

ie

h̄

)
AU , ωV = −

(
ie

h̄

)
AV

Since the electromagnetic field 2-form, F = d A, is well defined, it must be that AV −AU

is a closed 1-form on U ∩ V , and, if this intersection is simply connected, AV − AU is

exact,

AV = AU + d fU V in U ∩ V

where fU V is a real single-valued function on U ∩ V . Then

ωV = ωU −
(

ie

h̄

)
d fU V

But a connection in a bundle transforms by (16.18), and when the bundle is a complex

line bundle, the cU V are 1 × 1 complex matrices and the transformation rule becomes

ωV = ωU + c−1
U V dcU V (16.45)

Thus we may choose log cU V (x) = −(ie/h̄) fU V , that is,

cU V (x) = exp

{
−

(
ie

h̄

)
fU V

}
(16.46)

If cU V cV W cWU = 1 is satisfied then (16.46) defines a line bundle whose cross sections

will be our local wave functions.

A wave function is then not a single complex-valued function ψ but rather a collection
ψU , ψV , . . . of functions such that in an overlap U ∩ V

ψV (x) = cV U (x)ψU (x) = exp

{(
ie

h̄

)
fU V

}
ψU (x) (16.47)

This brings us back to the starting point of gauge theories in quantum mechanics,

namely

Weyl’s principle of gauge invariance (16.48): Ifψ satisfies Schrödinger’s equa-
tion (16.41), which involves the potential A, then

exp

[(
ie

h̄

)
f (x)

]
ψ

satisfies Schrödinger’s equation when A has been replaced by

A + d f

To see this let U = V but let us choose AV = AU + d f . Then Weyl’s principle simply

says that if

ih̄∇V
0 ψV =

(
− h̄2

2m

) ∑
α

∇V
α ∇V

α ψV + V ψV
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then (16.17), that is, cV U∇U = ∇V cV U , shows that this same equation holds (with

∇V �→ ∇U ) when ψV is replaced by ψU ! Note that without the notion of a connection

the verification of this would be messy; Schrödinger’s equation, when written out

without covariant derivatives, involves

∇μ∇μψ = ∂2ψ

∂xμ2
−

(
ie

h̄

)[
Aμ

∂ψ

∂xμ
+ ∂

∂xμ
(Aμψ)

]
−

(
e2

h̄2

)
Aμ Aμψ.

(16.17) is the crucial simplification.

It should be clear that Weyl’s principle is not restricted to Schrödinger’s equation;

“covariance,” that is, (16.17), is the essential ingredient.

Note that the transition functions (16.46) for our bundle are complex numbers of

absolute value 1; the structure group of the given line bundle is the group U (1). This

implies that |ψV |2 = |ψU |2 and consequently the probability interpretation of |ψ |2 in
quantum mechanics can be maintained.

The curvature of the connection from (16.44) is essentially the electromagnetic field

2-form.

θ = dω = −
(

ie

h̄

)
d A1 = −

(
ie

h̄

)
F2 (16.49)

= −
(

ie

h̄

)
[E ∧ dt + B]

Finally, we shall make some remarks about Schrödinger’s equation in curvilinear

coordinates. Consider a Riemannian manifold M , the most important case being R
3

with a curvilinear coordinate system. Let E be a complex vector bundle with connection

ω, for example the wave function bundle with ω = −ieA/h̄. We suppress the bundle

indices on ω and on ψ . For covariant derivative we have ψ/j = ∂ jψ + ω jψ . This

represents a cross section of the bundle E ⊗ T ∗M , that is, the bundle of covariant

vectors on M whose values are in E . As we have seen in Problem 16.3(1), the covariant

derivative ψ/jk = (ψ/j )/k of this tensor will involve not only the connection ω for E
but also the Riemannian connection �

ψ/jk = (ψ/j )/k = ∂kψ/j + ωkψ/j − �r
k jψ/r

= ∂k(∂ jψ + ω jψ) + ωk(∂ jψ + ω jψ) − �r
k j (∂rψ + ωrψ)

= [∂k∂ jψ − �r
k j∂rψ] + {∂k(ω jψ) + ωk(∂ jψ + ω jψ) − �r

k jωrψ}
which is now a covariant second rank tensor on M with values in E . Then the

“Laplacian”

∇2ψ := g jkψ/jk

is again simply a section of E . In slightly more detail

∇2ψ = g jkψ/jk = g jk[∂k∂ jψ − �r
k j∂rψ] + g jk{ }

The term involving the square brackets g jk[ ] is simply the Laplacian of the “function”

ψ, using the Riemannian connection

1
√g

∂

∂x j

[√
gg jk

(
∂ψ

∂xk

)]
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(see equation (11.30)). A candidate then for Schrödinger’s equation for a charged

particle in an electromagnetic field on M would be

ih̄
(

∂

∂t
− ieφ

h̄

)
ψ = −

(
h̄2

2m

)
g jkψ/jk + V ψ

Summary. When no electromagnetic field is present, the Hamiltonian is of the form.

1

2m

∑
α

gαβ pα pβ + V

in curvilinear coordinates or on a Riemannian manifold M . We replace pα by the

Riemannian covariant derivative −ih̄∇M
α . Schrödinger’s equation becomes

ih̄
∂ψ

∂t
=

(
− h̄2

2m

)
1

√g

∂

∂xα

[√
ggαβ

(
∂ψ

∂xβ

)]
+ V ψ

The only effect of introducing an electromagnetic field now is to replace the trivial wave
function bundle by the bundle E with connection ω = −ieA/h̄, and we must use the

full covariant derivative (using both � and ω)

ih̄ψ/0 =
(
− h̄2

2m

)
gαβψ/αβ + V ψ

In this procedure there is no need to first introduce the new canonical momenta p∗ in

the classical system augmented by the electromagnetic field!

16.4d. Global Potentials

In most problems involving electromagnetics the vector potential 1-form A1 is glob-

ally defined. We can see this as follows. Consider first a smooth electromagnetic

field F2 in all of Minkowski space, M4
0 . Since M4

0 = R
4 has second Betti num-

ber b2 = 0, de Rham’s theorem assures us that there is a potential 1-form A1 for

the closed 2-form F2, F2 = d A1. Usually, however, there are singularities of F2,

located, for example, at the moving point charges. We cannot apply de Rham’s the-

orem to singular forms; thus in order to use de Rham’s theorem we must first re-

move the singularities of F2 from M4
0 , leaving an open subset U of M4

0 . Now, how-

ever, there is no reason to assume that b2(U ) = 0; for example, a fixed charge

at the origin of R
3 yields an entire t axis of singularities in M4

0 , and the 2-sphere

in R
3 surrounding the origin is a 2-cycle of U = M4

0 − (the t axis) that does not

bound. In spite of the fact that U may have nonbounding 2-cycles, we still have the

following:

Theorem (16.50): Consider a region U of a general relativistic space–time M4

that has a global time coordinate, that is, U is of the form V 3 × R with V 3 a
spacelike hypersurface and t a global coordinate for R. Suppose that the mag-
netic field B

2 vanishes at time t = 0. Then F2 has a globally defined potential
A1, d A1 = F2, on all of U.
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P R O O F: F2 is closed, d F = 0. By de Rham’s theorem, we need only show that

the integral of F2 over each 2-cycle z of U vanishes. But z can be deformed, by

the deformation φα(x, t) = (x, (1 − α)t), into a homologous spatial cycle z′ that

lies in the hypersurface where t = 0. Since F2 = E
1 ∧ dt + B

2 restricts to 0 on

the deformed cycle,
∫

z F2 = ∫
z′ F2 = 0.

For a simpler discussion in R
3, see Problem 16.4(1).

In the standard cosmological models, the Friedmann universes, there is a global

time coordinate (see [F, chap. 12]). Thus the only way F2 can avoid having a global

potential today in these models is for there to have existed, since the time of the big
bang, a nonbounding 2-cycle, and a magnetic field with nonzero flux through this

cycle. (Some of the Friedmann models do have b2 �= 0; for example, there are models

where the spatial sections V 3 are flat 3-dimensional tori T 3, and others with V 3 closed

manifolds with negative curvature and b2 �= 0.)

16.4e. The Dirac Monopole

If there is a global potential A1, there is then no necessity for introducing a bundle whose

sections will serve as local wave functions, since one global patch U will suffice. It

may very well be though that when considering other fields, for example the Yang–

Mills fields, to be discussed later, we shall not be so fortunate, and in that case we

shall be forced to introduce bundles and connections, as we have had to do in the case

of gravitation in general relativity. There is, however, a much simpler situation that

requires bundles, namely the Dirac magnetic monopole (which, however, has never

been shown to exist).

Consider then an electron moving in R
3 − {O} in the field of a magnetic monopole

of strength q fixed at the origin. The B field for this monopole is B = (q/r 2)∂/∂r ,

that is (see equation (5.9)),

B
2 = iB vol3 = d[q(1 − cos θ)dφ]

Thus

A
1
U = q(1 − cos θ)dφ

in the region U = R
3 − {negative z axis}. We shall need also to consider points on the

negative z axis (except for the origin). In the region V = R
3 − {positive z axis} we can

use θ ′ = π − θ and φ′ = −φ as coordinates and get

A
1
V = −q(1 + cos θ)dφ

Maxwell’s equations hold everywhere on R
3 − {0}.

Since A
1
U does not agree with A

1
V in U ∩ V = R

3 − {z axis}, we shall be forced
to introduce the electromagnetic bundle and connection of Section 16.4c. In Problem

16.4(2) you are asked to show that the transition function for this monopole bundle is

cV U = exp

(
− 2ieqφ

h̄

)
(16.51)
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Note that this is not single-valued unless Dirac’s quantization condition

2eq

h̄
must be an integer (16.52)

is satisfied. If this condition is not satisfied we shall have failed in our attempt to

construct a bundle. Since there are only two patches U and V , Equation (16.3) is

automatically satisfied. Thus if (16.52) holds, the monopole bundle will exist.

That cV U is not in general single-valued is a reflection of the fact that in this case

U ∩ V = R
3 − {entire z axis} is certainly not simply connected (more to the point, its

first Betti number does not vanish). It is true that by using more sets (whose intersections

are simply connected) to cover R
3 − {0}, we could find transition functions that would

be single-valued without requiring (16.52), but it would turn out that it would not be
possible to satisfy the crucial equation cU V cV W cWU = 1. In fact, we shall prove in

Section 17.4, from a general Gauss–Bonnet theorem, that for any complex line bundle

over R
3-origin, the curvature must satisfy

i

2π

∫
S2

θ 2 = integer (16.53)

The unit sphere S 2 is a generator for the second homology group H2(R
3 − {0}, Z).

(Note that we have already proved

i

2π

∫
M2

θ 2 = integer

in the geometrical case when the complex line bundle is the tangent bundle to the

oriented closed surface M2; see (9.66) and (16.30)!) For the monopole bundle, from

(16.49),

θ = − ie

h̄
B = − ie

h̄
iB vol3 = − ieq

r 2h̄
i∂/∂r vol3

and thus the integral in (16.53)) becomes

−
(

i

2π

)(
ieq

h̄

)
(4π) = 2eq

h̄

Thus, as noted first, I believe, by Sniatycki [Sy]

if Dirac’s condition (16.52) is not satisfied, there will be no complex line bundle whose
sections can serve as wave “functions” for the electron in the field of a magnetic
monopole.

(For a description of the monopole bundle, see Section 17.4c.) This yields a quantiza-
tion condition, relating the charge on a monopole to that of the electrons.

More generally, it will be shown in Chapter 17 that the flux of eB/2πh̄ through any

closed oriented surface, for any magnetic field, must be an integer.
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B B

B

BB

V 3

Z 2

Figure 16.14

B
B

V3

Z 2

Figure 16.15

In Figure 16.14 we have indicated a V 3 that consists of two separated horizontal

sheets (two “separate” universes) that are joined by a wormhole cylinder S2 × [0, 1];

we have indicated one of the spherical sections Z 2 going around the “throat” of the

wormhole. A magnetic field goes from the bottom sheet through the lower “mouth,”

threads through the throat, and comes out of the top mouth. In this example
∫

Z B
2 �= 0.

Figure 16.15 is similar except that the wormhole joins two distant portions of the “same”

universe, and again B has a nonzero flux through the throat. In both cases there is no

global A and the flux of B through the throat must be quantized in terms of e.

Finally, we wish to emphasize one point. If there is a monopole, then from (16.51) we

see that ψV = exp(−2ieqφ/h̄)ψU �= ψU . Thus the electron wave function ψ cannot be

defined (and single-valued) everywhere and it must, rather, be considered as a section
of the monopole bundle with at least two patches. Presumably, then, we should expect

that other types of fields that interact with elementary particles might demand that

wave functions be replaced by sections of bundles, just as we do not expect that every

manifold should be covered by a single coordinate patch.

16.4f. The Aharonov–Bohm Effect

At first sight the electromagnetic connection ω = −ieA1/h̄ seems nonphysical since

classically the vector potential A1, changing with each choice of gauge, was regarded

only as a mathematical tool for describing the physical electromagnetic field F2 =
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d A1. We have noted, however, a similar situation in general relativity; the Levi-Civita

connection, a gauge field, can be thought of as merely a preliminary mathematical step

on the way to its derivative, the Riemann curvature tensor, describing the strength of

the gravitational field. However, this gravitational connection is a physical field in the

sense that it, with no use of its derivatives, governs parallel displacement. We shall now

see that the electromagnetic connection, that is, the vector potential A1, although not

a classical physical field, is a physical field in quantum mechanics, and this will be

illustrated with the famous Aharonov–Bohm effect.

With a solenoid carrying a current j , the circulation of the magnetic field about a

closed loop C going around the coil is, by Ampere’s law,
∮

C ∗ B = 4π j . When j is very

small, if the wire is tightly wound, the magnetic field inside the coil can be substantial

while ∗B outside is very small. In the simplified version of an infinitely long, infinitely

tightly wound solenoid, it is assumed that the magnetic field inside is constant and

parallel to the axis of the coil, and the magnetic field outside the coil is vanishingly

small.

Figure 16.16

Let the magnetic flux inside the coil be
∫∫

B = b. Then A
1 = bdθ/2π is a well-

defined vector potential in the region exterior to the coil, designed to satisfy both∮
C A = b and dA = 0. See Problem 16.4(4) for the potential inside the coil.

It is possible to detect the effect of A on an electron constrained to the exterior

region even though B = 0 in this region; this is the Aharonov–Bohm effect. A brief

explanation in terms of path integrals is as follows. (We assume here a slight familiarity

with Feynman’s method. For more details the reader is referred to Feynman’s lectures

[F, L, S, vols. II and III], Rabin’s article [R ], and the excellent book [Fe] by Felsager. For

insight into the path integral formalism (without mentioning integrals!) see Feynman’s

remarkable book [F].)

An electron is emitted from a source, passes through one of two slits in a screen,

moves along a curve γ , and strikes a screen behind the solenoid at a point y. The

“probability amplitude” for this process is proportional to the exponential of the classical

action for the path γ

�[γ ] = exp

(
i

h̄

∫
γ

Ldt
)

(16.54)

The principal contribution to the amplitude for going from x to y is given by this

expression when the pathγ is a classical path of “least” action. Since the electromagnetic

field vanishes in this exterior region, the classical path will be a straight line from the

slit in the screen. We exhibit the two classical paths C and C ′ (both must be taken into

account since we don’t know which slit the electron chooses).
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source

solenoid
screen

C ′ y

C
x

Figure 16.17

The phase of the complex number � is its angle or argument. The phase difference,

due to paths C and C ′, is responsible for the interference pattern observed at the screen.

Look at the cases when there is no current in the coil and when the current is flowing.

In the first case the Lagrangian is L0. After the current is turned on, there is a vector

potential A present outside the solenoid. Corollary (16.36) then tells us to replace

L = L0 by L = L0 + e(ẋα Aα + φ); that is, we replace Ldt by Ldt + eA • dx, since

the scalar potential vanishes. In this new situation the phase difference becomes

(
1

h̄

)( ∮
C−C ′

L0dt + eA • dx

)

and this differs from the original phase difference only by

e

h̄

∫ ∫
B = eb

h̄

Since this is independent of y for any pair C, C ′ of classically extremal paths, Aharonov

and Bohm concluded that the original interference pattern will simply be shifted by

a constant amount, in spite of the fact that the electron feels no magnetic force in

the exterior region! This shift has actually been observed. The field A, and thus the

connection ω, are physical fields in quantum mechanics.

Problems

16.4(1) Let z2 be a closed surface in R
3 that lies outside the singularities of the electro-

magnetic field. Show directly from Maxwell’s equations that
∫

z B2 is constant
in time. This shows that if B2 vanished sometime in the past, then B = curl A
in the nonsingular set.

16.4(2) Derive (16.51).

16.4(3) In the monopole bundle with 2eq/h̄ an integer �= 0, the function ψU = 1 is a
cross section over U = R

3 − {negative z axis}. Can ψU be extended to be a
cross section over all of R

3 − {0}? (Look at the proposed ψV at points of the
negative z axis.)

16.4(4) Assume a constant axial magnetic field Bdx ∧ dy inside the coil whose axis is
the z axis. (Thus B = b/πa2, where a is the radius of the coil.) Of course Bxdy
is a covector potential, but to match up with our external potential use cylindrical
coordinates r, θ, z , and show that another choice of a covector potential 1-form
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is given by A1 = (B/2)r 2dθ . What is the length ‖ A ‖ of this choice for A? What
is the length of the exterior version for A used in the text? Why don’t they match
up smoothly?

16.4(5) Show the gauge invariance of Feynman’s prescription (16.54) as follows: Let
a particle in an electromagnetic field have probability amplitude ψU (x , 0) of
being at x ∈ U at time 0. Then the probability amplitude that the particle will
traverse a path γ from x to y, arriving at y at time t , is, in Feynman’s view

ψU (x , 0) exp

[
i
h̄

∫
γ

Ldt + eAU • dx

]
= ψU (x , 0) exp

[
i
h̄

∫
γ

Ldt

]
exp

∫
γ

−ωU

There is a similar expression if we use a different gauge ψV (x , 0) = cVU (x )

ψU (x , 0). Show that these two gauges yield compatible results.





CHAPTER 17

Fiber Bundles, Gauss–Bonnet, and
Topological Quantization

17.1. Fiber Bundles and Principal Bundles

A vector bundle is a family of vector spaces parameterized by points in the base space. How

do we parameterize a family of manifolds, say Lie groups?

17.1a. Fiber Bundles

The tangent bundle T Mn to a Riemannian manifold is a vector bundle associated to M ;

it is locally of the form U × R
n . We have had occasion also to consider the set of unit

vectors tangent to M ; that is, we may consider, in each fiber π−1(p) ≈ R
n of TM (a

vector space with scalar product), the unit sphere Sn−1(p) ⊂ π−1(p). The collection of

all these unit spheres Sn−1(p), as p ranges over M , forms a new manifold, called the unit

tangent bundle T0 M in Section 2.2b. We again have a projection π : T0 M → M . The

term bundle refers to the fact that the space is again locally a product in the following

sense: T0 Mn is the collection of all (n − 1)spheres Sn−1(p) in all of the tangent spaces

to M , but there is no natural way to identify points in S(p) with points in S(q) for

distinct points p and q in M . Choose an orthonormal frame eU = (e1, . . . , en) in a

patch U of M and take a fixed unit sphere S in some euclidean space R
n . We may then

identify each tangent sphere S(p), at p ∈ U , with the fixed sphere S, by identifying

v = (eiv
i ) ∈ Sn−1(p) with s = (v1, . . . , vn) ∈ Sn−1 ⊂ R

n; thus (p, v) is identified

with s. We then have a diffeomorphism

�U : U × Sn−1 → π−1(U ) ⊂ T0 M

exhibiting the local product structure. Of course if we go into another patch V , using

a new frame eV , then we shall get a different identification. This space T0 M is a “fiber

bundle,” but not a vector bundle, because the fiber Sn−1 is a manifold that is not a vector

space. We may now define this new notion in general. T0 M is atypical, since it is a

subbundle of the vector bundle TM .

A fiber bundle consists of the following: There are a manifold Fk (called the fiber), a

manifold E (the bundle space) and a manifold Mn (the base space) together with a map

π : E → Mn

451
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of E onto M . We demand that E is locally a product space in the following sense:

There is a covering of Mn by open sets U, V, . . . , such that π−1(U ) is diffeomorphic

to U × F ; there is a diffeomorphism

�U : U × F → π−1(U ) (17.1)

with �U (p, yU ) ∈ π−1(p) for each yU ∈ F . Then for each p ∈ U the assignment

y ∈ F → �U (p, y) ∈ π−1(p) is a diffeomorphism; that is, the fiber π−1(p) over
p is a diffeomorphic copy of the fiber F of the bundle. In an overlap U ∩ V a point

e ∈ π−1(U ∩ V ) will have two representations

e = �U (p, yU ) = �V (p, yV )

and we demand that

yV = cV U (p)[yU ] (17.2)

where cV U (p) : F → F is a diffeomorphism of the fiber. In the case of a vector bundle,

F = R
K or C

K , each cV U (p) : R
K → R

K was a linear transformation, but now, of

course, F is a manifold and need not have a linear structure.

The set of all diffeomorphisms of a manifold F clearly form a group in the sense

of algebra. (It is not a Lie group; e.g., the diffeomorphisms of R
2 form, in a sense, an

infinite-dimensional manifold). If all the maps cU V (p) lie in a subgroup G of the group

of all diffeomorphisms of F we say that G is the (structure) group of the fiber bundle.

In the case of the unit tangent bundle T0 M to a Riemannian manifold, by using

orthonormal frames as we did earlier, each cV U (p) : Sn−1 → Sn−1 is the restriction

of an orthogonal transformation R
n → R

n to the unit sphere Sn−1 ⊂ R
n . Thus by

employing orthonormal frames we reduce the structure group of the fiber from the group

of all diffeomorphisms of Sn−1 to the subgroup O(n) of orthogonal transformations of

the sphere.

In the case of the normal real line bundle to the midcircle M1 of the Möbius band (see

Figure 16.1), we may choose unit sections eU and eV inU and V , respectively. On the two

pieces of the intersection U ∩V we have in one case eU = eV and in the other eU = −eV .

Thus the structure group of this normal bundle is the 2-element multiplicative group
{±1}, which is easily seen to be another version of the additive group Z2.

Of course we still demand

cV U (p) = cU V (p)−1

and (17.3)

cU W ◦ cW V ◦ cV U = identity on U ∩ V ∩ W

As in the case of a vector bundle, a fiber bundle over M can be constructed as soon as

transition functions satisfying (17.3) are prescribed.

A (local cross) section is again a map s : U → E such that π ◦ s = identity. A

section s is simply a collection of maps {sU : U → F} such that in U ∩ V we have

sU (p) = cU V (p)[sV (p)].
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π

U
M

Figure 17.1

In Section 17.2 we shall see many examples of fiber bundles.

17.1b. Principal Bundles and Frame Bundles

Let Mn be Riemannian and let FM be the collection of all orthonormal frames f1, . . . , fn

of vectors at points of M . π : F M → M assigns to each frame f = (f1, . . . , fn) the

point p of M at which the frame is located. What is the fiber π−1(p) over p? Let e be

a given frame at p; then the most general frame f at p is of the form

f = eg i.e., fβ = eαgα
β

where the matrix [gα
β] = g ∈ G = O(n). Thus after a single frame e at p has

been chosen, the fiber π−1(p) of all orthonormal frames at p can be identified with

the structure group G = O(n) of orthogonal n × n matrices. The fiber for the frame

bundle FM is the Lie group O(n). How do we exhibit the local trivialization (product

structure)? Let e be an orthonormal frame field on an open set U ⊂ M ; for example, we

can apply the Gram–Schmidt process to a coordinate frame in a patch. Then a general

orthonormal frame f on U is uniquely of the form

f(p) = eU (p)gU (p) (17.4)

Thus the frame f in U is completely described by giving the point p and the matrix gU .

The local trivialization

�U : U × G → π−1(U )

assigns to each p ∈ U and each g ∈ G the frame

�U (p, g) := eU (p)g

In an overlap, the same frame (17.4) will have another representation

f(p) = eV (p)gV (p)

where (17.5)

eV (p) = eU (p)cU V (p)
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cU V (p) ∈ G = O(n) is the transition matrix for the tangent bundle (recall that in TM ,

for a vector y = eU yU = eV yV , then yV = cV U yU ). Then

f = eU (p)gU (p) = eV (p)gV (p) = eU (p)cU V (p)gV (p)

gives

gU (p) = cU V (p)gV (p) (17.6)

Thus the diffeomorphism

cU V (p) : [G = O(n)] → G

is simply left translation of G by the (transition) orthogonal matrix cU V (p)!

In general we shall say that a fiber bundle

{P, M, π, F, G}
is a principal bundle if the fiber F is the same as the group G, and if the transition

functions cU V (x) act on F = G by left translations.

The frame bundle FM is the principal bundle associated with the tangent (vector)

bundle TM .

By exactly the same procedure, given any vector bundle E → M with fiber R
k , we

can, by considering frames of k linearly independent local cross sections, construct

the associated principal bundle P whose fiber is the structure group of the original

vector bundle.

17.1c. Action of the Structure Group on a Principal Bundle

The frame bundle has a remarkable property that is not shared with the tangent vector

bundle: the structure group G acts in a natural way as a group of transformations on
FM . Let g ∈ G be a given matrix and let f = (f1, . . . , fn) be a frame at p, that is; f is a

point in FM . Then we can let g send this point f into the new point g(f) := fg by the usual

(fg)β = fαgα
β (17.7)

Note that this assignment is intrinsic: we have not used the local product structure!

There is, however, no natural action of G on the tangent bundle itself. For example, if

M3 is 3-dimensional and if v is a tangent vector at p and if g is a 3 × 3 matrix, what

would you like g(v) to be? We cannot assign a column to v without first assigning a

basis for M3(p), and assigning a particular basis is very unnatural! It is because FM
is the space of bases that we succeeded in (17.7).

This works for any principal bundle, namely:

Theorem (17.8): The structure group G of a principal bundle P acts “from the
right” on P

(f ∈ P, g ∈ G) → (fg) ∈ P

without fixed points when g �= e, and preserves fibers (i.e., π(fg) = π(f)).
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P R O O F: We first define the action locally. Let f ∈ P and let π(f) = p lie in some

open U over which P is trivial

�U (U × G) = π−1U

Then we can write uniquely

f = �U (p, fU )

that is, f has the local “coordinate” fU ∈ G. We define fg to be the point with

local coordinate fU g,

(fg)U = fU g

This is in fact coordinate independent, for in an overlap U ∩ V , f would have

fV = cV U (p) fU and then

(fg)V = fV g = cV U (p) fU g = cV U (p)(fg)U

We see in this proof that the essential point is that left translations in G (say by cV U )

commute with right translations (say by g).

We can use the same notation in a principal bundle that we used in the frame bundle.

Over U we may consider the local section eU

eU (p) := �U (p, I )

where I is the identity matrix in G. Then for any point f ∈ π−1(p) we may write

f = �U (p, fU ) = �U (p, I fU ) = eU (p) fU (17.9)

for a unique fU ∈ G.

Each right action f → fg is a diffeomorphism : P → P . Let the 1-parameter

subgroup et A, A ∈ g , act. The resulting velocity vector field on P is then

A∗at f := d

dt
[fet A]t=0

In terms of the local product structure, f = eU fU , and then

A∗(f) = d

dt
[eU fU et A]t=0

The action f → fet A on P is completely described by the action in G

fU → fU et A

whose velocity vector at fU ∈ G is

d

dt
[ fU et A]t=0 = fU A

the left translate of A to fU . The vector field A∗ on the principal bundle P generated

by A ∈ g is said to be the fundamental vector field associated to A.
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17.2. Coset Spaces

What do subgroups and cosets have to do with fiber bundles?

17.2a. Cosets

Let G be a Lie group and H ⊂ G a subgroup. The left coset space is the set of

equivalence classes of elements of G

g ≈ g′ iff g′ = gh

for some h ∈ H . Thus g ≈ g′ iff g−1g′ ∈ H . (We discussed this in the case of abelian

groups in Section 13.2c; we called it there the quotient space. In abelian groups one

may write g′ ≈ g iff g′ = g + h.)

G

G

H

e

g

g

g= h

gHH

′

g g= ′H H

H/

π

Figure 17.2

Thus we identify all elements of G that lie on the same left translate

gH := {gh|h ∈ H}
of the subgroup H . We denote the equivalence class of the element g ∈ G by [g] or

else gH . The map that sends g into its equivalence class will be denoted by π .

Many familiar spaces are in fact coset spaces! Let us say that a group G acts (as a
transformation group) on a space M provided there is a map

G × M → M

(g, x) �→ gx

such that

(gg′)x = g(g′x) and ex = x

If, furthermore, given any pair x , y, of points of M , there is at least one g ∈ G that

takes x to y, gx = y, we say that G acts transitively on M .

Example: SO(3) acts transitively on the 2-sphere

SO(3) × S2 → S2

as the group of rotations.
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Fundamental Principle (17.10): Let G act transitively on a set M. Let x0 ∈ M
and let H ⊂ G be the subgroup leaving x0 fixed,

H = {g ∈ G|gx0 = x0}
H is called the stability, or isotropy, or little subgroup of x0. Then the points of
M are in 1 : 1 correspondence with the left cosets {gH} of G.

The space of left cosets is again written G/H . Unlike the case when G is abelian,

G/H is usually not itself a group.

G

M

H

e

g

gH

g g= ′H H

π

x0 x = gx0

Figure 17.3

P R O O F: Let x0 be a point of M . Associate to g ∈ G the point x = gx0 where

g takes the distinguished point x0. Since ghx0 = x also, for all h ∈ H , we see

that under this assignment, the whole coset gH is associated to this same x . We

then have a correspondence G/H → M . Conversely, to each x ∈ M we may

associate {g ∈ G : gx0 = x}, which is easily seen to be an entire coset of G.

Example: SO(3) acts transitively on the 2-sphere M = S2. Let x0 be the north pole,

x0 = (0, 0, 1)T . The little group of x0 is clearly the 1-parameter subgroup of rotations

about the z axis.

H = SO(2) ⊂ SO(3) SO(2) =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎦

for all θ . We conclude that

SO(3)/SO(2) ≈ S2

In our usual picture of SO(3) as the ball with identifications, Figure 17.4, SO(2) is

the curve C . Note that all rotations through π about axes in the xy plane send x0 to the

south pole. Thus the coset of the rotation diag (1, −1, −1) is the curve C ′.
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C

C

I

′

2SO( )

SO 3( )

πθ =
2S

Figure 17.4

The coset C ′ is not a subgroup; it does not contain the identity.

Note that in any (left) coset decomposition π : G → G/H , the subgroup H acts on

G from the right as a group of transformations of G that sends each coset into itself

h ∈ H sends g ∈ G into gh; gH �→ gHh = gH

The following is a very important fact. We shall not prove this theorem here but we

will make some comments about it.

Theorem (17.11): Let G be a Lie group and let H be a closed subgroup (i.e.,
H contains its accumulation points). Then G/H can be made into a manifold of
dimension dim G − dim H. Furthermore, G is a principal bundle with structure
group H and base space M = G/H and π : G → G/H is the projection of the
bundle space onto the base.

A coset space M = G/H of a Lie group is called a homogeneous space.
For example, S2 is a homogeneous space, being the coset space SO(3)/SO(2) of

dimension 3 − 1.

Remarks on the Proof of Theorem (17.11): We indicate briefly why the cosets

in a neighborhood of the coset eH = H can be considered a manifold of dimension

dim G − dim H .

Figure 17.5
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Let V be an embedded submanifold of G, passing through e, transverse to H , and of

dimension complementary to H (a “normal disc”). An essential fact that can be proved

is that if V is sufficiently small, each coset gH of H will either miss V or else strike

V in exactly one point. For this, it is important that the subgroup H be closed in G;

if, e.g., H were a line winding densely on the torus G = T 2 of Section 15.4d, then

surely if H met the transversal V once it would meet it an infinite number of times!).

If a coset of H meets V we may say that this coset is near H . A coset near H is of the

form gH for some unique g ∈ V . This shows that the points of G/H “near eH” are in

1 : 1 correspondence with the points of the “slice” V . Locally G/H is a manifold of

the same dimension as V , that is, of dimension (dim G−dim H ). For details see, for

example, Warner’s book [Wa].

17.2b. Grassmann Manifolds

The real projective plane RP2 is the set of unoriented lines through the origin of R
3(S2

is the set of oriented lines). The orthogonal group O(3) acts transitively on the space

of lines. Let l0 be the x axis line. The subgroup that sends this line into itself consists

of orthogonal matrices that either leave the x axis pointwise fixed or else reverses the x
axis. These orthogonal matrices automatically send the yz plane into itself, that is, they

act as O(2) does on the yz plane. Since O(1) consists of the two numbers {−1, 1}, we

can write the isotropy subgroup of l0 as[
0(1) 0

0 0(2)

]
= 0(1) × 0(2) ⊂ 0(3)

Thus RP2 may be identified with the coset space

RP2 = O(3)

O(1) × O(2)

The dimension of a cartesian product Mr × V s of manifolds is (r + s). Thus RP2 is a

manifold of dimension 3 − (0 + 1).

The set of unoriented k-planes through the origin of R
n is called a Grassmann

manifold and is frequently denoted by Gr(k, n). (Beware: there are different notations.)

Thus Gr(1, 3) = RP2.

Problems

17.2(1) Exhibit Gr(k , n) as a coset space and compute its dimension.

17.2(2) SO(3) acts transitively on RP 2. Let l0 be the unoriented z axis. Show that we
can write RP 2 as the coset space SO(3)/H, where H is the subgroup C ∪ C ′
consisting of the two curves C and C ′ considered in Figure 17.4.

17.2(3) We know that the collection of all frames of n orthonormal vectors at the origin
of R

n can be identified with the group O(n). Show more generally that the space
of all orthonormal k-frames (f1, . . . , fk ) at the origin of R

n forms a homogeneous
space that can be written O(n)/O(n−k). This space is called a Stiefel manifold.
What does this say about Sn−1?
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17.3. Chern’s Proof of the Gauss–Bonnet–Poincaré Theorem

What is an “Index Theorem” ?

17.3a. A Connection in the Frame Bundle of a Surface

Let M2 be an oriented surface with a Riemannian metric. Its frame bundle is an R
2

bundle with structure group SO(2). Although we could proceed with this real 2-plane

bundle, for our purposes it is more convenient to use instead the complex line bundle

version of Section 16.3c. We shall, however omit the superscript c when discussing the

connection and the curvature. There should be no confusion since ω and θ will carry

no matrix indices, being 1 × 1 matrices of forms.

Let then E = T M be the complex tangent line bundle to M2. As in Section 16.3c, the

structure group of this bundle is the unitary group U (1), that is, the complex numbers

eiα of absolute value 1. A frame at a point p is simply a unit tangent vector e at this

point. Let FM be the frame bundle, with fiber and group the circle G = U (1). (Note

that in this simple case, FM is simply the unit tangent bundle to M2!) For g ∈ G

g = eiα (17.12)

Let eU be a frame, that is, a unit vector field on U (i.e., eU is a section of FM over

U ). As in Section 16.3c (and omitting the tensor product sign and the superscript c),

the connection form ω is a single pure imaginary 1-form

∇eU = eU ⊗ ωU = eUωU

The fact that ω is pure imaginary, that is, skew hermitian, arose because we demanded

that parallel translation preserves lengths. To see this, consider the section eU . Let

x = x(t) be a curve in U starting at x(0). Parallel translate eU (x(0)) along x(t) yielding

a unit vector field (frame) ê(t). Then ê(t) = eU (x(t))g(t) for some g(t) ∈ U (1); that

is, g(t) is in the structure group. But then

0 = ∇ê
dt

=
(∇e

dt

)
g + e

dg

dt

= eω
(

dx
dt

)
g + e

dg

dt

and so

ω

(
dx
dt

)
= −

(
dg

dt

)
g−1 (17.13)

for this particular g = g(t) defining parallel translation along x = x(t). Thus the value

of ω on the tangent vector is −(dg/dt)g−1. But if g(t) = eiα(t), then −(dg/dt)g−1 =
−i(dα/dt) is pure imaginary, that is, in the Lie algebra to U (1)

ω

(
dx
dt

)
∈ g = u(1) (17.14)

It should not surprise us that (dg/dt)g−1 is in g = u(1) since dg/dt is a tangent vector

to G at g and g−1 right translates it back into the Lie algebra. The Riemannian condition



C H E R N’ S P R O O F O F T H E G A U S S – B O N N E T – P O I N C A R É T H E O R E M 461

on our C
1 bundle connection demands that the connection 1-form ω takes its values in

the Lie algebra of the structure group.

In Section 16.3 we defined the general notion of a connection for a vector bundle E .

The connection allowed us to differentiate a section of E with respect to a tangent vector
to the base space M , that is, ω is a matrix of local 1-forms on M . Now we shall define

a 1 × 1 matrix ω∗ of global 1-forms on the 3-dimensional principal bundle space FM!

Let eU be a section of FM over U , that is, a frame on U , and let f be another section.

Then

f(x) = eU (x)gU (x)

for some gU (x) ∈ U (1). The local “coordinates” for f are then (x, α), where α is the

angular variable in (17.12) for g = gU . The local coordinates for eU are (x, g = e),
i.e., α = 0.

( )

FM

f x( )

eU

U
M

Figure 17.6

Then ∇f = ∇(eU gU ) = eUωU gU + eU dgU = eU gU g−1
U ωU gU + eU gU g−1

U dgU , or

∇f = f ⊗ {g−1
U ωU gU + g−1

U dgU } (17.15)

But g−1
U ωU gU = ωU (it is crucial here that U (1) is commutative) and g−1dg = idα,

and so

∇f = f ⊗ {ωU + idα} (17.16)

Note that dα can be considered a local 1-form on the frame bundle since α is a local

coordinate in π−1U . π∗ω is also, but we usually simply write ω for π∗ω since x1, x2, α

are local coordinates for π−1U

ω = � j dx j = π∗ω

for some functions � j on U . Thus we can define the local 1 × 1 matrix of 1-forms ω∗

on π−1U by

ω∗
U := ωU + idα (17.17)

Since ω∗ is again pure imaginary, this is now a 1×1 matrix of 1-forms on π−1U ⊂ F M
that still takes its values in u(1).

Now notice something remarkable. Since ∇f has a geometric meaning independent

of the frame used (in fact, using the real forms, putting ω + idα = −iω12 + idα =
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−i{ω12 − dα} = 0 defines parallel translation see (9.62)), the following should not be

surprising.

Theorem (17.18): On an overlap ωU
∗ = ωV

∗, and thus the collection {ωU
∗}

defines a g = u(1) valued 1-form ω∗ on all of the principal bundle FM. ω∗ is
called the connection form on the frame bundle FM.

P R O O F: Let eV be a section over V . eV = eU cU V where cU V = eiβ , for some

β. Then a section f has two representations f = eU gU = eV gV , where gU = eiα

and gV = ei(α−β). Then at the point f of F M ω∗
V = ωV + id(α − β). But

ωV = c−1
U V ωU cU V + c−1

U V dcU V = ωU + e−iβdeiβ = ωU + idβ. Thus

ω∗
V = ωU + idα = ω∗

U

Thus, although {ωU } are only locally defined g -valued 1-forms, and {dαU } are

only locally defined 1-forms, the combinations {ω∗
U } match up to define a global

g -valued 1-form ω∗ on FM .

But then

θ∗ := dω∗ = π∗dω = π∗θ (17.19)

is also globally defined on FM ; we shall call this the curvature form on the frame
bundle. It is not new to us that θ∗ is globally defined on FM since we already knew that

θ = −iθ12 = −i Kσ 1 ∧ σ 2 is globally defined on M2. What is new and so important is

Chern’s observation;

Theorem (17.20): The lift π∗θ of the curvature 2-form to F M2 is globally exact
on FM

θ∗ = −π∗iθ12 = −π∗i Kσ 1 ∧ σ 2 = dω∗

We have seen that
∫

M θ12 usually does not vanish, and thus θ itself on M is usually not
exact!

17.3b. The Gauss–Bonnet–Poincaré Theorem

Theorem (17.21): Let M2 be a closed Riemannian surface and let v be a vector
field on M having a finite number of singularities at p1, . . . , pN . Then

1

2π

∫∫
M

Kσ 1 ∧ σ 2 = χ(M2) =
∑

α

jv(pα)

Note that since the left-hand side is independent of v, so is the right-hand side. This

is Poincaré’s theorem (16.9). Since the right-hand side is independent of the abstract

Riemannian metric used on M2,∫∫
M

K d A must be independent of the metric.
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This is the Gauss–Bonnet theorem. In (8.20) we proved this for an embedded
surface M2 ⊂ R

3.

The proof we shall give is due to S. S. Chern, who proved a far more general result.

We shall talk about some of these generalizations later on. Chern’s proof shows the

equality of the integral with the index sum; we have already shown that the index sum

is the Euler characteristic in (16.9).

P R O O F: We shall prove the theorem when M is orientable (and oriented); the

nonorientable case can be handled by the standard trick of passing to the 2-sheeted

orientable covering, discussed in Section 16.2b.

First remove small discs {Da} centered at the singularities. Then f = v/‖v‖ is

a unit vector field, that is, a frame on M − ∪Da . We then have a section

f : M2 − ∪Da → F M2

πα

α

=
2

πα =
4

α = 0

Da
ap

M

U

FM

∑

v = f
v = f

Figure 17.7
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(Remark: The frame bundle on this M2 is clearly the same as the unit tangent

bundle; for higher-dimensional generalizations it is important to keep the frame
version in mind.)

Let

�2 = f(M2 − ∪D2) ⊂ F M2

be the image of the punctured M under the section f; it is a 2-dimensional sub-

manifold of FM diffeomorphic to M −∪Da , since π ◦ f is the identity map. Then,

since ω∗ (not ω) is globally defined

−i
∫∫

M−∪Da

K d A = −i
∫∫

π�

K d A = −
∫∫

�

π∗(i K d A)

=
∫∫

�

dω∗ =
∫

∂�

ω∗ =
∫

∂�

π∗ω − dα
(17.22)

Let the disc Da lie in the coordinate patch U and let Sa = ∂ Da . Let eU be a

frame in the open U . We may express the ωU of this frame in terms of the local

coordinates x1, x2 (which are unrelated to the frame eU ),

ω = γi (x)dxi

The part of the boundary of
∑

that lies over Da is over Sa; call this portion of

∂
∑

simply σa . Then in (17.22)∮
σa

π∗ω =
∮

πσa

ω =
∮

Sa

γi (x)dxi

and if we let the disc Da shrink down to the point pa this last integral will vanish

in the limit. Thus as each Da shrinks to its pa∫∫
M

i K d A = lim

∫∫
M−∪Da

i K d A = − lim

∮
∂�

idα (17.23)

Consider again the part σa of ∂
∑

that lies over Sa . In terms of the section

eU given by the frame, the section f is f = eU eiα. Note that the part of ∂
∑

that lies over Sa has orientation opposite to ∂ Da (whose normal points out of

Da), ∂
∑ = f(−Da). Furthermore∮

f(∂ Da)

dα =
∮

∂ Da

d�(eU , f) (17.24)

is simply 2π (index of v at pa) = 2π j (pa). Then from (17.23)∫∫
K d A = − lim

∑
a

∮
−f(∂ Da)

dα = 2π
∑

a

jv(pa)

Corollary (17.25): If M2 is a closed Riemannian manifold then

1

2π

∫∫
M

K d A is an integer
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17.3c. Gauss–Bonnet as an Index Theorem

From Problem 16.2(1) we know that the Euler characteristic χ(M2) = 2 − 2g is

expressible in terms of the genus g of the surface. In Section 13.4 we showed that

a closed orientable surface of genus 2 has first Betti number b1 = 4, and we have

indicated the generators A, B, C, and D. The same type of picture shows that a closed

orientable surface of genus g has b1(Mg) = 2g. If we recall that b0 = 1 (since Mg is

connected), and that b2 = 1 (since Mg is closed and orientable), we see that the Euler

characteristic (defined in (16.11)) can be written

χ(Mg) = b0 − b1 + b2 (17.26)

in terms of homology! This, and its n-dimensional version, was proved by Poincaré. We

shall discuss this further in Problem 22.3(2). Finally we may write the Gauss–Bonnet

theorem (17.21) in the form

1

2π

∫∫
M

K d A = b0 − b1 + b2 (17.27)

On the left-hand side we have a curvature, a local quantity involving derivatives of the

metric tensor, quantities associated to the tangent bundle of M . Its integral (divided by

2π ) is simply a number. The right-hand side exhibits this number as an integer involving

dimensions of homology groups of M . Recall from Hodge’s theorem that bp(M) is also

equal to the dimension of the space of harmonic p-forms, which is nothing other than

the dimension of the kernel of the Laplace operator

bp(M) = dim ker � :

p∧
(M) →

p∧
(M)

In physics, the kernel of an operator is called the space of zero modes. Thus, basically,

an integral of the curvature of the tangent bundle of M is related to the number of

zero modes of differential operators constructed from this bundle. This is the first and

most famous example of an index theorem. The Atiyah–Singer index theorem is a

vast generalization of (17.27) replacing the tangent bundle by other bundles (we shall

consider a few examples in our next section), the Gauss curvature by higher-dimensional

curvature forms (some of which will be discussed in Chapter 22), and replacing the

Laplacian by other elliptic differential operators associated with the bundle in question.

The Atiyah–Singer theorem must be considered a high point of geometrical analysis

of the twentieth century, but is far too complicated to be considered in this book. The

reader may consult for instance, [Ro].

17.4. Line Bundles, Topological Quantization, and Berry Phase

How does a wave function change under an adiabatic transition?

17.4a. A Generalization of Gauss–Bonnet

Let E be any complex line bundle over a manifold Mn of any dimension. We suppose

that the structure group G is U (1); ψV = eiαψU . Let ω be a U (1) connection; that is,
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ω takes its values in g = u(1). Thus ω(X) is skew hermitian (pure imaginary) for all

tangent vectors X to Mn .

If Ψ = eUψU and Φ = eUφU are sections, then,

ψV φV = e−iαψU eiαφU = ψUφU

allows us to define a hermitian scalar product in each fiber by

〈Ψ,Φ〉 := ψUφU

with associated norm ‖ Ψ ‖2= |ψU |2. We then say that E is a hermitian line bundle.

If we put, as usual, ∇ψ = dψ + ωψ , then

〈∇Ψ,Φ〉 + 〈Ψ, ∇Φ〉 = dψφ + ψdφ

+ ωψφ + ψωφ = d(ψφ)

since ω = −ω. This is the analogue of the basic Riemannian condition that parallel

translation preserves scalar products.

Let eU be a “frame” over U , that is, a section of E of norm 1. Then Ψ = eUψU =
eU eiα is the most general frame over U . Thus over U , the fiber coordinate in the frame
bundle F E , that is, the principal bundle associated to E , is simply the angle α. The

frame bundle is a circle bundle over Mn , a bundle whose fibers are circles S1. We may

now proceed as we did in the case of the tangent bundle to the surface.

Let V 2 be a closed oriented surface embedded in Mn . The part of the bundle F E
over points of V 2 defines a bundle over V 2, which we shall again call F E ; it is the same

circle bundle but “restricted” to V 2. We wish to consider a smooth section Ψ of F E over

the closed surface V 2, but we know from the tangent bundle case that such a section

might not exist over all of V 2. We might try to construct such a section by first taking a

section s : V 2 → E of the complex line bundle, and then putting Ψ = s/ ‖ s ‖ at those

p ∈ V 2 where s �= 0. A section s defines a 2-dimensional submanifold s(V 2) of the

4-dimensional manifold EV , the part of the bundle E over V . The 0-section o defines

another 2-dimensional submanifold o(V 2) of EV . Generically, a submanifold V r and a

submanifold W s in an N -manifold, if they intersect, will intersect in a submanifold of

dimension (r + s − N ), just as in the case of affine linear subspaces of a vector space.

The section s and the section o are generically then going to intersect in a 0-dimensional

set, that is, a finite set of points, which may be empty. Thus, just as in the case of the

tangent bundle, we expect to be able to find a nonvanishing section of E, and a resulting
section of F E, over all of V 2 except perhaps over a finite set of points p1, . . . , pN .

(The precise argument for such constructions will be taken up in Chapter 22.)

Let then Ψ be such a section. As in Section 17.3b we construct the connection form

ω∗ = π∗ω + idα, where α is the local fiber circle coordinate (recall that ω is now pure

imaginary). Then, as in (17.24), we define the index of Ψ = eψ = eeiα at the zero pk

to be

jΨ(pk) := 1

2π

∮
∂ D

dα
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which is simply the degree of the map ψ : ∂ Dk → S1. Then, just as in the proof of

Theorem (17.21), we conclude that (i/2π)
∫∫

V θ 2 = ∑
jΨ(p) is an integer! We have

sketched a proof of the following theorem of Chern.

Theorem (17.28): Let E be a hermitian line bundle, with (pure imaginary) con-
nection ω1 and curvature θ 2, over a manifold Mn. Let V 2 be any closed oriented
surface embedded in Mn. Then

i

2π

∫∫
V

θ 2

is an integer and represents the sum of the indices of any section s : V 2 → E of
the part of the line bundle over V 2; it is assumed that s has but a finite number of
zeros on V . iθ/2π is the Chern form of E.

This then proves Dirac’s quantization condition (16.53).

Geometrically this integer represents (algebraically) the number of times that the
section s intersects the 0-section o, counted with multiplicity. By this we mean the

following: Let E be a rank-n vector bundle over an Mn . We assume that M is oriented

and that the vector space fibers of E can be oriented in a continuous fashion. (This

will be the case if the structure group G of the bundle is a connected group, such as

SO(n), or a unitary group. On the other hand, as discussed in Section 17.1a, the real

line bundle given by the normal vectors to the midcircle M1 of the Möbius band has

structure group given by the 2-element group Z2, which is not connected, yielding

fibers that cannot be oriented continuously.) Let x1, . . . , xn be positively oriented local

coordinates in M , and u1, . . . , un be positively oriented fiber coordinates, near the

intersection point x = 0, u = 0, of the sections s and o. s can be described by the n
functions u = u(x). We say that the section s meets the o section transversally (or

that s has a nondegenerate zero) if the Jacobian determinant ∂(u)/∂(x) is nonzero at

x = 0. From du j/dt = (∂u j/∂xk)(dxk/dt) we see that transversality simply means

that the sections do not have any nontrivial tangent vector in common at the intersection.

In this case we define the local intersection number to be +1 (resp. −1) provided the

Jacobian is positive (resp. negative). The (total) intersection number is the sum of all

the local intersection numbers at all intersections of the sections.

Consider, for example, a complex line bundle E over the Riemann sphere. We may

use z = x + iy for local coordinates on V 2 = S2 near z = 0 (S2 is a complex

manifold) and ζ = u + iv for fiber coordinates. The section s can be described by

giving u = u(x, y), v = v(x, y), or more briefly ζ = ζ(z, z), where we do not assume

that ζ is holomorphic in z. If, however, ζ is a holomorphic function of z (we would

then say that s is a holomorphic section) then by the Cauchy–Riemann equations we

have ∂(u, v)/∂(x, y) = |ζ ′(z)|2 ≥ 0. Thus if a holomorphic section is not tangent to

the 0-section, ζ ′(0) �= 0, we conclude the local intersection number is +1.

Consider as a specific example the tangent bundle E = T S2 of the Riemann sphere

as a complex line bundle. Use z as coordinate near 0 on S2 and w as coordinate near ∞.

Let ζ be a fiber coordinate over the z patch. On the Riemann sphere we have the vector

field coming from dz/dt = z2. It has (Kronecker) index j = 2 at z = 0 and 0 at z = ∞
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(since dw/dt = −1 at z = ∞). How can we think of this in terms of intersections?

The part of T S2 over the z patch is simply C
2 with coordinates (z, ζ ). We wish to see

how the section ζ = ζ(z) = z2 intersects the section ζ = 0. Clearly these sections are

tangent (i.e., nontransversal). By a slight deformation, however, we may replace this

section by one with transverse intersections; for example consider the section defined

by ζ = z2 − a (i.e., dz/dt = z2 − a), for some small a �= 0. Near z = ∞ the field

is dw/dt = −1 + a/z2, and again has no zero; the zero at z = 0 has been replaced

by two zeros at the square roots of a. In this holomorphic case, as we have seen, both
zeros have local intersection number +1, yielding +2 as the total intersection number

of the perturbed section with the 0-section. As we let a → 0 the two zeros coalesce,

and in this sense we say that the original section meets the 0-section with intersection

number 2. This agrees with the Kronecker index j .

Note that this is very different from the usual real situation. In the real plane R
2

the curve y = x2 is tangent to the x axis, but if we lift the curve slightly to y =
x2 + a (for a > 0) there is then no intersection at all. On the other hand, if we drop

the curve, y = x2 − a, we get two intersections but the intersection at x = √
a is 1

whereas that at x = −√
a is −1, again yielding a total intersection number 0. For a

good discussion of Kronecker indices and intersection numbers I recommend [G, P,

chap. 3].

Return now to the general situation of Theorem (17.28). Note that when the second

Betti number b2 of Mn is zero, for example, when each closed surface V 2 bounds, the

integral condition in (17.28) is simply
∫∫

V =∂ B θ 2 = ∫∫∫
B dθ2 = 0. The integer in (17.28)

can be nonzero only when Mn has nontrivial homology in dimension 2; (17.28) is a

topological quantization condition.
We may paraphrase (17.28) as follows. The curvature θ of a hermitian complex line

bundle is a pure imaginary closed 2-form on the base space Mn having the property

that iθ/2π has integral periods on any basis of the integral second homology group

H2(Mn; Z). We say that iθ/2π defines an integral cohomology class of M . There is a

remarkable converse to this, whose proof is beyond the scope of this book.

Theorem (17.29): Let β2 be a real, closed 2-form defining an integral cohomol-
ogy class on some manifold Mn. Then there exists a hermitian line bundle E over
M, and a U (1) connection ω for this bundle, such that −2π iβ is the curvature
form on M for the bundle E.

Thus each closed 2-form on M with integral periods is essentially the curvature form for

some hermitian line bundle over M . Furthermore, one can define a notion of “equivalent

bundles” and then if M is simply connected, the constructed line bundle E is unique (up

to equivalence)! The proof requires the introduction of more machinery (sheaf theory)

and will not be given here.

17.4b. Berry Phase

We are going to be concerned with complex line bundles, but a real example will give

us a good picture to start out with.
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Figure 17.8

Consider an infinite Möbius band (i.e., each generating straight line is infinite)

immersed in R
3, with central circle V 1 given by x2 + y2 = 1, z = 0 and parameterized

by θ . The infinite real line of the Möbius band passing through (cos θ, sin θ, 0) can

be identified with a real 1-dimensional subspace of R
3 by translating it to the origin,

yielding a 1-parameter family of real 1-dimensional subspaces Eθ of R
3. We can pick

out smoothly a real unit vector e(θ) in Eθ in some neighborhood of θ = 0 (unique up

to multiplication by ±1), but since e(2π ) will be the negative of e(0), we see that we

can’t find e(θ) smoothly for all θ .

Look now at the following more general geometric situation. Consider a complex
inner product space; in our main example it will be infinite-dimensional but for easy

visualization we take C
n with the usual hermitian scalar product 〈z, w〉 = ∑

z jw j . Sup-

pose that for each point p in a K -dimensional parameter manifold V K , we may assign

a complex 1-dimensional subspace (“line”) E p of C
n . We thus have a K -parameter fam-

ily of complex lines. If α = (α1, . . . , αK ) is a local coordinate system for V , we may

describe the family by E p = Eα. We assume that the lines E p vary smoothly with p,

and so locally Eα depends smoothly on α. Each Eα is simply a copy of the complex

plane C, and of course we can pick out a unit basis vector e(α) in each Eα, and e(α) is

unique up to multiplication by a complex number eir(α) of absolute value 1. Since Eα

varies smoothly with α, in some α-neighborhood of, say α = 0, we may pick the bases

e(α) to vary smoothly with α. We may assume that the coordinate patches α are so

small that eα is smooth in the entire patch. The family E p forms a complex line bundle
E over the K -dimensional parameter space.

A local section of this bundle is simply a complex vector field v = e(α)v(α).

We define a covariant differentiation by simply taking the projection of the usual
derivative in C

n along Eα. This is clearly intrinsic, independent of the basis eα chosen.
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In terms of the basis

∇v = e〈e,dv〉 = e
〈

e,
∂v
∂αk

〉
dαk

Thus

∇e(α) = e(α)〈e(α), de(α)〉 = e(α)ω1

where (17.30)

ω1 := 〈e(α), de(α)〉 =
〈

e,
∂e
∂αk

〉
dαk

Note that this would not be useful in the case of a real line bundle since ∂e(α)/∂α j

is orthogonal to e(α) in that case. In our complex line bundle, however,

0 = d〈e, e〉 = 〈de, e〉 + 〈e, de〉 = 2Re〈e, de〉
shows not that 〈e, de〉 vanishes, but only that it is pure imaginary.

In a coordinate patch overlap we have e(β) = e(α)cαβ for some function cαβ(p) of

absolute value 1, and so our bundle E is a hermitian bundle, with structure group U(1)
and connection ω. See Problem 17.4(2) at this time.

The curvature of this connection is given (see Problem 17.4(3)) by

θ2 = dω = d〈e(α), de(α)〉 = 〈de(α), de(α)〉
meaning (17.31)

θ2 = iIm

〈
∂e(α)

∂α j
,
∂e(α)

∂αk

〉
dα j ∧ dαk

Then Theorem (17.28) gives topological quantization conditions in this purely geomet-
ric situation!

In Section 17.4c we shall apply this machinery to Dirac’s monopole bundle, but for

the present we shall consider examples investigated by Berry in [B]. First we shall study

a finite dimensional situation.

Example: Let H = H(α1, . . . , αK ) = H(α) be an n ×n hermitian matrix that depends

smoothly on K -parameters α j . (We may think of this as perturbing a given hermitian

matrix H(0).)H(α)operates on C
n and has n real eigenvalues for eachα. We shall assume

that the lowest eigenvalue λ1(α) f or H(α) is nondegenerate for each α; thus there is a

unique complex 1-dimensional eigenspace Eα ⊂ C
n picked out for each α. We assume

that the set of lowest eigenvalues {λ1(α)} is separated from the higher eigenvalues. Note

first that λ1depends smoothly on α. To see this, observe that the characteristic polynomial

f (λ, α) = det[λI − H(α)] is a smooth function of both λ and α. Fix α = α0, and let λ1

be the unique lowest eigenvalue; thus f (λ1, α
0) = 0. Since λ1 is a simple root, we have

f (λ, α0) = (λ − λ1)(λ − λ2) . . . (λ − λn)

and λ1 differs from λ j for j �= 1. Hence f = 0 and ∂ f/∂λ �= 0 at λ = λ1 and α = α0.

From the implicit function theorem we conclude that λ1 is a smooth function of α in

some α neighborhood of α0.
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It can be shown (see [Ka] for more details) that the 1-dimensional eigenspace Eα of

the lowest eigenvalue λ1(α) also depends smoothly on α. A sketch is as follows. Since

H(α) is hermitian we may write it in the form H(α) = ∑
j λ j (α)Pj (α), where Pj (α) is

the orthogonal projection onto the eigenspace for λ j (α). Hence for any complex number

z we have H(α) − z I = ∑
j [λ j (α) − z]Pj (α). Then for the resolvent [H(α) − z I ]−1

we have

[H(α) − z I ]−1 =
∑

j

[λ j (α) − z]−1 Pj (α)

Thus if C is a closed curve enclosing positively the set of lowest eigenvalues {λ1(α)} but

excluding the higher eigenvalues, we have, for each α∮
C

[H(α) − z I ]−1dz =
∑

j

{∮
C

dz/[λ j (α) − z]

}
Pj (α)

= −2π i P1(α)

exhibiting P1(α) as a smooth function of α. Thus the first eigenspace, Eα , being the

image of C
n under P1(α), is smooth in α.

Again, a unit eigenvector e(α) for λ1(α) is determined only up to multiplication by

a complex number of absolute value 1, as in our general situation.

Berry considered the following infinite-dimensional quantum situation. Let H be a

complex “Hilbert space” of functions on Mn with hermitian scalar product 〈φ|ψ〉 =
〈ψ |φ〉−, where ¯denotes complex conjugation. Typically, in Mn = R

n

〈φ|ψ〉 =
∫

M
ψ(x)φ(x)dx

for a suitable class of functions.

States ψ in quantum mechanics are normalized, 〈ψ |ψ〉 = 1. The wave function for

a state classically is determined up to multiplication by a constant factor eiλ of absolute

value 1.

Berry considers a quantum analogue of our example in which a Hamiltonian operator

H = H(α), acting on H, depends smoothly on the points α in a K -dimensional param-

eter space V K . Locally the point α is again described by coordinates α = (α1, . . . , αK ).

(For example, in the Aharonov–Bohm situation α = α1 could be the flux b through

the solenoid, or we might have several solenoids with such varying fluxes.) The spec-

trum of H(α) is assumed to satisfy the requirements of our example. We again are

led to a complex line bundle E over space–time M4, whose fibers are the complex

1-dimensional subspaces Eα ⊂ H given by the eigenspaces of lowest energy of H(α).

Now let C be a curve in parameter space, locally of the form α = α(t), starting at

α = 0. Consider a solution ψ(x, t) of Schrödinger’s equation ih̄dψ/dt = H [α(t)]ψ
on M that starts out at t = 0 with ψ(x, 0) a lowest energy eigenfunction of H(0). The

adiabatic theorem [Si] assures us that in the limit of α changing “infinitely slowly,”

the solution ψ(x, t) will remain an eigenfunction of lowest energy of H(α(t)). If the

curve α = α(t) is a closed curve, the solution ψ will then return to ψ(x, 0) except for

a phase factor, and this phase factor was determined by Berry as follows.
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Let φα ⊂ Eα ⊂ H be a smooth choice of unit basis of Eα in the α patch; φα satisfies

H(α)φα = λαφα and replaces the e(α) of our previous example. From the adiabatic

theorem, for very slowly changing α(t), ψ(t) can be approximated by a multiple of the

eigenstate φα(t). Berry writes, for this particular path C in parameter space,

ψ ∼ exp

[(
− i

h̄

) ∫ t

0

λα(τ )dτ

]
exp[iγ (α(t))]φα(t) (17.32)

(For a more careful treatment of the adiabatic limit see [Si].) The energy exponential

is the usual dynamical phase factor (taking into account the fact that λ is changing

in time along the path) and the second (as yet unknown) exponential exp[iγ (α(t))] is

to account for the bases φα having rather arbitrarily assigned phases. Inserting (17.32)

into Schrödinger’s equation yields Berry’s equation

iφα

dγ

dt
+

(
∂φ

∂α j

)(
dα j

dt

)
= 0

or

iφαdγ = −dφα

as H-valued 1-forms along C in parameter space, where d = dα j∂/∂α j . But then

〈φ|dφ〉 = −idγ

Barry Simon [Si] noticed that this can be written down in terms of connections. From

(17.30) we have, along C ,

dγ = iω (17.33)

where ω is the connection in terms of the frame φ. We shall call ω the Simon connection
(avoiding the temptation to call it the Berry–Barry connection).

Thus if C is a closed curve in a coordinate patch of parameter space, and if C bounds,

that is, C = ∂S for a compact oriented surface S in this patch, then the Berry phase

factor for C is given, from Simon’s viewpoint, as

γ (C) =
∫

C
dγ = i

∫
C

ω = i
∫∫

S
θ (17.34)

= −Im

∫∫
S

〈
∂φ

∂α j

∣∣∣∣ ∂φ

∂αk

〉
dα j ∧ dαk

Note in particular that γ (α) need not return to itself after completing a loop in parameter

space, and likewise, neglecting the dynamical phase factor, for the wave function ψ .

This was one of Berry’s principal conclusions, and it should be mentioned that the

final expression in (17.34) appears explicitly in Berry’s paper but is not there related to

curvature.

In Problem 17.4(4) you are asked to show that eiγ φα is parallel displaced along
C . This gives geometric meaning to Berry’s ansatz (17.32) and also to the adiabatic

theorem.

For an application of the connection (17.30) and the quantization condition (17.28)

to the “quantum Hall effect,” see [Si].
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17.4c. Monopoles and the Hopf Bundle

In Section 16.4 we discussed the Dirac monopole, which, for each integer n = 2eq/h̄,

requires a special hermitian complex line bundle, Hn , defined over R
3 with the origin

deleted. The unit sphere S2 surrounds the monopole, and for our purposes it is sufficient

to consider the part of the bundle that lies over S2, which we shall again call Hn . The

case n = 0 corresponds to the trivial bundle; the most important case is when n = ±1,

that is, when q = ±1/2eh̄. We shall look at the case n = −1. This complex line

bundle H−1 over S2 is not the tangent bundle since the integral of iθ 2/2π over S2 is −1,

whereas for the tangent bundle the integral is the Euler characteristic 2. It is remarkable

that Heinz Hopf investigated the appropriate bundles for purely geometric reasons (as

we shall see in Section 22.4c) at about the same time as Dirac’s work on monopoles!

Consider S2 as being the Riemann sphere, that is the complex projective line CP1

of Section 1.2d and Problem 1.2(3). To a point (z0, z1) �= (0, 0) in C
2 we associate

the line (λz0, λz1) of all complex multiples of this point. This line is described by the

point in CP1 whose homogeneous coordinates are [z0, z1]. In the patch U of S2 where

z0 �= 0 we introduce the complex coordinate z = z1/z0, whereas in V , where z1 �= 0,

we use w = z0/z1.

The complex lines through the origin of C
2 are parameterized by the points of CP1

and thus these lines form a complex line bundle over S2, called the Hopf bundle. In a

sense this bundle is “tautologous”; a point in CP1 represents a complex line in C
2, and

we may then associate to this point its complex line! Let us look at the local product

structure.

When z0 �= 0, the line through (z0, z1) has homogeneous coordinates [z0, z1] =
[1, z1/z0] = [1, z]. To the point in U ⊂ S2 with coordinate z, we may associate the

vector (1, z)T in this line of C
2. We call the resulting unit vector

eU (z) = (1, z)T

(1 + |z|2)1/2
(17.35)

This defines a unit section of the part of the Hopf bundle over U in S2. Likewise, over

V we have [z0, z1] = [z0/z1] = [w, 1] with section

eV (w) = (w, 1)T

(1 + |w|2)1/2
(17.36)

Thus the transition functions eV = eU cU V are given through

eV (w) = (w, 1)T

(1 + |w|2)1/2
= w

(
1, w−1

)T

(1 + |w|2)1/2

= z−1(1, z)T

(1 + |z|−2)1/2
= eU (z)|z|

z

Thus

cV U (z) = z

|z| = eiφ (17.37)

where z = |z|eiφ = reiφ in terms of polar coordinates in U , that is, the upper plane

in Figure 1.16. These transition functions are exactly those of the monopole bundle
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with 2eq/h̄ = −1, as we see from Equation (16.51). The monopole bundle H−1 with
2eq/h̄ = −1 is the tautologous Hopf bundle over CP1.

H1 will have transition functions cV U = e−iφ . This is the dual bundle to H−1.

Consider now the tensor product bundle of H−1 with itself, H−1 ⊗ H−1. This tensor

product of two line bundles is again a line bundle; if ζ and η are sections of H−1, then

(ζη)V = (cV UζU )(cV UηU ) = e2iφ(ζη)U shows that H−1 ⊗ H−1 = H−2. In this way we

can get all of the monopole bundles from tensor products of H1 and H−1, that is, from

the Hopf bundle over CP1 and its dual.

We may now consider the Simon connection for the Hopf bundle. C2 carries the stan-

dard hermitian metric 〈(a, b)T , (c, d)T 〉 = ac + bd. Let us compute ωU =
〈 eU (z), deU (z)〉 in the patch U . Note that U is simply a copy of the complex plane.

Introduce polar coordinates z = reiφ . In Problem 17.4(5) you are asked to compute,

from (17.35), that

ωU (z) = ir 2dφ

(1 + r 2)
(17.38)

θU = dωU = 2irdr ∧ dφ

(1 + r 2)2
(17.39)

and ∫∫
S

iθ

2π
= −1 (17.40)

Problems

17.4(1) Take as line bundle the tangent bundle to the Riemann sphere. Let φz (resp. φw )

be a fiber coordinate in the z (resp. w) patch. Show that the transition function is
cwz = −z−2. Since |φw |2 �= |φz |2, we do not get a hermitian metric in the fibers
by defining ‖ φz ‖2= |φz |2, and so on. It is true that |w |−2|φw |2 = |z |−2|φz |2 but
these “metrics” blow up at the poles. Show that (1 +|z |2)−2|φz |2 = (1 + |w |2)−2

|φw |2. This expression then yields an Hermitian metric in the fibers.

17.4(2) Verify that ω in (17.30) does transform as a U(1) connection.

17.4(3) Show (17.31).

17.4(4) Show that eiγ (α)φα is parallel displaced along C.

17.4(5) Show (17.38), (17.39), and (17.40). The integral over S2 = CP1 is the same
as the integral over the entire U plane since only the single point at infinity is
missing.



CHAPTER 18

Connections and Associated
Bundles

In this chapter we shall recast our previous machinery of connections, making more

use of the fact that the connection and curvature forms take their values in the Lie

algebra of the structure group. This will lead not only to a more systematic treatment

of some topics that were previously handled in a rather ad hoc fashion, but also, in our

following chapters, to generalizations of the Gauss–Bonnet–Poincaré theorem and to

closer contact with the machinery used in physics.

18.1. Forms with Values in a Lie Algebra

What do we mean by g−1dg?

18.1a. The Maurer–Cartan Form

If E is a vector bundle over M , then the connection form ω = (ωR
S) and the curvature

form θ = (θ R
S) are locally defined matrices of 1- and 2-forms, respectively. If the

Lie group G is the structure group of the bundle, that is, if each transition matrix

cU V = (cU V
R

S) is a matrix in G, then, as in (17.14), we usually require that ω and θ

take their values in the Lie algebra g of G; thus, e.g., (ωR
S(X)) is a matrix in g for each

tangent vector X to M . For example, in a Riemannian M , by restricting the frames of

the tangent bundle to be orthonormal, the Levi-Civita connection satisfies ωi j = −ω j i ;

that is, ω has its values in o(n), the Lie algebra to O(n). If we think of ω as being a

form that takes its values in the fixed vector space g , rather than as a matrix of 1-forms,

we shall have an equivalent picture that is in many ways more closely related to the

terminology used in physics.

Let Mn be a manifold and let G be a Lie group with Lie algebra g . We shall consider

locally defined exterior forms φ on M taking values in the fixed vector space g .

First we define a g valued 1-form on G itself. Let {ER} be a basis for g and let {XR}
be the left invariant fields on G obtained by left translating the E’s. Let {σ R} be left

475
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invariant 1-forms on G forming, at each g ∈ G, a basis dual to {XR}. Then

� := ER ⊗ σ R (18.1)

defined by

�(Yg) = ERσ R(Yg) = ERY R

takes a vector Y = XRY R at g ∈ G and left translates it back to the identity. This is the

Maurer–Cartan 1-form on G.

Classically this would be written differently. On any manifold, Cartan wrote dp
for the vector-valued 1-form at p ∈ M that takes each vector Y at p into itself. In

coordinates it is the mixed tensor {δi
j }

dp = ∂

∂xi
⊗ dxi = ∂

∂xi
⊗ δi

j dx j

Then Cartan would write

� = g−1dg (18.2)

Thus dg takes Y at g into Y, and g−1 left translates Y back to e. We should write

� = (Lg−1)∗ ◦ dg

For a matrix group, each Er is simply a matrix of a certain type (e.g., skew symmetric

for G = O(n)). By construction we have the following:

Theorem (18.3): In any matrix group G, � = g−1dg is a matrix with left invari-
ant 1-form entries.

For example, in SO(2), for

g(θ) =
[

cos θ − sin θ

sin θ cos θ

]

we have

g−1dg =
[

cos θ sin θ

− sin θ cos θ

] [− sin θdθ − cos θdθ

cos θdθ − sin θdθ

]

or

g−1dg =
[

0 −dθ

dθ 0

]
=

[
0 −1

1 0

]
⊗ dθ

and dθ is a rotation invariant 1-form on the circle SO(2).

The usual “proof” that g−1dg is a matrix of left invariant 1-forms is as follows: Let

h be a given (fixed) group element. Then for variable g, L∗
h�hg = (hg)−1d(hg) =

g−1h−1hdg = g−1dg = �g, as claimed.

Similarly dgg−1 is a matrix of right invariant 1-forms. See Problem 18.1(1) at

this time.
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18.1b. g -Valued p-Forms on a Manifold

The most general p-form on U ⊂ M with values in the Lie algebra of a Lie group G
is of the form

φ = ER ⊗ φR

where each φR is an ordinary exterior p-form on U . Thus if X is a p tuple of tangent

vectors to M at a point of U , then φ(X) = ERφR(X) is in g . (Note that R refers to

the ER involved, not to the degree of φ.) Since the E’s do not vary (lying in the fixed

vector space g ), it is natural to define

dφ = d(ER ⊗ φR) := ER ⊗ dφR (18.4)

a g -valued p + 1 form on M .

Multiplication of such forms is not so clear a process because, for example, in the

case of g = o(n), the product of two skew symmetric matrices is not necessarily skew

symmetric. Instead we shall define the (Lie) bracket of forms, and we shall see that

this includes a desirable product. We define

[φ, ψ] = [ER ⊗ φR, ES ⊗ ψ S] := [ER, ES] ⊗ φR ∧ ψ S (18.5)

As an example, consider the Maurer–Cartan 1-form on M = G. From the Maurer–

Cartan equations (15.24)

d� = ER ⊗
(
− 1

2
C R

ST σ S ∧ σ T

)

while

[�, �] = [ES ⊗ σ S, ET ⊗ σ T ] = [ES, ET ] ⊗ σ S ∧ σ T

= ER ⊗ C R
ST σ S ∧ σ T

and so

d� + 1

2
[�, �] = 0 (18.6)

which will again be called the Maurer–Cartan equation.

Remark: (18.5) defines the bracket by means of a basis but it is not difficult to give

an intrinsic definition. If XI = X1, . . . , Xp+q are tangent vectors to Mn , we could have

defined

[φ, ψ](XI ) : = δ J K
I [φ(XJ⇁), ψ(XK⇁)] (18.5′)

= δ J K
I [ER ⊗ φR(XJ⇁), ES ⊗ ψ S(XK⇁)]

= δ J K
I [ER, ES]φR(XJ⇁)ψ S(XK⇁) = [ER, ES]φR ∧ ψ S(XI )

We have some immediate consequences of our definitions.

[ψ, φ] = [ES, ER] ⊗ ψ S ∧ φR

= −[ER, ES] ⊗ ψ S ∧ φR
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and so

[ψ, φ] = (−1)pq+1[φ, ψ] (18.7)

Also

d[φ, ψ] = [ER, ES] ⊗ (dφR ∧ ψ S + (−1)pφR ∧ dψ S)

that is,

d[φ, ψ] = [dφ, ψ] + (−1)p[φ, dψ] (18.8)

Finally, we need to interpret the bracket in the case of a matrix group. For example,

the Maurer–Cartan 1-form � for the affine group of the line, G = A(1), is[
dx
x

dy
x

0 0

]
=

[
1 0

0 0

]
⊗ dx

x
+

[
0 1

0 0

]
⊗ dy

x

= E1 ⊗ dx

x
+ E2 ⊗ dy

x
In general, when {ER} are matrices,

[φ, ψ] = [ER, ES] φR ∧ ψ S

= (ERES − ESER) ⊗ φR ∧ ψ S

= (ER ⊗ φR) ∧ (ES ⊗ ψ S) − ESER ⊗ φR ∧ ψ S

where in the first term of the last line we are simply multiplying the matrices but using

the exterior product of the entries. (This is always what we did in the method of moving

frames, e.g., when considering θ = dω + ω ∧ ω.) For example, in A(1)

� ∧ � = g−1dg ∧ g−1dg =
[

dx
x

dy
x

0 0

]
∧

[
dx
x

dy
x

0 0

]

=
[

0
(

dx ∧ dy
x2

)
0 0

]
= E2 ⊗

(
dx ∧ dy

x2

)

Continuing with our computation

[φ, ψ] = (ER ⊗ φR) ∧ (ES ⊗ ψ S) − ESER ⊗ (−1)pqψ S ∧ φR

that is,

[φ, ψ] = φ ∧ ψ − (−1)pqψ ∧ φ (18.9)

as matrices.
For example, if p is odd

[φ, φ] = φ ∧ φ + φ ∧ φ = 2φ ∧ φ

as matrices.

Note that if either φ or ψ is of even degree, then [φ, ψ], as a matrix, is the usual

commutator, but using the wedge ∧ as product. If both are odd, then [φ, ψ] is the

anticommutator

[φ, ψ] = {φ, ψ} := φ ∧ ψ + ψ ∧ φ
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Consider, for example, a Riemannian manifold with locally defined connection forms

ω. We may restrict ourselves to the use of orthonormal frames, in which case ω takes

values in o(n) = so(n). Thus when employing orthonormal frames, ω is a skew

symmetric matrix of forms and of course dω is also. But why should ω ∧ ω be a skew

symmetric matrix? It is because ω ∧ ω is in fact the same as 1/2[ω, ω]! This shows

that curvature θ can be written

θ = dω + 1

2
[ω, ω] (18.10)

and of course is so(n)-valued. Likewise, the second Bianchi identity

dθ + ω ∧ θ − θ ∧ ω = 0

again makes sense in the Lie algebra setting since it says

dθ + [ω, θ ] = dθ + ω ∧ θ − (−1)1•2θ ∧ ω = 0 (18.11)

18.1c. Connections in a Principal Bundle

In Section 17.3, a crucial role was played by the notion of a connection in the principal

bundle of frames to a Riemannian surface. Now we develop this machinery for the case

of the principal bundle of frames of sections of an arbitrary vector bundle.

Let E be a real or complex rank-K vector bundle over a manifold Mn , the structure

group being a Lie group G. Thus the transition functions cU V (x) are linear transfor-

mations of R
K or C

K into itself.

To say that G is the structure group means, effectively, that there is in each trivializing

patch U of M a distinguished collection of frames of sections (e.g., orthonormal), which

we may call G frames, and such that any two such frames eU and eV in an overlap U ∩V
are related by eV = eU g for g ∈ G. What do we mean then by a G connection?

Let {ωU } be a connection for this vector bundle. If eU is a G frame of K sections

∇eU = eU ⊗ ωU = eUωU

where ωα
Uβ = ωα

iβ(x)dxi is a matrix of 1-forms on U . Let C be any curve in U and let
f be a G frame at the single point C(0). Parallel displace f along C .

To say that ω is a G connection is to demand that the parallel displaced f is a G frame
along all of C

and this must be true for all curves C . Let f be such a parallel displaced G frame.

If we now write, along C ,

f(t) = eU g(t)

we have, as in (17.15),

∇f
dt

= f ⊗
[

g−1ω

(
dx

dt

)
g + g−1 dg

dt

]
(18.12)

Since the entire frame is parallel translated along a curve x = x(t) in U , we must have

g−1ω

(
dx

dt

)
g = −g−1 dg

dt
(18.13)
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where the term on the right is an element of g . Then the first term

g−1ω

(
dx

dt

)
g (18.14)

is also in g , and since Lg−1∗ ◦ Rg∗ certainly sends g into itself we have

ω

(
dx

dt

)
∈ g

Thus to demand that ω is a G connection is to require that ωU is a g -valued 1-form
on U .

Of course the curvature is then also g -valued.

θU = dωU + 1

2
[ωU , ωU ]

Under a change of frame

eV = eU cU V (18.15)

ωV = c−1
U V ωU cU V + c−1

U V dcU V

(18.16)

θV = c−1
U V θU cU V

The transformation rule for θ was exhibited in (9.41) for the tangent bundle; the proof

here is the same.

Consider now the principal bundle P of frames of sections of the vector bundle E .

This fiber bundle has for fiber F the structure group G and the transition functions cU V

are the same as for E ; now, however, they operate on G by left translation,

g ∈ G is sent to cU V (x)g

We now define the connection forms ω∗ in P; these are g -valued 1-forms on P rather

than M . The local frame eU of sections of E can be thought of as a section of the bundle

P over U . For a point f ∈ P over the point x ∈ U we can write

f = eU (x)gU (x) (18.17)

for a unique gU ∈ G. From (18.12) we are encouraged to define

ω∗
U (x, gU ) := g−1

U π∗ωU (x)gU + g−1
U dgU (18.18)

which is the nonabelian version of (17.17). We usually omit the π∗ coming from

π : P → M .

The local section eU of P over U gives us a local product structure U ×G for π−1U ;

in fact (18.17) assigns to the point f in P the local “coordinates” x in U and gU in G.

A tangent vector at (x, gU ) in P is a velocity vector (dx/dt, dgU/dt) to some curve in

P . g−1
U π∗ωU gU applied to this velocity vector yields g−1

U ωU (dx/dt)gU , an element of

g . g−1
U dgU applied to this same velocity vector yields g−1

U dgU (dgU/dt) = g−1
U dgU/dt ,

which is again an element of g . Thus ω∗
U is a local g -valued 1-form on P . Both terms

in ω∗
U depend on the choice of section eU .
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Theorem (18.19): In π−1(U ∩ V ) we have ω∗
U = ω∗

V and thus {ω∗
U } defines a

global g -valued 1-form ω∗ on the principal bundle P.

(In P we may then consider the distribution of n-planes transversal to the fibers, defined

by ω∗ = 0. This distribution is called the horizontal distribution, reminiscent of

that appearing in the tangent bundle discussed in Section 9.7. Many books take this

distribution as the starting point for their discussion of connections.)

P R O O F: See Problem 18.1(2).

We then define the global g -valued curvature 2-form θ∗ on P by

θ∗ : = dω∗ + 1

2
[ω∗, ω∗] (18.20)

= dω∗ + ω∗ ∧ ω∗

Note that unlike in the case of a tangent bundle of a surface (where the group G
was abelian) we cannot expect θ∗ to be globally exact or even closed!

Of course we also have local curvature forms θU = dωU + ωU ∧ ωU =
dω + (1/2)[ω, ω] on M from the vector bundle connection. As in (9.47) one can

show

θ∗(x, gU ) = g−1
U π∗θU gU (18.21)

= g−1
U θU gU

Problems

18.1(1) Exhibit the left invariant and the right invariant 1-forms on the affine group of
the line (Example (i), Section 15.1) by means of g−1dg and dgg−1.

18.1(2) Prove (18.19). (At a given f ∈ π−1(U ∩ V), f = eU gU = eV gV , eV = eU cUV , and
so on. Use the transformation rule (18.16) for the vector bundle.)

18.2. Associated Bundles and Connections

What does it mean to take the covariant derivative of
√

g?

18.2a. Associated Bundles

Let P be a principal bundle over Mn with fiber = group = G, and with local transition

matrices cU V : U ∩ V → G. Let ρ : G → Gl(N ) be some representation of the

structural group G; thus each ρ(g) is an N × N matrix operating on C
N and ρ is a

homomorphism

ρ(gg′) = ρ(g)ρ(g′) and ρ(g−1) = [ρ(g)]−1
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(For example, we may represent G = U (1) as a subgroup of Gl(2) by putting ρ(eiθ ) =
diag(eiθ , e3iθ ).)

We then define a new vector bundle π : Pρ → Mn associated to P through the
representation ρ, with fiber C

N , by making identifications in U × C
N and V × C

N

(x, ψV ) ∼ (x, ψU ) iff ψV = ρ(cV U (x))ψU

Thus we construct a new vector bundle by simply using the new transition matrices
ρ(cU V ) rather than cU V .

We frequently have the following situation. Let E be a vector bundle π : E → Mn

with transition functions

cU V : U ∩ V → G ⊂ Gl(K )

each cU V (x) being a K × K matrix. Thus in π−1(U ∩ V ) we are identifying (for yU

and yV K-tuples of real or complex numbers)

(x, yV ) ≈ (x, yU ) iff yV = cV U (x)yU

We may then form the principal frame bundle P over M by considering the K-tuples

of local independent sections eU
α (p) := �U (p, eα), as in Section 16.1c, and the general

frame over U is of the form f = eU gU . Recall then that in an overlap we have eV =
eU cU V and so f = eU gU = eV gV = eU cU V gV , showing that gU = cU V gV . Thus the

principal frame bundle of K-tuples of sections of E again has transition functions cU V ,

which now act on G by left translations. If now ρ : G → Gl(N ) is a representation

of G we may form the vector bundle Eρ := Pρ associated to P through ρ, which has

transition functions ρ(cU V ), and we may say that E and Eρ are also associated through

the representation ρ.

Example 1: E is the tangent bundle to Mn and τ ∗ : Gl(n) → Gl(n) is the representation

τ ∗(g) = g∗ := (g−1)T . The old transition matrices are cV U = ∂xV /∂xU and the

associated functions are τ ∗(cV U ) = c∗
V U = [∂xU /∂xV ]T . Thus we are making the

identification

aV
i =

[
∂xU

∂xV

]T

i j

aU
j = aU

j

[
∂x j

U

∂xi
V

]

and Eτ is thus the cotangent bundle! In general, if E is a vector bundle and τ ∗ is the

representation τ ∗(g) = (g−1)T , then the associated vector bundle is called the dual
bundle to E .

Example 2: Let E again be the tangent bundle to Mn . Let G = Gl(n) act on mixed

second order tensors R
n⊗R

n∗ as follows. Let τ : R
n → R

n be the standard representation

τ(g)(v)i = gi
jv

j and let τ ∗ : R
n∗ → R

n∗ be the dual representation τ ∗(g)(a)i =
a j (g−1) j

i given in Example 1. Then G acts on mixed tensors, say v ⊗ α in R
n ⊗ R

n∗ ,

by the tensor product representation τ ⊗ τ ∗

(τ ⊗ τ ∗)(g)(v ⊗ α) : = τ(g)(v) ⊗ τ ∗(g)(α)

= ∂ i (g
i
rv

r as g−1s
j ) ⊗ dx j
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where v = ∂rv
r and α = asdxs . The resulting bundle Eτ⊗τ ∗ is then the familiar bundle

of mixed second-rank tensors on Mn .

In a similar manner, essentially

all the tensor fields considered previously were sections of vector bundles that were
associated to the tangent bundle through some tensor product representation of the
structure group of the tangent bundle or its dual!

18.2b. Connections in Associated Bundles

A connection in a vector bundle E assigns to the patch U of Mn a g -valued 1-form

ωU , that is, a matrix of 1-forms. This matrix acts on a section, given by the K-tuple y,

yielding a K-tuple of 1-forms

(ωy)R = ωR
S yS = ωR

j S ySdx j

We then have the covariant differential

∇U yU = dyU + ωU yU (18.22)

and in each overlap

∇V yV = cV U∇U yU

Suppose now that we have a representation ρ : G → Gl(N ) of the structure group of

E . Since g is the tangent space to the manifold G at e and g �(N ) is the tangent space to

Gl(N ) at ρ(e) = I , the differential ρ∗ yields a linear transformation ρ∗ : g → g �(N ). If

S ∈ g , the 1-parameter subgroup generated by S is exp(tS). Since ρ is a homomorphism,

the image curve ρ[exp(tS)] is a 1-parameter subgroup of Gl(N ), and so is again of the

form exp(tY) for some Y ∈ g �(N ). But the tangent to ρ[exp(tS)] at I is, by the

definition of the differential, simply ρ∗(S), and so Y = ρ∗(S) and

ρ[exp(tS)] = exp[tρ∗(S)] (18.23)

For example, in the homomorphism ρ : U (1) → Gl(2, C) given by ρ(eiθ ) =
diag(eiθ , e3iθ ), i ∈ u(1) gets sent into the 2 × 2 matrix ρ∗(i) = diag(i, 3i).

In the homomorphism g → ρ(g) = τ ∗(g) = (g−1)T of G into itself, exp(tS) gets

sent into exp(−tST ), and so ρ∗(S) = −ST .

Let now Eρ be the bundle associated to E through a representation ρ : G → Gl(N ).

We define an associated connection for Eρ by using as connection form in U

�U := ρ∗ωU (18.24)

which is defined as follows. Let X be a tangent vector to Mn . Then ωU (X) ∈ g and so

ρ∗[ωU (X)] ∈ ρ∗(g) = gl(N ). Then we define

[ρ∗ωU ](X) := ρ∗[ωU (X)] (18.25)

In particular

� j := �(∂ j ) = (ρ∗ω) j = (ρ∗ω)(∂ j ) = ρ∗ω j (18.26)
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Theorem (18.27): {�U } defines a connection for the bundle Eρ associated to E
via the representation ρ.

Before looking at the proof we consider two examples. Let ω be the connection form

for the tangent bundle E = T Mn .

Example 1′: We have seen in Example 1 that the cotangent bundle is associated with

the representation τ ∗(g) = (g−1)T . We have also seen that ρ∗(S) = −ST for all S ∈ g .

Hence � = −ωT is the connection form for the cotangent bundle, that is, � j = −(� j )
T .

Thus for covariant derivative we get

ai/j = ∂ j ai − aR�R
ji

which agrees with Equation (11.12).

Example 2′: As in Example 2, consider the vector bundle of mixed second-order tensors

associated to the tangent bundle through the representation ρ = τ ⊗ τ ∗. For any 1-

parameter subgroup g = etS of G we have

ρ(exp tS)(v ⊗ α) = (exp tSv) ⊗ (exp −tST α)

and thus

ρ∗(S)(v ⊗ α) = d

dt
[ρ(exp tS)(v ⊗ α)]t=0 = (Sv) ⊗ α − v ⊗ (ST α)

We may write

ρ∗S = S ⊗ I − I ⊗ ST

and then

� j = ω j ⊗ I − I ⊗ ωT
j (18.28)

Thus

AR
S/j = ∂ j AR

S + �R
j K AK

S − �K
j S AR

K

which is the familiar rule (11.13) for the covariant derivative of a mixed tensor.

PR O O F O F TH E O R E M (18.27): Let us put

ρU V := ρ(cU V )

for the transition matrices of the new bundle. We must show

�V (X) = ρ−1
U V �U (X)ρU V + ρ−1

U V dρU V (X)

Now

�V (X) = ρ∗[ωV (X)] = ρ∗[c−1
U V ωU (X)cU V + c−1

U V dcU V (X)]

Consider the two terms on the right-hand side. For brevity, let us write

ωU instead of ωU (X)
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Now ωU ∈ g is the tangent vector at e ∈ G to a 1-parameter subgroup g(t) :=
exp(tωU ). From the geometric meaning of the differential (and using the fact that

we are at a fixed point x ∈ U )

ρ∗(c−1
U V ωU cU V ) = d

dt
[ρ(c−1

U V g(t)cU V )]t=0

which, since ρ is a homomorphism,

= d

dt
[ρ−1(cU V )ρ{g(t)}ρ(cU V )]t=0

= ρ−1(cU V )
d

dt
[ρ{g(t)}]t=0ρ(cU V )

= ρ−1(cU V )ρ∗(ωU )ρ(cU V ) = ρ−1
U V �UρU V

Consider now the second term ρ∗(c−1
U V dcU V ). Let x = x(t) be a curve on M

having X as tangent vector at t = 0. We then have a curve in the Lie group G

c−1
U V (x(0))cU V (x(t))

that starts at the identity with tangent c−1
U V dcU V (Ẋ)

ρ∗[c−1
U V dcU V (X)] = d

dt
ρ[c−1

U V (0)cU V (x(t))]t=0

= ρ−1
U V (0)

d

dt
[ρU V (x(t))]t=0 = ρ−1

U V dρU V (X)

and we are finished.

From Theorem (18.27) we have that the covariant differential for the associated

bundle is then

∇ψ = dψ + (ρ∗ω)ψ (18.29)

and automatically

∇V ψV = ρ(cV U )∇UψU

For covariant derivative

∇ jψ = ∂ jψ + (ρ∗ω j )ψ (18.30)

If we do not suppress the fiber indices

∇ jψ
R = ∂ jψ

R + (ρ∗ω j )
R

Sψ
S

18.2c. The Associated Ad Bundle

We may let G act as a group of linear transformations on its own Lie algebra by

Ad(g)Y := Lg∗ ◦ Rg−1∗Y = gYg−1 (18.31)

for all Y ∈ g . Thus

Ad : G → Gl(g)
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and one checks immediately that this is a representation of G, called the adjoint
representation. The subgroup Ad(G) ⊂ Gl(g) is called the adjoint group of G.

For example, when G is abelian (e.g., the n-torus), Ad(G) reduces to the single

identity transformation; this follows immediately upon differentiating with respect to t
the relation getYg−1 = etY. In Chapter 19 we shall see that Ad(SU (2)) is isomorphic

to the group SO(3).

Since Ad : G → Gl(g), its differential at the identity takes g into the tangent space

at 0 to the vector space g , gl(g), that is, all linear transformations of g

Ad∗ : g → linear transformations of g into itself

and we can compute this as follows.

Take the curve (1-parameter subgroup of G) g(t) = etX starting at the identity of G.

This yields the 1-parameter group of linear transformations of g given by

AdetX(Y) = etXYe−tX

The tangent vector to this curve in g , at t = 0, is, when translated to 0,

Ad∗(X)(Y) = d

dt
[etXYe−tX]t=0 = [X, Y]

0

G

X
Y

etX

etX XYe t |t =0

etXYe− tX

ad X(Y):= [X,Y]

is the translate of etXYe−

−

tX|t =0

to the origin 0 of

d
dt

d
dt

g

g

Figure 18.1

Let us write ad(X) for the linear transformation g → g given by Y → [X, Y].

Thus Ad∗(X) = ad(X) = [X, ]

Recall that a 1-parameter group h(t) has an infinitesimal generator S such that

h(t) = et S , and that S = h′(0). Thus we have shown that for fixed X, the 1-parameter



A S S O C I A T E D B U N D L E S A N D C O N N E C T I O N S 487

group AdetX has infinitesimal generator S = ad(X). In summary

AdetX = etadX

ad(X) : = Ad∗(X) (18.32)

ad(X)Y : = [X, Y]

We can then write

Ad(etX)Y =
[

I + tad(X) + t2

2!
ad(X)ad(X) + · · ·

]
Y (18.33)

= Y + t[X, Y] + t2

2!
[X, [X, Y]] + · · ·

Returning to a vector bundle E with structure group G and connection ω, we can

now consider the bundle associated to E through the adjoint representation Ad : G →
Gl(g); Ad(G) acts on the new fiber g . Then if E had transition functions cU V , the

Ad(G) bundle has transition matrices AdcU V : g → g

AdcU V (x)Y = cU V (x)YcV U (x)

and connection (18.34)

(Ad∗ω j )Y = [ω j , Y]

Then the covariant differential and derivatives are

∇ y = dy + [ω, y] (18.35)

∇ j y = ∂ j y + [ω j , y]

where y = {yU } is a section of the Ad bundle E Ad ; that is, each yU (x) ∈ g and

yV (x) = cV U (x)yU (x)cU V (x)

Problems

18.2(1) The cotangent bundle T∗Mn has transition functions cVU = (∂xU/∂xV )T in
G = Gl(n; R). G acts on the 1-dimensional vector space R via the determinant
representation det; g ∈ G sends r ∈ R to det(g)r . One may then consider the
real line bundle, the determinant line bundle, associated to T∗M via det.

(i) Show that any globally defined exterior n-form on Mn can be used to define
a cross section of this new bundle.

(ii) If ω is a connection form for the tangent bundle TMn (for example, the Levi-
Civita connection for a Riemmanian M) show that −trω is the associated
connection for the determinant bundle and thus the covariant derivative of
a section φ is given by

∇ jφ = φ/j = ∂φ/∂x j − tr(ω j)φ
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(iii) If Mn is Riemannian, the volume n-form voln = √
gdx is a pseudoform. The

volume bundle is the line bundle with transition functions c ′
VU = |cVU | =

| det(∂xU/∂xV )|. {√gU } defines a global section of this bundle. Show that
−trω is again a connection for this bundle and show that the section {√gU }
defined by the volume form is covariant constant! This is the interpretation
of Equation (11.28)!

18.2(2) The tangent bundle to an orientable surface has transition functions

cUV =
[

cos θ − sin θ

sin θ cos θ

]

when orthonormal frames are employed. Consider the representation

ρ : SO(2) → U(1)

defined by ρ(cUV ) = eiθ . This defines an associated bundle; it is simply the
tangent bundle considered as a complex line bundle. If (ω jk ) is the so(2) matrix
of connection forms, show that iω21 is the connection for the associated line
bundle. This agrees with (16.29).

18.3. r-Form Sections of a Vector Bundle: Curvature

Where do the curvature forms live?

18.3a. r-Form sections of E

In this section we generalize the notion of a (tangent) vector-valued r -form that played

such an important role in Cartan’s method in Section 9.3 and following.

An r-form section of a vector bundle E over Mn is by definition a collection of

r -forms {φU }, φU defined on the patch U ⊂ M and having values in the fixed fiber C
K

or R
K of E , such that in an overlap

φV = cV UφU

that is, (18.36)

φV (v1, . . . , vr ) = cV U (x)φU (v1, . . . , vr )

for all tangent vectors v1, . . . , vr to Mn at x ∈ U ∩ V . (Thus, if v1, . . . , vr are sections

of the tangent bundle TM , then {φV (v1, . . . , vr )} defines a section of the bundle E!)

Each φU is simply a column of local r-forms

φU (x) = [φR
U (x)] = [φ1

U (x), . . . , φK
U (x)]T

φR
U = φR

U I⇁
dx I = φR

Ui1<···<ir
(x)dxi1 ∧ . . . ∧ dxir

We define the exterior covariant differential of φ (generalizing (9.29)), ∇φ, to be the

collection of r + 1 forms

(∇φU )B = δ
j I
B {∂ jφI⇁ + ω jφI⇁}

that is, (18.37)

(∇φR)B = δ
j I
B {∂ jφ

R
I⇁

+ ωR
j Sφ

S
I⇁
}
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(Recall that ω j = ω(∂ j ) ∈ g is a matrix). Note that this merely says

(∇φ)R = dφR + ωR
S ∧ φS (18.38)

It follows, as usual, that ∇φ is an (r + 1)-form section of E , that is,

∇φV = cV U∇φU

that is, we have covariance. Note that ω is the connection for E, not TM!

18.3b. Curvature and the Ad Bundle

We know that the local curvature forms θU = dωU + 1

2
[ωU , ωU ] of the vector bundle E

are g -valued 2-forms, that is, matrices of forms. These local g -valued forms, however,

do not fit together to yield a global form; rather, they transform as θV = cV UθU c−1
V U

θV = Ad(cV U )θU (18.39)

Thus

Theorem (18.40): The collection of local curvature forms {θU } fit together to
give a global 2-form section of the Ad(G) bundle!

(To exhibit curvature as an N -tuple rather than a matrix, one introduces a basis {ER}
of the Lie algebra and writes θ = ∑

ERθ R.)

Consider the exterior covariant differential of θ in the Ad bundle associated to E .

Let I⇁ = (i1 < i2), K = (k1k2k3). Then θI⇁ ∈ g and we have

(∇θ)K = δ
j I
K {∂ jθI⇁ + Ad∗ω j (θI⇁)} = δ

j I
K {∂ jθI⇁ + [ω j , θI⇁]} = dθK + [ω, θ ]K

from (18.5′). Thus

∇θ = dθ + [ω, θ ] = dθ + ω ∧ θ − (−1)2θ ∧ ω

and since θ = dω + 1

2
[ω, ω] = dω + ω ∧ ω, we have again

∇θ = 0 (Bianchi identity) (18.41)

In general, for any p-form section of the Ad(G) bundle

∇F p = d F p + [ω, F p] = d F p + ω ∧ F p − (−1)p F p ∧ ω (18.42)

A p-form section of the Ad bundle will be said to be a p-form of type Ad(G).

Physicists traditionally do not deal with exterior forms and thus they are forced to

exhibit the space–time tensor indices. On the other hand, they usually suppress the Lie

algebra index. For a 1-form F1 they would write

(∇F1) jk = ∂ j Fk − ∂k Fj + [ω j , Fk] − [ωk, Fj ] (18.43)

and for a 2-form (∇F2)i jk = δrs<t
i jk (∂r Fst + [ωr , Fst ]), that is,

(∇F2)i jk = ∂i Fjk + ∂k Fi j + ∂ j Fki (18.44)

+ [ωi , Fjk] + [ωk, Fi j ] + [ω j , Fki ]
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Problems

18.3(1) Show that for any p-form of type Ad(G)

∇2ψ = ∇∇ψ = [θ, ψ ] (18.45)

18.3(2) Let φ p and ψq be form sections of an Ad(G) bundle, associated to a vector
bundle with transition matrices cUV . Assume that G is a matrix group (i.e., a
subgroup of Gl(N)). Since G is a subgroup of Gl(N), each cUV (x ) is a matrix
in Gl(N) and we may think of φ and ψ as form sections of the AdGl(N) bundle.
Think of them, as usual, as collections of locally defined matrices {φU }, {ψU } of
forms. Then φU ∧ ψU is a local matrix of (p + q)-forms, and though its values
need not be in g , they will be in gl(N), which is simply the space of all N × N
matrices. Show that φ ∧ ψ is a (p + q)-form section of the associated AdGl(N)

bundle and show then that (18.42) yields the Leibniz rule

∇(φ ∧ ψ) = (∇φ) ∧ ψ + (−1)pφ ∧ (∇ψ) (18.46)

In particular, for any exterior power of the curvature form

∇(θ ∧ θ ∧ . . . ∧ θ) = 0

18.3(3) Show that if φ is a p-form section of an AdG bundle then trφ is an ordinary
exterior p-form on M.

18.3(4) We have seen in Section 17.1c that given a constant g ∈ G there is a right
action of g on the principal bundle; locally it was defined in “coordinates” by
gU → gU g, and then it was shown that this was compatible with the bundle
structure. One cannot get a left action by this process; however, we can do the
following. Consider G-valued functions hU : U → G on each trivialization patch
U ⊂ M. Let hU act on π−1(U) of the principal bundle P by

gU (x ) → hU (x )gU (x ) (18.47)

Show that these local actions fit together to give a global transformation of P
into itself provided

hV = cVU hU c−1
VU (18.48)

Thus we have the following. Consider the fiber bundle associated to the prin-
cipal bundle P, whose fiber is again G but where G acts on itself not by left
translation, but by the adjoint action, adjointg : G → G, of G on G (not on g)

adjointg(g′) := gg′g−1 (18.49)

This bundle is called the gauge bundle. Thus the left action (18.48) is globally
defined provided {hU } defines a cross section of the gauge bundle. The left
action is again called a gauge transformation, but we shall not discuss here
the relation with the gauge transformations of Section 9.4b. We do not claim
that any such section other than h = e exists for a given bundle P.



CHAPTER 19

The Dirac Equation

Spin is what makes the world go ’round.

19.1. The Groups SO(3) and SU(2)

How does SU(2) act on its Lie algebra?

For physical and mathematical motivation for this section (which involves nonrel-

ativistic quantum mechanics) we refer the reader to some remarks of Feynman and

of Weyl. Specifically, Feynman [FF, pp. 8, 9], in his section entitled “Degeneracy,”

shows that a process involving a specific choice of direction in space requires that the

process be described not by a single wave function ψ but rather by a multicomponent

column vector of wave functions � = (ψ1, . . . , ψN )T . He then indicates [pp. 9–12],

roughly speaking, that since the physics cannot depend on the choice of cartesian

coordinates (x1, x2, x3) of space, the N -tuples must transform under some represen-

tation ρ : SO(3) → U (N ) of the rotation group SO(3) of space. This is not quite

accurate; since eiγ � represents the same wave function (when γ is a constant), ρ is

only a “ray” representation, ρ(g)ρ(h) = eiγ (g,h)ρ(gh) for a function γ (g, h). Weyl

[Wy, p. 183] shows that this can be made into a genuine representation, except that

it is (perhaps) double-valued. We shall show in this section that there is a natural

2 : 1 homomorphism π of the special unitary group SU (2) onto SO(3), thus yield-

ing a (perhaps double valued) representation of SU (2) into U (N ). An argument of

Weyl [pp. 183–4] indicates that a multiple-valued representation of a simply-connected
group is actually single-valued. We have seen in Section 12.2 that SO(3) is not sim-

ply connected, but we shall show in Section 19.1c that SU (2) is simply connected,

and thus the wave vectors � transform via a true representation of the “covering

group” SU (2) of SO(3). The relationship with “spinors” will be discussed in Sec-

tion 19.2.

A concrete physical example (the Stern–Gerlach experiment) is discussed by

Feynman in [F, L, S, vol. III, chap. 6].
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19.1a. The Rotation Group SO(3) of R
3

Rotations of R
3 about the z axis form a 1-parameter subgroup

R(θ) =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎦ = exp θ E3

for some E3 ∈ so(3). Then

E3 = d

dθ
exp θ E3

]
θ=0

= d

dθ
R(θ)

]
θ=0

=
⎡
⎣ 0 −1 0

1 0 0

0 0 0

⎤
⎦

and likewise for E1 and E2. We use as a basis for so(3)

E1 =
⎡
⎣ 0 0 0

0 0 −1

0 1 0

⎤
⎦ , E2 =

⎡
⎣ 0 0 1

0 0 0

−1 0 0

⎤
⎦ , E3 =

⎡
⎣ 0 −1 0

1 0 0

0 0 0

⎤
⎦ (19.1)

For Lie algebra, we compute

[E1, E2] = E3 [E2, E3] = E1 [E3, E1] = E2

that is,

[Ei , E j ] =
∑

k

εi jk Ek (19.2)

and then these are the structure constants of SO(3)

ck
i j = εi jk

Consider now a 1-parameter group of rotations with angular velocity ω, ω = dθ/dt .

z

r

y

x

θ
.

ω

Figure 19.1

Then

dr
dt

]
t=0

= ω×r(0)
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On the other hand, this 1-parameter subgroup is of the form

R(t) = et S

for some skew symmetric matrix S, and so r(t) = R(t)r(0) = et Sr(0)

dr
dt

]
t=0

= Sr(0)

and we conclude that

S(r) = ω×r

Note in particular that the skew symmetric matrices E1, E2, and E3 are simply the

matrices of the linear transformations

E j (r) = e j×(r)

where {e j } is the standard basis of R
3. Then we can write symbolically

R(t) = exp(E jω
j t) =: exp(E •ωt) (19.3)

in this case of constant angular velocity.

In terms of an angle of rotation, θ = tdθ/dt , and the unit vector n along the axis ω,

R(θ) = exp(θE • n) (19.4)

represents a rotation through an angle θ about an axis with unit normal n.

19.1b. SU(2): The Lie algebra su(2)

su(2) = g consists of skew hermitian matrices with trace 0. Then ig is the vector space

of hermitian matrices with trace 0, to be considered as a real 3-dimensional vector

space (i.e., it is closed under multiplication by real numbers). A basis for ig is given by

the Pauli matrices

σ1 =
[

0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
(19.5)

For example, exp(θσ3/ i) = exp diag(−iθ, iθ) = diag(e−iθ , eiθ ) describes a complete

1-parameter subgroup of SU (2) for 0 ≤ θ ≤ 2π . Note that the commutation relations

are given by

[σ j , σk] = 2iε jklσl (19.6)

which is the same as for SO(3) if one uses σ j/2i as new basis for g = su(2). We shall

soon see that SU (2) is simply connected. Lie group theory states that there is then a

homomorphism from SU (2) onto SO(3). (These groups are then locally “the same”:

The proof is an application of the Frobenius theorem.) We shall exhibit the classical

homomorphism

Ad : SU (2) → SO(3)

Thus we claim that

the adjoint representation Ad(g)Y =gYg−1 of SU (2) on its 3-dimensional Lie alge-
bra su(2) yields (see Theorem (19.12)) the standard representation of SO(3) on R

3.
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We start out by looking more carefully at the Lie algebra su(2) = g . g and ig are

to be considered as 3-dimensional vector spaces over real coefficients; ig has a basis

given by the σ ’s and {σα/ i} give a basis for g . Define a map

∗ : R
3 → ig x �→ x∗ (19.7)

x∗ = x • σ = x RσR =
[

z x − iy
x + iy −z

]

This linear transformation maps R
3 onto the space of traceless hermitian matrices and

has inverse given by

x = 1

2
tr(x∗σ1) y = 1

2
tr(x∗σ2) z = 1

2
tr(x∗σ3) (19.8)

Under the map∗

e1 = (1, 0, 0)T �→ σ1 e2 = (0, 1, 0)T �→ σ2 e3 = (0, 0, 1)T �→ σ3

We shall use ∗ to identify points x∗ in ig (i.e., hermitian traceless matrices) with

points x of R
3.

From

tr(σ1σ1) = tr(σ2σ2) = tr(σ3σ3) = 2

and

tr(σ jσk) = 0 if j �= k

we see that if we define a real scalar product in ig by

〈h, h′〉 := tr(hh′) (19.9)

then the Pauli matrices form an orthogonal basis (of lengths
√

2).

Recall that every Lie group G acts on its Lie algebra g by the adjoint action

Ad : G → Gl(g ) Ad(g)(X) = gXg−1

for all X ∈ g . Each Ad(g) is a linear transformation.

In our case we consider instead the action of SU (2) on the hermitian traceless

matrices ig , and we shall still call this Ad. Ad(u) is the linear transformation Ad(u) :

ig → ig

u ∈ SU (2) sends x∗ ∈ ig into ux∗u−1 (19.10)

For each 2 × 2 u ∈ SU (2) we are associating a 3 × 3 matrix

Ad(u) : R
3 → R

3

using the identification ∗ of (19.7). Note that Ad is a representation of SU (2) by 3 × 3

matrices,

Ad(uu ′)(x∗) = uu′x∗(uu′)−1 = Ad(u) ◦ Ad(u′)(x∗)
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Note further that

〈Ad(u)x∗, Ad(u)x∗〉 = tr(ux∗u−1ux∗u−1) = tr(x∗x∗)

= 〈x∗, x∗〉
and so Ad is a representation of SU (2) by orthogonal 3 × 3 matrices. We claim that

these matrices also have determinant +1. To see this (and more) we shall discuss the

topology of SU (2).

19.1c. SU(2) is Topologically the 3-Sphere

The usual (“fundamental”) representation of SU (2) is by 2×2 complex unitary matrices

with unit determinant [
u11 u12

u21 u22

]

We shall show that SU (2) is topologically the 3-sphere S3. S3 can be pictured as the

set of unit vectors in C
2 ≈ R

4

S3 = {(z1, z2)
T : |z1|2 + |z2|2 = 1}

Note that SU (2) : S3 → S3; this is the meaning of being unitary. Note further that SU (2)

acts transitively on S3, for (1, 0)T ∈ S3 can be sent into a generic point (z1, z2)
T ∈ S3

by

u =
[

z1 −z̄2

z2 z̄1

]
∈ SU (2) (19.11)

(In fact, the second column is the unique vector in C
2 that is hermitian–orthogonal to

(z1, z2)
T and is such that det u = 1.)

From (17.10) we know that topologically

S3 ≈ SU (2)

H

where H is the stability subgroup of the point (1, 0)T . But, as we see in (19.11), H is

simply the 2 × 2 identity matrix I . Thus

SU (2) ≈ S3

topologically. In fact we have seen that the correspondence SU (2) → S3 is given
simply by sending the matrix u into its first column

u �→ (u11, u21)
T

In particular SU (2) = S3 is connected. Since Ad(u) is an orthogonal matrix,

det Ad(u) is ±1. Since it is continuous in u and always ±1 on the connected S3 we see

that the determinant is +1. Thus Ad(u) ∈ SO(3)

Ad : SU (2) → SO(3)
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19.1d. Ad : SU(2) → SO(3) in More Detail

Theorem (19.12): The representation Ad : SU (2) → SO(3) given in (19.10)
is onto; that is, every rotation in R

3 is of the form (19.10). Furthermore, this
representation is 2:1; that is, for each rotation R there are exactly two matrices
±u ∈ SU (2) such that Ad(±u) = R.

P R O O F: Let u(t) be a 1-parameter subgroup of SU (2); it is of the form u(t) =
eth/ i , where h is a hermitian 2 × 2 matrix. This produces a 1-parameter subgroup

of SO(3) under our identification of ig with R
3 (i.e., x∗ ∼ x)

Adu(t)x ∼ Adu(t)x∗ = e−i thx∗eith

The velocity vector at x ∈ R
3 is given by

d

dt
Adu(t)x∗|t=0 = d

dt
e−i thx∗eith|t=0 = −i[h, x∗]

= −i[h jσ j , xkσk] = −ih j xk[σ j , σk]

= 2h j xkε jklσl ∼ 2(h × x)lσl

The angular velocity vector of the 1-parameter group Adu(t)x in R
3 is then

ω = 2h, and from (19.3)

Ad exp

(
σ

i
• ht

)
x∗ ∼ R(t)x = exp(E • 2ht)x (19.13)

We have just verified that

Ad∗(σα/2i) = Eα (19.14)

and this is not very surprising considering the remarks after (19.6).

For example, as we have seen, the vector h = σ(0, 0, 1)T , that is, h = σ3,

generates the 1-parameter subgroup of SU (2)

exp θ
σ3

i
=

[
e−iθ 0

0 eiθ

]

and this corresponds, under Ad, to the 1-parameter subgroup of rotations of R
3

(see Problem (15.2(1)))

exp 2θ E3 = exp

⎡
⎣ 0 −2θ 0

2θ 0 0

0 0 0

⎤
⎦ =

⎡
⎣ cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0

0 0 1

⎤
⎦

Note that exp(θσ3/ i) describes a simple closed curve in SU (2) for 0 ≤ θ ≤ 2π ,

and exp(2θ E3) yields two full rotations in this same θ range!

Since every rotation of R
3 is a rotation about some axis, that is, is of the form

R = exp(E •ωθ), we see from (19.13) that Ad exp(σ/2i •ωθ) = R, and Ad is

indeed onto.

It is immediate that if Ad(u) = R then Ad(−u) = R also, so that the Ad
representation is at least 2 : 1; that is, it is not faithful. It is an elementary result

of group theory that
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If φ : G → G ′ is a homomorphism of G onto G ′, then G ′ is isomorphic to the coset

space G/H , where H = φ−1(e′) is the kernel.

This is basically our “fundamental principle” (17.10), for G acts on G ′ by

(g, g′) �→ φ(g)g′ and the stability subgroup of e′ ∈ G ′ is the kernel H = φ−1(e′).
In our case we need to know that the kernel of the Ad homomorphism consists

precisely of the two 2 × 2 matrices ±I ; we will then know, from (17.11), that

SU (2) is a fiber bundle over SO(3) with fiber always consisting of exactly two

points ±u. This should not surprise us since topologically SU (2) is S3, SO(3)

is the projective space RP3, and RP3 results from S3 by identifying pairs of

antipodal points!

Look then for those special unitary u such that Ad(u) is the identity rotation

in R
3. We thus need ux∗u−1 = x∗, for all hermitian x∗ with trace 0. In particular

σ−1
α uσα = u, for each Pauli matrix. Writing u in the form (19.11) and putting

α = 1 will show that z1 must be real. Putting α = 3 will yield that z2 = 0. Thus

u must be of the form ±I , as desired.

19.2. Hamilton, Clifford, and Dirac

Why is it that a full rotation is something whereas two full rotations is nothing?

19.2a. Spinors and Rotations of R
3

We saw in the last section that there is a representation of SU (2) as a group of rotations

of R
3

Ad : SU (2) → SO(3)

exp

(
σ

2i
• Aθ

)
�→ exp(E • Aθ)

(19.15)

for any A = (A1, A2, A3), and that the mapping Ad is exactly 2 : 1. Thus to a rotation

of R
3 about an axis given by a unit vector A through an angle θ radians one associates

two 2 × 2 unitary matrices with determinant 1,

exp

[
σ

2i
• Aθ

]
and exp

[
σ

2i
• A(θ + 2π)

]

In other words, SO(3) not only has the usual representation by 3 × 3 matrices, it also
has a double-valued representation by 2 × 2 matrices acting on C

2.

The complex vectors (ψ1, ψ2)
T ∈ C

2 on which SO(3) acts in this double-valued way

are called (2-component) spinors. Mathematicians do not like double-valued anythings;

they prefer to say that SU (2) furnishes naturally a spinor representation of the 2-fold
cover of SO(3). When SU (2) is thought of as the 2-fold cover of SO(3), it is called

the spinor group Spin (3).

The topological reason that SO(3) can admit a nontrivial double-valued representa-

tion is that SO(3) is not simply connected. The reasoning is very much like that used
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in complex function theory when showing that a region in the complex plane support-

ing a multiple-valued analytic function cannot be simply connected. The 1-parameter

subgroup of SO(3)

θ �→
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎦

for 0 ≤ θ ≤ 2π is a closed curve C in SO(3) = RP3.

C

I

θ =π

Figure 19.2

This curve can be deformed into the curve A of Section 13.3b, Example (5), and this
curve cannot be shrunk to a point. This subgroup is generated by E • A = E3. It is

covered in the group SU (2) by the portion of the 1-parameter subgroup generated by

σ/2i • A = σ3/2i

θ → exp
σ3θ

2i
=

[
e−iθ/2 0

0 eiθ/2

]
(19.16)

for 0 ≤ θ ≤ 2π . This is not a closed curve in SU (2) since it starts at I and ends at

−I . Of course, if we make 2 complete rotations in R
3, this 1-parameter subgroup in

SU (2) that covers it will be a closed curve on SU (2) = S3. This curve on S3 can be

shrunk to a point (why?), and by “projecting down” we can use this to shrink the curve

representing 2 full rotations of R
3 to a point.

In this way one can distinguish between a full rotation (which of course brings every
point of R

3 back to its original position) and two full rotations of R
3 about an axis!

This truly mysterious fact can be experienced on at least three different levels. We shall

mention two manifestations here; after discussing the Dirac equation we shall discuss

the significance for particle physics.

The two remarks to follow are related to the topological fact that the closed curve A
in SO(3) has the property that it cannot be shrunk to a point, whereas any even multiple

of it can be.
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1. Physiologically. This is the old “waiter with a platter” trick; see Feynman’s treatment in

[F, W, p. 29].

2. Mechanically. (This interpretation was given by Weyl.) We are going to show that the

closed curve in SO(3) described by rotating a rigid body twice about an axis through a

given point O of the body can be deformed into the point curve representing no rotation

at all. Consider a mathematical cone in space, vertex at O , with axis always the z-axis,

and with (half) opening angle α. Consider another mathematical cone, congruent to the

first, but this time fixed in the body with vertex at O . Move the body so that the body

cone rolls around the space cone.

Figure 19.3

If the opening angle α is very small, then on looking down on the space cone one

can see that when the body cone has come around to its original position, the body has

made approximately two full revolutions about the z axis, and as α tends to 0 the body

rotation tends exactly to two revolutions. On the other hand, if we use an opening angle

α that is almost π/2, then the cones are very flat and the body cone will be seen to

wobble, with hardly any rotation at all, and in the limit as α → π/2 the body remains

motionless! Thus, when using α as a deformation parameter, the curve representing a

rotation through 4π radians about the z axis (α = 0) can be deformed into the point

curve representing no rotation (α = π/2).

See also the picture in Wald’s book [Wd, p. 346].

For an application to rotating electrical machinery you may read about an invention

of D. Adams in the article [Sto].

19.2b. Hamilton on Composing Two Rotations

The relation (19.15) is a powerful tool for investigating the product of two rotations.

This is a consequence of the fact that that the Pauli matrices satisfy very simple product

relations

σ1σ2 = iσ3 σ2σ3 = iσ1 σ3σ1 = iσ2 (19.17)

(σ1)
2 = (σ2)

2 = (σ3)
2 = I

The infinitesimal generators E j of SO(3) satisfy nothing like this; for example, (E1)
2 =

diag(0, −1, −1). From (19.17) one gets not only the commutation relations (19.6) but

also the anticommutator 2 × 2 matrices

{σi , σ j } := σiσ j + σ jσi = 2δi j I (19.18)
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In Problem 19.2(1) you are asked to use the commutation and anti-commutation for-

mulas to show the following. For any pair of vectors A, B in R
3

(σ • A)(σ • B) = (A • B)I + iσ • (A × B) (19.19)

and if A is a unit vector

(σ • A)2 = I

For unit A

exp

(
σ

2i
• Aθ

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
σ • A (19.20)

corresponds, as we know from (19.15), to a rotation R1 of R
3 about the axis

∑
e j A j

through an angle of θ radians. Let B be another unit vector with corresponding rotation

R2. Show

R1 R2 = exp

(
σ

2i
• Aθ

)
exp

(
σ

2i
• Bφ

)
(19.21)

=
[

cos
θ

2
cos

φ

2
−

(
sin

θ

2
sin

φ

2

)
A • B

]
I

− iσ •

[
sin

θ

2
cos

φ

2
A + cos

θ

2
sin

φ

2
B + sin

θ

2
sin

φ

2
(A × B)

]

This expression (via (19.20)) exhibits explicitly the (cosine of) the rotational angle and
then the axis for the rotation R1 R2.

The expression (19.21) was known to Hamilton in terms of his quaternions rather

than Pauli matrices. We shall discuss the relation between these “algebras” next. For

more information and nice pictures see the chapter on spinors in [M, T, W].

Finally note that we have mentioned before that the exponential map exp : g → G
is onto in the case of a connected compact group such as SU (2). Thus (19.20) shows

that every u ∈ SU (2) can be written in the form

u = aI + iσ • C

where a2+ ‖ C ‖2= 1. This expression is unique since aI is real and iσ • C is skew

hermitian.

19.2c. Clifford Algebras

Let us abstract some of the properties of the Pauli matrices that will be important for

generalizations. We shall be very informal.

First note that σ1, σ2, and σ3 span a 3-dimensional vector space V 3 under addition and

under multiplication by real scalars; V 3 is the space of trace-free hermitian matrices.

In this vector space there is a quadratic form 〈, 〉 given by half that in (19.9), that is,

〈h, h′〉 = (1/2) tr hh′, and then

〈σ j , σk〉 = g jk = δ jk

Furthermore, there is a multiplication (in this case matrix multiplication) in V 3 but

V 3 is not closed under this multiplication. For examples, σ1σ1 = I is not in V 3 and
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σ1σ2 = iσ3 is not in V 3 (i is not real). Suppose that we now try to “close” this system.

We adjoin the new matrix e4 = σ1σ2 and all its real multiples. Continuing, we define

(in no particular order)

e1 = σ1 e2 = σ2 e3 = σ3

e4 = e1e2 e5 = e2e3 e6 = e1e3

e7 = e1e2e3 = i I e8 = (e1)
2 = I

From the anticommutation relations (19.18), we see, for example, that e1e2 = −e2e1,

and so we needn’t adjoin e2e1. Note also that e8 := e1e1 = I also follows directly from

(19.18). We may now form the real 8-dimensional vector space with basis given by

e1, . . . , e8. From (19.18) alone we see that this new real vector space is closed under

products (e.g., e7e1 = e1e2e3e1 = −e1e2e1e3 = e1e1e2e3 = e2e3 = e5). Note further

that in a monomial expression (such as e7e1) any repeated basis element of V 3 (such as

e1) can be eliminated by using (19.18), yielding an expression having two fewer basis

elements.

The vector space (of 2 × 2 matrices) of real linear combinations of these e’s is

8-dimensional and forms, as can be verified, an associative algebra, that is, a vector

space with a composition (called product) that is associative and is distributive with

respect to addition. In fact, in this case, this 8-dimensional vector space is simply the

algebra of all complex 2×2 matrices! This algebra is generated by the Pauli matrices,

and will be called the Pauli algebra.

Definition (19.22): If Cn is an associative algebra (over R) with “unit” I , gen-

erated by an n-dimensional vector subspace V n , if 〈, 〉 is any real quadratic form

on V n , and if V n has a basis e1, . . . , en satisfying

e j ek + eke j = 2g jk I (19.23)

where g jk := 〈e j , ek〉, then Cn = C(V n) is called the Clifford algebra generated
by V n with the quadratic form 〈, 〉.

Note that we put no requirements on the quadratic form 〈, 〉, but of course the

resulting Clifford algebra will depend on the choice of 〈, 〉. For example, consider a

Clifford algebra generated by an n-dimensional vector space V n with quadratic form
〈, 〉 identically 0. Then we have e j ek = −eke j , for all j, k, and of course (e j )

2 = 0. The

resulting Clifford algebra is simply the exterior algebra based on the vector space V n!

In general, as a vector space, Cn is generated by expressions of the form ei e j . . . ek .

Each (e j )
2 is a multiple g j j of the identity, and thus commutes with everything. Also,

as we have seen, we needn’t consider expressions containing a repeated basis vector e j .

From (19.18) we need only consider expressions ei e j . . . ek that are ordered, i < j <

. . . < k. It is then obvious that as a vector space (i.e., neglecting the product structure),

the Clifford algebra C(V n) is isomorphic to the exterior algebra
∧

(V n) and thus has

dimension 2n .

For example, the Pauli algebra, as a vector space, is isomorphic to the exterior algebra

on R
3 with abstract basis given by σ1, σ2, and σ3, but of course the exterior product is

far different from the product of Pauli matrices, that is, the “Clifford” product.
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In an exterior algebra, the real coefficients, that is, the scalars or 0-forms, span a

1-dimensional subspace. In a Clifford algebra, the scalar multiples of the “unit” I form

a 1-dimensional subspace that can be identified with the coefficient field R.

To form a Clifford algebra with generators e1, . . . , en and quadratic form 〈, 〉, we

simply consider all “formal expressions,” ei e j . . . ek with i < j < . . . < k, and impose

the “relations” (19.18). It can be shown that the result is indeed a Clifford algebra. Let

us look at some examples.

C0 is the algebra over R with no other generators; thus there are no e j ’s. C0 = R is

simply the algebra of real numbers.

Let V 1 be a 1-dimensional vector space with basis e1, and quadratic form 〈e1, e1〉 =
−1. Form the 2-dimensional vector space with formal basis consisting of e1 and a

new vector “e1e1” satisfying (19.23), (e1)
2 = (−1)I . Thus we are adjoining to V 1 a

1-dimensional vector space to accomodate the scalars (i.e., all real multiples of −1).

The basis element e1 will be called i , the element (e1)
2 will be identified with the

real number −1, and the 2-dimensional vector space over R is simply the algebra of

complex numbers a + bi, C1 = C.

Let V 2 be a real 2-dimensional vector space with basis e1, e2, and quadratic form

〈e j , ek〉 = −δ jk . We write e1 = j, e2 = k. We adjoin a 1-dimensional vector space to

accommodate the scalars j2 = k2 = (−1)I . We adjoin another 1-dimensional vector

space to house the new element i := jk = −kj (from (19.18)). Then ijk = i2 = jkjk =
−jjkk = −I , which is not a new element. Thus we needn’t adjoin anything else. C2 is

Hamilton’s 4-dimensional algebra of quaternions a + bi + cj + dk.

Let V 3 be a 3-dimensional vector space with basis σ1, σ2, σ3 and this time with scalar

product 〈σ j , σk〉 = +δ jk . We have discussed this case previously. Adjoining products of

pairs σ jσk satisfying (19.18) yields a 1-dimensional space of scalars (e.g., σ 2
1 = I ) and

a 3-dimensional space spanned by σ1σ2 = −σ2σ1, and so forth. Another 1-dimensional

vector space is adjoined to house i := σ1σ2σ3. C3 is the Pauli algebra (but note our

choice of scalar product).

19.2d. The Dirac Program: The Square Root of the d’Alembertian

We wish to emphasize that we are continuing to use our choice of metric in Minkowski
space,

ds2 = −dt2 + dx2 + dy2 + dz2

that is,

(g jk) = (η jk) := diag(−1, +1, +1 + 1)

although most treatments of quantum mechanics use the negative of this form.

Schrödinger’s equation (16.40) treats time and space differently and is thus not

relativistic. The first relativistic wave equation was proposed by Schrödinger, but was

abandoned by him. It was then reintroduced by Klein and Gordon and is now called

the Klein–Gordon equation. For a particle of mass m it is

ψ := g jk∂ j∂kψ = m2ψ (19.24)
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that is,

−∂2ψ

∂t2
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= m2ψ

Dirac wanted to have an equation that was first order in t , as in the nonrelativistic

Schrödinger equation. Special relativity would then demand that it be first order in the

spatial variables x, y, and z. Thus, Dirac was led to construct a first-order differential

operator

�∂ = γ j∂ j

with some constant coefficients γ j such that

ψ =�∂( �∂ψ)

that is, to construct a “square root” of the d’Alembertian. Then we could solve the Klein–

Gordon equation by first solving Dirac’s equation (using the physicist’s convention of

putting h̄ = 1)

�∂ψ = γ j∂ jψ = mψ (19.25)

Then

ψ =�∂(�∂ψ) = m2ψ

as desired.

We then need

= �∂ �∂ = (γ j∂ j )(γ
k∂k)

= γ jγ k∂ j∂k = 1

2
(γ jγ k + γ kγ j )∂ j∂k

requiring that we put

γ jγ k + γ kγ j = 2g jk = 2η jk

that is, the γ ’s cannot be scalars (γ 1γ 2 = −γ 2γ 1). The γ ’s appear to generate a
Clifford algebra! It is then clear from Dirac’s equation (19.25) that the wave function

ψ cannot be a single-component complex function since the Clifford numbers γ j

would then take the complex numbers ∂ jψ into a Clifford number γ j (∂ jψ) that could

not be equated with the complex number mψ . Somehow the Clifford numbers must act
on the wave functions in a less trivial fashion.

For relativistic purposes, Dirac also wanted “covariance” under Lorentz transforma-

tions. We now turn to these matters.

Problem

19.2(1) Derive (19.19, 20, and 21). Let R1 be a rotation of π/2 about the z axis, and
let R2 be a rotation of π/2 about the y axis. Describe R1 R2.
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19.3. The Dirac Algebra

What is the topology of the Lorentz group?

19.3a. The Lorentz Group

Our treatment of Dirac 4-component spinors to follow owes much to Bleecker’s book,

Gauge Theory and Variational Principles [Bl]. Our metric is, however, of opposite
sign.

The Lorentz group is by definition the group of linear isometries of Minkowski

space M4
0

L = {real 4 × 4 matrices B|〈Bx, By〉 = 〈x, y〉}
with metric (η jk) = diag(−1, +1, +1, +1). In matrix notation,

〈x, y〉 = xT ηy

and then

x T ηy = (Bx)T ηBy = xT BT ηBy

requires

BT ηB = η (19.26)

We see that det B = ±1. Let e0, e1, e2, e3 be an orthonormal basis. Since 〈Be0, Be0〉 =
−1 and Be0 = [B0

0, B1
0, B2

0, B3
0]T , we see that (B0

0)
2 ≥ 1. Bleecker shows that L

breaks up into 4 connected components (pieces)

L0 = L+ ↑: det B > 0 and B0
0 ≥ 1

L− ↑: det B < 0 and B0
0 ≥ 1

L+ ↓: det B > 0 and B0
0 ≤ −1

L− ↓: det B < 0 and B0
0 ≤ −1

where L0 is the component holding the identity. This is clearly the component consisting

of Lorentz transformations that preserve not only the orientation of Minkowski space

(det B > 0) but also the direction of time (B0
0 > 0). Thus the orientation of 3-space

is also preserved.

Consider the Lie algebra l of L . Write B = et S . Then (et S)T ηet S = η , and

differentiating with respect to t and putting t = 0 yield ST η + ηS = 0. Since ηT = η,

this says (ηS)T = −ηS. This merely says that when we lower the upper index of S
by means of the Lorentz metric, the resulting covariant second-rank tensor is skew
symmetric!

Sjk := η jl S
l
k = −Skj

Thus dim L = dim SO(4) = 6.
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SO(3) is covered twice by SU (2). We shall now indicate why L0 is covered twice
by Sl(2, C), the complex 2×2 matrices with determinant +1 (which, of course, is again

6 dimensional). Let

H(2, C) := {2 × 2 matrices A|A† := (A)T = A}
be the 4-dimensional vector space (over R) of 2 × 2 hermitian matrices with no
requirement on the trace. For a basis for H(2, C) we augment the Pauli matrices by the

unit matrix

τ0 = σ0 := I τα := σα, α = 1, 2, 3 (19.27)

Define now a new map ∗ : M4
0 → H(2, C) by

x ∈ M �→ x∗ := x T τ = x jτ j = x0τ0 + x •σ (19.28)

x∗ =
[

x0 + z x − iy

x + iy x0 − z

]

We can solve for x

x j = 1

2
tr(x∗τ j ) (19.29)

Easily

det x∗ = −〈x, x〉 (19.30)

We shall also have need for another identification of M4
0 with H(2, C), namely

x∗ := xT ητ = −x0τ0 + x •σ

Then (19.31)

x∗ =
[

−x0 + z x − iy

x + iy −x0 − z

]

and one computes

det x∗ = −〈x, x〉 (19.32)

x∗x∗ = x∗x∗ = 〈x, x〉I

The two maps ∗ and ∗ allow us to think of Minkowski space as being simply H(2, C)

in two ways. By using ∗ we have the following.

Theorem (19.33): The assignment to A ∈ Sl(2, C) of the linear map � of
Minkowski space

�(A) : M4
0 = H(2, C) → H(2, C)

�(A)(x)∗ : = Ax∗ A† = Ax∗ A
T

(19.34)

yields a 2 : 1 homomorphism of Sl(2, C) onto L0

� : Sl(2, C) → L0
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Note that� is similar to Ad : SU (2) → SO(3); in fact when A is in the subgroup SU (2)

of Sl(2, C) we have A† = A
T = A−1. Before proceeding to the proof of (19.33) we

shall investigate this similarity in more detail. For the notion of “deformation retract,”

see Section 15.3d.

Theorem (19.35): SU (2) is a deformation retract of Sl(2, C) and SO(3) is a
deformation retract of L0.

Proof sketch: A ∈ Sl(2, C) can be thought of as a pair of complex vectors

[a11, a21]T and [a12, a22]T spanning an “area” det A = 1. By the usual Gram–

Schmidt-like process used in Section 15.3d in the case of Sl(2, R) (but using

a hermitian scalar product instead) we may deform Sl(2, C) into its subgroup

SU (2), all the while keeping SU (2) pointwise fixed. SU (2) is thus a deformation

retract of Sl(2, C).

For the Lorentz group we proceed as follows, using familiar facts about Lorentz trans-

formations. Consider the upper sheet H 3 of the “unit” hyperboloid in Minkowski space,

−x2
0 + x • x = −1

t

H

x

Figure 19.4

Each Lorentz transformation in L0 takes H into itself since Lorentz transformations

preserve the Minkowski metric. By a suitable Lorentz transformation � ∈ L0, we may

take the unit vector (1 0)T ∈ H along the t axis into any other given vector (t x)T of

H , since any timelike vector can be along the t axis for some inertial observer. Thus L0

acts transitively on H . The stability subgroup of (1 0)T is immediately determined to be[
1 0

0 SO(3)

]

which we call 1 × SO(3), or, more simply, SO(3); this is simply the subgroup of all

spatial rotations of R
3 in Minkowski space. Thus H is diffeomorphic to the coset space

L0/SO(3). In other words (see Theorem (17.11)) L0 is a principal fiber bundle over
the base space H, with fiber SO(3).

Note that the upper hyperboloidal sheet H is diffeomorphic to R
3 (under the projec-

tion (t, x) → (0, x)) and so is contractible to a point. We now invoke the following
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Theorem (19.36): If En+k is a bundle over a base space Mn, if M is contractible
to a point p ∈ M, then E has the fiber over p as a deformation retract.

In particular, SO(3) is a deformation retract of L0. We shall not prove (19.36) here; a

detailed proof can be found in Steenrod’s book [St]. The following picture, in the case

at hand, makes it seem plausible.

L0

C ′

′q

q

SO(3)

p

C
H

Figure 19.5

Take a Riemannian metric for E . Each fiber is a submanifold of E . Consider the

“horizontal” distribution � of (n − k)-planes in E that are orthogonal to the fibers. M
can be contracted to a point p. Let q ′ be a point in E and let C be the curve swept out in

M as q = π(q ′) is deformed to p. There is apparently then a unique curve C ′ covering

C , starting at q ′, tangent to �, and ending at some point in the fiber over p. (This is

similar to the picture of parallel displacement described in Section 9.7b.) In this way,

we deform E into π−1(p).

What is wrong with this sketch? We simply note that in the general case, if the

distribution � is not chosen with some care, that is, if the metric in E misbehaves, then

the curve C ′ covering C may never reach the fiber π−1(p).

L

E R
2

p 0
M R

=
=

=

Figure 19.6
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For example, in the usual projection π : R
2 → R given by (x, y) → x , E = R

2

is a bundle over M = R. We have chosen a strange metric in R
2 and have indicated

the integral curves of the “horizontal” distribution, that is, the orthogonal trajectories

to the vertical fibers.The integral curve labled L is asymptotic to the y axis, and all the

integral curves above L are also. The integral curves below L are bell-shaped, with the

highest point of the bells tending to infinity as the integral curve is chosen closer and

closer to L . For C we may take the interval [−1, 0], ending at p = 0. This clearly can

be covered by arcs of the bell-shaped curves, but on the leaf L and above one will never

reach the y axis! Rather than use the subspaces orthogonal to the fibers, one should

introduce a connection in the fiber bundle and then use parallel translation to cover

curves in the base space. The reader may consult [No, chap. 2] for details.

This concludes our sketch of (19.35).

Corollary (19.37): Sl(2, C) is both connected and simply connected, since SU(2)

is. L0 is connected and each closed curve in L0 is homotopic to a curve in SO(3)

representing a multiple of a full rotation in R
3 about some axis, say the z axis.

The even multiples are homotopic to a constant; the odd multiples are homotopic
to a full rotation.

PR O O F O F (19.33): First note that since det A = 1,

〈�(A)x, �(A)x〉 = −det{�(A)x}∗ = −det Ax∗ A†

= −det A det x∗ det A† = −det x∗ = 〈x, x〉
and so �(A) is a Lorentz transformation. det �(A) = ±1 (since every Lorentz

transformation preserves ± the volume form dx0 ∧ dx1 ∧ dx2 ∧ dx3). To show

that the determinant is +1 we need only know that Sl(2, C) is connected, and

this was proved in (19.37). Since A = I yields a Lorentz transformation I with

B0
0 = 1, connectedness of Sl(2, C) shows us that B0

0 ≥ 1 for all A ∈ SL(2, C);

that is, � maps Sl(2, C) into L0.

It is immediate that � is a homomorphism, as you are asked to show in Problem

19.3(1).

We must show that � maps Sl(2, C) onto L0. First look at the differential

of � at the identity of Sl(2, C). S ∈ sl(2, C) means that S is a complex 2 × 2

matrix with trace 0. Then �∗S is the linear transformation of Minkowski space

corresponding to

x∗ → d

dt
[et S x∗(et S)†]t=0

But this is simply Sx∗ + x∗S† = Sx∗ + (Sx∗)†, that is, twice the hermitian part

of Sx∗. We claim that �∗ is 1 : 1 at I . Otherwise, for some S �= 0, Sx∗ is skew
hermitian for all hermitian 2 × 2 matrices x∗. Putting x∗ = I shows then that S
would be skew hermitian, (i.e., that S ∈ su(2)). Thus if �∗S = 0 then S ∈ su(2).

But � restricted to the subgroup SU (2) is a local diffeomorphism into SO(3), as

we have seen in Theorem (19.12). Thus �∗ is 1 : 1 at I . It is not difficult to see
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that the group property, that is, the fact that � is a homomorphism, would show

that �∗ is 1:1 at all points of Sl(2, C). Thus � is a local diffeomorphism near

each point of Sl(2, C). We conclude that the image U := �[Sl(2, C)] is an open
subgroup of L0 of the same dimension 6, since the image of an open set under

a homeomophism is again open. But L0 is then the disjoint union of the open

cosets of U . It is plausible, and can be proved (see [S]), that a space in which any

two points can be connected by an arc, say L0, cannot be written as a disjoint

union of two or more open subsets. It must be that there is only one coset, that is,

�[Sl(2, C)] = L0, and thus � is onto.

We need only show then that � is 2 : 1. Ker � consists of those A ∈ Sl(2, C)

such that Ax∗ A† = x∗ for all hermitian x∗. Putting x∗ = I shows A† = A−1, that

is, A ∈ SU (2). But we have already seen in Theorem (19.12) that A = ±I . Thus

L0 = Sl(2, C)

{±I }
and we are finished.

As SU (2) → SO(3) yielded a double-valued spinor representation of the rotation

group, so � yields a double-valued spinor representation of the Lorentz group L0. It is
simply the usual representation of Sl(2,C) as 2×2 matrices. This spinor representation

of the Lorentz group L0 will be denoted by

D

(
1

2
, 0

)

19.3b. The Dirac Algebra

We have seen in Section 19.2 that the Pauli matrices (without σ0) generate a Clifford

algebra C3

σασβ + σβσα = 2δαβ I

and that Dirac’s program requires a C4. There is a rather standard procedure leading

from a Cn to a Cn+1 . We shall only be concerned with going from the Pauli algebra to

C4. There is a complication due to the Pauli algebra using the metric δαβ in R
3 while

relativity requires that we use the Lorentz metric η jk in M4
0 . We proceed, with Bleecker,

as follows.

In the case of the Pauli algebra, the map ∗ : R
3 → 2 × 2 matrices can be thought of

as a map σ : R
3 → gl(2, C)

σ (x) = x∗ = σ • x

For example, σ(1, 0, 0)T = σ1, and so on.

We now define a map γ : R
4 → gl(4, C) (i.e., all 4 × 4 complex matrices), by

γ (x) =
[

0 x∗
x∗ 0

]
(19.38)

(The meaning of this will be discussed in the next section.)
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In particular

γ1 := γ (e1) =
[

0 σ1

σ1 0

]
=

⎡
⎢⎢⎣

00 01

00 10

01 00

10 00

⎤
⎥⎥⎦ (19.39)

γ2 := γ (e2) =
[

0 σ2

σ2 0

]

γ3 := γ (e3) =
[

0 σ3

σ3 0

]

γ0 := γ (e0) =
[

0 I
−I 0

]

the famous Dirac matrices. (This is one particular representation of the Dirac matrices.

There are others in use.)

The matrices γ generate a Clifford algebra. In fact we have

Theorem (19.40): For all x ∈ M4
0 , y ∈ M4

0 , we have

γ (x)γ (y) + γ (y)γ (x) = 2〈x, y〉I

where 〈, 〉 is the Lorentz metric.

P R O O F: Both sides of (19.40) are bilinear symmetric functions of x and y. For

any such function f we have

4 f (x, y) = f (x + y, x + y) − f (x − y, x − y)

and it is thus sufficient to verify (19.40) when the arguments x and y are the same.

But

γ (x)γ (x) =
[

0 x∗
x∗ 0

] [
0 x∗

x∗ 0

]
=

[
x∗x∗ 0

0 x∗x∗

]

=
[ 〈x, x〉I 0

0 〈x, x〉I

]
= 〈x, x〉

[
I 0

0 I

]

as desired.

Problem

19.3(1) Show that � : Sl(2, C) → L0 is a homomorphism.
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19.4. The Dirac Operator �∂ in Minkowski Space

What is a Dirac spinor?

Warning: Our choice of metric signature has always been (− + ++) as this is most

convenient for discussing the geometry of general relativity. Approximately half of

the physics books use this convention also in general relativity. Most physics books,

however, when discussing (special) relativistic quantum mechanics, use the metric with

signature (+ − −−). In particular, their d’Alembertian is the negative of ours. This

introduces the imaginary unit i into many equations. For example they would write

the Dirac equation (19.48) below as iγ j∂ jψ = mψ . There are so many different

conventions in use for the Dirac matrices that we feel that this will not cause much

more confusion than is already present in the literature. We are mainly concerned with

the concepts involved in this subtle subject and feel that a change of signature at this

time would only put an added burden on the reader.

19.4a. Dirac Spinors

In the last section we exhibited the Dirac matrices γ generating a Clifford algebra C4, the

Dirac algebra. The space C
4 on which these γ ’s operate will be the space of values of our

wave functions, that is, a wave function ψ will be a column of 4 complex functions. The

Dirac algebra will allow us to construct a square root of the d’Alembertian, �∂ = ∑
γ j∂ j .

There is a serious problem remaining; we have constructed γ j by using a specific frame

in Minkowski space. We shall choose γ j to be the same matrix in each frame ∂ because
there is no preferred frame in M4

0 . Since γ j is the same matrix in each frame ∂ and

since ∂ j is frame-dependent, it is clear that � ∂ = ∑
γ j∂ j would represent a different

operator in each frame! In order to avoid this the “functions” ψ on which /∂ operate must
themselves be made to be frame-dependent! Let us see how the ψ’s are to transform.

We have defined the matrix γ (X) for each 4-tuple X by

γ (X) =
[

0 X∗
X∗ 0

]

and by definition of γ j

γ (X) = X jγ j

Consider a Lorentz transformation � of M4
0

X ′ =
(

∂x ′

∂x

)
X = �X

The Lorentz transformation � will correspond, under

� : Sl(2, C) → L0

to two matrices ±A ∈ Sl(2, C); pick one of them. By (19.34)

[�(A)(X)]∗ = AX∗ A†
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Lemma (19.41): The 2 × 2 matrix associated to �(A)(X) under ∗ is

�(A)(X)∗ = A†−1 X∗ A−1

P R O O F: Recall from (19.32) that X∗ X∗ = X∗ X∗ = 〈X, X〉I , and det X∗ =
−〈X, X〉. Thus if X is not lightlike

X∗ = 〈X, X〉X−1
∗

But if we prove (19.41) when X is not lightlike, it will follow for all X by

continuity and the fact that any vector in the light cone is the limit of spacelike

vectors. Assume then that 〈X, X〉 �= 0. Then

�(A)(X)∗ = 〈�(A)X, �(A)X〉[�(A)(X)∗]−1

= 〈X, X〉[AX∗ A†]−1 = 〈X, X〉A†−1 X−1
∗ A−1

= A†−1 X∗ A−1

Theorem (19.42): Letρ : Sl(2, C) → Gl(4, C)be the representation of Sl(2, C)

by 4 × 4 complex matrices defined by

ρ(A) =
[

A 0

0 A†−1

]

Then the Dirac matrices satisfy

γ (�(A)X) = ρ(A)γ (X)ρ(A)−1 (19.43)

(Note: X and �(A)X are the components of the same vector X in the two Lorentz

coordinate systems e and e′ = e�−1.)

P R O O F:

γ (�(A)X) =
[

0 �(A)X∗
�(A)X∗ 0

]

=
[

0 Ax∗ A†

A†−1 X∗ A−1 0

]
=

[
A 0

0 A†−1

] [
0 X∗

X∗ 0

] [
A−1 0

0 A†

]

= ρ(A)γ (X)ρ(A−1) = ρ(A)γ (X)ρ(A)−1

How do we interpret this result? If X is a tangent vector to M4
0 we may define the

matrix γ (X) = γ (X) by expressing X as a 4-tuple. This depends on the Lorentzian
frame e in which X = eX is expressed. If, however, for each Lorentz transformation

� of M4
0 we also make a change of frame in V = C

4 given by the change of basis

matrix ρ(A), then we see from (19.43) that γ (X) = γ (X) is then a well-defined
linear transformation γ (X) : V → V that is independent of the Lorentz frame. This

follows since the matrix B of a linear transformation changes under a change of frame

ρ precisely by B �→ ρBρ−1.
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Equation (19.43) is written in physics books as follows. Let �i
j be the entries of the

matrix �(A). Then by our definitions

γ (�(A)X) = �i
j X jγi

and

ρ(A)γ (X)ρ(A)−1 = ρ(A)X jγ jρ(A)−1

yield, from (19.43)

�i
jγi = ρ(A)γ jρ(A)−1 (19.44)

As mentioned before, the usual representation of Sl(2, C) by 2 × 2 matrices A is

called the spinor representation when thought of as a two-valued representation of L0

and it is denoted then by D(1/2, 0). The representation using A†−1 instead of A is called

the cospinor representation and is denoted by D(0, 1/2). Two component spinors ψL ,

transforming under A, are also called left-handed, whereas two component cospinors

ψR transforming under A†−1, are called right-handed.

In order for γ (X) to be a well-defined linear transformation

ψ ∈ V �→ γ (X)ψ ∈ V

ψ = (ψL , ψR)T must be a 4-component spinor or Dirac spinor; that is, it must

transform via the representation ρ in (19.42)

ψ �→ ρ(A)ψ

for each Lorentz transformation � of M4
0 . In summary

Corollary (19.45): A Lorentz transformation � : M4
0 → M4

0 must always be
accompanied by a change of basis ρ(A) : C

4 → C
4 (as given in (19.42)) in

spinor space. Only then will γ (X) act on Dirac spinors.

The representation ρ of Sl(2, C) is written D(1/2, 1/2) and is the direct sum of D(1/2, 0)

and D(0, 1/2).

19.4b. The Dirac Operator

Consider M4
0 with a given Lorentzian coordinate system x . A “wave function” ψ will

be a Dirac spinor, that is, a function on M4
0 taking its values in C

4 and transforming

as in (19.45). In terms of a (two-component) left-handed spinor ψL and a right-handed

spinor ψR

ψ = (ψ1, ψ2, ψ3, ψ4)T = (ψ1
L , ψ2

L , ψ1
R, ψ2

R)T

= (ψL , ψR)T

As usual we shall write

γ j := g jkγk
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One verifies easily that these new γ ’s also satisfy the Clifford relations

γ jγ k + γ kγ j = 2g jk I = 2η jk I

We define the Dirac operator �∂ sending wave functions into wave functions by

�∂ψ : = γ j ∂ψ

∂x j
(19.46)

�∂ = γ j∂ j

where, as in (19.38),

γk := γ (ek) =
[

0 σk

±σk 0

]

This defines �∂ in terms of the Lorentzian coordinates x . What happens if we consider

the same definition using a system x ′ = �x = (∂x ′/∂x)x? Then

ψ ′ = ρ(A)ψ

where A is a constant matrix. We then have

�∂ ′ψ ′ = γ j g
′ jk ∂ψ ′

∂x ′k = γ j g
′ jkρ(A)

∂ψ

∂x ′k

= γ j g
′ jkρ(A)

(
∂xi

∂x ′k

)
∂ψ

∂xi

= γ j
∂x ′ j

∂xr
ρ(A)gri ∂ψ

∂xi

which, from (19.44), yields

�∂ ′ψ ′ = ρ(A)γr gri ∂ψ

∂xi

Then

ψ ′ = ρ(A)ψ ⇒ �∂ ′ψ ′ = ρ(A) �∂ψ (19.47)

shows that

the Dirac operator �∂ is a well-defined first-order differential operator on 4-component
spinors of type D(1/2, 1/2) in Minkowski space !

From (19.39) and (g jk) = (η jk) = diag[−1, +1, +1, +1]

γ 0 =
[

0 −I
+I 0

]
γ α =

[
0 σα

σα 0

]

Finally

�∂ =
[

0 −I∂0 + σ1∂1 + σ2∂2 + σ3∂3

I∂0 + σ1∂1 + σ2∂2 + σ3∂3 0

]

=
[

0 −I∂0 + σ •∂
I∂0 + σ •∂ 0

]
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Thus the Dirac equations (19.25) become the coupled system

�∂ψ = mψ (19.48)

or

(−∂t + σ •∂)ψR = mψL

(∂t + σ •∂)ψL = mψR

Note that for a massless particle these equations decouple and we can get by with

a single equation for a 2-component spinor ψL of type D(1/2, 0), (∂t + σ •∂)ψL = 0.

This is Weyl’s equation, which was found later to be an equation applicable to the

neutrino.

19.5. The Dirac Operator in Curved Space–Time

Does it make sense to say that a body, on returning from a long trip through the wormholes of

space, has made an “odd number of full rotations”?

19.5a. The Spinor Bundle

Consider now a pseudo-Riemannian 4-manifold M4 rather than Minkowski space. We

suppose that there are patches {U, V, . . .} on M4 and orthonormal frame (“vierbein”)

fields eU , eV , . . . on each. Thus

〈eU
j , eU

k 〉 = η jk

and in an overlap we shall assume

eV (x) = eU (x)cU V (x)

where cU V : U ∩ V → L0. (Recall that this is only one of the four components of

the full Lorentz group; we are assuming that M4 is both space- and time-“orientable”).

We shall need to construct some analogue of the space of 4 component spinors. In our

discussion in M4
0 of the Dirac spinors, we associated with a Lorentz transformation

� the matrix A, one of the two 2 × 2 matrices of Sl(2, C) covering �. There was no

problem in doing this since we were dealing with a single constant matrix �. Now,

however, we shall have to choose for each �(x) = cU V (x) a matrix A(x) = c′
U V (x)

in Sl(2, C) from among the two ±A(x) covering it, and we shall have to do this in a

continuous fashion. The transition functions cU V (x) for the tangent bundle certainly

satisfy the requirement (16.3), but it is not at all clear that the c′
U V (x) can be chosen

consistently to satisfy it because of the ambiguity ±A.

If this can be done, then we say that we have “lifted” the structure group of the

tangent bundle of M4 from the Lorentz group to the group Sl(2, C) and that M4 has a

spin structure.

This would have the following consequence.

Let M4 be a pseudo-Riemannian manifold that is both space- and time-orientable;

we may then assume that the tangent bundle has structure group L0. Let e and f be
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frames at a given point p. Then there is a unique � ∈ L0 such that f = e�. If f(t) is

a 1-parameter family of frames at p such that f(0) = f(1) = e, then f(t) = f(0)�(t)
yields a closed curve t �→ �(t) in L0 starting and ending at I . Sl(2, C) is a 2-fold cover

of L0, and thus this curve is covered by a unique curve t → A(t) in Sl(2, C) starting at

I . (Visualize this by analogy to SU (2) = S3, the 2-fold cover of SO(3) = RP3, as in

section 19.2a.) We know, from Corollary (19.37), that SL(2, C), like SU (2), is simply

connected, whereas L0, like SO(3), has the property that the closed curve t → �(t) is

homotopic either to a full rotation about some axis, say the z axis, or to a constant map.

The covering curve t → A(t) detects the difference; A(1) = I if t → �(t) describes

an even number of full rotations, whereas A(1) = −I if t → �(t) describes an odd

number of full rotations. All this is for a 1-parameter family of frames e(t) at a given
point x . No spin structure is required.

Suppose now that p is in a patch U covered by a Lorentzian frame field eU . (This

patch need not be a coordinate frame.) Take the frame f(p) = eU (p) at p and transport

it arbitrarily but continuously around some closed curve C = C(t), 0 ≤ t ≤ 1, lying in

U , again returning to the same frame f(p). We can compare f(C(t)) with f(p) = f(C(0))

as follows. Identify all frames eU at points of U with the single frame eU at p. Then

by comparing f(C(t)) with eU at C(t), f(C(t)) = eU (C(t))�(t), we again trace out

a closed curve t �→ �(t) in L0. The resulting curve in L0 can again be uniquely

covered by a curve in Sl(2, C) starting at I . In this way we may be tempted to say

that if A(1) = −I then the frame has made an odd number of rotations, whereas if

A(1) = I it has made an even number of rotations. Unfortunately this result might
depend on the choice of frames eU in U ! To see this, consider a spatial example, rather

than space-time, replacing L0 by SO(3) and Sl(2, C) by SU (2). Let M3 be the 3-torus

T 3, with angular coordinates x, y, z. Let U = T 3 and let eU be the frame ∂/∂x,∂/∂y,

and ∂/∂z. Then with the preceding identification, the frame f = eU along the closed

z-curve (0, 0, z) would make no rotation at all. We may consider a new frame field eV

on V = T 3 defined by eV = eU cU V , where

cU V (z) =
⎡
⎣ cos z − sin z 0

sin z cos z 0

0 0 1

⎤
⎦

This frame coincides with eU on z = 0 but rotates once about it as one moves along

the z circuit. Clearly the frame f = eU along the z circuit now makes one complete

rotation with respect to the eV frame, that is, by identifying frames in T by means of

the eV frames. We see that the contradiction arises because the eU and eV frames are
related by SO(3) transformations cU V ; they are not related by SU (2) transformations.

We cannot decide whether eU and eV at (0, 0, 0) = (0, 0, 2π) are related by the identity

I in SU (2) or by −I in SU (2)! The same problem would arise in space–time. We also

see that this problem in the patch would not arise if we restricted ourselves to frames in

T that can be related by SL(2,C) transformations, that is, by frames that “do not make

full rotations about each other.”

If M4 has a spin structure, that is, if Sl(2, C) is the structure group, and if we

transport a frame f around any closed path C in M4, returning to the same Lorentzian

frame, then we can decide whether the frame has made an even or an odd number of

complete rotations! For we may consider the Sl(2, C) frame bundle to M , that is, the
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frame bundle but using the structure group Sl(2, C). The curve C in M is then covered

by a unique curve in this frame bundle, defined by f. Upon returning to the starting

point of C , the lifted curve will return either to its starting point, corresponding to an

even number of rotations, or to a point in the frame bundle related to the initial point

by −I ∈ Sl(2, C), corresponding to an odd number of rotations.

In our spatial toral illustration T 3 just considered, T 3 is covered by a single frame

field eU , and this frame field does define a spin structure. T 3 can also be covered by the

single frame field eV and so this also defines a spin structure on T 3, but it is a different
spin structure! On the other hand, T 3 does not admit any spin structure that includes
both frame fields eU and eV , as we have seen; we cannot lift cU V (z) uniquely to SU (2)

for all 0 ≤ z ≤ 2π .

This has the following remarkable physical manifestation: We assume that our space–

time M4 carries a spin structure (for if M does not admit a spin structure we will not

be able to consider the Dirac equation). For example, we may assume that space–time

is simply Minkowski space M0. As we have seen in Corollary (19.45), the electron

wave “functions,” 4-component Dirac spinors ψ defined over M4
0 , will be, in fact, cross

sections of a bundle over M associated to the tangent bundle through the representation

ρ of Theorem (19.42). Thus the structure group of the wave function bundle is Sl(2, C),

rather than L0. These spinors will then have the property that a complete rotation of

R
3 will send a spinor ψ not into itself but rather to its negative −ψ . Aharonov and

Susskind [A, S] have devised a hypothetical experiment illustrating this. Two cubical

devices can theoretically be constructed so that when they are brought together and

aligned at a common face, a current will flow from one to the other, and if the cubes are

then separated slightly and one of the cubes is rotated through 2π about their common

axis and then brought back in contact as before, current will again flow but in the
reverse direction! Even in the case of a general space–time M4 with spin structure, the

cubes can be separated, one of the cubes can be transported along any closed curve,

and upon return the direction of the current flow will tell us of the number (modulo 2)

of “rotations” made by the traveling cube!

The “obstruction” to having a spin structure can be measured by the cohomology

groups of M , but we shall only remark that a spin structure exists if for example,

H2(M; Z2), the second homology group with Z2 coefficients (see Section 13.2), van-

ishes. Obstruction theory will be discussed more in Chapter 22.

If M does have a spin structure, then we may replace the Lorentz structure group by

Sl(2, C); the fiber for the tangent bundle of M4 is still R
4. (Recall that Sl(2, C) acts on

R
4 as follows. To a 4-tuple x one associates a 2×2 hermitian matrix x∗ = x0σ0 +x •σ.

Then A ∈ Sl(2, C) acts on x by sending x∗ to Ax∗ A−1 and then reading off the 4-tuple

that corresponds to this hermitian matrix.) If cU V are the Lorentzian transition functions

for the tangent bundle, we shall let c′
U V be the Sl(2, C) transition functions. We then

construct the new 4-component

Dirac spinor bundle S = SM

whose fiber is C
4 and whose transition functions

ρU V : U ∩ V → Gl(4, C)
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are given by

ρU V (x) = ρ(c′
U V (x)) =

[
c′

U V (x) 0

0 c′
U V (x)†−1

]
(19.49)

(See the discussion following (16.3) for the construction of this bundle.) This Dirac

spinor bundle S is simply the vector bundle associated to the Sl(2, C) tangent bundle
via the representation ρ of Theorem (19.42)!

This spinor bundle is the bundle whose sections ψ will serve as wave “functions”
on M4.

From this point on we shall assume that M does admit a spin structure and that one
has been chosen.

The Dirac operator construction �∂ = γ j∂i in M4
0 will not work in our curved M4; in

our proof that �∂ ′ψ ′ = ρ(A) �∂ψ for M0 we used the fact that the matrices A ∈ Sl(2, C)

were constant (global Lorentz transformations were used since M0 is covered by global

coordinate systems). We shall now have to replace ∂ jψ = ∂ψ/∂x j by some sort of

covariant derivative. The Riemannian connection on M4 won’t work because T M and

SM are different bundles. What we need is a connection in this bundle SM that is

associated to T M through the double-valued representation ρ of L0.

19.5b. The Spin Connection in SM

Let M4 be a pseudo-Riemannian manifold with a Lorentzian connection. Thus for any

tangent vector X to M4, ωU (X) ∈ l4, the Lie algebra of the Lorentz group. We are

assuming that M4 has a spin structure (we may then consider Sl(2, C) as the structure

group of the tangent bundle) and we want a connection for the associated spin bundle

SM of wave functions given by the Dirac spinor representation

ρ : Sl(2, C) → Gl(4, C)

First we need to construct a connection for the tangent bundle whose structure group

is Sl(2, C) rather than L0. Let ω be the connection form for the Lorentzian tangent

bundle; this is simply the Levi-Civita or Christoffel connection. Since � : Sl(2, C) →
L0 is a 2 : 1 cover, to ωU (X) ∈ l4 there is a unique ω′(X) ∈ sl(2, C) such that

�∗ω′
U (X) = ωU (X) (there are two “vectors” “above” ωU (X) but only one of them

starts at I ∈ Sl(2, C)). It is not difficult to see that the sl(2, C)-valued local 1-forms

ω′
U so defined form the connection forms for the tangent bundle to M4 whose structure

group is Sl(2, C). One only needs to show that

�∗[ω′
V (X)] = �∗[A−1ω′

U (X)A + A−1d A(X)]

since �∗ is 1 : 1. The proof is very similar to that in Theorem (18.27). ω′ will be
exhibited explicitly in (19.53).

We now have a connection for the tangent bundle T M4 with structure group Sl(2, C)

and we have a representation ρ of Sl(2, C) given by 4 × 4 matrices. The Dirac 4-

component spinor bundle is associated to the tangent bundle through the representa-

tion ρ. The prescription for constructing the associated connection in SM is given by
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(18.24). We need to find an � such that

ρ∗ω′ = � (19.50)

which is short for ρ∗ω′(X) = �(X), where X is tangent to M4 at x . We shall exhibit �

by an explicit calculation.

First we need to calculate �∗ : sl(2, C) → l4, identifying the Lie algebra of Sl(2, C)

with that of the Lorentz group. sl(2, C) consists of all 2 × 2 complex matrices z with

trace 0. By writing

z = (z + z†)

2
+ (z − z†)

2

as a sum of a hermitian plus an antihermitian matrix, both with trace 0, we see that a

basis for sl(2, C) can be taken to be the σα’s divided by i and the σα’s, α = 1, 2, 3.

Since iσ1 = σ2σ3, and so on, and σα = σ0σα, where σ0 = τ0 = I , we prefer to write

this basis as

−σ2σ3, −σ3σ1, −σ1σ2, σ0σ1, σ0σ2, σ0σ3 (19.51)

Note that the first three give the standard basis for the SU (2) subgroup of Sl(2C).

The identity component of the Lorentz group is generated by rotations and “boosts.”

The infinitesimal rotations have a basis given by the matrices Eα of (19.1), where α runs

from 1 to 3, but augmented by zeros in the 0th row and 0th column. For our purposes it
is preferable to introduce a minus sign in the Eα’s. The resulting 4 × 4 matrix obtained

from −E1 will be called E23, −E2 will yield E31, and −E3 will yield E12.

A boost in the 01 plane is given by the 2 × 2 matrix

[
0 1

1 0

]

augmented by 0 elsewhere. We then have as basis for l4 the matrices E23, E31, E12, E01,

E02, E03, where

E23 =

⎡
⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎤
⎥⎥⎦ . . . , E03 =

⎡
⎢⎢⎣

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎤
⎥⎥⎦

Each Eαβ is a skew symmetric matrix and we shall define Eβα := −Eαβ . The E0β are

symmetric matrices and we define Eβ0 := E0β .

The homomorphism � : Sl(2C) → L0 is given by [�(A)x]∗ = Ax∗ A†, and so if

h ∈ sl(2, C),

[�∗(h)x]∗ = d

dt
[exp(th)x∗ exp(th†)]t=0

We have essentially done this calculation for h = σα/ i in (19.13). We have, under �∗,

σ2σ3 → 2E23 σ3σ1 → 2E31 σ1σ2 → 2E12 (19.52)
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Let us now calculate where �∗ sends σ0σα = σα. Since σ †
α = σα we get now an

anticommutator
d

dt
[exp(tσα)x∗ exp(tσα)]t=0 = {σα, x∗}

= {σα, σ0x0 + σβ xβ} = 2σαx0 + {σα, σβ}xβ

= 2σαx0 + 2δαβσ0xβ = 2σαx0 + 2σ0xα

For example, if α = 1, �∗σ1 is the infinitesimal Lorentz transformation that sends

(x0, x1, x2, x3, )t to (2x1, 2x0, 0, 0)T , and so �∗σ0σ1 = 2E01.

σ0σβ → 2E0β (19.53)

(19.52) and (19.53) describe �∗ completely.

Let ω = (ωi
j ) be the Levi-Civita connection for the pseudo-Riemannian M4, using

an orthonormal frame e. Using ω1
0 = ω10 = −ω01 = ω0

1, and so on, we have

ω =

⎡
⎢⎢⎢⎢⎣

0 ω0
1 ω0

2 ω0
3

ω0
1 0 ω1

2 ω1
3

ω0
2 −ω1

2 0 ω2
3

ω0
3 −ω1

3 −ω2
3 0

⎤
⎥⎥⎥⎥⎦

In terms of the matrices E we have

ω =
∑
i< j

Ei jω
i

j

Now use ω0
β = ω0β , (19.52) and (19.53) to get

ω = �∗ω′ ω′ = 1

2

∑
i< j

σiσ jω
i j (19.54)

and this exhibits the Sl(2, C) connection form ω′, whose values are trace-free 2 × 2

hermitian matrices.

Now we must compute � = ρ∗ω′.
From

ρ(A) =
[

A 0

0 A†−1

]

we see

ρ∗(h) =
[

h 0

0 −h†

]

for all h ∈ sl(2, C). Then

� = 1

2

∑
i< j

ωi j

[
σiσ j 0

0 −σ jσi

]

= 1

2

∑
β

ω0β

[
σβ 0

0 −σβ

]
+ 1

2

∑
α<β

ωαβ

[
σασβ 0

0 σασβ

]
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But

γ0γβ =
[
σβ 0

0 −σβ

]
and γαγβ =

[
σασβ 0

0 σασβ

]

then shows that � = (1/2)
∑

β γ0γβω
0β + (1/2)

∑
α<β γαγβω

αβ .

Thus the spin connection in the spinor bundle is given by

� = 1

4
ω jkγ jγk = 1

4
ω jkγ

jγ k (19.55)

= 1

8
ω jk[γ j , γ k]

recalling that ωi j = −ω j i . The covariant derivative in the spinor bundle is then

∇ψ

dt
= dψ

dt
+ 1

4
ω jk

(
dx

dt

)
γ jγ kψ (19.56)

and the curved Dirac operator applied to ψ is

γ i

[
ei (ψ) + 1

4
ω

j
ikγ jγ

kψ

]
=�∂ψ + 1

4
ω

j
ikγ

iγ jγ
kψ (19.57)

In the presence of an electromagnetic field with covariant 4-vector potential A and

A j = A(e j ), then as in (16.43) the flat Dirac operator �∂ would be replaced by

�∂ −
(

ie

h̄

)
γ j A j





CHAPTER 20

Yang–Mills Fields

20.1. Noether’s Theorem for Internal Symmetries

How do symmetries yield conservation laws?

In Section 10.2 we discussed Hamilton’s variational principle for a dynamical system

consisting of a finite number of particles. We shall now consider variational problems

associated with a continuum or “field.” We are frequently concerned with a multiple

integral variational problem roughly of the form

δ

∫
M

L0(x, φ, φx)dx0 ∧ dx1 ∧ . . . ∧ dxn = 0

where both the field φ and the domain of integration M might be varied; that is, we

consider variations δφ and δx . In physics, one calls a variation δx of the domain an

external variation, whereas field variations are called internal. We have considered

external variations when dealing with arc length (geodesics) and with area (minimal

surfaces); in both cases we dealt with the variations directly, rather than writing down

the Euler–Lagrange equations. In this section we shall investigate the tensor nature of

internal variations in more detail and also the effect of such variations that leave the

Lagrangian invariant.

φ will usually be an N -tuple φa(t, x) = φa(x) of functions, that is, the local repre-

sentation of a section of some vector bundle E . In the case of a Dirac electron, we have

seen that E is the bundle of complex 4-component Dirac spinors over a perhaps curved

space–time. If E is not a trivial bundle (or if we insist on using curvilinear coordinates)

we shall have to deal with the fact that the derivatives ∂φa/∂x j do not form a tensor.

20.1a. The Tensorial Nature of Lagrange’s Equations

Let Mn+1 be a (pseudo-) Riemannian manifold and let E be a vector bundle over M ;

for definiteness we shall let the fiber be R
N . A section of this bundle over U ⊂ M is

described by N real-valued functions {φa
U }, where φV = cV UφU and cV U (x) is an N ×N

transition matrix function, ca
V U b. A “Lagrangian” is a single “function” L0(x, φ, φx) of

523
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x , and sectionφ, and (for our present purposes) its first derivative matrixφx := ∂φa/∂x j .

(We have given the local description of the section and its first derivatives in a patch

U . Higher derivatives may occur, as they did in Hilbert’s approach to relativity in

Section 11.3. In that case the bundle was the vector bundle of covariant symmetric

second-rank Lorentzian tensors; that is, the sections φ were pseudo-Riemannian metric

tensors gi j on M4, and the Lagrangian L0 was R|g|1/2, involving second derivatives of

the metrics.)

We are concerned with the action integral

S =
∫

M
L0(x, φ, φx)dx

where dx = dx0 ∧ dx1 ∧ dx2 ∧ . . . ∧ dxn . For this to be independent of coordinates,

we shall assume that for each given φ, L0dx is a pseudo-(n + 1)-form on M . In terms

of the volume form
√

gdx (for simplicity we omit the absolute value sign on g) we

write L0dx = L0

√
gdx , and so

S =
∫

M
L0(x, φ, φx)

√
gdx

L0 is a true function or scalar, classically called the Lagrangian density. For the gravi-

tational field, Hilbert’s L0 is the scalar curvature R.

We shall vary the section φ. We shall assume that the metric of M and any connections
used in E are not varied. We are interested in the first variation of the action, and we

shall use the same classical notation as we used in Section 10.2, but we shall emphasize

here the tensorial nature of this process.

First note that L is to be a scalar constructed out of first partial derivatives ∂ jφ
a =

∂φa/∂x j of the section φ. The collections of partial derivatives ∂ jφ
a do not form a

tensorial object (for example, in the case when E = T M) and consequently it is not

clear how one is to construct a scalar L0! Frequently, however, there will be a connection

in the bundle E and then we can construct instead the covariant derivatives

∇ jφ
a = φa

/j = ∇φa

∂x j

These do fit together to form a 1-form section of E (as described in Section 18.3), that

is, a section of the bundle E ⊗ T ∗M , a generalized tensor. (Note that a is an E index,

not a T M index; thus it makes no sense to ask whether a is a “contravariant” index

since contravariant in our sense refers to the tangent bundle only!) There is then hope

for constructing a scalar out of φa
/j . For example, suppose that the structure group of

the bundle E is SO(N ) and that the connection ω has its values in so(N ); that is, ω is

skew symmetric. Then if gi j is the metric tensor for M we may form
∑

a φa
/jφ

a
/k g jk , and

it is not difficult to see that this is indeed a scalar. This scalar could be written ‖ ∇φ ‖2

and might be called the square of the “gradient” of the section φ.

Thus we shall assume that E has a connection for the given structure group G, and

that from L0 we may form a new Lagrangian L constructed using covariant derivatives,

L = L(x, φ, ∇φ) = L(x, φ, φ/x) = L0(x, φ, φx)

rather than partial derivatives. (This will not always be the case. In Hilbert’s variational

approach to relativity, the fields φ are the components of the metric tensor. L = R, the
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scalar curvature, is expressible in terms of partial derivatives of the metric tensor but

not the covariant derivatives of the metric tensor, which are all identically 0!)

From φa
/j = ∂ jφ

a + ωa
jbφ

b and δ∂ j = ∂ jδ (as in Equation (10.12)) and from the fact

that the connection ω is assumed unaffected by a variation δφ of φ, we see immediately

that

δ(φa
/j ) = (δφa)/j

Then

δ

∫
M

L(x, φ, φ/j )
√

gdx =
∫

M

[(
∂L

∂φa

)
δφa +

(
∂L

∂φa
/j

)
δ(φa

/j )

]√
gdx (20.1)

Now in an overlap U ∩ V we have

∂L

∂φa
V

=
(

∂L

∂φb
U

)(
∂φb

U

∂φa
V

)

But φb
U = cb

U V cφ
c
V shows that ∂φb

U/∂φc
V = cb

U V c, and so

∂L

∂φa
V

=
(

∂L

∂φb
U

)
cb

U V a (20.2)

Hence if φ is a section of the bundle E , then {∂L/∂φa} defines a section of the dual
bundle E∗. But δφ is a section of E (being basically a difference of sections) and so

the contraction (
∂L

∂φa

)
δφa

occurring in the first integrand of (20.1) is a scalar. Since δ
∫

M L(x, φ, φ/j )
√

gdx is a

scalar by hypothesis, it must be that the contraction(
∂L

∂φa
/j

)
δ(φa

/j )

must also be a scalar. Since δ(φa
/j ) is a section of E ⊗ T ∗M , it must be that(

∂L

∂φa
/j

)
defines a section of E∗ ⊗ T M (20.3)

Our usual rules of tensor analysis apply in this situation. For example, we have the

connection ω for E . Then −ωT defines the connection for E∗ (see Example 1′ following

Theorem (18.27)). We have the standard Riemannian connections � and −�T for T M
and T ∗M . Thus, as discussed in Problem 16.3(1), we have a connection in any tensor

product of the bundles T M, T ∗M, E, E∗, . . .. For example, (∂L/∂φa
/j )δφ

b defines a

section of E∗ ⊗ T M ⊗ E ; for simplicity let us call it Abj
a . It is of the form Abj

a = B j
a Cb.

Thus a is an E∗ index, b in an E index, and j is a T M index. Its covariant derivative,

again written Abj
a/k , is a section of (E∗ ⊗ T M ⊗ E) ⊗ T ∗M and would be given by

Abj
a/k = ∂k Abj

a − Abj
c ωc

ka + ωb
kc Acj

a + �
j
ki Abi

a

We may invoke the Leibniz rule (B j
a Cb)/k = B j

a/kCb + B j
a Cb

/k , where the covariant

derivative of B involves both ω and �, whereas that of C involves only ω. Covariant

differentiation commutes with contractions, and so on.
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We now proceed with our calculation of the first variation. From (20.1) and δ(φa
/j ) =

(δφa)/j we have

δ

∫
M

L(x, φ, φ/j )
√

gdx =
∫

M

[(
∂L

∂φa

)
δφa +

(
∂L

∂φa
/j

)
(δφa)/j )

]√
gdx (20.4)

=
∫

M

[(
∂L

∂φa

)
−

(
∂L

∂φa
/j

)
/j

]
δφa√gdx

+
∫

M

[(
∂L

∂φa
/j

)
δφa

]
/j

√
gdx

Now (∂L/∂φa
/j )δφ

b is a section of E∗⊗T M⊗E , and contraction yields that ∂L/∂φa
/j )δφ

a

is a section of T M , that is, is an ordinary contravariant vector field X j on M and we

may then write [(
∂L

∂φa
/j

)
δφa

]
/j

= div

[(
∂L

∂φa
/j

)
δφa

]
(20.5)

If M is compact with boundary, we have

δ

∫
M

L(x, φ, φ/j )
√

gdx =
∫

M

[(
∂L

∂φa

)
−

(
∂L

∂φa
/j

)
/j

]
(δφa)

√
gdx (20.6)

+
∫

∂ M

[(
∂L

∂φa
/j

)
δφa

]
N j d S

where N is the unit normal to the boundary and d S = iN
√

gdx is the n-dimensional

area form. Thus if the first variation vanishes for all variations vanishing on ∂ M , we

have the (Euler–) Lagrange equations

δL

δφa
:=

(
∂L

∂φa

)
−

(
∂L

∂φa
/j

)
/j

= 0 (20.7)

where the left-hand side, called the functional or variational derivative, defines a
section of E∗. It is convenient to define

div

(
∂L

∂∇φ

)
:=

(
∂L

∂φa
/j

)
/j

which is not a scalar but rather a section of E∗. Without components, we may write

(20.7) in the form

δL

δφ
= ∂L

∂φ
− div

(
∂L

∂∇φ

)

20.1b. Boundary Conditions

Suppose that φ satisfies Lagrange’s equations. Then we see immediately from (20.6)

that if we demand that δφ = 0 on ∂ M , then δS = 0. The condition

δφ = 0 on ∂ M



N O E T H E R ’ S T H E O R E M F O R I N T E R N A L S Y M M E T R I E S 527

is called an essential or imposed boundary condition; we simply prescribe the value
of φ on the boundary. We see, however, that the boundary conditions(

∂L

∂φa
/j

)
N j = 0, a = 1, . . . , N

will also yield δS = 0 when φ satisfies Lagrange’s equations. These are called the

natural boundary conditions. See Problem 20.1(1) at this time.

20.1c. Noether’s Theorem for Internal Symmetries

Suppose now that we have a 1-parameter group of symmetries of the Lagrangian, that is,

we suppose that L is invariant under a 1-parameter group of fiber motions φ �→ φ(α). We

shall mainly be interested in the case when there is a 1-parameter subgroup g(α) = eαE

of the structure group, E ∈ g , and L is invariant under φ �→ g(α)φ. (In the case of

the Dirac electron, we shall see that the Lagrangian is invariant under the U (1) action

ψ �→ eiαψ on spinors ψ .) In this case g is a matrix function ga
b(α) of α. In a given local

patch U of M , the section φ is represented by a column φa and then the symmetry would

be of the form φa(α) = ga
b(α)φb = (eαE)a

bφ
b. Then δφa = (∂φa/∂α)α=0 = Ea

bφ
b.

The symmetry assumption yields δS = 0. Thus if φ is a critical section, that is, if
φ satisfies Lagrange’s equations, then for any compact submanifold M ′ of M with

boundary ∂ M ′ we have, from (20.4) and (20.5),

∫
M ′

[(
∂L

∂φa
/j

)
δφa

]
/j

√
gdx =

∫
M ′

div

[(
∂L

∂φa
/j

)
δφa

]√
gdx = 0

Since M ′ is arbitrary, we conclude

Noether’s Theorem for Internal Symmetries (20.8): If φ satisfies Lagrange’s
equations and if δφ is a variation by symmetries of the Lagrangian, then

div

[(
∂L

∂φa
/j

)
δφa

]
= 0

Corollary (20.9): For the 1-parameter group eαE of symmetries we have

div

[(
∂L

∂φa
/j

)
Ea

b φb

]
=

[(
∂L

∂φa
/j

)
Ea

b φb

]
/j

and thus the vector field J

J j :=
(

∂L

∂φa
/j

)
Ea

b φb

has divergence 0.

We shall mention an application of this to the Dirac equation in Section 20.2.
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20.1d. Noether’s Principle

The principle behind Noether’s theorem is of more applicability and importance than

the specific formula given in (20.8). All internal first-variation problems lead to an

expression of the form

δ

∫
U

Ldx =
∫

U

[
δL

δφ

]
δφdx +

∫
U

G(x, φ, δφ)dx

(for all compact regions U ⊂ M) where the form of the functional derivative δL/δφ

depends on the number of derivatives φ/j , φ/jk, . . . , appearing in L. A solution to the

variational problem satisfies the Euler–Lagrange equations δL/δφ = 0. If then we have

a variation that leaves
∫

U Ldx invariant, that is, is a group of internal symmetries, then

we must have G(x, φ, δφ) = 0 for the solution φ. This identity can be called Noether’s

theorem, and is frequently of the form div J = 0 for some vector field J.

We shall illustrate this with the familiar cases of geodesics and minimal surfaces.

A geodesic M1 in W n is a solution to the variational problem

δ

∫
M

〈
dx
dt

,
dx
dt

〉1/2

dt = 0

for variations δx vanishing at any pair of prescribed endpoints p and q of M . (This

does not fit into the scheme of (20.8); e.g., M is the image in the n-dimensional W n

of the unit t-interval; furthermore, x takes the place of the field φ, but the x’s are local

coordinates in the manifold W , which is not a vector bundle.) x satisfies the Euler

equations ∇T/ds = 0. Consider a vector field J on W that generates a 1-parameter

group of isometries (e.g., the rotations of the round 2-sphere W 2). Such a field is called a

Killing field, after the mathematician Killing, and its flow clearly leaves the Lagrangian

[g jk(dx j/dt)(dxk/dt)]1/2 invariant. However, this “variation” δx = J does not vanish

at the endpoints. The first variation formula (10.4) has “boundary” terms, and yields,

since ∇T/ds = 0, the result 〈δx, T〉(p) = 〈δx, T〉(q). Since this holds for all p, q on

M , we have

〈δx, T〉 is constant along the solution M1 (20.10)

and we can make this look more like (20.9) by saying

d〈δx, T〉 = 0

where d is the differential for the 1-manifold M . Thus a Killing field δx has constant
scalar product with the unit tangent to any geodesic. See Problems 20.1 (2 and 3) for

some applications of this result.

Consider now the generalization of a minimal surface in R
3. Mr is a minimal

submanifold of the Riemannian W n provided

δ

∫
U

volr = 0

for each compact region U of M and each variation δx that vanishes on ∂U . We

considered the case when M2 is a surface in R
3 in Section 8.4, where we derived the
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first variation formula of Gauss. We accept the higher-dimensional version of this in

the form

δ

∫
U

volr = −
∫

U
〈H, δxN 〉 volr +

∫
∂U

δxT volr−1
∂U (20.11)

where H is a type of mean curvature vector that is normal to M, δxT is the component

of the variation vector δx along the unit outward-pointing normal n to ∂U that is tangent
to U , that is, δxT = 〈δx, n〉. (For a derivation of (20.11) see, e.g., [L].) The mean

curvature H is more complicated than in the case of a surface in R
3 since the normal

space to M is of dimension n − r rather than 1, but we shall not be concerned with it at

this time. The boundary term, however, should be completely evident. The formula then

says that a minimal submanifold M must have mean curvature H = 0. For a minimal

M and a general variation we have δ
∫

U volr = ∫
∂U δxT volr−1

∂U . Since volr−1
∂U = involr

we can write this as

δ

∫
U

volr =
∫

∂U
〈δx, n〉involr =

∫
∂U

〈δxT , n〉involr

=
∫

∂U
i(δxT )volr

where δxT is projection of δx tangent to M . We now apply Noether’s principle; if δx
is a Killing vector field on W n , that is, the generator of isometries, then the tangential
part of δx is a vector field on M whose M-divergence is 0

dMi(δxT)volr = 0 (20.12)

In the next sections we shall give some physical applications.

Problems

20.1(1) Let ρ be a given function on a compact Riemannian manifold with boundary.
Consider the variational problem for a scalar function φ

δ

∫
M

[g jkφ/jφ/k + 2ρφ]
√

gdx = 0

Find the Euler–Lagrange equations and the essential and natural boundary
conditions. These should all be expressed in familiar, classical language.

20.1(2) The flow generated by a Killing field X is a 1-parameter group φt of isometries.
Thus if Y and Z are fields that are invariant under the flow, 〈Y, Z 〉 = gi jY i Z j is
independent of t along an orbit of X .

(i) Show that in the Riemannian connection, Jacobi’s equation of variation
(4.10) can be written

∇Y
dt

= ∇Y X

(ii) Show then that d〈Y, Z 〉/dt = 0 translates into (Xi/j + Xj/ i )Y i Z j = 0, and,
since Y and Z can be chosen arbitrarily at a given point,

Xi/j + Xj/ i = 0

These are Killing’s equations, satisfied by every Killing vector field.
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(iii) Use these equations to show directly that (20.10) holds.

(iv) Let p be a point at which ‖ X ‖2= 〈X, X〉 achieves its maximum �= 0.
Thus T 〈X, X〉 = 2〈∇T X, X〉 = 0 for every vector T at p. Let T be the unit
tangent to a geodesic through p with arc length parameter s. Show that
d2〈X, X〉/ds2 = 2〈−R(X, T )T, X〉 + 2〈∇T X, ∇T X〉. By considering (n − 1)

such unit tangents Tα, which, together with X , are orthonormal at p, show
that

∑
α

d2〈X, X〉
ds2

= −2Ri j X
i X j + 2

∑
α

〈∇Tα
X, ∇Tα

X〉

We conclude Nomizu’s theorem:

If Mn has negative definite Ricci curvature then no Killing field X �= 0
can achieve its maximum length at any point of M. In particular, we
have another theorem of Bochner: A compact M with negative Ricci
curvature has no nontrivial Killing vector field.

For example, the Killing field ∂/∂x on the Poincaré upper half plane (see Prob-
lem 10.1(2)) has a length that tends to infinity as we approach the x axis.

20.1(3) Let the curve y = y(x ) in the x y plane of R
3 be revolved about the x axis,

yielding a surface of revolution M 2. We may use x and the cylindrical angle θ

(the polar angle in the yz plane) as coordinates for M.

(i) Write down (using the picture) ds2 for this surface. Clearly J = ∂/ ∂θ is a
Killing vector field on M 2, since it generates the rotations about the x axis.
Consider a geodesic C, θ = θ(x ) on M 2 and let α(x ) be the angle that this
geodesic makes with the lines of latitude, that is, the θ curves.

(ii) Derive Clairaut’s relation

y cos α = constant along C

Consider an infinite horn-shaped surface of revolution given by y =
f(x ), −∞ < x < +∞, where f is increasing, f ′(x ) > 0 for −∞ < x < +∞,
and f(x ) → 0 as x → −∞.

(iii) Show that a geodesic that crosses the latitude circle at x = 0 and is not
orthogonal to this circle will lie in the region x ≥ −a2, for some a. What is
the best value for a2? What happens in the region x > 0?

20.1(4) Geodesics in the Poincaré upper half plane. The Poincaré metric in M2 =
{(x , y)|y > 0} is ds′2 = y−2{dx2 + dy2}. Since the metric coefficients g′

αβ

are independent of x ,∂/∂x is a Killing vector field. Since dy2/y2 ≤ (dx2 +
dy2)/y2, the vertical lines x = constant are clearly minimizing geodesics. We
are interested in the other geodesics.

Let T be the unit tangent to a geodesic and let α be the angle that T makes
with ∂/∂x , all in the Poincaré metric.

(i) Show that y−1 cos α = constant k along the geodesic.

(ii) Show directly from the metric that a horizontal line cannot be locally mini-
mizing, and hence is not a geodesic.
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(iii) Show that if two Riemannian metrics ds and ds′ on a space are confor-
mally related, meaning ds′2 = λ2ds2 for some smooth function λ, then
angles measured with ds coincide with angles measured with ds′.

Since the Poincaré metric is conformally related to the euclidean metric
ds2 = dx2 + dy2, we see that the angle α in part (i) is the same as the
euclidean angle. Use now the euclidean metric ds0. But in the euclidean
metric dy/ds0 = sin α along a curve.

(iv) Conclude that dα/ds0 = −k , and thus the geodesic has constant euclidean
curvature, and is thus an arc of a circle (of perhaps infinite radius). Show
that if the geodesic is not a vertical line, then k �= 0, and so it is not straight.
Then at the highest point y0, k = 1/y0. Show that the euclidean circle
strikes the x axis orthogonally. Thus the geodesics of the Poincaré metric
are euclidean circles (or vertical lines) that meet the x axis orthogonally.

20.2. Weyl’s Gauge Invariance Revisited

What can global symmetries tell us about background fields?

We remind the reader that our formulas will differ sometimes by factors of i from

those of most books since we are using the metric signature (− + ++).

We shall also use the physicist’s convention of frequently putting

h̄ = 1

Our remarks about quantization, especially “second quantization,” will be extremely

brief and sketchy.

20.2a. The Dirac Lagrangian

We shall exhibit a Lagrangian whose Euler equations are the Dirac equations for a free

electron (i.e., an electron not interacting with any other field) in Minkowski space M4
0 .

First we shall need to construct scalars out of 4-component spinors ψ = (ψ1, ψ2, ψ3,

ψ4)
T . Recall that ψ † = ψ

T
is the hermitian conjugate row matrix. Then ψ †φ is a

hermitian bilinear form that is invariant under unitary transformations of C
4, but, as we

shall see, it is not invariant under the Dirac representation ρ(A) : C
4 → C

4 of (19.42)

ρ(A) =
[

A 0

0 A†−1

]

that accompanies each Lorentz transformation 
 of M4
0 . We remedy this as follows.

Recall the Dirac matrices (with our choice of signature)

γ 0 =
[

0 −I
+I 0

]
γ α =

[
0 σα

σα 0

]
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It is clear that γ α is hermitian whereas γ 0 is skew hermitian, and thus iγ 0 is hermitian.

We now define the Dirac conjugate spinor (or adjoint spinor) to ψ by

ψ̃ := ψ †iγ 0 (20.13)

(The factor i appears because of our choice of signature.) Since iγ 0 is a hermitian

matrix, the bilinear form

ψ̃φ = ψ †iγ 0φ (20.14)

is again hermitian. This form, however, is not definite because of the switching of

components resulting from γ 0. We claim that

Theorem (20.15): The form ψ̃φ is invariant under the Dirac representation ρ.
Thus it is a scalar under Lorentz transformations.

P R O O F: One sees immediately that

ρ(A)†γ 0ρ(A) = γ 0 (20.16)

and so, abbreviating ρ(A) to ρ, we have (ρψ)†iγ 0(ρφ) = ψ †ρ†iγ 0ρφ =
ψ †iγ 0φ, as desired.

Since ρ†ρ �= I , it is clear that ψ †φ is not Lorentz invariant.

Since �∂ψ is a Dirac spinor if ψ is (this is the content of (19.47)), we conclude

Corollary (20.17): ψ̃�∂ψ and ψ̃ψ are Lorentzian scalars.

For an electron of mass m we may try to form a Lagrangian by ψ̃�∂ψ − mψ̃ψ . As

we shall see, the first term needs to be made more symmetrical in ψ and ψ̃ . The Dirac
Lagrangian is defined by

Le = 1

2
[ψ̃γ j∂ jψ − (∂ j ψ̃)γ jψ] − mψ̃ψ (20.18)

where ∂ j ψ̃ is really (∂ jψ)̃ = (∂ jψ)†iγ 0. We claim that the Euler equations for the

Dirac action ∫
M

Ledx

yield the Dirac equations (19.48). First note that ψ consists of four complex fields ψ j

in M4
0 . Since these are complex, we may write them in terms of their real and imaginary

parts, yielding eight real fields to be varied independently. It is simpler (and equivalent)

to allow the eight complex fields ψ and ψ to be varied independently. These eight fields
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comprise the section φ = (φa) appearing in (20.4). In Problem 20.2(1) you are asked

to show that the Euler equations for the Dirac action yield the Dirac equations for ψ

�∂ = mψ

and the conjugate (20.19)

(∂ j ψ̃)γ j = −mψ̃

It is clear from (20.17) that the Dirac Lagrangian is invariant under the 1-parameter

group of “gauge transformations”

ψ �→ eiαψ, and ψ̃ �→ e−iαψ̃ (20.20)

where α is any real constant. Under this variation δψ = iψ and δψ̃ = −iψ̃ . Noether’s

theorem (20.8) then shows that the 4-vector J defined by

J k := −ieψ̃γ kψ (20.21)

has vanishing divergence in Minkowski space (the electron charge −e is put in for

future needs) provided that ψ is a solution to the Dirac equation. Thus for the spatial

slice V 3(t) we have

d

dt

∫
V (t)

J 0dx ∧ dy ∧ dz =
∫

V (t)

∂ J 0

∂t
dx ∧ dy ∧ dz

= −
∫

V (t)
∂α J αdx ∧ dy ∧ dz

If we assume that the wave function ψ vanishes sufficiently rapidly at spatial infinity,

the last integral vanishes by the divergence theorem and we have that∫
V (t)

eψ †(iγ 0)2ψvol3 =
∫

V (t)
eψ †ψvol3

is constant in time. As we shall see in Section 20.2c, if we think of ψ as a classical
(unquantized) field, this integral is interpreted as the electric charge, eψ †ψ is the charge

density, and then J k is interpreted as the electric current vector.

20.2b. Weyl’s Gauge Invariance Revisited

A guiding principle of Einstein’s theories of relativity is that the laws of physics should

be expressed in a form that is independent of any particular coordinate system used.

Let us first look at a simple example in Newtonian gravitation to see how coordinate

changes can be used to infer information about interactions.

Consider a “small” laboratory in free fall in our space, distant from any sizable

bodies. With respect to a small cartesian coordinate system attached to the laboratory,

a small test particle in free fall satisfies Newton’s equations d2x/dt2 = 0. With respect

to a second cartesian system that is moving uniformly with respect to the first, that is,

x′ = x−kt , where k is a constant, we again have the same Newtonian law d2x′/dt2 = 0.

We may say that uniform translation is a symmetry of our system. Newton of course

realized this. He maintained that there are distinguished coordinate systems in our

universe, those that are at rest with respect to “absolute space” and those that are moving
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uniformly with respect to it, and his laws hold in any such system. If however we allow

k to vary in time, for example k = (1/2)g0t , then x′ = x − (1/2)g0t2, and Newton’s

equations become, in the new coordinate system, d2x′/dt2 = −g0. This additional

term is simply telling us that our new coordinate system is accelerating with respect to

Newton’s absolute space. Bishop Berkeley and, later, Ernst Mach rejected the notion of

absolute space; they would say that the new coordinate system was accelerating with

respect to the bulk of matter in the universe, the distant matter in the universe, or as they

would say, the “fixed stars,” and this is the interpretation preferred today. The additional

term, −g0 in this case, is informing us of the existence of the gravitational influence of
the distant matter, even if we had been unaware of the notion of gravitation! Even when

the gravitational force vanishes, as it does for all intents and purposes in our free-fall

laboratory located at a great distance from matter, the distant matter still informs the

laboratory, through gravitation, of which coordinate systems are to be considered as

(approximately) inertial. I believe that if space were devoid of even this distant matter,

Newton’s laws would make no sense, since there would then be no intrinsic notion of an

accelerating frame or that of an inertial frame. There would be no notion of the “mass”

of a test particle, since mass is measured via accelerations. Newton’s laws of motion
are an indication of some “background field,” gravitation, that is interacting with the
test particle, and presumably these laws need amending when this background field is

taken into account, particularly when the “strength” of the field does not vanish. We

have learned of this background field through the fact that Newton’s laws do not remain

invariant under non-uniform changes of coordinates.

Newtonian mechanics takes place not in matter-free space but rather space with a

“uniform” distribution of distant matter.

Similarly, the Minkowski space of special relativity is not general relativity with no
matter present, but rather an approximation in general relativity of a region in curved
space far from a uniform distribution of distant matter.

Consider the Dirac electron in Minkowski space M4
0 . A free electron is postulated

to satisfy the Dirac equation (20.19), derivable from the Lagrangian (20.18). The Dirac

equation may be thought of as a replacement for Newton’s law. Both (20.19) and (20.18)

are invariant under (global) Lorentz transformations of M4
0 , but not under more general

space–time coordinate changes. To allow for the general coordinate changes we proceed

as we did in Section 19.5; we change the Dirac equation by replacing the Dirac operator

by introducing the Riemannian connection for true space–time and replacing partial

derivatives by covariant derivatives, yielding the new Dirac operator (19.57)

�∂ψ + 1

4
�i

j
kγ

iγ jγ
kψ

The second term, involving � and ψ , is an interaction term, telling us how the gravi-

tational field interacts with the electron field.

20.2c. The Electromagnetic Lagrangian

Physicists, following Weyl in 1929, have carried this principle a step further. For sim-

plicity we shall neglect the very small gravitational interaction, that is, we shall put
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� = 0, thus returning to the original Dirac equation (20.19). Instead of considering

a change of (space–time) coordinates x , we shall look at a change of the field (fiber)

coordinate ψ , that is, a gauge transformation. Although quantum mechanics assigns a

physical, measurable meaning to each absolute value |ψa|, the argument or phase of

ψa = |ψa| exp(iθa), that is, θa , has no such meaning; one cannot measure the phase
of a wave function or spinor. Both Dirac’s equation and his Lagrangian are invariant

under the global gauge transformation

ψ �→ eiαψ = (eiαψ1, eiαψ2, eiαψ3, eiαψ4)T

the term global meaning (in physics terminology) that α is a constant. This invariance is

crucial since a global change of phase of all of the wave functions in quantum mechanics

must leave the physics unchanged. A global gauge transformation is a symmetry of the

Dirac equation.

Since the phase of ψ is not measurable, we should be able to have invariance under a

local gauge transformation, where α = α(x) varies with the space–time point x! Clearly

the Dirac equation and Lagrangian are not invariant under such a substitution because

of the appearance of terms involving dα. It must be that there is some background field
that is interacting with the electron. This background field will manifest itself through

the appearance of a connection. Since each component ψa of ψ is undergoing the same

phase transformation, we shall forget the 4-component nature of ψ and simply write

ψ �→ eiα(x)ψ . If we think of this as a change of frame in a complex line bundle with

transition functions g−1 = cV U (x) = eiα(x), then we need a connection in this line

bundle that transforms as ω �→ g−1ωg + g−1dg = ω + g−1dg = ω − idα. If we

define the real field, that is, 1-form, A, by ω = −i A, then A′ = A + dα(x). Thus

our unknown background field A transforms in the same way as the vector potential

in electromagnetism, suggesting (with hindsight) that we identify the background field
with electromagnetism! (Of course we could have written ω = −ik A for any real

constant k. Comparison with classical mechanics, as in Section 16.4, leads to the choice

k = e/h̄ = e.) The new Dirac operator is then

�∂A := γ j (∂ j + ω j ) =�∂ − ieγ j A j (20.22)

If we now replace � ∂ by � ∂A in the Lagrangian (20.18) we get a new Lagrangian,

which now contains terms involving the field A.

Le = 1

2
[ψ̃γ j (∂ j − ieA j )ψ − (∂ j + ieA j )ψ̃γ jψ] − mψ̃ψ

(20.23)

= 1

2
[ψ̃γ j∂ jψ − (∂ j ψ̃)γ jψ] − mψ̃ψ − (ie)A j ψ̃γ jψ

since (∂ j − ieA j )
† = ∂ j + ieA j . Note that the last term is, from (20.21),

ω j ψ̃γ jψ = −ieA j ψ̃γ jψ = A j J j

Quantum mechanics then dictates that the A field is also to be considered as an

independent field in its own right; that is, we are also to allow variations of the new

Lagrangian involving variations of A. To get nontrivial field equations for A we need to

have “kinetic” terms, terms involving first derivatives of A with respect to t . To maintain



536 Y A N G – M I L L S F I E L D S

Lorentz invariance we shall need all first derivatives ∂ j Ak in the Lagrangian. These

partial derivatives do not yield a gauge covariant quantity; one cannot form a gauge

invariant scalar for the Lagrangian simply by taking
∑

(∂ j Ak)
2. Geometry tells us that

the curvature θ 2 = dω+ω∧ω = dω, with components −ie(∂ j Ak −∂k A j ) =: −ieFjk ,

is the correct tensor to use, rather than ∂ j Ak . We then add some multiple of the square

of this electromagnetic field strength F2 to the Lagrangian. Our choice of −(1/16π)

for this multiple will be vindicated shortly. This is our final Lagrangian.

L = Le + Lem := 1

2
[ψ̃γ j∂ jψ − (∂ j ψ̃)γ jψ] (20.24)

− mψ̃ψ + A j J j − 1

16π
Fjk F jk

Look now at the variational equations involving δA. Note first that for variations δA

vanishing outside a small region

δ

∫
1

16π
Fjk F jkvol4 = δ

∫
1

8π
F ∧ ∗F

= δ
1

8π
(F, F) = δ

1

8π
(d A, d A) = (δd A, d A)

4π

= (dδA, F)

4π
= (δA, d∗F)

4π

Also

δ

∫
A j J j vol4 =

∫
δA j J i vol4 = (δA, ∗S

3)

where S3 := i J vol4. We conclude then that d∗ F = 4π∗S3. But d∗F = ∗d∗F , from

(14.12), and so we have d∗F = 4πS. Since d F = 0, we conclude that variation of
the A field yields Maxwell’s equations provided that we identify J of (20.21) with the
electric current density. Charge conservation dS = 0 follows. In summary,

the Dirac Lagrangian (20.18) admits the global symmetry group (20.20). If we insist
that the Lagrangian should admit local symmetries, when α is not constant, then
Weyl’s procedure leads to the introduction of the “electromagnetic field” A; Maxwell’s
equations (and charge conservation) then follow!

20.2d. Quantization of the A Field: Photons

We have now a Lagrangian involving the two fields ψ and A. Quantum mechanics

then requires that these fields be quantized; that is, these fields in some sense are to

be represented by operators and one performs “second quantization” (see, e.g., [Su,

chap. 7]). The quanta of these fields, which automatically appear, are interpreted as

particles associated with the fields. Very roughly we have the following. The ψ field

yields again the electron. The ψ † field also yields a particle, the positron, which had

been predicted earlier by Dirac just on the basis of his new equation. The “gauge field” A
yields another “new” particle, the photon. Physicists then say that the electromagnetic
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force between electrons is “explained” by the exchange of these new “gauge particles,”
the photons, between electrons.

We should also remark that in the process of quantization the current (20.21) gets

replaced by a new operator; in particular, the density becomes the electron–positron

charge density, rather than simply the electron charge density.

In a few sentences, the guiding principle, the gauge principle, for studying the

force between particles can be stated as follows. If a proposed Lagrangian of some

matter field ψ is invariant under global (but not local) gauge transformations, alter the

Lagrangian by replacing partial derivatives by covariant derivatives (introducing a new

gauge field, a connection ω, or potential A, whose transformation rule is compatible

with the gauge transformations); the Lagrangian then has local gauge invariance. Then

add to the resulting Lagrangian a new term proportional to the square of the “length” of

the curvature dω + 1/2[ω, ω] of the gauge field (to be more fully explained in the next

section) so that gauge invariance is not destroyed. Variations with respect to ψ yield

the field equations for ψ and variations with respect to ω yield the field equations for

the gauge field. Then when one quantizes the gauge field, the quanta of this field are

identified as particles, and the force between the particles of the original matter field ψ

is explained by the exchange of these gauge particles.

This principle was first applied by Yang and Mills, and we turn to this now.

Problems

20.2(1) Derive (20.19) as Euler equations for the Dirac action.

20.2(2) Show from (20.3) that Jk = ψ̃ iγ kψ is a contravariant 4-vector field. Prove this
also by looking at the transformation properties of Jk = ψ̃ iγkψ , using (20.16)
and (19.44).

20.2(3) Show that the term
∫

Ai Ji vol4 is gauge-invariant if J has compact support.

20.3. The Yang–Mills Nucleon

How did the groups SU (2) and SU (3) appear in particle physics?

20.3a. The Heisenberg Nucleon

Heisenberg postulated that the proton p and the neutron n behave identically with

respect to the “strong” interactions between nuclei. These forces are much stronger

than electromagnetic effects on the charged proton. Suppose then, with Heisenberg, we

neglect completely all electromagnetic properties. He then considered p and n as being

two states of the same particle, the “nucleon,” represented by two 4-component spinor

functions, again denoted by p and n. We shall not here be concerned with the spinor

components, but shall write schematically

ψ = (p, n)T
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where p and n are now complex-valued functions of space–time. Thus a nucleon that

is, in the estimation of some observer, definitely a proton at a given point would have

n = 0 there; a neutron would have p = 0. Heisenberg felt that an observer is free to

make a global linear change in the components (p, n)T , keeping |p|2 + |n|2 invariant;

for example, the nucleon could be called a proton at any given space–time point. In

essence, then, Heisenberg demanded that the (unknown) strong force Lagrangian for

the nucleon must be invariant under the generalized gauge transformation

ψ �→ uψ =
[

u11 u12

u21 u22

] [
p
n

]

where, since |p|2 + |n|2 is to be unchanged, u ∈ U (2) is a (constant) unitary matrix.

Since

(p, n)T and (eia p, eian)T

represent the same nucleonic mixture we may eliminate this special phase transforma-

tion by restricting u to have determinant 1; the symmetry group of the strong Lagrangian

then consists of constant matrices u ∈ SU (2) and the nucleon admits SU (2) as a global
gauge group. (As I learned from Meinhard Mayer, Heisenberg actually thought not in

terms of SU (2) but rather the spin “representation” of SO(3)!)

20.3b. The Yang–Mills Nucleon

Yukawa, in 1935, introduced the idea that one should explain the strong nuclear force

between nucleons by assuming that the force arises from the exchange of certain parti-

cles, mesons, unobserved at that time, just as the force between electrons results from

the exchange of photons. Yang and Mills in 1954 suggested that we can arrive at ex-

change mesons by assuming that the correct Lagrangian for the nucleon will admit

SU (2) as a local symmetry group, rather than the global one of Heisenberg. Weyl’s

principle will then require a gauge field, that is, a connection.

Recall that when we studied (in Section 16.4e) an electron moving in the background

field of a magnetic monopole, the vector potential was not globally defined and had

to be defined in patches of M4
0 . The nuclear field, analogous to the electromagnetic

field, is completely unknown. There is a good chance that any “potential” for this field

will again only be defined in patches, and likewise for the ψ field. Thus the nucleon

field should be considered not as a C
2 function on space–time but rather as a section

of a C
2 vector bundle, whose structure group is SU (2). Of course the bundle might be

trivial, but it is no more work to consider the general case. Gauge transformations are

simply changes of frames in the fibers of the bundle. In this new unknown bundle the

Yang–Mills covariant derivative will be locally of the form

∇ j = ∂

∂x j
+ ω j

where ω j = ω(∂/∂x j ) and ω = (ωa
b) = dx jω j

a
b is an su(2)-valued connection

1-form. su(2) consists of skew hermitian matrices with trace 0 and so has a basis

consisting of imaginary multiples of the Pauli matrices {iσa}, a = 1, 2, 3

σ1 =
[

0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
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Thus each ω j is of the form

ω j = −iqσa Aa
j = −iqσ • A j (20.25)

= −iq{σ1 A1
j + σ2 A2

j + σ3 A3
j }

where we have completely suppressed the matrix indices.

We have thus been forced to introduce three new covariant vector fields A1, A2, A3,

the Yang–Mills fields, to mediate the force between nucleons. The strength of the force

is reflected in the coupling constant q, replacing the charge in the case of electromag-

netism. Our covariant derivative is

∇ jψ = ∂ψ

∂x j
− iqσ • A jψ (20.26)

where again ψ = (p, n)T

One then must introduce “kinetic terms” in the Lagrangian involving derivatives of

the A fields, that is, of the connection ω. The natural candidate for “derivative” of ω is

of course the curvature

θ = dω + 1

2
[ω, ω] = dω + ω ∧ ω

Then

θ jk = θ(∂ j ,∂k) = dω(∂ j ,∂k) + ω ∧ ω(∂ j ,∂k)

= ∂ jωk − ∂kω j + ω jωk − ωkω j

θ jk = ∂ jωk − ∂kω j + [ω j , ωk] (20.27)

(Caution: Each ω j is an ordinary matrix, not a matrix of 1-forms!) Introducing the

matrices

A j := σ • A j

we get

θ jk = −iq Fjk

where (20.28)

Fjk := ∂ j Ak − ∂k A j − iq[A j , Ak]

is again a trace–free hermitian 2 × 2 matrix, the field strength of the Yang–Mills field.

We must remark that Yang and Mills were unaware, at the time, of the notion of

curvature of a vector bundle; the bracket term in (20.28) was added because they knew

that some term was needed to give a nonabelian version of electromagnetism! For an

interview with Yang on the history, see [Z ].

In our former notation

θa
b = 1

2
Ra

bjkdx j ∧ dxk

and so θ jk is the skew hermitian matrix with α
β entry Rα

β jk . We wish to construct a

scalar from θ . The analogue of the Ricci tensor Rα
βαk makes no sense (why?), and

so the scalar curvature analogue doesn’t exist. An obvious scalar can be constructed

quadratically from the Riemann tensor, namely Rα
β jk Rβ

α
jk

(the indices jk here have
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been raised by the Minkowski metric tensor), which is essentially the trace of the matrix∑
jk θ jkθ

jk . One then adds to the Lagrangian a kinetic term proportional to this trace

tr (Fjk F jk)

We shall discuss this more thoroughly in the next section.

After second quantization the fields A1, A2, A3 yield three particles, the exchange

particles that mediate the nuclear force.

This model of nuclear forces is now obsolete. The currently accepted version holds

that the nucleons are not fundamental; each is made up of quarks. Each “flavored”

quark ψ appears in three different color states ψ = (R, B, G)T , analogous to the

two nucleon states (p, n)T . The gauge group is then the 8-dimensional SU (3). Its Lie

algebra of traceless skew-hermitian 3 × 3 matrices has a basis given by {iλb}, where

λb are the hermitian Gell-Mann matrices; see [Su, p. 245]. The connection is of the

form ω j = −igsλa Aa
j , where there are now 8 covariant vector fields A1, . . . , A8, and

the “charge” gs is called the strong coupling constant. There are then 8 gauge fields,

the gluons, that yield the forces between quarks.

20.3c. A Remark on Terminology

We have related the connection matrices ω to the gauge potentials A by

ω = −iq A

q is called a generalized charge. Now it follows from the transformation rule for a

connection that if ω is a connection for a bundle E then a multiple aω of ω is again a

connection for E only if a = 1

aω′ = g−1aωg + ag−1dg

Thus if ω is a connection, A = (i/q)ω is not a connection, and it transforms in a slightly

different way

A′ = g−1 Ag +
(

i

q

)
g−1dg

In spite of this, physicists almost always refer to A as the connection, and F = (i/q)θ

as the curvature.

Problem

20.3(1) Show that if ω and ω′ are connections for E then their convex combination

(1 − a)ω + aω′

is also a connection for E for each real a.
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20.4. Compact Groups and Yang–Mills Action

What if the group is a compact group other than SU (N )?

20.4a. The Unitary Group Is Compact

Theorem (20.29): The group U (n) is compact

P R O O F: Consider U (n) as the subset of complex n2 space satisfying uu† =
uuT = I , that is, ∑

j

ui j uk j = δik

In particular ∑
k, j

|ukj |2 =
∑
k, j

uk j uk j =
∑

k

δkk = n

Thus U (n) consists of points that lie on the sphere ‖ u ‖= √
n and is therefore

a bounded subset of complex n2 space. It is also clear that the limit of a sequence of

unitary matrices is again unitary, and so U (n) is a closed, bounded (i.e., compact)

set (see Section 1.2a).

20.4b. Averaging over a Compact Group

We have seen that the left and right invariant 1-forms on the affine group of the line,

A(1), do not always coincide. This is to be expected in general. Let {σ j } and {τ j } be

bases for the left invariant and right invariant 1-forms on G that coincide at e. The

corresponding Haar measures

σ 1 ∧ . . . ∧ σ N and τ 1 ∧ . . . ∧ τ N

will in general be different, as they are in A(1). This cannot happen in a compact group.

Theorem (20.30): In a compact Lie group, the left and right Haar measures
coincide (the Haar measure is bi-invariant).

P R O O F: Let ω = σ 1 ∧ . . . ∧ σ N be the left invariant volume form and let e be

an orthonormal basis of left invariant vector fields; in particular ω(e) = 1. To

say that ω is not right invariant is to say that for some right translate, ω(eg−1) :=
ω(Rg−1 ∗e) = c �= 1. But then ω(geg−1) = c. By replacing g by g−1 if necessary

we may assume c > 1. Thus under this adjoint action Ad(g), the orthonormal

e at the identity is sent into a frame at the identity with volume c > 1. Under

Ad(gn), the frame e is sent into a frame with volume cn → ∞, as n → ∞. This

means that the continuous function F : G → R defined by F(g) = ω(geg−1) is

not bounded on G. But a continuous real-valued function on a compact space is

bounded, a contradiction.
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Given a compact group G with bi-invariant volume form ω, the integral of a contin-

uous function f : G → C is usually written∫
G

f ω =
∫

G
f (g)ωg

where ωg is the volume form at g. (This is similar to the notation
∫

f (x)dx .) When ω

has been normalized so that the total volume of G is 1,
∫

G ω = 1, then
∫

G f ω is simply

the average of f on G and plays a central role in many aspects of Lie theory.

Theorem (20.31): For any continuous function f and for all g in the compact
group G we have ∫

G
f (hg)ωh =

∫
G

f (gh)ωh =
∫

G
f (h)ωh

P R O O F: Consider first
∫

G f (hg)ωh . Right translation Rg : G → G sends h �→
hg. Since ω is right invariant

ωh = R∗
gωhg = (R∗

gω)h

that is,

R∗
gω = ω

Also f (hg) = f ◦ Rg(h) = (R∗
g f )(h), and so the function F defined by F(h) =

f (hg) is simply F = R∗
g f . Hence∫

G
f (hg)ωh =

∫
G

Fω =
∫

G
(R∗

g f ) ∧ R∗
gω

=
∫

G
R∗

g( f ∧ ω) =
∫

Rg G
f ω =

∫
G

f (h)ωh

since RgG = G. The proof for
∫

G f (gh)ωh is similar since ω is left invariant as

well.

In many books this proof is written as follows: The statement that ω is right invariant

is written

ωhg = ωh

Then ∫
G

f (hg)ωh =
∫

G
f (hg)ωhg =

∫
G

f (h)ωh (20.32)

replacing the dummy variable hg by the dummy h.

20.4c. Compact Matrix Groups Are Subgroups of Unitary Groups

Let G be a compact group of n × n matrices. We can consider the matrices as linear

transformations of C
n (think of them as being complex matrices). Let (, ) be any

hermitian scalar product in C
n (e.g., (z, w) = (

∑
z jw j )). The matrices will not, in

general, preserve this scalar product (i.e., the matrices will not be unitary with respect

to this metric). We claim, however, that the averaged scalar product will be invariant.
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For given X, Y in C
n , we define the new scalar product

〈X, Y 〉 :=
∫

G
(h X, hY )ωh (20.33)

This is of the form 〈X, Y 〉 = ∫
G f (h)ωh . Then, from (20.31), for g ∈ G

〈gX, gY 〉 =
∫

G
(hgX, hgY )ωh =

∫
G

f (hg)ωh = 〈X, Y 〉

as desired. Thus the compact matrix group acts by unitary transformations with respect
to this new scalar product. After choosing a new basis for C

n that is orthonormal in this

metric, the matrices will be unitary in the usual sense. In this sense we may consider

any given compact matrix group as a subgroup of the unitary group, (More accurately,

it is similar to such a subgroup.)

20.4d. Ad Invariant Scalar Products in the Lie Algebra
of a Compact Group

Let G = U (n), the group of unitary matrices, g† := gT = g−1. Then g = u(n) is the

space of skew hermitian matrices, X † = X
T = −X .

We shall always consider Lie algebras as real vector spaces.
Define a real scalar product 〈, 〉 in the vector space u(n) by

〈X, Y 〉 := −trXY = −Xi j Y ji (20.34)

(This agrees with that used for SU(2) in (19.9).) In Problem 20.4(1) you are asked to

show that this form on g = u(n) is real, symmetric, and positive definite.

Note that this scalar product in u(n) is invariant under the adjoint action of G = U (n)

on g ; for u ∈ U (n)

〈u Xu−1, uY u−1〉 = −tr u XY u−1 = −trXY = 〈X, Y 〉

Now let G be any compact n × n matrix group. As we have seen, G may be considered

a subgroup of U (n), and then, as we have seen in Section 15.4d, g is a subalgebra of

u(n). Then for X, Y in g we will have that 〈X, Y 〉 = −tr XY is a real scalar product
in g that is invariant under the adjoint action of G on g ! For X, Y, Z in g

〈et X Y e−t X , et X Ze−t X 〉 = 〈Y, Z〉

Differentiating and putting t = 0 gives, from (18.32),

〈[X, Y ], Z〉 + 〈Y, [X, Z ]〉 = 0

that is, (20.35)

ad(X) : g → g is skew adjoint

and note that this holds for any group whose Lie algebra is endowed with a scalar
product invariant under the adjoint action!
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20.4e. The Yang–Mills Action

Let π : E → Mn be a vector bundle with compact structure group G ⊂ U (N ). We are

mainly concerned with the case Mn = M4 = space–time. In the original Yang–Mills

model, G = SU (2).

If ω is a connection in E then

ω = −iq A (20.36)

expresses ω in terms of the “gauge field” or “potential” A and a “coupling constant”

or generalized “charge” q. Since G ⊂ U (N ), ω j = ω(∂ j ) is skew hermitian and A j is

hermitian. For curvature

θ = dω + 1

2
[ω, ω] = −iq F (20.37)

Fjk = ∂ j Ak − ∂k A j − iq[A j , Ak]

and F is the field strength. It also is hermitian.

In our computations we shall use ω and θ ; when we are done we may convert to A
and F! Our constants might differ from those used in physics.

We define the Yang–Mills (briefly, Y–M) action functional by

S[ω] := 1

4

∫
M

−tr (θ jkθ
jk)voln (20.38)

Note that for each j, k, θ jk = (Rα
β jk) is a skew-hermitian matrix, that is, θ jk ∈ g , and

−tr (θ jkθ
jk) is the scalar product in g of these matrices. The indices in θ jk have been

raised by g jk , the pseudo-Riemannian metric in Mn . We wish to write this action using

the curvature forms, rather than matrices. The curvature forms are

θU = (θα
β) = 1

2
Rα

β jkdx j
U ∧ dxk

U

Each matrix θU is a matrix of locally defined 2-forms θα
β . Each of these 2-forms θα

β

has a Hodge dual (n − 2)-form ∗θα
β from the pseudo-Riemannian metric on Mn , and

we know from (14.6) that

Rα
β jk Rν

η
jk voln = 2!θα

β∧∗θν
η

We can then write the action as

S[ω] = −1

2

∫
M

θα
β ∧ ∗θβ

α = −1

2

∫
M

tr θ ∧ ∗θ (20.39)

= 1

2
(θ, θ)

where we have defined a Hilbert space scalar product (,) on g ⊂ u(N )-valued p-forms
by

(θ p, φ p) := −
∫

M
tr θ ∧ ∗φ (20.40)

This makes sense whenever θ and φ are p-form sections of an Ad(U (N )) bundle since

tr [cθc−1 ∧ c∗φc−1] = tr [θ ∧ ∗φ].
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How does S depend on the connection ω? Take a 1-parameter family of connections

ω = ω(ε) with “velocity” δω := ω′(0). For first variation (keeping the metric on M
fixed)

δS[ω] : = d

dε
{S[ω(ε)]}∈=0 = 1

2
δ(θ, θ) = (δθ, θ)

=
(

δ

{
dω + 1

2
[ω, ω]

}
, θ

)

=
(

dδω + 1

2
[δω, ω] + 1

2
[ω, δω], θ

)

S′[ω] = (dδω + [ω, δω], θ) (20.41)

since ω and δω are 1-forms; see (18.7). Now if ω1 and ω2 are connections their difference

�ω is a g -valued 1-form that transforms as

�ωV = cV U�ωU c−1
V U

and is thus a 1-form section of the Ad bundle associated to the G bundle E . Likewise,

δω is a 1-form section and of course the curvature θ is a 2-form section of this same

bundle. But then

dδω + [ω, δω] = ∇δω

is the covariant differential of δω, see (18.42). We then have, from (20.41),

δθ = ∇(δω) (20.42)

S′[ω] = (∇δω, θ) = (δω, ∇∗θ)

where ∇∗ is the Hilbert space adjoint to ∇.

As usual we demand that S′[ω] = 0 for all variations δω of ω. This gives

∇∗θ = 0 (Yang–Mills)

with, of course (20.43)

∇θ = 0 (Bianchi)

the latter holding for any connection.

These equations clearly generalize Maxwell’s equations in the case when the current

J vanishes.The coordinate expressions for these appear in Section 20.5.

Problem

20.4(1) Show that (20.34) is real, symmetric, and positive definite.

20.5. The Yang–Mills Equation

How do the Yang–Mills equations compare with Maxwell’s?

20.5a. The Exterior Covariant Divergence ∇∗

We have seen in (20.42) that the Y–M curvature θ = −iq F , a g -valued 2-form, must

satisfy ∇∗θ = 0, where ∇∗ is the Hilbert space adjoint of the covariant exterior
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differential ∇ for the Ad bundle. We shall compute a coordinate expression for this

analogous to the formula (14.15) for scalar-valued forms. ∇∗ satisfies∫
tr 〈dδω + [ω, δω], θ〉vol =

∫
tr 〈δω, ∇∗θ〉vol (20.44)

for all 1-form sections δω and all 2-form sections θ of the Ad bundle. Here 〈, 〉 is the

pseudo-Riemannian (pointwise) scalar product. We can also write this as∫
tr {dδω + [ω, δω]} ∧ ∗θ =

∫
tr δω ∧ ∗∇∗θ (20.45)

All the forms involved take their values in the fixed vector space g and both d and ∗
commute with taking traces (∗ only affects the manifold indices i, j, . . . , not the fiber

indices α, β, . . .). Consider the left-hand side of (20.45). The first term is∫
tr {dδω ∧ ∗θ} =

∫
dδωα

β ∧ ∗θβ
α = (dδωα

β, θ
β

α) (20.46)

= (δωα
β, d∗θβ

α) =
∫

tr δωk{d∗θ}kvol

assuming as usual that the boundary integral involving δω vanishes. The second term

on the left-hand side of (20.45) can be computed using

[ω, δω] jk = {ω ∧ δω + δω ∧ ω}(∂ j ,∂k)

= ω jδωk − ωkδω j + δω jωk − δωkω j

for then [ω, δω] jkθ
jk = 2[ω j , δωk]θ jk (since j and k are form indices, θ jk = −θ k j ).

Then ∫
tr [ω, δω] ∧ ∗θ = 1

2

∫
tr [ω, δω] jkθ

jkvol

=
∫

tr [ω j , δωk]θ jkvol = −
∫

〈[ω j , δωk], θ jk〉vol

where 〈, 〉 is the scalar product in g . From (20.35) we can write this as

=
∫

〈δωk, [ω j , θ
jk]〉vol =

∫
−tr δωk[ω j , θ

jk]vol

Combining this with (20.46) gives∫
tr δωk{(d∗θ)k − [ω j , θ

jk]}vol =
∫

tr δω ∧ ∗∇∗θ

But from (14.15) (d∗θ)k = −θ jk
/j , where this covariant derivative is with respect to the

pseudo-Riemannian connection on M , not the bundle connection. θ is to be considered
as a second rank tensor on M with extra indices from g that are not considered in this
covariant derivative! Finally we have the coordinate expression of the Y–M equation

∇∗θ = 0

(∇∗θ)k = −{θ jk
/j + [ω j , θ

jk]} = 0 (20.47)

where, we emphasize, all indices are manifold indices; ω j and θ jk are matrices whose

indices have been suppressed

ω j = (ωα
j β

) θ jk = (Rα
β

jk
)
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We remark, though we shall have no use for it, that the expression (20.47) can be

written as the negative of a tensorial type of divergence. The αk
β component of (20.47)

can be obtained from (θα
β)

jk = Rα
β

jk . Thus θ jk | j + [ω j , θ
jk] becomes

θ jk | j + ω jθ
jk − θ jkω j = θ jk | j + ωα

jγ Rγ
β

jk − Rα
γ

jk
ω

γ
jβ

= (∂ j Rα
β

jk + �
j
jr Rα

β
rk + �k

jr Rα
β

jr )

+ ωα
jγ Rγ

β
jk − Rα

γ
jk
ω

γ
jβ

Note that we could then write (20.47) as

(∇∗θ)α
β

k = −Rα
β

jk
//j = 0 (20.48)

where we are considering Rα jk
β as the components of a tensor of type E ⊗ E∗ ⊗ T M ⊗

T M , and // denotes the covariant derivative of such a tensor, using ω for the bundle

part and � for the tangent bundle part.

20.5b. The Yang–Mills Analogy with Electromagnetism

If we now put ω = −iq A and θ = −iq F , then we have seen in (20.37)

Fjk = ∂ j Ak − ∂k A j − iq[A j , Ak]

generalizes the situation in electromagnetism, where the action is (when no sources are

present) essentially
∫

Fjk F jkvol4. The Y–M action is, except for a constant,

S[A] ∼
∫

tr Fjk F jk voln (20.49)

=
∫

tr (∂ j Ak − ∂k A j − iq[A j , Ak])(∂ j Ak − ∂k A j − iq[A j , Ak])voln

Whereas the electromagnetic action is quadratic in the fields A, the Y–M action also

contains cubic and quartic terms. The Y–M equation ∇∗θ = 0 and the Bianchi equation

∇θ = 0 are, from (18.44) and (20.47),

F jk | j − iq[A j , F jk] = 0

and (20.50)

∂i Fjk + ∂k Fi j + ∂ j Fki − iq{[Ai , Fjk] + [Ak, Fi j ] + [A j , Fki ]} = 0

It is instructive to compare these with Maxwell’s equations in M4
0 with metric

{−1, 1, 1, 1}. We shall write the Y–M fields for G = SU (n) as follows. We give

the usual electromagnetic names to the components of F

F0i = Ei i = 1, 2, 3 F12 = B3, . . .

even though E and B are now 3-vectors with hermitian n ×n matrix components. Look,

for example, at Y–M for k = 0. We have

F j0| j − iq[A j , F j0] = 0
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that is,

div E = iq(A • E − E • A) (20.51)

This is the analogue of Gauss’s equation. We see that even though we started out without

external sources,

iq(A • E − E • A)

plays the role of a “charge density.” Thus the Y–M field E and the potential A combine

to act as a source for the Y–M field! The nonabelian nature of the structure group

SU (n), that is, [A, E] �= 0, allows this to happen!

Look again at Y–M, this time considering only a spatial index k = β = 1, 2 or 3:

F0β |0 + Fαβ |α − iq[A0, F0β] − iq[Aα, Fαβ] = 0

that is,

curl B = ∂E
∂t

− iq(A0E − EA0) + iq(A × B + B × A) (20.52)

replacing Ampere–Maxwell. Note that there are two extra contributions to a “current”

other than the displacement current.

The Y–M equations thus yield generalizations of the laws of Gauss and of Ampere–

Maxwell, without external sources.

Similarly, in Problem 20.5(1) you are asked to derive the analogues of the laws of

Faraday and of the absence of magnetic monopoles from the Bianchi identity

curl E + ∂B
∂t

= iq{(A × E + E × A) + (A0B − BA0)} (20.53)

and

div B =iq(A • B − B • A) (20.54)

Note that “magnetic charge density” can exist in a nonabelian Y–M field!

20.5c. Further Remarks on the Yang–Mills Equations

It is clear that if φ is a p-form section of any Ad (G) bundle, then tr φ is an ordinary

p-form on M since tr (cV Uφc−1
V U ) = tr φ.

Note that if G = SU (N ) then for any p-form section φ of the Ad (G) bundle (for

example the curvature 2-form) we must have tr φ = 0. However, if ψ is another form

section, then φ ∧ ψ does not take its values in g . Although tr (φ ∧ ψ) is again a form

on M it need not be 0. Furthermore, there are times when one uses groups other than

SU (N ).

Theorem (20.55): Let φ be a p-form section of an Ad (G) bundle. Then

dtr φ = tr ∇φ

P R O O F:

∇φ = dφ + [ω, φ] = dφ + ω ∧ φ − (−1)pφ ∧ ω
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and so

tr ∇φ = tr dφ + ωα
β ∧ φβ

α − (−1)pφβ
α ∧ ωα

β

= tr dφ

The following is clearly the analogue of (14.12). Recall that we are using the Hilbert

space scalar product (20.40).

Theorem (20.56): For any form section of an Ad(G) bundle

∇∗φ = ±∗∇∗φ

P R O O F: Let γ be a (p − 1)-form section of the Ad bundle with small support.

Then, from (18.46)

(∇γ, φ) = −
∫

tr (∇γ ∧ ∗φ) = −
∫

tr ∇(γ ∧ ∗φ) ±
∫

tr (γ ∧ ∇∗φ)

= −
∫

dtr (γ ∧ ∗φ) ±
∫

tr (γ ∧ ∇∗φ)

Since γ has small support, the first integral vanishes by Stokes’s theorem. We

conclude

(∇γ, φ) = ±
∫

tr (γ ∧ ∗∗∇∗φ = ±(γ, ∗∇∗φ)

The actual sign is given as in (14.12).

Definition (20.57): A Yang–Mills field A is one that satisfies

∇∗F = 0

Definition (20.58): Any field strength Fjk = ∂ j Ak − ∂k A j − iq[A j , Ak] that

satisfies

∗F is called self-dual

F =
− ∗F is called anti-self-dual

Since any field strength satisfies the Bianchi equation ∇F = 0, we see that ∇∗F = 0

if F is self- or anti-self-dual. A self- or anti-self-dual field strength is automatically the
field strength of a Yang–Mills field!

Problems

20.5(1) Supply the details of the electromagnetic analogues (20.53) and (20.54) for
the Bianchi equations.
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20.5(2) The electromagnetic analogues can also be derived using exterior forms. Fill
in the details in the following.

Decompose A into temporal and spatial parts A = φdt + A1. Here φ =
A0 is a g -valued function and A1 is a g -valued 1-form. As usual we write
d = d + dt ∧ ∂/∂t . Then F 2 = (i/q)θ2 = d A − iq A ∧ A yields, after writing
F 2 = E1 ∧dt +B2 with g -valued forms E1 and B2, the “electric” and “magnetic”
parts of the field strength.

E1 = dφ − ∂A1

∂t
− iq[A1, φ]

B2 = dA1 + A1 ∧ A1 = dA1 + 1
2

[A1, A1]

Then the Bianchi equations ∇F 2 = d F 2 + [ω1, F 2] = 0 will yield

dE1 + ∂B2

∂t
= iq{[A1, E1] + [φ, B2]}

dB2 = iq[A1, B2]

For the Yang–Mills equation ∇∗F = ±∗∗∇∗∗F = 0, we put ∗F 2 = −∗∗B2 ∧dt +
∗∗E1 for g -valued forms ∗∗B2 and ∗∗E1; the bold ∗∗ is the spatial Hodge operator.
Then

0 = ∇∗F 2 = d(−∗∗B2 ∧ dt + ∗∗E1) + [−iqA1, (−∗∗B2 ∧ dt + ∗∗E1)]

yields

d∗∗E1 = iq[A1, ∗∗E1]

and

d∗∗B2 = ∂∗∗E1

∂t
+ iq{[A1, ∗∗B2] − [φ, ∗∗E1]}

20.5(3) Let M4 be compact and suppose that the support of δω does not meet the
boundary (if any) of M. Use δθ = ∇(δω) and Theorem (20.56) to show that

δ

∫
M

tr (θ ∧ θ) = ±δ(θ, ∗θ) = 0

Thus if
∫

M tr (θ ∧θ) is added to a given action integral, the action will be altered
but the variational equations will be unchanged! We shall study the 4-form
tr (θ ∧ θ) extensively in our remaining chapters.

20.6. Yang–Mills Instantons

How can the Brouwer degree distinguish between two Yang–Mills vacua?

20.6a. Instantons

Consider a quantum particle interacting with a Yang–Mills field in Minkowski space.

This particle is described by a “wave funtion” ψ , a cross section of a complex C
N
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vector bundle E over Minkowski space M = M4
0 . We assume that the structural group

is SU (n); thus G = SU (n) acts on C
N via some representation. For our purposes

it is sufficient to consider the standard representation on C
n . The bundle has a Y–M

connection ω = −iq A and a curvature θ = −iq F , where A and F are hermitian matrix

valued local forms on M4
0 . In U ⊂ M we have a frame of sections

�U = eU = (eU
1 , . . . , eU

n )

and ωU and θU . In an overlap eV = eU cU V , cU V (x) ∈ SU (n).

In this section we shall be concerned with the background Y–M field, rather than

with the particle. The action for this Y–M field alone is essentially∫
M

−tr Fjk F jk ∗ 1 ∼
∫

M
(‖ E ‖2 − ‖ B ‖2) ∗ 1

where we have given the electromagnetic analogue on the right (Problem 7.2(3)).

For certain purposes it is useful in physics to replace the Minkowski metric of space–

time by the 4-dimensional euclidean metric +dt2 + dx • dx. This will not be discussed

here. (See e.g., [C, chap. 7]. This chapter of Coleman’s book will also overlap with

some of the topological material that we shall discuss later.) The action is then called

the euclidean action. We shall be concerned with Y–M fields having finite euclidean

action ∫
M
(‖ E ‖2 + ‖ B ‖2) ∗ 1 < ∞

(Note that the euclidean version of the electromagnetic Lagrangian is the energy density

of the electromagnetic field.) Such fields are called instantons since they “vanish” as

|t | → ∞. An example of an instanton is given in [I, Z, sec. 12-1-3].

For simplicity, to avoid the limiting values of boundary integrals, we assume that

the field strength E2 + B2 not only dies off at infinity but has support lying inside some

3- sphere S3 centered at the origin of R
4.

Figure 20.1

(This does not make sense in electromagnetism in M4
0 since an electromagnetic field

in free space would radiate out to infinity and would be present for all t .)
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Let U be a coordinate patch holding this S3 and its interior and let V be a coordinate

patch holding S3, extending to ∞, and such that F = 0 in V . We assume that V is the

exterior to some sphere inside S3.

In the “exterior region” V we have θ = 0. We claim that we can make a change of

frame over all of V (in the wave “function” vector bundle E , not in Minkowski space)

so that in the new frame ωV = 0!

This should not be a complete surprise; it is a global version of Riemann’s theorem

(9.70) on curvature 0, but for an arbitrary vector bundle. To see it, let ω′ be the original

connection form for V . We wish to find a g : V → SU (n) so that

ωV := g−1ω′g + g−1dg = 0

that is,

dg + ω′g = 0 (20.59)

Can we solve this 1-form system for g = gr
s (x)? Using the symbol ≈ to signify mod

(dg + ω′g) as arises in the Frobenius theorem

d(dg + ω′g) = dω′g − ω′ ∧ dg

≈ dω′g − ω′ ∧ (−ω′g) ≈ (dω′ + ω′ ∧ ω′)g

≈ θ ′g = 0, in V

By Frobenius we may locally solve (20.59) uniquely for g, subject to any initial g0 =
g(p) at p ∈ V .

Suppose that we have two solutions, g and h, in two overlapping patches. Then

dg = −ω′g and dh = −ω′h, and so

d(g−1h) = −g−1dgg−1h + g−1dh

= g−1ω′gg−1h − g−1ω′h = 0

Thus two overlapping solutions are always related by a constant matrix k ∈ SU (n), h =
gk, at least if the overlap is connected! Consider then a path C : [0, 1] → V that starts

at p. Cover this path by a finite number of 4-balls Bα (lying in V ) each small enough

to support a solution gα to (20.59) and such that the intersections of consecutive balls

are connected. Let g0 be the solution in the first ball B0 at p. Let g1 be a solution in

the next ball B1. B1 intersects B0 in a connected set. Then there is a constant matrix

k1 ∈ SU (n) such that g1(x) = g0(x)k1 in their overlap and it is clear that g′
1 := g1k−1

1 is

a new solution of (20.59) in B1 that agrees with g0 in their overlap. We have continued

the solution into the second ball. Proceed to the third ball and so forth. In this way we

continue the given solution in the initial ball to all points of V . Is this well defined? If

C is a closed curve that returns to p, the final solution could be a g′
0 that differs from

g0; this is the same situation as in analytic continuation of an analytic function in the

complex plane! However, the region in R
4 that is exterior to a ball is simply connected,

and just as analytic continuation is unique in such a region (seen by shrinking the closed
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curve to a point), so it is in our situation. Thus a global solution g : V → SU (n) to

(20.60) exists in all of the exterior region V and

ωV = 0

when we use the new frame of sections eV = e′
V g.

Note that the original connection ω′ is of the form

ω′ = −dgg−1 (20.60)

and is said to be pure gauge.

Since ωV = 0 on U ∩ V , and in particular on S3,

ωU = cV U
−1ωV cV U + cV U

−1dcV U = cV U
−1dcV U

We again write this in a simplified form, cV U = g,

ωU = g−1dg on S3 (20.61)

where g : S3 → SU (n) are new matrices, not those of (20.60).

We then have the following situation: Look at the part of the wave function bundle

that lies over the sphere S3. Over S3 we have two frame fields given, the “flat” frame

eV and the frame eU over U . The flat frame consists of sections eV
1, . . . , eV

n each of

which is covariant constant

∇eV
b = eV

a ωa
V b = 0

that is, these sections are parallel displaced along S3. We are comparing the U -frames

eU with these covariant constant frames along S3,

eU (x) = eV (x)cV U (x) = eV (x)g(x) (20.62)

and, consequently the matrices g(x) define a mapping

g : S3 → SU (n) (20.63)

This situation is similar to that encountered in Chern’s proof of Poincaré’s index theorem

(17.21). Let us go back and reconsider Chern’s proof in the light of our Y–M field with

finite action.

20.6b. Chern’s Proof Revisited

Consider, instead of a closed M2 as in Section 17.3, a curved “wormhole” version M2

of the plane, but such that the curvature vanishes in the region V exterior to some circle

S1. The bundle we are considering is the tangent bundle T M2 to the orientable surface
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eV

eV

eV

eV
eV

eV

eU

eU

eU

eU

S1S1

M2

V

α

U

p

Figure 20.2

M2, but considered as a complex C line bundle. By using “orthonormal” frames eU , eV ,

we may consider the structural group of this bundle to be U (1). We have indicated the

“flat” covariant constant frame eV in the exterior region.

Warning: Unlike the case when Mn has dimension n ≥ 3, the region V is not simply

connected. One cannot always find a global flat frame in this region V . For example,

M2 is flat in the conical region in the following figure, but a parallel displaced vector

will not return to itself after traversing S1

Figure 20.3

as we saw in Section 8.7. In fact this picture is the geometric analogue of the Aharonov–
Bohm effect, discussed in Section 16.4f. Using the electromagnetic connection, the

curvature inside the coil is constant, since the magnetic field B is constant there; this

corresponds to the constantly curved spherical cap. Furthermore, the exterior to the

coil corresponds to the flat conical region. Since ω = −iebdθ/2πh̄ in the exterior

region, the equation of parallel translation in the electron wave function bundle is

dψ − iebψdθ/2πh̄ = 0. Hence ψ = exp(iebθ/2πh̄) is covariant constant but is not
single-valued unless the flux b takes on very special values!
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(Notational comment: In the case of a section of a vector bundle with structure

group G, parallel translation along a parameterized curve x = x(t) is still defined by

dψ + ωψ = 0, that is,

dψ

dt
= −ω

(
dx

dt

)
ψ (20.64)

for the matrix-valued connection 1-form ω. Since
∫

ω(dx/dt)dt also lies in g, we see

from Problem 15.2(3) that if the structure group G is commutative then the solution to

(20.64) is ψ(t) = exp[− ∫ t
0
ω(dx/dτ)dτ ]ψ(0). If G is not commutative, there is no

such formula, but physicists write the solution in the form

ψ(t) = P exp

[
−

∫
ω

(
dx

dt

)
dt

]
ψ(0)

The symbol P indicates an operation called path ordering. It is important to realize

that this can simply be considered a notation for the operation that sends an initial
ψ(0) into the unique solution ψ(t) of (20.64). (We shall not use this notation.)

In our wormhole, Figure 20.2, we have chosen V so that a global covariant constant

frame eV does exist, as it does in the Y–M example.

In the curved region U we have indicated a cross section eU that has singularities at

the critical points of the height function; the top p is one of them. (The field looks like

the normalized velocity field for molasses oozing down from the top.)

For our complex line bundle version of the tangent bundle we have, as in 17.3a, the

connection ω and curvature

θ = dω = −i K d A (20.65)

On the circle S1 we have eU = eV eiα and so

g(x) = eiα (20.66)

and

ωU = g−1dg = idα

In the situation of Poincaré’s theorem, Chern considered a closed surface. In our case∫
M

K d A =
∫

U
K d A

since K vanishes outside U . In Chern’s proof∫
M

K d A = 2π
∑

p

jp(eU )

whereas in our nonclosed M2, using K d A = dω12, Chern’s proof would give

1

2π

∫
U

K d A =
∑

p

jp(eU ) + 1

2π

∮
S1

ωU
12

=
∑

p

jp(eU ) − 1

2π

∮
S1

dα (20.67)
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We may then write (for future reference)

i

2π

∫∫
M

θ =
∑

p

jp(eU ) + i

2π

∮
S1

ω

or (20.68)

i

2π

∫∫
M

θ =
∑

p

jp(eU ) − 1

2π

∮
S1

dα

(20.68) tells us that we get the same result as in the closed M2 case except for a boundary
term describing how many times the given cross section rotates around the flat section
eV !

1

2π

∫∫
M

K d A =
∑

p

jp(eU )

(20.69)

− 1

2π

∮
S1

d∠(eV , eU )

Note that this last “rotation number” is exactly the degree of the map

g : S1 → S1 defined by x → g(x) = eiα

Now in our Y–M situation we have a similar map, at least in the case when G =
SU (2), for then (20.63) involves a map

g : S3 → SU (2) = S3 (20.70)

and this map indeed does have a degree, called the winding number of the instanton.

In our Y–M case we shall assume that the frame eU in the wave function bundle has

no singularities inside S3.

We draw a surface analogue consisting of a flat cylinder V with a hemispherical cap

(a diffeomorphic copy of R
2) U . In V we put the flat vertically oriented “frame” eV ,

whereas in the cap U we may put a singularity-free field eU , for example, as follows.

In Section 16.2a we introduced a vector field on S2 having a single singularity of index

2 at the north pole. The field eU is simply the part of this field that lives on the southern

hemisphere.

Figure 20.4
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In Problem 20.6(1) you are asked to verify (20.69) in this case.

In the Chern situation, in (20.69), if there are no eU singularities, we see that the

degree of the boundary map is completely described by the integral of the curvature!

Can the corresponding Y–M degree in (20.70) be evaluated by looking at the curvature,
that is, the field strength, of the Yang–Mills field? The answer yes will be proven in

Section 21.2; it was first given by Chern a decade before the paper of Yang and Mills.

20.6c. Instantons and the Vacuum

In Yang–Mills we may consider the vacuum state in which the field strength F or θ

vanishes. One must not conclude that nothing of interest can be associated to such a

vacuum. In the geometric analogue we may consider a flat surface; the connection ω

replaces the gauge field A and the curvature θ = 0 replaces field strength F = 0. In

the example considered previously of the frustrum of a flat cone, tangent to a 2-sphere

along a small circle S1, we may delete the spherical cap completely. This corresponds to

the exterior region in the Aharonov–Bohm effect. We have seen that parallel translation

about S1 does not return a vector to itself, in spite of the fact that the connection is flat.

There is more information in the flat connection than is read off from the 0 curvature

alone! Likewise there is more information in a gauge field A for a vacuum than can be

read from the vanishing field strength.

Before considering the Yang–Mills vacuum we shall look at another geometric

analogue. In the following figure we have again drawn the 2-dimensional analogue,

a flat surface, but instead of using the “flat” (covariant constant) frame (pointing, for

example, constantly in the t direction) we use a frame that is time-independent, is flat at

spatial infinity, and rotates (in this case) once about the flat frame along each spatial slice.

space

time

flat frame e = →

Figure 20.5

We have gauge transformed the flat frame e to a new one, eg, where g : R →
U (1) = S1 maps each spatial slice so that g(−∞) = g(∞) = 1. (The field, i.e.,

connection, is again “pure gauge,” ω = g−1dg.) We assume, again for simplicity, that

for each spatial section t = constant we have g(x) = 1 for |x | ≥ a for some a. This

vacuum solution in R
2 is not deformable, while remaining flat at spatial infinity, into

the identically flat frame vacuum for the following reason.
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The function g maps the spatial slice R into S1. We may stereographically project

R onto a circle S1–(north pole) by projecting from the north pole. In this way we

may consider g as being defined on S1–(north pole). Since g is identically 1 in some

neighborhood of the pole we can extend g to the entire circle S1. (This can be thought of

in the following way. By identifying all x for |x | ≥ a with the point x = a on the section

t = constant, this section becomes topologically a circle S1. We have “compactified”

R to a circle and since g = 1 for |x | ≥ a, g extends to this compactification.) This

gives, for each t , a map g : S1 → U (1) = S1, which in this case has degree 1 by

construction. If our vacuum solution were to be deformable to the flat vacuum solution,

while keeping |x | ≥ a flat, then 1 = deg g : S1 → U (1) = S1 would have to equal

that of the flat vacuum case, which clearly has degree 0. This is a contradiction. We

thus have two inequivalent vacua. Similarly, we could get a vacuum frame that winds

k times around the flat frame.

In the 4-dimensional Yang–Mills case (with G = SU (2)) there will likewise be an

infinity of inequivalent vacua, each one characterized by the degree or “winding num-

ber” of the map g : S3 → SU (2) = S3 arising from the spatial slice R
3 “compactified”

to S3; this is discussed more in Problem 20.6(2). Physicists then interpret an instanton

with winding number k, that is, degree k given in (20.70), as representing a nonvacuum

field tunneling between a vacuum at t = −∞ with winding number n, and a vacuum

at t = +∞ with winding number n + k (see [C, L, sect. 16.2] or [I, Z sect. 12-1-3]).

We discuss the geometry of this situation in Problem 20.6(2).

Further significance of the winding number of the instanton will be sketched in

Chapter 21.

We have seen why g : S3 → SU (2) has a degree. To understand why g : S3 →
SU (n), n ≥ 2, has an associated “degree,” and to understand Chern’s results when

there are singularities, we need to delve more into topology, in particular the topology

of Lie groups, “homotopy groups,” and “characteristic classes.” Homotopy groups arise

also in other aspects of physics (see, e.g., [Mi]). We shall proceed with this program in

the next chapter.

Problems

20.6(1) Verify (20.69) in the case of our specific example of the cylinder with a cap.

20.6(2) Consider an instanton. Let eU be the frame in the interior U; we shall assume
that eU can be extended to be a nonsingular frame in all of R

4. Let eV be a
flat vacuum frame in the exterior V of the instanton, and let, as in (20.70),
g : S3 → SU(2), mapping the surface of the instanton into the group, have
degree k . Recall that k is called in physics the winding number of the instanton.

(i) Show that if eV can be extended to a frame on all of R
4 then k = 0 (Hint:

Generalize Problem 8.3(9).). Thus in general eV cannot be extended.

Consider a 3-dimensional “can” W3 surrounding the instanton, lying en-
tirely in the vacuum region V , and with ends D and D∗ at two spatial slices
t = ±“ ∞”. Let the side of the can be given by ‖ x ‖= a.
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Figure 20.6

g is defined on the can W3 and, in fact, on the entire 4-dimensional region
that is inside the can and outside S3. Assume that g takes a constant value,
say g = e, on an entire region ‖ x ‖≥ (a − ε) containing the sides of the
can. The can then can be smoothed off near the ends D and D∗, yielding a
smooth 3-dimensional manifold diffeomorphic to a 3-sphere and such that
g = e everywhere on this new can except on the portions of D and D∗ where
‖ x ‖< a − ε.

We shall now apply the theory of the Brouwer degree. g maps the 3-disc
D into SU(2) = S3 and maps ∂ D into a single point g = e. This means
that if, in D, we identify all of ∂ D to a single point (the “point at ∞”) then we
can consider this new space as a 3-sphere, and we have a map g of this
3-sphere into SU(2). This map has a Brouwer degree that can be evaluated
by looking at inverse images of some regular value u ∈ SU(2), u �= e. Call
this degree deg(−∞) = n. Similarly we can look at the disc D∗ and assign
a degree deg(+∞) = n + k , for some integer k . In physics books these
integers are called the winding numbers of the vacua at t = −∞ and at
t = +∞, respectively. On the other hand, the entire can W3 is a smooth
version of a 3-sphere, and we have the degree of g mapping this can into
SU(2). The 2-dimensional analogue is

Figure 20.7
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(ii) Show why

deg(g : W3 → SU(2)) = deg(+∞) − deg(−∞)

(iii) Show why this degree k is also the winding number of the instanton.

20.6(3) The Winding Number of a Vacuum. Let λ �= 0 be any constant and g : R
3 →

SU(2) map a spatial section R
3 of R

4, by

g(x) = exp

[
iπx • σ

(‖ x ‖2 +λ2)1/2

]

We can think of this g as defining a gauge transformation of the classical
vacuum (where ω = 0) to a new one with ω = g−1(x)dg(x), in the spatial
section R

3 defined by t = +∞. We claim that this vacuum has winding number
= ±1. To show this we first show that g(x) tends to a constant SU(2) group
element limit (independent of x) as ‖ x ‖→ ∞.

(i) What is this limit? (Hint: Use (19.20), which holds for unit A.) Now we are
allowed to compute the winding number using (8.18).

(ii) Show that only the origin x = 0 is mapped by g onto I ∈ SU(2) and show that
0 is a regular point by using (19.20) applied to the line x = tA, where A is a
unit vector. We have then shown that this vacuum has winding number ±1.

In [I,Z], sect. 12-1-3, an instanton solution that tunnels between a vacuum
with winding number 0 and the vacuum of this problem is given.



CHAPTER 21

Betti Numbers and Covering Spaces

21.1. Bi-invariant Forms on Compact Groups

Why is it that the 1-parameter subgroups of a compact Lie group are geodesics?

Samelson’s article [Sam] is a beautiful exposition on the topology of Lie groups as it

was known up to 1951.

21.1a. Bi-invariant p-Forms

Recall that a form or vector field on G is said to be bi-invariant if it is both left and right

invariant. For example, on the affine group G = A(1) of the line, dx/x is bi-invariant.

Theorem (21.1): If α p is a bi-invariant p-form, then α is closed,

dα = 0

P R O O F: Let σ 1, . . . , σ n and τ 1, . . . , τ n be bases of the left and the right in-

variant 1-forms, respectively, and let σ j = τ j at the identity. Since the left

and right structure constants are negatives of each other (see Section 15.4c),

dσ i = −1/2Ci
jkσ

j ∧ σ k and dτ i = 1/2Ci
jkτ

j ∧ τ k . Let α p be bi-invariant

α p = aI⇁σ I

where aI⇁ are constants. Since α is also right invariant,

α p = aI⇁τ I

Now compute dα at e from both expressions.

561
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21.1b. The Cartan p-Forms

In Section 18.1a we have defined the Maurer–Cartan matrix of 1- forms

� := g−1dg

When G is the affine group of the line, G = A(1),

� =
[

dx
x

dy
x

0 0

]

We can also consider exterior powers �2 = � ∧ �, �3 = . . .. For example,[
dx
x

dy
x

0 0

]
∧

[
dx
x

dy
x

0 0

]
=

[
0 dx∧dy

x2

0 0

]

which has the left invariant volume form for its only nontrivial entry.

We define the Cartan p-forms �1, �2, . . . , �n=dim G by

�p := tr�p = tr{g−1dg ∧ g−1dg ∧ . . . ∧ g−1dg} (21.2)

These are, of course, (scalar) left invariant p-forms on G. For G = A(1), �1 = dx/x
and �2 = 0.

Theorem (21.3): The Cartan p-forms are bi-invariant, and hence closed, d�p =
0. Furthermore, �2p = 0.

P R O O F: For constant k ∈ G,

tr{(gk)−1d(gk) ∧ (gk)−1d(gk) ∧ . . .}
= tr{k−1(g−1dg ∧ g−1dg ∧ . . . g−1dg)k}
= �p

and so they are also right invariant. Next note �2 = tr(� ∧ �) = �i j ∧ � j i =
−� j i ∧ �i j = −�2, and so �2 = 0. Similarly, �2p = 0, all p.

The Cartan 3-form plays an especially important role. Since �(X) = X, all X ∈ g ,

(� ∧ �)(X, Y) = �(X)�(Y) − �(Y)�(X) = [X, Y]

and thus

(� ∧ �) ∧ �(X, Y, Z) = [X, Y]Z + [Z, X]Y + [Y, Z]X (21.4)

Taking the trace of this and using [X, Y]Z = XYZ − YXZ, and so on, give

�3(X, Y, Z) = 3tr([X, Y]Z) (21.5)

When G is compact we can express this in terms of the Ad invariant scalar product

(20.34) in g ⊂ u(N )

�3(X, Y, Z) = −3〈[X, Y], Z〉 (21.6)
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(21.4) brings up a point. Consider G = SO(3), and let {Ei } be the basis (19.1). Then

� ∧ � ∧ �(E1, E2, E3) = E2
1 + E2

2 + E2
3 (21.7)

and this matrix is not in the Lie algebra so(3)! (Recall that in Section 18.1b we defined

the bracket of g -valued forms to remedy this situation.) The matrix (21.7) is called a

Casimir element.

21.1c. Bi-invariant Riemannian Metrics

Let 〈, 〉e be a scalar product in g that is Ad invariant; for example, when G = U (n),

〈X, Y 〉e = −trXY . Thus the Lie algebra of every compact group has such an invariant

scalar product. Define then a Riemannian metric on the group G by “left translation,”

that is,

〈Xg, Yg〉 := 〈Lg−1∗Xg, Lg−1∗Yg〉e = 〈g−1Xg, g−1Xg〉e

By construction, this metric is left invariant. We claim that it is also right invariant. For

〈Xeg−1, Yeg−1〉 = 〈gXeg−1, gYeg−1〉 = 〈Xe, Ye〉
by Ad invariance! We have shown

Theorem (21.8): There is a bi-invariant Riemannian metric on every compact
Lie group.

The group A(1) is not compact. σ 1 = dx/x and σ 2 = dy/x are left invariant. Hence

σ 1 ⊗ σ 1 + σ 2 ⊗ σ 2 = dx2 + dy2

x2

is a left invariant Riemannian metric on A(1). (Note that this is the Poincaré metric on

the “right half plane”; see Problem 8.7(1).) This metric is not right invariant, and in

fact there are no bi-invariant metrics on this group.

Theorem (21.9): In any bi-invariant metric on a group, the geodesics are the
1-parameter subgroups and their translates.

P R O O F: Let X be a left invariant field on G. We shall show that each integral

curve of X is a geodesic in a bi-invariant metric.

Since X generates right translations, X is a Killing field (see Section 20.1c).

Let C be a geodesic that is tangent to X at a point g. We need only show that X
is everywhere tangent to C . By Noether’s theorem, X and the unit tangent T to

C have a constant scalar product 〈X, T〉 along C . T has unit length and X, being

left invariant, also has constant length. Since X and T are tangent at g, it must be

that X and T are tangent everywhere along C .
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Thus in a group with a bi-invariant Riemannian metric, a geodesic through e is of

the form exp(tX), where X is the tangent at e. This was the (very meager) motivation
for denoting geodesics in a Riemannian manifold by exp(tX)!

One says that a Riemannian manifold Mn is geodesically complete if every geodesic

segment C(t) = expC(0)(tX) can be extended for all parameter values t . The euclidean

plane R
2 is complete but the euclidean plane R

2 − 0 with the origin deleted is not; the

geodesic exp(−1,0)(t∂/∂x) does not exist for t = 1 because of the hole at the origin.

The Poincaré upper half plane is complete; even though there is an edge at y = 0, this

edge is “at an infinite distance” from any point of the manifold.

It is a fact that if M is compact then it is automatically geodesically complete.

Furthermore

Theorem of Hopf–Rinow (21.10): If Mn is geodesically complete, then any
pair of points can be joined by a geodesic of minimal length.

For a proof of these two facts see Milnor’s book [M].

In a compact group G we may introduce a bi-invariant metric, and then the 1-

parameter subgroups are geodesics. Thus

Theorem (21.11): Every point in a compact connected Lie group G lies on at
least one 1-parameter subgroup.

As we have seen in the case G = Sl(2, R) in Problem 15.3(2), compactness is essential.

21.1d. Harmonic Forms in the Bi-invariant Metric

Theorem (21.12): In a bi-invariant metric on a compact connected Lie group G,
the bi-invariant forms coincide with the harmonic forms.

The proof will be broken into several parts.

Lemma: In a bi-invariant metric, the Hodge ∗ operator commutes with left and
right translations

∗ ◦ L∗
g = L∗

g ◦ ∗ and ∗ ◦ R∗
g = R∗

g ◦ ∗

P R O O F: We wish to show that L∗
g∗βgh = ∗L∗

gβgh for every form β at every point

gh. Thus it suffices to show that for any form α at h we have αh ∧ L∗
g∗βgh =

αh ∧ ∗L∗
gβgh . Define αgh by αh = L∗

gαgh . Since the metric is bi-invariant, so is

the volume form ω. Recall that (α ∧ ∗β)gh = 〈αgh, βgh〉ωgh . Then

αh ∧ L∗
g∗βgh = L∗

gαgh ∧ L∗
g∗βgh = L∗

g(αgh ∧ ∗βgh)

= L∗
g(〈αgh, βgh〉ωgh)
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= 〈αgh, βgh〉ωh (since 〈αgh, βgh〉 is a number)

= 〈L∗
gαgh, L∗

gβgh〉ωh = 〈αh, L∗
gβgh〉ωh = αh ∧ ∗L∗

gβgh

as desired. Similarly for right translations.

Lemma: Bi-invariant forms are harmonic in the bi-invariant metric.

P R O O F: If β is bi-invariant then β is closed, dβ = 0. From our previous lemma,

∗β is also bi-invariant; for example, L∗
g∗βgh = ∗βg shows that ∗β is left invariant.

Then d∗β = 0, showing that β is harmonic.

(21.12) will then be proved when we show

Lemma: Harmonic forms in the bi-invariant metric are bi-invariant if G is con-

nected.

P R O O F: First note that a left (right) translate of a harmonic form is harmonic,

since d(L∗
gh) = L∗

gdh = 0 and d(∗L∗
gh) = d L∗

g∗h = L∗
gd∗h = 0, because ∗h is

also harmonic. We claim that if G is connected then in fact L∗
ghgk = hk , and so

on. To see this, we need only show that both h and L∗
gh have the same periods;

see Corollary (14.27). Let z be a cycle on G and let g(t) be a curve in G joining

e = g(0) with g = g(1). Then ∫
z

L∗
gh =

∫
gz

h

But {g(t)z}, for 0 ≤ t ≤ 1 defines a deformation of z = g(0)z into gz = g(1)z;

thus these cycles are homologous, gz − z = ∂c, by the deformation theorem

(13.21), and since h is closed∫
gz

h =
∫

z
h +

∫
∂c

h =
∫

z
h

as desired.

21.1e. Weyl and Cartan on the Betti Numbers of G

The center of a group G is the subgroup of elements that commute with all elements of

the group. For example, the center of U (n) is the 1-parameter subgroup eiθ I , whereas

the center of SU (n) consists of the n scalar matrices λI , where λ is an nth root of unity.

Weyl’s Theorem (21.13): Let G be a compact connected group. Then the first
Betti number vanishes, b1(G) = 0, iff the center of G does not contain any
1-parameter subgroup.

(In particular, b1 = 0 for SU (n) but not for U (n).)
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P R O O F: Suppose first that the center of G contains a 1-parameter group etX,

where Xεg . Then etXg = getX for all g in G. Differentiate with respect to t and put

t = 0, yielding Xg = gX. Then the left invariant vector field Xg = Lg∗X = gX
on G is also right invariant, and thus bi-invariant. In terms of a bi-invariant

Riemannian metric on G, the covariant version of X, that is, the 1-form α defined

by α(Y) = 〈X, Y〉, is bi-invariant and hence harmonic. By Hodge’s theorem

b1 ≥ 1.

Suppose b1 �= 0. In a bi-invariant metric, there is then a harmonic, hence bi-

invariant 1-form α �= 0. Its contravariant version is then a bi-invariant vector field

X, that is, gXe = Xeg. Thus for all real t, gtXeg−1 = tXe. Then exp(tXe) =
exp(gtXeg−1) = g exp(tXe)g−1. Thus exp(tXe) is in the center of G.

Since the center of SO(3) consists only of the identity, Weyl’s theorem yields b1 = 0

for G = SO(3). Of course we knew this from (13.25) and the fact that SO(3) is

topologically RP3. Although the first Betti number vanishes, SO(3) is not simply

connected. We shall see in Section 21.4 that a strengthening of this version of Weyl’s

theorem will yield information about the contractibility of closed curves in groups.

The following plays an important role in gauge theories, as we shall see in Sec-

tion 22.1.

Cartan’s Theorem (21.14): If G is a compact nonabelian Lie group, then the
Cartan 3-form

�3 = trg−1dg ∧ g−1dg ∧ g−1dg

is a nontrivial harmonic form. In particular b3(G) �= 0.

P R O O F: �3 is bi-invariant, hence harmonic, and �3(X, Y, Z) = −3〈[X, Y], Z〉.
We need only show that it is not identically 0. But the only way 〈[X, Y], Z〉 can

be 0 for all Z is if XY − YX = [X, Y] = 0 for all X and Y in g . But then, since

X and Y commute, the power series shows

eXeY = eX+Y = eYeX

In a compact connected group each g ∈ G is an exponential, and so G is

abelian.

Finally note the component form of �3. Let e be any left invariant basis and let σ

be the dual basis. In Problem 21.1(1) you are asked to show that

(�3)i jk = −3Cki j = −3Ci jk

and thus

�3 = −1

2
Ci jkσ

i ∧ σ j ∧ σ k

where Cl
i j are the structure constants and where Cki j := gklCl

i j . When we use the bi-
invariant metric tensor to lower the top index of the structure constant symbol, the
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resulting coefficients Cki j are skew symmetric in all indices, not just i and j! This need

not hold when G is not compact.

Problem

21.1(1) Compute the preceding component form of �3.

21.2. The Fundamental Group and Covering Spaces

In what sense does the torus cover the Klein bottle?

21.2a. Poincaré’s Fundamental Group π1(M)

Let γ be a closed curve on a connected space M that begins and ends at a given base
point p0. Such a curve can either be considered as a map of a circle into M (that passes

through p0) or as a map γ : [0, 1] → M with γ (0) = p0 = γ (1). The latter seems more

convenient. Consider now all such maps with the same base point. We shall identify

two such “loops” γ1 = γ1(θ) and γ2 = γ2(θ), saying they are homotopic,

γ1 ∼ γ2

provided they are homotopic via a homotopy that preserves the base point; thus there

is an F : [0, 1] × [0, 1] → M , F = F(θ, t), with F(0, t) = p0 = F(1, t) for all

0 ≤ t ≤ 1, and F(θ, 0) = γ1(θ), F(θ, 1) = γ2(θ). t is the deformation parameter. We

talked about this notion in Section 10.2d. If γ is homotopic to a constant, we say γ is

trivial and write g ∼ 1.

P0

P0

γγ

γ

1

2

Figure 21.1

Note that in the left-hand figure, the loop γ is not trivial as far as homotopy is

concerned (try to contract it to the point p0!) even though it is trivial in homology (it is
the boundary of an orientable surface).
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Given two loops γ1 and γ2 on M , by reparameterization (so that each loop is traversed

with double speed) we may compose them to give a new loop, which is traditionally
written from left to right

γ1γ2(θ) := γ1(2θ), for 0 ≤ θ ≤ 1

2

:= γ2(2θ − 1) for
1

2
≤ θ ≤ 1

One can show that if γ ′
1 ∼ γ1 and if γ ′

2 ∼ γ2, then γ ′
1γ

′
2 ∼ γ1γ2. The homotopy

classes of loops on M form a group under “multiplication”

(γ1, γ2) → γ1γ2

This is the fundamental group of M , written π1(M; p0). It turns out that in a certain

sense the resulting group is in fact independent of the base point, and one simply writes

π1(M)

The identity 1 in this group is the homotopy class of the trivial loop (contractible

to p0). The inverse to a loop γ is the same loop traversed in the opposite direction,

γ −1(θ) := γ (1 − θ).

A space is simply connected if all loops are contractible to a point, that is, if the

group π1(M) consists only of the identity.

Consider loops on the circle M1 = S1, and the resulting π1(S1). These are homotopy

classes of maps γ : S1 → S1. We know that homotopic maps of the circle into itself

have the same (Brouwer) degree; see Corollary (8.19). It can also be shown, though

it is more difficult, that maps of S1 into itself having the same degree are homotopic.

Thus a loop γ is characterized, as far as homotopy is concerned, by its degree (i.e., an

integer). Since the map θ → nθ has degree n, we have

π1(S1) = Z

It can be shown that the fundamental group of the 2-torus is generated by the familiar

A and B of Figure 21.2. Briefly, any loop in the rectangle can be deformed (pushed)

out to the edge. π1(T 2) is abelian because it is clear that the loop A followed by B

B

B

T

A A

A

B B B

A

K

ABA
−1 −1

1= BABA
−1 −1

1=

Figure 21.2

followed by A−1 followed by B−1, being a loop going around the edge of the rectangle,
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is contractible to p0, that is, homotopic to the constant map; AB A−1 B−1 = 1 or

AB = B A. Thus π1(T 2) is the abelian group with generators A and B.

For the Klein bottle K , on the other hand, we have, from Figure 21.2, AB = B−1 A.

We say that π1(K ) is the (nonabelian) group with 2 generators and the single relation

AB A−1 B = 1.

The rotation group in the plane, SO(2), is topologically S1. π1{SO(2)} = Z. The

rotation group in space, SO(3), is topologically RP3

SO( )3 e

A

Figure 21.3

The 1-parameter subgroup A of rotations about the z-axis is not contractible, A �= 1,

but A2 = AA = 1; see Section 19.2a. Thus

π1{SO(3)} = Z2 A (21.15)

As we also have seen in Section 19.2a, that is why spinors can exist!

21.2b. The Concept of a Covering Space

We have discussed the notion of covering space informally several times in this book;

now we shall need to be a bit more systematic.

We shall say that a connected space M is a covering of the connected M , with covering

or projection map π : M → M , if each x ∈ M has a neighborhood U such that the

preimage π−1(U ) consists of disjoint open subsets {Uα} of M , each diffeomorphic,

under π : Uα → U , with U .

We illustrate this in the case M = R; M = S1 is the unit circle in the complex plane,

and π is the map π(x) = exp(2π i x)

( ) U UUUU

U

i

2

2
1

1
0

02−
2−

1−
1

1

−

(
)

1−

( ) ( ) ( )
3

( )

Figure 21.4
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We have indicated a neighborhood U of i ∈ S1 and the preimages of U in R.

The notion of covering space can also be described in terms of fiber bundles as

follows:

A covering space of a manifold M is a connected space M that is a fiber bundle over

M with fiber F a discrete set of points.

If F has k points we say that M is a k-fold or k-sheeted cover of M . Thus R is an

infinite fold cover of S1. The “fiber over 1 ∈ S1” is the infinite set of integers in R.

The edge of a (finite) Möbius band is a circle M = S that is a 2-fold cover of the

central circle M of the band

FM = S1

M = S1

Figure 21.5

The n-sphere Sn is a 2-fold cover of the projective Pn(R). SU (2) is a 2-fold covering

space of SO(3). R
n is an ∞-fold cover of the n-torus

T n = S1 × . . . × S1 ⊂ C
n

π(x1, . . . , xn) = (exp[2π i x1], . . . , exp[2π i xn])

We shall now indicate how one can construct, in several ways, interesting covering

spaces M for any manifold M that is not simply connected. (It will turn out that a

simply connected M will have M itself as its only covering.)

21.2c. The Universal Covering

Let Mn be a connected manifold. The universal covering manifold M
n

of Mn is

constructed as follows: Pick a base point p0 in M . A point of this new space M is

then defined to be an equivalence class of pairs (p, γ ), where p is a point in M and

γ : [0, 1] → M is a path in M starting at p0 and ending at p, and where (p, γ )

is equivalent to (p1, γ1) iff p = p1 and the paths γ and γ1 are homotopic. This last

requirement means simply that the closed path γ γ −1
1 consisting of γ followed by the

reversal of γ1 is deformable to the point p0. We then automatically have a covering map

π : M → M defined by assigning to the pair p, γ the endpoint p = γ (1). To give a

manifold structure to M we need to describe the local coordinate systems; we shall do

this after the following simple example.

We illustrate all this with M a 2-torus.
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p

p

0

C

C

′

C ′

′

Figure 21.6

The curves C and C ′ are homotopic, but neither is homotopic to C ′′. Thus in our

new space M , the universal cover of T 2, the pair p, C and p, C ′ will define the same

point p (to be described shortly) but p, C ′′ will be represented by a different point p′.
In the general case, we need to describe the manifold structure of M . We define

a coordinate neighborhood of the pair p, γ on M by first taking a simply connected
coordinate neighborhood U of p on M . Then to a point q in U we assign a curve

consisting of the given γ followed by an arc γpq in U from p to q. The homotopy

class of γ γpq is independent of the arc γpq chosen since all arcs from p to q in U are

homotopic as a result of the simple connectivity of U . Then a “lifted” neighborhood U
of p, γ in M , by definition, consists of the classes of all such curves γ γpq for all q in

U . This is illustrated in the toral case that follows.

p
p

0

C

qU

Figure 21.7

Since a pair q, γ γpq is completely determined, up to homotopy, by the endpoint q,

the points of U described are in 1 : 1 correspondence with the points q in U . Since U
is a coordinate patch on M , we have succeeded in introducing local coordinates in the

set U ; the local coordinates of q, γ γpq in M are simply the local coordinates in U of
q! We do this for all p in M . By this construction, the map π : M → M is such that

each π : U → U is a diffeomorphism.

Because π : M → M is locally a diffeomorphism, any Riemannian metric in M can

be lifted by π to yield a Riemannian metric in M , since the local coordinates in M yield

the “same” local coordinates in M . By this construction, π is also a local isometry, and

of course the curvatures coincide at p and π(p).

Let us verify that the universal cover of the torus T 2 is the plane R
2. To simplify

our pictures, we shall consider new curves on the torus and illustrate with these.
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A

A

B B

C

C

q Torus T 2

p
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p
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p
00

p
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2B

2A

Cq

Plane R
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  B

  A

p
0

p
0

p
0

p
0

Figure 21.8

In the upper diagram we have drawn the torus in the usual way as a unit rectangle

with opposite sides A identified and opposite sides B identified. We have drawn the

closed curves A and B starting at the base point p0.

In the lower R
2 diagram the point p00 corresponds to the pair p0γ where γ is the

constant path whose locus is simply the point p0. We know that a simply connected

patch around p0 in T will be in 1 : 1 correspondence with a patch around p00.

As we move along the curve A from p0 we also trace out a curve A starting out at

p00. On the completion of A in T we return to the point p0 again. Since, however, the

curve A in T is not homotopic to the constant curve p0, the pair (p0, γ = p0) is not

equivalent to the pair p0 A. This means that the endpoint p10 of A is not to be identified
with its beginning point p00! For the same reason, the vertical line through p10 is not to

be identified with that through p00. Likewise, if one goes around A twice on T , in T we

end not at p00 nor at p10 but rather at a new point p20. The same procedure shows that

on going around B we trace out a curve B that ends at a new point p01, and so forth.

We have also illustrated the case of a closed curve C in T that wraps twice around in

the A sense and once in the B sense; its lift C in T ends at the point p21. We also know,

by definition, that any curve in T that starts at p00 and ends at p21 represents (i.e.,

projects down via π to) a closed curve in T that is homotopic to C!

Thus although T can be considered the plane with identifications (x, y) ∼ (x + n,

y + m), the universal cover T is the plane without identifications, that is, T = R
2.
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Note that when M is simply connected, then by construction its universal cover M
coincides with M itself, since any pair of curves from p0 to a point p are homotopic.

21.2d. The Orientable Covering

This is the covering one obtains by using the same method as in the universal cover

except that we now say that a pair p, γ is equivalent to a pair p, γ1 iff when we transport
an orientation from p0 to p along γ1 we obtain the same orientation as along γ , that

is, if when we translate an orientation along the closed curve γ γ −1
1 we return with the

original orientation. As in the construction of the universal cover, it is important that

we are dealing with homotopy classes; if a closed curve C preserves orientation, and

if C ′ is homotopic to C , then C ′ will also preserve orientation. If M is orientable, then

the covering obtained reduces to M itself, but if M is not orientable we obtain a new

space M . In any case M is called the orientable cover of M , for, as we shall see, this

M is always orientable.

Consider, for instance, the Klein bottle, considered as a rectangle with the twisted

identifications on the vertical sides

p
0

p
0

p
0

p
0

A

A

B BK

q
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p00 10 20
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00
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p p
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∗
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q∗
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Figure 21.9
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In the second diagram we have indicated how one can view the Klein bottle as the

plane with twisted identifications; the point q in K corresponds to all of the points

q, q ′, q ′′, . . . , in the plane.

As we move along the curve A in K starting at p0, it is equivalent to moving along

the segment p00 p10 in R
2. When we reach the point p0 again in K we note that we

have traversed a closed path A in K along which the orientation has been reversed.

This means that in our R
2 picture of K , the point p10 is not to be identified with p00

in our model for this new covering space. If, however, we traverse the curve A twice,

the orientation is preserved; thus in the R
2 picture the point p20 is to be identified with

p00, but not to p10. On the other hand, p30, corresponding to traversing A three times,

is to be identified with p10, and so on.

On traversing B the orientation is preserved; hence p01 is still to be identified with p00.

It will then follow that in this new covering K , horizontal lines are to be identified if they

are separated by multiples of 1 unit, whereas vertical lines are to be identified (without
twisting) if they are separated by multiples of 2 units. If we make such identifications

in R
2 we see that the resulting space is simply a torus T of twice the area of K . The

two-sheeted-orientable cover of the Klein bottle is the torus! We have drawn the torus

in the last figure as a rectangle with the usual identifications on the boundary, and no

other identifications, q �= q ′. C is the closed curve that covers A twice.

By the same arguments, it can be shown in general that the orientable cover of M is

either M itself, if M is orientable, or a 2-sheeted cover of M .

21.2e. Lifting Paths

Letπ : M → M be any covering of the manifold M . M and M are locally diffeomorphic

under the map π . The fiber over p, π−1(p), is a disconnected set of points. (It is useful

to keep in mind the examples of the universal covering R
2 over T 2, with fiber an infinite

set of points, and the orientable cover T 2 over the Klein bottle K 2 with fiber a pair of

points.) Let p be any point in this fiber. Let C be a curve in M starting at some p and

ending at some q. Since M and M are locally diffeomorphic, there is a unique curve

C that starts at p and covers C, π(C) = C . Its endpoint q by construction is at some

point in the fiber π−1(q). This defines the lift of C to M that starts at p.

If C is closed, q = p, it may be that C is not closed; that is, it may be that q �= p. This

occurs in the universal covering iff the closed curve C is not homotopic to the constant

curve p; in the orientable cover it occurs when C is a curve that reverses orientation.

These follow essentially from the definitions of these covers. (In our definitions we

based everything at a base point p0, but it is not hard to see that we get similar behavior

if we choose a new base point p.)

Consider now the case of the universal cover. Let γ be any closed curve in M that

starts and ends at p. It projects down to a closed curve γ = π(γ ) starting and ending

at p = π(p). Since the closed curve γ is a lift of γ , it must be that the curve γ is

homotopic to the constant map p in M . As we deform γ to the point p we may cover

this deformation, using the local diffeomorphism π , by a deformation of γ to the point

p. We have thus shown that M is simply connected.
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Furthermore, by definition of the universal cover, the points of the fiber π−1(P0)

are in 1 : 1 correspondence with the distinct homotopy classes of closed curves in M
starting at p0. Summarizing, we have shown

Theorem (21.16): The universal cover M of M is simply connected and the
number of sheets in the covering is equal to the number of elements (the order)
of π1(M).

If a manifold is not orientable, there is some closed curve that reverses orientation.

By the same type of reasoning as in (21.16) we have the following explanation of the

terminology that we have been using:

Theorem (21.17): The orientable cover of M is always orientable. The number
of sheets is 1 if M is orientable and 2 if M is not orientable.

21.2f. Subgroups of π1(M)

The orientable cover of M resulted from identifying two curves γ and γ1 from p0 to p iff

the closed curve γ γ −1
1 preserves orientation, that is, if the homotopy class of γ γ −1

1 lies

in the subgroup of π1(M) consisting of orientation preserving loops. Similarly, given

any subgroup G of π1(M), we may associate a covering space MG of M as follows: We

again consider pairs p, γ , and we identify p, γ with p, γ1 iff the homotopy class of the

loop γ γ −1
1 lies in the subgroup G. For example, when G is the identity 1 of π1(M), the

covering is the universal cover, whereas if G is the subgroup of orientation-preserving

loops the cover is the orientable cover.

21.2g. The Universal Covering Group

Let π : G → G be the universal covering space of a Lie group G. We shall indicate why

it is that G itself is then a Lie group! For example, SU (2), being a simply connected cover

of SO(3), is the universal covering group of SO(3). A simpler example is furnished by

exp : R → S1 sending θ ∈ R to eiθ . This is a homomorphism of the additive group of

real numbers onto the multiplicative group of unit complex numbers. We have already

seen in Section 21.2b that this makes R a covering manifold for S1. Since R is simply

connected, it is the universal covering group of S1.

For identity in G we pick any point e ∈ π−1(e) in the fiber over the identity e of G.

If g is any point in G we define g−1 as follows: g can be represented by a path g(t) in

G joining the base point e to the point g(1) = g := π(g). Then the inverse path g−1(t)
joins e to g−1. This path can be covered by a unique path in G that starts at e. It ends

at some point in π−1(g−1) and we define this point to be g−1.

Let g and h be points in G; they can be represented by paths Cg and Ch joining e
to g ∈ π(g) and to h ∈ π(h). Consider the path Cg followed by the left translate gCh;
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since gCh starts at g and ends at gh, the composite path starts at e and ends at gh.

Its unique lift that starts at e ends in π−1(gh). This endpoint is defined to

be gh.

These basic constructions can be shown to yield the required universal covering

group (see, e.g., [P, chapter viii]).

Note that since we may lift the Lie algebra g = G(e) uniquely to e, the universal
cover of G has the same Lie algebra as G.

21.3. The Theorem of S. B. Myers: A Problem Set

A spiral curve in the plane can have curvature ≥ 1 and infinite length. Can a surface in space

have Gauss curvature ≥ 1 and infinite area?

Let Mn be a Riemannian manifold and consider a geodesic C joining p to q. Then

the first variation of arc length vanishes, L ′(0) = 0, for all variations whose variation

vector J = ∂x/∂α is orthogonal to T. Consider the second variation in this case, as

given by Synge’s formula (12.6)

L ′′(0) = 〈∇JJ, T〉L
0 +

∫ L

0

{‖ ∇TJ ‖2 −〈R(J, T)T, J〉}ds

We shall construct (n −1) such variations as follows: Let e2, e3, . . . , en be orthonormal

vector fields that are parallel displaced along C and orthogonal to C ; this is possible

since T is parallel displaced also. Define the (n − 1) variation vectors

Ji (s) := f (s)ei (s)

where f is a smooth function that vanishes at the endpoints p and q. We may put

e1 := T and use the e’s as a basis along C .

21.3(1) Show that for i = 2, . . . , n we have for the i th variation vector

L ′′
i (0) =

∫ L

0

{| f ′(s)|2 − | f (s)|2 Ri
1i1}ds

and

n∑
i=2

L ′′
i (0) =

∫ L

0

n∑
i=2

| f ′(s)|2ds −
∫ L

0

| f (s)|2Ric(T, T)ds

Suppose now that the Ricci curvature is positive

Ric(T, T) ≥ c > 0

and choose for variation function f (s) = sin(πs/L).
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21.3(2) Show that

n∑
i=2

L ′′
i (0) ≤ L

2

[
π2(n − 1)

L2
− c

]

and conclude then that if the geodesic C has length L such that

L > π

[
(n − 1)

c

]1/2

then C can not be a length-minimizing geodesic from p to q.

21.3(3) What does this say for the round n-sphere of radius a in R
n+1?

Now suppose that M is geodesically complete; the theorem of Hopf–Rinow (21.10)

states that between any pair of points there is a minimizing geodesic. Let us say that a

geodesically complete manifold has diameter � if any pair of points can be joined by

a geodesic of length ≤ � and for some pair p, q the minimizing geodesic has length

exactly �. We have proved

Theorem of S. B. Myers (21.18): A geodesically complete manifold Mn whose
Ricci curvature satisfies

Ric(T, T) ≥ c > 0

for all unit T has diameter ≤ π [(n − 1)/c]1/2.

Corollary (21.19): A geodesically complete Mn with Ric(T, T) ≥ c > 0 is a
closed (compact) manifold. In particular its volume is finite.

(In the case of 2 dimensions, Ric(T, T) = K is simply the Gauss curvature. The

2-dimensional version was proved by Bonnet in 1855.)

P R O O F: For a given p in M the exponential map expp :Mp → M is a smooth

map of all of R
n into M , since M is complete. By Myers’s theorem the closed

ball of radius r > π [(n − 1)/c]1/2 in M(p) is mapped onto all of M . This closed

ball is a compact subset of R
n and its image is again compact.

21.3(4) The paraboloid of revolution z = x2 + y2 clearly has positive curvature (and

can be computed from Problem 8.2(4)) and yet is not a closed surface. Reconcile this

with (21.19).

Now let Mn be geodesically complete with Ric(T, T) ≥ c > 0. It is thus compact.

Let M be its universal cover. We use the local diffeomorphism π : M → M to lift the

metric to M , and then, since π is a local isometry, M has the same Ricci curvature. Every

geodesic of M is clearly the lift of a geodesic from M , and so M is also geodesically

complete. We conclude that M is also compact. We claim that this means that M is a

finite-sheeted cover of M! Take a cover {U, V, . . .} of M such that U is the only set
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holding p0 and U is so small that it is diffeomorphic to each connected component of

π−1(U ). The inverse images of U, V, . . . form a cover of M , where each connected

component of π−1(U ) is considered as a separate open set. It is clear that if M were

infinite-sheeted then any subcovering of M would have to include the infinite collection

in π−1(U ). This contradicts the fact that M is compact. From (21.16) we have

Myers’s Corollary (21.20): If Mn is complete with positive Ricci curvature
bounded away from 0, then the universal cover of M is compact and π1(M)

is a group of finite order.

Thus given a closed curve C in M , it may be that C cannot be contracted to a point,

but some finite multiple kC of it can be so contracted. We have observed this before in

the case M = RP3.

This should first be compared with Synge’s theorem (12.12). It is stronger than

Synge’s theorem in that (i) M needn’t be compact, nor even-dimensional, nor orientable;

and (ii) positive Ricci curvature Ric(e1, e1), being a condition on a sum of sectional

curvatures
∑

j>1 K (e1 ∧ e j ), is a weaker condition than positive sectional curvature.

On the other hand, Synge’s conclusion is stronger, in that π1, being finite, is a weaker

conclusion than π1 consisting of one element. Synge’s theorem does not apply to RP3

whereas Myers’s theorem does (and in fact the fundamental group here is the group

with 2 elements Z2), but Myers’s theorem tells us that even-dimensional spheres have

a finite fundamental group whereas Synge tells us they are in fact simply connected.

There is a more interesting comparison with Bochner’s theorem (14.33). Myers’s the-

orem is in every way stronger. First, it doesn’t require compactness; it derives it. Second,

it concludes that some multiple kC of a closed curve is contractible. Now in the process

of contracting kC, kC will sweep out a 2-dimensional deformation chain c2 for which

∂c2 = kC see 13.3a(III), and so C = ∂(k−1c2). This says that C bounds as a real 1-cycle,

and thus b1(M) = 0. Thus Myers’s theorem implies Bochner’s. We have also seen in

Section 21.2a that contractibility is a stronger condition than bounding, for a loop.

Although it is true that Myers’s theorem is stronger than Bochner’s, it has turned

out that Bochner’s method, using harmonic forms, has been generalized by Kodaira,

yielding his so-called vanishing theorems, which play a very important role in complex

manifold theory.

Finally, it should be mentioned that there are generalizations of Myers’s theorem.

Galloway [Ga] has relaxed the condition Ric(T, T) ≥ c > 0 to the requirement that

Ric(T, T) ≥ c + d f/ds along the geodesic, where f is a bounded function of arc

length. Ric(T, T) need not be positive in this case in order to demonstrate compactness.

Galloway uses this version of Myers’s theorem to give conditions on a space–time that

will ensure that the spatial section of a space–time is a closed manifold!

21.3(5) Distance from a point to a closed hypersurface. Let V n−1 be hypersurface of

the geodesically complete Riemannian Mn and let p be a point that does not lie on V .

We may look at all the minimizing geodesics from p to q, as q ranges over V . The

distance L from p to V is defined to be the greatest lower bound of the lengths of these
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geodesics. Let V be a compact hypersurface without boundary. Then it can be shown

that this infimum is attained, that is, there is a point q ∈ V such that the minimizing

geodesic C from p to q has length L . Parameterize C by arc length s with p = C(0).

M

T

T

V
J

C

p

q

Figure 21.10

(i) Show from the first variation formula that C strikes V orthogonally. (This gener-

alizes the result of Problem 1.3(3).)

(ii) Consider a variation vector field of the form J(s) = g(s)e2(s) where e2 is

parallel displaced along C and g is a smooth function with g(0) = 0 and g(L) = 1.

Then L ′′(0) is of form B(J, J) + ∫ L
0

{|g′(s)|2 − |g(s)|2 R2
121}ds, where B(J, J) is the

normal curvature of V at the point q for direction J(L) and hypersurface normal T(L);

see (11.50). By taking such variations based on (n − 1) parallel displaced orthonormal

e2, . . . , en , all with the same g, and putting g(s) = s/L , show that
n∑

i=2

L ′′
i (0) = H(q) + (n − 1)

L
−

(
1

L2

) ∫ L

0

s2Ric(T, T)ds

where H(q) is the mean curvature of V at q for normal direction T.

(iii) Assume that M has positive Ricci curvature, Ric(T, T) ≥ 0 (but we do not
assume that it is bounded away from 0) and assume that V is on the average curving
towards p at the point q; that is, h := H(q) < 0. Show then that our minimizing
geodesic C must have length L at most (n − 1)/h.

In general relativity one deals with timelike geodesics that locally maximize proper

time (because of the metric signature −, +, +, +). Our preceding argument is similar

to analysis used there to prove the Hawking singularity theorems, but the pseudo-

Riemannian geometry involved is really quite different from the Riemannian and forms

a subject in its own right. For further discussion you may see, for example, [Wd, chaps. 8

and 9].
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21.4. The Geometry of a Lie Group

What are the curvatures of a compact group with a bi-invariant metric?

21.4a. The Connection of a Bi-invariant Metric

Let G be a Lie group endowed with a bi-invariant metric. (As we know from Theorem

(21.8), such metrics exist on every compact group, and of course on any commutative

group. The plane G = R
2 can be considered the Lie group of translations of the plane

itself; (a, b) ∈ R
2 sends (x, y) to (x + a, y + b). This is an example of a noncompact

Lie group with bi-invariant metric dx2 + dy2.)

To describe the Levi-Civita connection ∇XY we may expand the vector fields in

terms of a left invariant basis. Thus we only need ∇XY in the case when X and Y are

left invariant. From now on, all vector fields X, Y, Z, . . . will be assumed left invariant.
We know from Theorem (21.9) that the integral curves of a left invariant field are

geodesics in the bi-invariant metric, hence ∇XX = 0. Likewise

0 = ∇X+Y(X + Y) =∇XY+∇YX =∇XY−∇YX+2∇YX (21.21)

that is,

2∇XY = [X, Y]

exhibits the covariant derivative as a bracket (but of course only for left invariant fields).

Look now at the curvature tensor

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z

In Problem 21.4(1) you are asked to show that this reduces to

R(X, Y)Z = −1

4
[[X, Y], Z] (21.22)

For sectional curvature, using (20.35),

−4〈R(X, Y)Y, X〉 = 〈[[X, Y], Y], X〉 = −〈Y, [[X, Y], X]〉
= 〈Y,[X,[X, Y]]〉 = −〈[X, Y], [X, Y]〉

or

K (X ∧ Y) = 1

4
‖ [X, Y] ‖2 (21.23)

Thus the sectional curvature is always ≥ 0, and vanishes iff the bracket of X and Y
vanishes!

For Ricci curvature, in terms of a basis of left invariant fields e1, . . . , en

Ric(e1, e1) =
∑
j>1

K (e1∧e j ) = 1

4

∑
j

‖ [e1, e j ] ‖2

Thus Ric(X, X) ≥ 0 and = 0 iff [X, Y] = 0 for all Y ∈ g .

The center of the Lie algebra is by definition the set of all X ∈ g such that

[X, Y] = 0 for all Y ∈ g . Thus if the center of g is trivial we have that the continuous
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function X �→ Ric(X, X) is bounded away from 0 on the compact unit sphere in g
at the identity. But since the metric on G is invariant under left translations, we then

conclude that the Ricci curvature is positive and bounded away from 0 on all of G.

From Myers’s theorem we conclude

Weyl’s Theorem (21.24): Let G be a Lie group with bi-invariant metric. Sup-
pose that the center of g is trivial. Then G is compact and has a finite fundamental
group π1(G).

This improves (21.13) since it can be shown that if there is no 1-parameter subgroup

in the center of G then the center of g is trivial; see Problem 21.4(2). Note also that

the condition “the center of g is trivial” is a purely algebraic one, unlike the condition

for the center of the group appearing in Theorem (21.13).

21.4b. The Flat Connections

We have used the Levi-Civita connection for a bi-invariant Riemannian metric. When

such metrics exist, this is by far the most important connection on the group. On any
group we can consider the flat left invariant connection, defined as follows: Choose a

basis e for the left invariant vector fields and define the connection forms ω to be 0,

∇e = 0. (There is no problem in doing this since G is covered by this single frame field.)

Thus we are forcing the left invariant fields to be covariant constant, and by construction

the curvature vanishes, dω+ω∧ω = 0. This connection will have torsion; see Problem

21.4(3). Similarly we can construct the flat right invariant connection.

Problems

21.4(1) Use the Jacobi identity to show (21.22).

21.4(2) Suppose that X is a nontrivial vector in the center of g ; thus ad X(Y) = 0 for
all Y in g . Fill in the following steps, using (18.32), showing that etX is in the
center of G. First e tadXY = Y. Then etXYe−tX = Y. Thus exp(etXYe−tX) = eY.
Then etX is in the center of G.

21.4(3) Show that the torsion tensor of the flat left invariant connection is given by the
structure constants Ti

jk = −Ci
jk .





CHAPTER 22

Chern Forms and Homotopy
Groups

How can we construct closed p-forms from the matrix θ2 of curvature forms?

22.1. Chern Forms and Winding Numbers

22.1a. The Yang–Mills “Winding Number”

Recall that in (20.62) and (20.63), we were comparing, on a distant 3-sphere S3 ⊂ R
4,

the interior frame eU with the covariant constant frame eV ,

eU (x) = eV (x)gV U (x)

gV U : S3 → SU (n)

the gauge group being assumed SU (n).

We saw in (21.14) that the Cartan 3-form on SU (n)

�3 = tr g−1dg ∧ g−1dg ∧ g−1dg

is a nontrivial harmonic form, and we now consider the real number obtained by pulling

this form back via gV U and integrating over S3

∫
S3

g∗
V U (�3) =

∫
gV U (S3)⊂SU (n)

�3 (22.1)

We shall normalize the form �3; this will allow us to consider (22.1) as defining the

degree of a map derived from gV U .

Consider, for this purpose, the SU (2) subgroup of SU (n)

SU (2) = SU (2) × In−2 :=
[

SU (2) 0

0 In−2

]
⊂ SU (n)

The Cartan 3-form �3 of SU (n) restricts to �3 for SU (2), and we shall use as normal-

ization constant ∫
SU (2)

�3

which we proceed to compute.

583
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�3 and the volume form vol3 on SU (2), in the bi-invariant metric, are both bi-

invariant 3-forms on the 3-dimensional manifold SU (2); it is then clear that �3 is

some constant multiple of vol3. From (19.9) we know that iσ1/
√

2, iσ2/
√

2, and

iσ3/
√

2 form an orthonormal basis for su(2) with the scalar product 〈X, Y 〉 = − tr XY
(recall that (19.9) defines the scalar product in ig , not g ). Then, from (21.5) and

(19.6)

�3(iσ1, iσ2, iσ3) = 3 tr([iσ1, iσ2]iσ3) = −3 tr(2iσ3iσ3)

= 6 tr σ3σ3 = 12

Since the iσ ’s/
√

2 are orthonormal, we have vol3(iσ1, iσ2, iσ3) = 23/2. Thus we have

shown

�3 = (2−3/2)12 vol3 (22.2)

What, now, is the volume of SU (2) in its bi-invariant metric?

SU (2) is the unit sphere S3 in C
2 = R

4 where we assign to the 2 × 2 matrix u
its first column. The identity element e of SU (2) is the complex 2-vector (1, 0)T or

the real 4-tuple N = (1, 0, 0, 0)T . The standard metric on S3 ⊂ R
4 is invariant under

the 6-dimensional rotation group SO(4), and the stability group of the identity is the

subgroup 1 × SO(3). Thus S3 = SO(4)/SO(3). The standard metric is constructed

first from a metric in the tangent space S3
N to S3 at N that is invariant under the stability

group SO(3) and then this metric is transported to all of S3 by the action of SO(4) on

SO(4)/SO(3). Since the stability group SO(3) is transitive on the directions in S3
N at

N , it should be clear that this metric is completely determined once we know the length
of a single nonzero vector X in S3

N .

Of course SU (2) acts transitively on itself SU (2) = S3 by left translation. It also

acts on its Lie algebra S3
e by the adjoint action (18.31), and we know that the bi-

invariant metric on SU (2) arises from taking the metric 〈X, Y 〉 = − tr XY at e and

left translating to the whole group. Now the adjoint action of SU (2) on S3
e is a dou-

ble cover of the rotation group SO(3) (see Section 19.1d) and thus is transitive again

on directions at e. We conclude then that the bi-invariant metric on SU (2) = S3 is

again determined by the length assigned to a single nonzero vector in S3
e = S3

N . The

bi-invariant metric on SU (2) is simply a constant multiple of the standard metric
on S3.

Consider the curve on SU (2) given by diag(eiθ , e−iθ ); its tangent vector at e is simply

iσ3 whose length in the bi-invariant metric is
√

2. The corresponding curve in C
2 is

(eiθ , 0)T , which in R
4 is (cos θ, sin θ, 0, 0)T , whose tangent vector at N is (0 1 0 0)T

with length 1. Thus the bi-invariant metric is
√

2 times the standard metric on the unit

sphere S3. Since a great circle will then have bi-invariant length 2π
√

2, we see that

the bi-invariant metric is the same as the standard metric on the sphere of radius
√

2.

(Note that this agrees with the sectional curvature result (21.23), K (iσ1 ∧ iσ2) = (1/4)

‖ [iσ1, iσ2] ‖2 / ‖ iσ1 ∧ iσ2 ‖2= (1/4) ‖ −2iσ3 ‖2 / ‖ iσ1 ∧ iσ2 ‖2= 1/2.)

The volume of the unit 3-sphere is easily determined.
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S2

S3

α

3 =
∫ π

0 4π πsin2 22αdαvol(S  ) =  

Figure 22.1

Thus our sphere of radius
√

2 has volume (23/2)2π 2, and so∫
SU (2)

�3 = 24π2

Finally we define the winding number at infinity of the instanton by

1

24π 2

∫
S3

g∗
V U�3 = 1

24π 2

∫
gV U (S3)

�3 (22.3)

= 1

24π 2

∫
gV U (S3)

tr g−1dg ∧ g−1dg ∧ g−1dg

This is the degree of the map gV U in the case when G = SU (2). What it means in the

case SU (n) will be discussed later on in this chapter.

22.1b. Winding Number in Terms of Field Strength

Chern’s expression (20.68) in the U (1) case suggests the possibility of an expression

for this winding number in terms of an integral of a 4-form involving curvature.

We shall assume that the Y–M potential ωU is globally defined in U ; that is, ωU has
no singularities in U, j (eU ) = 0.

Consider the following observation, holding for the curvature 2-form matrix for any
vector bundle over any manifold:

θ ∧ θ = (dω + ω ∧ ω) ∧ (dω + ω ∧ ω)

= dω ∧ dω + dω ∧ ω ∧ ω + ω ∧ ω ∧ dω + ω ∧ ω ∧ ω ∧ ω

Use now

tr(ω ∧ ω ∧ dω) = tr(dω ∧ ω ∧ ω)

and, as in Theorem (21.3)

tr(ω ∧ ω ∧ ω ∧ ω) = 0
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Then

tr θ ∧ θ = d tr(ω ∧ dω) + 2 tr(dω ∧ ω ∧ ω)

Also

d(ω ∧ ω ∧ ω) = dω ∧ ω ∧ ω − ω ∧ dω ∧ ω + ω ∧ ω ∧ dω

and so

d tr(ω ∧ ω ∧ ω) = 3 tr(dω ∧ ω ∧ ω)

Thus we have shown

Theorem (22.4): For any vector bundle over any Mn we have

tr(θ ∧ θ) = d tr

{
ω ∧ dω + 2

3
ω ∧ ω ∧ ω

}

Thus tr θ ∧ θ is always locally the differential of a 3-form, the Chern–Simons 3-form.

Of course ω is usually not globally defined.

Now back to our Y–M case considered in Section 20.6a. In that case θ vanishes on

and outside the 3-sphere S3, and so

ω ∧ dω = ω ∧ (θ − ω ∧ ω) = −ω ∧ ω ∧ ω

on and outside S3. Then from (22.4)∫
U

tr θ ∧ θ =
∫

∂U=S3

−1

3
tr ω ∧ ω ∧ ω

But ωU = g−1dg on S3; see (20.61). (22.3) then gives

Theorem (22.5): The winding number of the instanton is given by

1

24π 2

∫
S3

tr ωU ∧ ωU ∧ ωU = − 1

8π 2

∫
R

4

tr θ ∧ θ

Note that tr θ ∧ θ is not the Lagrangian, which is basically tr θ ∧ ∗θ

F ∧ F = (F ∧ F)0123dt ∧ dx ∧ dy ∧ dz
(22.6)

=
∑
i< j

∑
k<l

εi jkl Fi j Fkldt ∧ dx ∧ dy ∧ dz

whereas

F ∧ ∗F =
∑
j<k

Fjk F jkdt ∧ dx ∧ dy ∧ dz

where the Fjk are matrices. tr θ ∧ θ was introduced in Problem 20.5(3).

We have just shown that the winding number of an instanton is given, in terms

of the Hilbert space scalar product (20.40), by (8π2)−1(θ, ∗θ); this scalar product is

defined since θ is assumed to have compact support. This is the degree of the map

g : S3 → SU (2) defined by the instanton. This degree is interesting for the following
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reason: The Y–M fields are critical points for the Y–M action functional. In particular, a

connection ω yielding a (relative) minimum for S will be a Y–M field. But by Schwarz’s

inequality (in the euclidean metric), the euclidean action S on M4 will satisfy

8π2 | deg(g) |=| (θ, ∗θ) |≤‖ θ ‖‖ ∗θ ‖=‖ θ ‖2= 2S

since ∗ is an isometry on forms. Thus the degree yields a lower bound for the euclidean
action! Furthermore, we have equality iff ∗θ is proportional to θ . Now ∗ ∗ α = α,

when α is a 2-form. It is easily seen that ∗ acting on our 2-forms in M4 is self-adjoint

in the scalar product (20.40). Thus ∗ has eigenvalues ±1 on the 2-forms and so ∗θ is

proportional to θ only when ∗θ = ±θ , that is, iff the connection is self-dual or anti-self-

dual; see (20.58). In particular, the self-dual fields with degree n and the anti-self-dual

fields with degree −n will both yield Y–M fields having minimum action among all

fields of degree ±n.

22.1c. The Chern Forms for a U(n) Bundle

The topological significance of tr θ ∧ θ , generalizing Poincaré’s theorem for closed

surfaces,
∫∫

K d A = 2πχ(M2), was discovered by Chern and will be discussed later

in this chapter. tr θ ∧ θ is but one of a whole family of significant integrands, the Chern

forms. We shall define these forms now and then proceed to the topological questions

in our remaining sections.

Let A be any N × N matrix of complex numbers operating on complex N -space

V = C
N . Consider the characteristic (eigenvalue) polynomial for A

det(λI − A) = (λ − λ1)(λ − λ2) . . . (λ − λN )

= λN − (λ1 + · · · + λN )λN−1 + · · · ± (λ1λ2 . . . λN )

Putting λ = −1 yields

det(I + A) =
N∑

p=0

[
tr

p∧
A
]

(22.7)

= 1 + (tr A) +
(

tr

2∧
A
)

+ · · · +
(

tr

N∧
A
)

where

tr A :=
∑

i

λi (22.8)

tr

2∧
A :=

∑
i< j

λiλ j

tr

3∧
A :=

∑
i< j<k

λiλ jλk

tr

N∧
A := λ1λ2 . . . λN = det A

are the elementary symmetric functions of the eigenvalues of A. The reason for this

notation is as follows: if A : V → V then we may let A act on each of the exterior
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power spaces
∧p V by the (linear) exterior power operation

∧p A

( p∧
A
)
(v1 ∧ v2 ∧ . . . ∧ vp) := Av1 ∧ Av2 ∧ . . . ∧ Avp

We then take the usual trace of
∧p A on the space

∧p V . For example,
∧N V is a

1-dimensional vector space and from (2.50)

( N∧
A
)
(v1 ∧ v2 ∧ . . . ∧ vN ) = det A(v1 ∧ v2 ∧ . . . ∧ vN )

and so tr
∧N A = det A = λ1 . . . λN .

Note that (λk
1 + · · · + λk

N ) = tr Ak is simply the trace of the k th (ordinary matrix)

power of the matrix. Thus, for example,

tr

2∧
A =

∑
r<s

λrλs = 1

2

[( ∑
j

λ j

)2 −
∑

j

λ2
j

]
(22.9)

= 1

2
[(tr A)2 − tr A2]

In a similar manner it can be shown, using “Newton’s identities,” that each tr
∧k A can

be expressed as a polynomial in tr A, tr(A2), . . . , tr(Ak). We shall return to this point

in a moment.

Now let E be a complex C
N bundle with structure group U (N ), base manifold Mn ,

and connection ω.

Consider the result of formally substituting for A in (22.7), the matrix of curvature

2-forms θ = θU multiplied by i/2π

det

(
I + iθ

2π

)

Thus we are looking at a matrix whose α
α entry is 1+(i/2π)θα

α and whose nondiagonal
α

β entry is (i/2π)θα
β and where we expand out the determinant in the usual way with

products being replaced by ∧ products; since θ j
k is a 2-form there is no problem with

ordering. The result is a sum of forms of different degrees

det

(
I + iθ

2π

)
= 1 + i

2π
tr θ + · · · (22.10)

:= 1 + c1(E) + c2(E) + · · · + cN (E)

where cr (E) is a 2r -form on U ⊂ Mn , the r th Chern form.

The form c1 is familiar

c1 = i

2π
tr θ = i

2π
θα

α (22.11)

and in the case of a complex line bundle, θα
α is simply the 2-form θ appearing

in Theorem (17.28). For the tangent complex line bundle to an oriented surface,

c1(T M2) = (1/2π)K d A.

For c2, from (22.9) we have

c2 = − 1

8π2
[tr θ ∧ tr θ − tr(θ ∧ θ)] (22.12)
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Suppose that the bundle actually has the special unitary group SU (N ) for structure

group, rather than U (N ). Since the Lie algebra then consists of traceless skew-hermitian

matrices, tr θ = 0, and thus in this case

c1(E) = 0

and furthermore

c2(E) = 1

8π 2
tr(θ ∧ θ)

This is precisely the 4-form appearing in the winding number of an SU(2) instanton,

given in (22.5)!

In the general case, note that the matrices θ are only locally defined, and in an overlap

θV = cV UθU c−1
V U . However

det

(
I + iθV

2π

)
= det

{
I + i

2π
cV UθU c−1

V U

}

= det cV U

(
I + iθU

2π

)
c−1

V U = det

(
I + iθU

2π

)

shows that each Chern form cr (E) is in fact a globally defined 2r-form on all of Mn!

In Problem 22.1(1) you are asked to show that each cr is a real form.

We can see that c1 is a closed 2-form as follows: From −2π idc1 = d tr θ = tr dθ ,

and from Bianchi this is tr(θ ∧ ω − ω ∧ θ). But tr ω ∧ θ = tr θ ∧ ω since θ is a

2-form. We conclude that dc1 = 0, as claimed. It is even simpler to remark that locally

θ = dω + ω ∧ ω and then

tr θ = d tr ω

since tr ω ∧ ω = − tr ω ∧ ω = 0. Thus tr θ is locally exact, hence closed.

For an SU (N ) bundle, c2 is locally the differential of the Chern–Simons 3-form

given in Theorem (22.4), and so c2 is a closed 4-form in this case. We can also see this

directly for any U (N ) bundle, from the Bianchi identity. From (22.12)

−(8π2)dc2 = d[tr θ ∧ tr θ − tr(θ ∧ θ)] = −d tr(θ ∧ θ)

But, from (18.46) and (20.55), d tr(θ ∧ θ) = tr ∇(θ ∧ θ) = 0, since ∇θ = 0.

As we have mentioned (but not proved), Newton’s identities show that each cr is a

polynomial in forms of the type tr(θ ∧ θ ∧ . . . ∧ θ); we have shown this for c1 and c2

and you are asked in Problem 22.1(2) to verify it for c3. (For a derivation of the Newton

identities, see [Ro, ex. 1, p. 132], but not before reading the remainder of this section.)

Since ∇ of such a polynomial vanishes by Bianchi, we conclude that each Chern form

is closed. We present a different proof of this important fact now.

Theorem of Chern and Weil (22.13): Each cr is a closed 2r-form and thus de-
fines a real de Rham class. Furthermore, different connections for the U (N )

bundle will yield Chern forms that differ by an exact form and hence define the
same de Rham cohomology class.

P R O O F: We sketch briefly a proof from Roe’s book [Ro, p. 113].
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We shall look at formal power series expansions. For example, the matrix

a = a(θ) = I + qθ considered previously, where q = i/2π , has a formal

inverse. If we write θ r := θ ∧ θ ∧ . . . ∧ θ, r factors

a−1 = (I + qθ)−1 =
∑

r

(−1)r qrθ r (22.14)

This makes sense since it is only a finite series, θ ∧θ ∧ . . .∧θ vanishing when the

number of factors exceeds half the dimension of the manifold M . Suppose now

that we let the connection ω vary smoothly with a real parameter t , ω = ω(t).
Then both the curvature θ and the matrix a vary with t . But for any nonsingular

matrix a(t) we have for the derivative of its determinant | a(t) |
d | a(t) |

dt
=

∑ [
∂ | a |
∂a jk

]
da jk

dt

= A jkȧ jk =| a | (a−1)k j ȧ jk =| a | tr[a−1ȧ]

where A jk is the signed cofactor of a jk . Hence

d log | a(t) |
dt

= tr[a−1ȧ] (22.15)

Thus, putting θ = dω + ω ∧ ω, θ̇ = dω̇ + ω ∧ ω̇ + ω̇ ∧ ω, ȧ = q θ̇

d log | a(t) |
dt

=
∑

r

(−1)r qr+1 tr[θ r ∧ (dω̇ + ω ∧ ω̇ + ω̇ ∧ ω)]

One sees immediately by induction from Bianchi that

dθ r = θ r ∧ ω − ω ∧ θ r

for r ≥ 0, with θ0 = 1.

Furthermore, tr[θ r ∧ ω̇ ∧ ω] = − tr[ω ∧ θ r ∧ ω̇], since θ r ∧ ω̇ is a form of odd

degree. Hence

d log | a(t) |
dt

=
∑

r

(−1)r qr+1 tr[θ r ∧ dω̇ + dθ r ∧ ω̇]

or
d log | a(t) |

dt
= d

∑
r

(−1)r qr+1 tr[θ r ∧ ω̇] (22.16)

exhibits d log | a(t) | /dt as the differential of a sum of forms (of various degrees).

Note also that the forms on the right are indeed globally defined forms on the base
space M, since both θ r and ω̇ are forms of type Ad G; this was Problem 18.3(4).

As a first consequence of (22.16) note the following: If ω and ω′ are two

connections on M , then Problem 20.3(1) shows that their convex combination

ω(t) = tω + (1 − t)ω′ is again a connection. This gives a line in the affine space

of all connections on M that starts at ω′ and ends at ω. Now the flat connection

ω = 0, θ = 0, is not necessarily a connection on M for the given bundle (why?),

but it is a connection on a single coordinate patch U of M . Then ω(t) = tω is

a line of connections on U joining any given connection ω = ω(1) to the flat

connection ω(0) = 0. Since a(0) = I , we have, from (22.16),

log | I + qθ |= d
∫ 1

0

{ ∑
r

(−1)r qr+1 tr[θ r (t) ∧ ω]

}
dt
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and so log | I + qθ | is locally exact (being exact on U ) hence closed; in fact it

is of the form log | I + qθ |= dβ where

β :=
∫ 1

0

{[q tr ω − q2 tr θ(t) ∧ ω + · · ·]}dt

But then

| I + qθ |= exp log | I + qθ |= exp dβ = 1 + dβ + 1

2!
dβ ∧ dβ + · · ·

is again locally exact, except for the constant term, hence closed. We are finished

with the first part of Theorem (22.13).

Consider now a pair of global connections ω and ω′ on M and the line tω′ +
(1− t)ω in the space of connections. From (22.16) we have log | aω′ | − log | aω |
= dγ for a globally defined form γ on M

γ =
∫ 1

0

∑
r

(−1)r qr+1 tr[θ r (t) ∧ (ω′ − ω)]dt

Then

| aω′ |
| aω | = exp{log | aω′ | − log | aω |} = exp dγ

= 1 + dγ + 1

2!
dγ ∧ dγ + · · · =: 1 + dν

and so | aω′ | − | aω |=| aω | ∧dν. But we have just seen that | aω |= det(I +qθ)

is closed. Hence | aω′ | − | aω | is globally exact, proving the second part of the

theorem.

Problems

22.1(1) Show directly from det(I + iθ/2π) that each cr is a real form when the structure
group is a subgroup of U(N).

22.1(2) Express c3 as a polynomial in tr θ, tr(θ ∧ θ), and tr(θ ∧ θ ∧ θ).

22.2. Homotopies and Extensions

Is SU (n) simply connected?

22.2a. Homotopy

In Section 10.2d we discussed when two closed curves in M are homotopic. We now

introduce the general concept of homotopic maps.

Let f0 and f1 be two maps of a space W into Mn . We say that they are homotopic
if there is a map F : W × I → M of the “cylinder” W × [0, 1] into M such that

F(w, 0) = f0(w) and F(w, 1) = f1(w)
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1

0

F

W

M P0

f1

f0

f0(W)

Figure 22.2

Each of the maps ft , defined by ft(w) := F(w, t), is homotopic to the “original”

map f0. If f1 maps all of W into a single point p0 we say that f0 is homotopic to the
constant map p0.

We shall be especially concerned with the case when W = Sk is the unit k-sphere,

k = 0, 1, 2, . . ., in R
k+1, even when k > n = dim M! Sk is of course the boundary of

the closed (k + 1)-ball Dk+1 and the following simple observation will play a crucial

role in our final section.

Extension Theorem (22.17): f : Sk → Mn is homotopic to a constant map iff
f can be extended to a map of the ball

f ′ : Dk+1 → Mn

P R O O F: Suppose that f ′ : Dk+1 → M extends f : Sk → M ; thus f ′(x) = f (x)

for ‖ x ‖= 1. Define F : Sk × I → M by

F(x, r) = f ′{(1 − r)x}, x ∈ Sk, 0 ≤ r ≤ 1

Then F(x, 0) = f ′(x) = f (x) and F(x, 1) = f ′(0) shows that f is homotopic

to the constant map f ′(0).

Suppose, on the other hand, that f (= f0) is homotopic to the constant map

f1(x) = p0 ∈ M . Then we have a map F : Sk → M with F(x, 0) = f (x)

and F(x, 1) = f1(x) = p0. Define an extension f ′ : Dk+1 → M by f ′(rx) =
F(x, 1 − r) for 0 ≤ r ≤ 1.

The extension theorem is important when discussing defects, see [Mi].

22.2b. Covering Homotopy

Let π : E → Mn be a vector bundle and let f : W → E be a map of a space W into the

bundle space E . Then we get a map f : W → Mn into the base space by f := π ◦ f .
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E E

f (W )

f(W )

M

P0

_

f (W )

M
f 1(W )_

f(W )_

Figure 22.3

Suppose now that we have a homotopy F of f to a new map f
1

: W → M . We

claim that we can “cover” this homotopy by a homotopy of the original map f ; that is,

there is a map F : W × I → E such that F(w, 0) = f (w) and π F(w, t) = F(w, t). A

sketch goes as follows: Let the vector bundle π : E → M have a connection. Consider

a fixed point w ∈ W and look at the curve C : t → F(w, t) in M . There is a unique
lift of this curve to a curve C in E starting at f (w) that represents parallel translation
along C . In other words, we look at the unique curve in E that starts at f (w), lies over

C , and is tangent to the n-plane distribution defined locally by

dψα + ωα
βψ

β = 0

Note that if f is homotopic to the constant map p0 (as in the second part of our figure)

it need not be that f will be homotopic to a constant map; the points F(w, 1) of the

lifted homotopy will lie on the fiber π−1(p0) but will not necessarily reduce to a single

point in the fiber.

What we have said for a vector bundle can also be shown to hold for a principal fiber

bundle. The lifted curves are then tangent to the n-plane distribution

ω∗ = g−1ωg + g−1dg = 0

It turns out that one can cover homotopies in any fiber bundle, without any use of a

connection. In fact, one generalizes the notion of a fiber bundle to that of a fiber space;

this is a space P and a map π : P → M such that homotopies can always be covered,

as defined earlier. Such spaces need not be local products.
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22.2c. Some Topology of SU(n)

SU (n) is represented by n ×n matrices acting on C
n . Since each g ∈ SU (n) is unitary,

SU (n) sends the unit sphere S2n−1 ⊂ C
n

S2n−1 = {z ∈ C
n

∣∣ | z1 |2 + · · · + | zn |2= 1}
into itself. It is clear that SU (n) acts transitively on S2n−1, for the point (1, 0, . . . , 0)

can be sent into the point z = (z1, . . . , zn) simply by writing down some g ∈ SU (n)

having zT as its first column. The isotropy subgroup for the point (1, 0, . . . , 0) is clearly

the subgroup [
1 0

0 SU (n − 1)

]

which we shall briefly denote simply by SU (n − 1).

S2n−1 = SU (n)

SU (n − 1)
(22.18)

and in fact SU (n) is a principal SU (n − 1) bundle over S2n−1 (see Theorem (17.11)).

If P is a fiber bundle over M with fiber F we shall write symbolically

F → P
π→ M (22.19)

and we shall frequently omit the projection map π . Thus we write

SU (n − 1) → SU (n) → S2n−1 (22.20)

Theorem (22.21): If F → P → M is a fiber bundle with connected M and
connected F, then P is connected.

P R O O F: Let p and p0 be points in P . Project them down to points π(p) and

π(p0) in M . Since M is connected there is a curve in M joining these two points.

P
F

M

p p1

p0

p0π π

)

)p

)

)

Figure 22.4

This curve can be considered a homotopy from the constant map of a point w

into π(p), to the constant map of the point w to π(p0). Cover this homotopy by a
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path from p to the fiber through p0, that is, from p to some point p1 in this fiber.

Since this fiber is assumed connected we can find a curve in this fiber from p1 to

p0. We have joined p to p0 by a succession of two paths in P .

Corollary (22.22): SU (n) is connected.

P R O O F: SU (1) is a single point. SU (2) is a 3-sphere and is connected, as are

all k-spheres for k > 0. From SU (2) → SU (3) → S5 we see that SU (3) is

connected. Induction gives the corollary.

See Problem 22.2(1) at this time.

Recall that we say that M is simply connected provided every map of a circle into M is

homotopic to a constant map. During the homotopy, the closed curve gets “contracted”

or “deformed” to the point.

Theorem (22.23): Let F → P → M be a fiber bundle whose fiber F and base
M are simply connected. Then P is simply connected.

P R O O F: Let C be a closed curve in P . Project it down to a closed curve π(C) in

M . Since M is simply connected, π(C) can be contracted to a point p0 in M . We

may cover this homotopy by a deformation of C into the fiber over p0; that is, C
is deformed into a new closed curve lying in the fiber π−1(p0). Since the fiber is

simply connected, this new closed curve can be shrunk to a point in the fiber. Thus

the composition of the two deformations deforms C to a point, as desired.

Problems

22.2(1) Show that SO(n) is connected.

22.2(2) We know that the cartesian product of connected manifolds is connected; this
is the special case of (22.21) when F → M × F → M is simply a product
bundle. In a product bundle we also have the converse (which is evident from
a picture); if M and M × F are connected, then F is connected. That this need
not be true when M × F is replaced by a twisted product, that is, a bundle P,
may be seen as follows: Denote the principal frame bundle to a Riemannian
3-manifold M3 by O(3) → F M → M. O(3) is definitely not connected, being
the disjoint union of SO(3) and those g ∈ O(3) with det g = −1. In spite of
this, show that if M is connected and not orientable, then F M is connected! In
particular F M in this case is not a product.

A simpler example Z2 → S1 → S1 is the 2-fold covering of a circle by itself.
Show that this is realized in the case of the unit normal bundle P to the central
circle S1 of the (infinite) Möbius band Mö.

22.2(3) Show that SU(n) is simply connected.
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22.3. The Higher Homotopy Groups πk(M)

Why is the alternating sum of Betti numbers equal to the Euler characteristic?

22.3a. πk(M)

We shall consider continuous maps f : Sk → M of a k-sphere into Mn . We shall always

ask that some distinguished point on Sk , the “north pole,” be sent into a distinguished

base point, written ∗ in Mn . We shall only consider k ≥ 1.

For technical reasons we consider Sk to be the unit k-cube, I k = [0, 1]×· · ·× [0, 1],

with the entire boundary İ k identified with a single point, the north pole.

I 1 I 2

t1

t1

t2

Figure 22.5

Then f : Sk → M is a map f : I k → M such that f ( İ ) = ∗. In our diagrams the

heavy portions are always mapped to ∗. To say that f0 and f1 are homotopic, f0 ∼ f1, is

to say that there is a map F : I k × I → M such that F(y, 0) = f0(y), F(y, 1) = f1(y),

and F(north pole, t) = ∗, 0 ≤ t ≤ 1

I

I

F

k

Figure 22.6

(Again the heavy portions are sent into the base point.)

We compose two maps f : Sk → M and g : Sk → M using the first coordinate, as

we did for loops, but this time the result is written f + g:

( f + g)(t1, . . . , tk) = f (2t1, t2, . . . tk) 0 ≤ t1 ≤ 1

2

= g(2t1 − 1, t2, . . . , tk)
1

2
≤ t1 ≤ 1
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briefly

f

f

g

g

t1

t2,...,tk

Figure 22.7

Again, two maps are to be identified if they are homotopic. The homotopy classes

of such maps define the kth homotopy group

πk(M, ∗) = πk(M)

(It can be shown that if f ′ ∼ f and g′ ∼ g then f ′ + g′ ∼ f + g.) The identity is

represented by maps homotopic to the constant map f = ∗, and the inverse of the

map f (t1, . . . , tn) is represented by f (1 − t1, t2, . . . , tn). The composition is written

additively since these classes of maps form a commutative group (if k ≥ 2). The

commutativity can be “seen” from the following sequence of homotopies where a

f

f

f f

ff
g

g

g g

g
g

→ →

→

→ →

∗

∗

∗

∗

∗

∗

squash

t2

Figure 22.8

whole box labeled ∗ is to be sent into the base point. See [H,Y] for details. Note that

this procedure will not work in the case n = 1; there is no room to maneuver. This is

why the fundamental group π1 can be nonabelian.

22.3b. Homotopy Groups of Spheres

πk(Sn) consists of homotopy classes of maps of a k-sphere into an n-sphere. We have al-

ready discussed π1(S1) = Z where the homotopy class is characterized by the Brouwer

degree of the map. (We have shown that maps of different degrees are not homotopic,

but we have not proved the converse.)
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Consider the case k < n. It seems evident that f (Sk) cannot cover all of Sn if

k < n but this is actually false since we do not require our maps to be smooth! Peano

constructed a curve, a continuous map of the interval [0, 1], whose image filled up an

entire square [0, 1] × [0, 1]; see [H,Y, p. 123]. This map cannot be smooth, as you will

show in Problem 22.3(1).

It is a fact that a continuous map of a sphere into an Mn is homotopic (via approx-

imation) to a smooth one. Hence we may assume that f (Sk) does not cover all of Sn

when k < n. Suppose then that the south pole of Sn is not covered. By pushing away

from the south pole we may push the entire image to the north pole; we have deformed

the map into a constant map. Thus πk(Sn) = 0 if k < n.

Consider the case k = n. We know that homotopic maps of an n-sphere into itself

have the same degree. A theorem of Heinz Hopf says in fact that maps of any connected,
closed, orientable n-manifold Mn into an n-sphere Sn are homotopic if and only if they
have the same degree (the nontrivial proof can be found in [G, P]). Thus the homotopy

classes of maps Sn → Sn are again characterized by an integer, the degree. Again, as

for circles, one can construct a map of any integral degree. Thus we have, so far

πk(Sn) = 0 if 0 < k < n (22.24)

= Z if k = n

Hopf made the surprising discovery that there can be nontrivial maps of Sk onto Sn

when k > n > 1! We shall discuss one in Section 22.4.

22.3c. Exact Sequences of Groups

A sequence of groups and homomorphisms

· · · → F
f→ G

g→ H → · · ·
is said to be exact at G provided that the kernel of g (the subgroup of G sent into the

identity of H ) coincides with the image of f, f (F) ⊂ G. In particular, we must have

that the composition g ◦ f : F → H is the trivial homomorphism sending all of F into
the identity element of H. The (entire) sequence is exact if it is exact at each group. 0

will denote the group consisting of just the identity (if the groups are not abelian we

usually use 1 instead of 0).

Some examples. If

0
f→ H

h→ G

is exact at H then ker h = im f = 0. Thus h is 1 : 1. Since h is 1 : 1, we may

identify H with its image h(H); in other words we may consider H to be a subgroup

of G. Ordinarily we do not label the homomorphism 0
f→ H ; we would write simply

0 → H
h→ G.

If

H
h→ G

g→ 0
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is exact at G then im h = ker g = G, and so h is onto. Again we would write

H
h→ G → 0.

If

0 → H
h→ G → 0

is exact, meaning exact at all the interior groups H, G, then h is 1 : 1 and onto; that is,

h is an isomorphism.

Consider an exact sequence of three nontrivial abelian groups (a so-called short
exact sequence)

0 → F
f→ G

g→ H → 0

Then ker g is im f , which is considered the subgroup F = f (F) of G, and g maps G
onto all of H . Note that if h = g(g1) and h = g(g2), then (g1 − g2) ∈ f (F) ≈ F . Thus

H may be considered as equivalence classes of elements of G, g2 ∼ g1 iff g2 − g1 is

in the subgroup F . In other words, H is the coset space G/F! (See Sections 13.2c and

17.2a, but note that we are using additive notation for these abelian groups.)

f

F G

H G/F

f(F)=

=

F

g

Figure 22.9

If the homomorphisms involved are understood, we frequently will omit them. For

example, the exact sequence (2Z is the group of even integers)

0 → 2Z → Z → Z2 → 0

says that the even integers form a subgroup of the integers and Z2 ≈ Z/2Z. The exact

sequence

0 → Z → R → S1 → 0

where the group of integers Z is considered as a subgroup of the additive reals, and

where R → S1 is the exponential homomorphism

r ∈ R �→ exp(2π ir)

onto the unit circle in the complex plane (a group under multiplication of complex

numbers) exhibits the circle as a coset space

R/Z = S1
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In brief, a short exact sequence of abelian groups is always of the form

0 → H → G → G

H
→ 0 (22.25)

where the first homomorphism is inclusion and the second is projection. (As we saw in

Section 13.2c, G/H is always a group when G is abelian.)

We have two examples from homology theory, as in Section 13.2c

0 → Zk → Ck
∂→ Bk−1 → 0 (22.26)

0 → Bk → Zk → Hk → 0

See Problem 22.3(2).

22.3d. The Homotopy Sequence of a Bundle

For simplicity only, we shall consider a fiber bundle F → P → M with connected
fiber and base. If F is not connected there is a change in only the last term of the

following.

Theorem (22.27): If the fiber F is connected, we have the exact sequence of
homotopy groups

· · · → πk(F) → πk(P) → πk(M)
∂→ πk−1(F) → · · ·

· · · ∂→ π2(F) → π2(P) → π2(M)
∂→ π1(F) → π1(P) → π1(M) → 1

The homomorphisms are defined as follows. Here we assume that the base point

x0 = ∗M of M is the projection π(∗P) of that of P, F is realized via an inclusion

i : F → P as the particular fiber that passes through ∗P , and ∗F = ∗P .

i

F

F P

π

M

∗

∗

Figure 22.10

It should be clear that a continuous map f : V → M that sends base points into

base points will induce a homomorphism f∗ : πk(V ) → πk(M), since a sphere that
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gets mapped into V can then be sent into M by f . This “explains” the homomor-

phisms

i∗ : πk(F) → πk(P)

and

π∗ : πk(P) → πk(M)

induced by the inclusion i : F → P and the projection π : P → M . We must explain

the remaining boundary homomorphism ∂ : πk(M) → πk−1(F). We illustrate the

case k = 2.

Consider f : S2 → M , defining an element of π2(M). This is a map of a square I 2

into M such that the entire boundary İ 2 is mapped to a base point x0 ∈ M .

t2

t1

I 2
f

Mx0

0

all 4 faces are

mapped by  f  to x 

Figure 22.11

This map can be considered as a homotopy of the map given by restricting f to the

initial face I defined by t2 = 0.

I

I

2
f

Figure 22.12

f restricted to this face is of course the constant map x0. The base point ∗ of P lies

over x0. By the covering homotopy theorem, f can be covered by a homotopy in P of

the constant map I 1 → ∗.
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F

covering of f(I 2
)

∗

x0

f(I 2
)

Figure 22.13

Under f , the two sides and the bottom of the square are mapped constantly to x0

and the light vertical deformation curves are sent into closed curves on f (I 2) since the

top face is also sent to x0. When these deformation curves are lifted into P from ∗ they

will become curves that start at ∗ and end at points of the fiber π−1(x0) = F holding

∗, but they needn’t be closed curves. Since the lines t1 = 0 and t2 = 0 are mapped to

x0, we see that these endpoints of the lifts of the deformation curves will form a closed
curve in F , the image of some circle S1 being mapped into F , that is, an element of

π1(F). This then is our assignment

∂ : π2(M) → π1(F)

Briefly speaking, the lift of a k-sphere in M yields a k-disc in P whose boundary is
a (k − 1)-sphere in F.

We shall not prove exactness, though some parts are easy. For example, consider

the portion πk(F) → πk(P) → πk(M). A k-sphere mapped into F is of course also

mapped into P . When this same sphere is projected down into M , the entire sphere is

sent into a single point, and so is trivial. This shows that a sphere of P in the image

of πk(F) → πk(P) must always be in the kernel of πk(P) → πk(M). Conversely,

if a sphere in P is in the kernel of πk(P) → πk(M), then its image sphere in M
is contractible to the point x0. By covering homotopy, the original sphere in P can

be deformed so as to lie entirely in the fiber F over x0; that is, it is in the image of

πk(F) → πk(P). This shows that the homotopy sequence is indeed exact at the group

πk(P). For proofs of exactness at the other groups (a few of which are easy) see [St].
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Note that at the last stage, π1(P) → π1(M) is onto because F has been assumed
connected. A circle on M can be lifted to a curve in P whose endpoints lie in F and

since F is connected, these endpoints can be joined in F to yield a closed curve in P
that projects down to the original circle.

22.3e. The Relation Between Homotopy and Homology Groups

The homology groups Hk(Mn; Z) deal with cycles (think of closed oriented k-dimen-

sional submanifolds of Mn); a cycle is homologous to 0 if it bounds a (k + 1)-chain.

The homotopy groups πk(Mn) deal with special cycles, namely k-spheres mapped into

Mn . A k-sphere is homotopic to 0 if it can be shrunk to a point, that is, if the sphere

bounds the image of a (k + 1)-disk. This is the extension theorem (22.17). There are

relations between these two groups. The following can be shown (but will not be used

here).

Let π1 be the fundamental group of a connected M . We know that π1 is not always

abelian. Let [π1, π1] be the subgroup of π1 generated by the commutators (elements of

the form aba−1b−1). Then the quotient group π1/[π1, π1] turns out to be abelian and

is isomorphic to the first homology group with integer coefficients

π1

[π1, π1]
≈ H1(Mn; Z)

For the proof, see [G, H].

For the higher homotopy groups we have the Hurewicz theorem (Hurewicz was the

inventor of these groups):

Let M be simply connected, π1 = 0, and let π j (M), j > 1, be the first nonvanishing

homotopy group. Then Hj (M, Z) is the first nonvanishing homology group (for

j > 0) and these two groups are isomorphic

π j (Mn) ≈ Hj (Mn; Z)

The proof is difficult (see, e.g., [B, T]). As an example, we know that Sn is simply

connected for n > 1. Also, we know that Hj (Sn; Z) is 0 for 1 ≤ j < n, and Hn(Sn; Z) =
Z (see (13.23)). Thus π j (Sn) = 0, for j < n and πn(Sn) = Z.

Problems

22.3(1) Use Sard’s theorem to show that if f : Vk → Mn is smooth and k < n, then
f(V) does not cover all of M.

22.3(2) Show that both sequences in (22.26) are exact. (Note that the first sequence
is defined only for k > 0, but if we define B−1 := 0 the sequences make sense
for all k ≥ 0.)

Suppose we have a compact manifold and we consider the resulting finite
simplicial complex, as in 13.2c. Suppose further that a field is used for coeffi-
cients. Then all the groups Ck , Zk , Bk , Hk are finite-dimensional vector spaces.
Let ck , zk , βk , and bk be their respective dimensions (recall that bk is the k th
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Betti number). For example ck is simply the number of k-simplexes in the com-
plex. (ck is independent of the field used, but we know that bk depends on the
field.) Note then that, for example, bk = dim Hk = dim(Zk/Bk ) = zk − βk .

(i) Show that

ck − bk = βk + βk−1

for all k ≥ 0. This is a Morse-type relation, as in Theorem (14.40), where
now the Morse type number mk is replaced by ck and qk is replaced by
βk . We immediately have

ck ≥ bk

that is, there are more k-simplexes than thek thBetti number. Furthermore,
as in the Morse inequalities,we have for ann-dimensional closed manifold

n∑
k=0

(−1)k ck =
n∑

k=0

(−1)k bk

This is Poincaré’s theorem, expressing the Euler characteristic

χ(M) =
n∑

k=0

(−1)k ck = (no. vertices) − (no. edges) + · · ·

as the alternating sum of the Betti numbers. A special case of this was
noted in Problem 16.2(1).

(ii) What is the Euler characteristic of Sn, of RPn, of the Klein bottle?

(iii) Show that the Euler characteristic of a closed odd-dimensional orientable
manifold vanishes (Hint: Problem 14.2(3)). Show that orientability is not
really required by looking at the 2-sheeted orientable cover.

22.3(3) Let A ⊂ M be a subspace of M. Recall (from Section 14.3) the relative homol-
ogy groups Hp(M; A) constructed from relative cycles c p. A relative p-cycle c p

is a chain on M whose boundary, if any, lies on A. Two relative cycles c and c ′
are homologous if c − c ′ = ∂mp+1 + ap, where m is a chain on M and a is a
chain on A. The relative homology sequence for M mod A is

· · · → Hp+1(M; A)
∂→ Hp(A) → Hp(M) → Hp(M; A)

∂→ Hp−1(A) → · · ·
Here we are using the homomorphism induced by inclusion A → M, the fact
that any absolute cycle z on M is automatically a relative cycle, and the fact
that the boundary of any relative cycle is a cycle of A (which bounds on M but
not necessarily on A). We claim that the relative homology sequence is exact.

(i) Show that the composition of any two successive homomorphisms in the
sequence is trivial.

(ii) Conclude the proof of exactness. (As an example, we show exactness at
Hp(M). From (i) we need only show that anything in the kernel of Hp(M) →
Hp(M; A) must come from Hp(A). But if the absolute cycle zp of M is trivial
as a relative cycle, we must have z = ∂mp+1+ap or z −a = ∂m, which says
that a is an absolute cycle on A and the abolute cycle z is homologous
to it. Thus, as homology classes a → z and so z is in the image of the
homomorphism Hp(A) → Hp(M).) Simple pictures should be helpful.
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(iii) By considering the sphere Sn−1 ⊂ Bn in the n-ball, and knowing the ho-
mology of S and of B, show that

Hp(Bn, Sn−1) = 0 for p < n
Z for p = n

What is the generator of Hn(B, S)?

22.4. Some Computations of Homotopy Groups

How can one map a 3-sphere onto a 2-sphere in an essential way, that is, so that the map is not

homotopic to a constant?

22.4a. Lifting Spheres from M into the Bundle P

In the definition of ∂ : πk(M) → πk−1(F) in Theorem (22.27), we have explicitly

shown the following (the sketch for k = 2 works for all k ≥ 1; one now lifts the image

of the tk lines instead of the t2 lines).

Sphere Lifting Theorem (22.28): Any map of a k-sphere into Mn (with base
point x0) can be covered by a map of a k-disc into the bundlespace P, in which
the boundary (k − 1)-sphere is mapped into the fiber F = π−1(x0).

This has an important consequence for covering spaces. Recall that a covering space is

simply a bundle over M with a discrete fiber.

Theorem (22.29): If π : M → M is a covering space, then the homomorphism
induced by projection

π∗ : πk(M, ∗) → πk(M, ∗)

is an isomorphism for k ≥ 2. Furthermore, for k = 1

π∗ : π1(M, ∗) → π1(M, ∗)

is 1 : 1.

P R O O F: We first show that π∗ is 1 : 1. Let f (I k) be a map of a sphere into M that

when projected down is homotopic to the constant map to ∗. This homotopy can

be covered by a homotopy of f into the fiber π−1(∗). But if k ≥ 1, the resulting

map of a k-sphere into this fiber must be connected, and yet the fiber is discrete.

It must be that the entire sphere is mapped to the single point ∗. Thus if π∗ f is

trivial, then f itself is trivial, and π∗ is 1 : 1 for all k ≥ 1.

We now show that π∗ is onto for k ≥ 2. Let f (I k) be a map of a k-sphere

into M . This can be covered by a map f (I k) of a k-disc into M whose boundary

(k−1)-sphere lies in the discrete fiber π−1(∗). If k ≥ 2, this whole boundary must
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collapse to the point ∗. Thus f (I k) is a map of a k-sphere into M that projects

via π to f (I k), and π∗ is onto.

As simple corollaries we have

πk(RPn) = πk(Sn)

πk(T n) = πk(R
n) = 0 (22.30)

πk(Klein bottle) = πk(T 2) = 0

for all k ≥ 2. In particular, every map of a k > 1 sphere into a circle T 1 is contractible
to a point!

22.4b. SU(n) Again

In Corollary (22.22) and in Problem 22.2(3) we saw that SU (n) is both connected and

simply connected, π1SU (n) = 0. We now show that

π2SU (n) = 0

P R O O F: From the fibering SU (n − 1) → SU (n) → S2n−1 we have the exact

homotopy sequence

· · · → π3S2n−1 → π2SU (n − 1) → π2SU (n) → π2S2n−1 → · · ·

For n ≥ 3 this gives

0 → π2SU (n − 1) → π2SU (n) → 0

and so π2SU (n) = π2SU (n − 1) = . . . = π2SU (2) = π2S3 = 0

In fact, E. Cartan has shown that every map of a 2-sphere into any Lie group is
contractible to a point

π2G = 0 for every Lie group (22.31)

In Problem 22.4(1) you are asked to show that

π3SU (n) = π3SU (2) = Z for n ≥ 2 (22.32)

and thus every map of a 3-sphere into SU(n), for n ≥ 3, can be deformed to lie in an
SU(2) subgroup!

22.4c. The Hopf Map and Fibering

The starting point for Hurewicz’s invention of the homotopy groups must have been

related to Heinz Hopf’s discovery of an essential map of S3 onto S2, that is, a map
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π : S3 → S2 that was not homotopic to a constant map. (We have seen in (22.30)

that this cannot happen in the case of a 2-sphere mapped into a 1-sphere.) With our

machinery we can easily exhibit this map. We know that when the group SU (2) acts

on its Lie algebra (or on the trace-free hermitian matrices) by the adjoint action, the

resulting action covers the rotation group SO(3) acting on R
3. In particular, SU (2) acts

transitively on the spheres S2 centered at the origin of its Lie algebra R
3. The stability

subgroup of the hermitian matrix σ3 is immediately seen to be the subgroup

[
eiθ 0

0 e−iθ

]

which is simply a circle group S1. Thus we have the fibration

S1 → SU (2)
π→ S2

From the homotopy sequence

0 = π3S1 → π3SU (2) → π3S2 → π2S1 = 0

we see that π3S2 = π3SU (2) = π3S3 = Z, that is,

π3S2 = Z

and that the projection map

π : SU (2) → S2

the Hopf map, is essential.

We have shown that S3 = SU (2) is a fiber bundle over S2 with (nonintersecting)

circles as fibers. This is the Hopf fibration

Figure 22.14

Here is another view of the Hopf map. Consider the unit 3-sphere S3

| z0 |2 + | z1 |2= 1

in C
2. We then have a map π : S3 → S2 defined by (z0, z1) → [z0, z1], where the

latter pair denote the homogeneous coordinates of a point in CP1, that is, the Riemann

sphere (see Section 17.4c). The inverse image of the point [z0, z1] consists of those
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multiples (λz0, λz1) in S3, where λ ∈ (C − 0). Since | z0 |2 + | z1 |2= 1, we see that

| λ |2= 1, and so π−1[z0, z1] consists of all multiples eiθ of (z0, z1). This is a circle on

S3 passing through (z0, z1). Thus S3 can be considered as the subbundle of the Hopf

complex line bundle (of Section 17.4c) consisting of unit vectors through the origin of

C
2, and then the Hopf map π : S3 → S2 is simply the restriction of the projection map

to this subbundle.

Problems

22.4(1) Derive (22.32).

22.4(2) We know π1SO(3) = Z2. Use SO(n)/SO(n − 1) = Sn−1 and induction to show
that π1SO(n) = Z2 for n ≥ 3.

22.4(3) We have stated the exact homotopy sequence for a fiber bundle in the case
that the fiber is connected. When the fiber is not connected (as in the case of a
covering) the only difference is that in the very last term, π∗ : π1 P → π1M need
not be onto, so that we do not necessarily have that the sequence is exact at
this last group π1M. Accept this fact and go on to show that Theorem (22.29)
is an immediate consequence of this exact sequence.

22.5. Chern Forms as Obstructions

Given a closed orientable submanifold V 4 of Mn , why is (1/8π2)
∫

V tr(θ ∧ θ) always an integer?

22.5a. The Chern Forms cr for an SU(n) Bundle Revisited

Let us rephrase some results that we have proved concerning Chern forms. First consider

a U (1) bundle.

Theorem (22.33): Let E be a hermitian line bundle, with (pure imaginary) con-
nection ω1 and curvature θ 2, over a manifold Mn. Let V 2 be any closed oriented
surface embedded in Mn. Then

i

2π

∫
V

θ 2 =
∫

V
c1

is an integer and represents the sum of the indices of any section s : V 2 → E of
the part of the line bundle over V 2; it is assumed that s has but a finite number of
zeros on V .

It is only when this integer vanishes that one can possibly find a nonvanishing section

(that is, a frame over all of V ).

Next, instantons are associated with SU (2) bundles.
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Theorem (22.34): The winding number of the instanton is given by

1

24π2

∫
S3

tr ωU ∧ ωU ∧ ωU = −
∫

R
4

c2

This represents the “number of times the frame eU on the boundary S3 wraps around

the frame eV that is flat at infinity.” It is only when this integer vanishes that the flat

frame outside S3 can be extended to the entire interior of S3.

We have defined the Chern forms for a complex U (n) bundle E in Section 22.1c

det

(
I + iθ

2π

)
= 1 + c1(E) + c2(E) + · · · (22.35)

= 1 + i

2π
tr θ − 1

8π 2
[(tr θ) ∧ (tr θ) − tr(θ ∧ θ)] + · · ·

We have shown that each cr is closed, dcr = 0, and thus defines a de Rham cohomology

class, and that this cohomology class, with real coefficients, is independent of the

connection used. The factor i is introduced to make each of the forms real (iθ is

hermitian). The factor 1/2π ensures that the “periods” of the Chern forms will be

integers when evaluated on integral homology classes. We have already seen this in

Theorem (17.24) for the case of c1 for a complex line bundle over a surface and have

verified a very special case of this for c2 in Theorem (22.5). In this lecture we shall

concentrate on the second Chern class c2 but for a general SU (k) bundle over a manifold.

22.5b. c2 as an “Obstruction Cocycle”

Let C
k → E → Mn be complex vector bundle with connection. We shall be concerned

with the case of most interest in physics, in which the structure group is the special
unitary group G = SU (k). We are going to evaluate

∫
z4

c2

where z4 is a 4-cycle on Mn with integer coefficients. For simplicity we shall in fact

assume that z is represented by a closed oriented 4-dimensional submanifold of Mn .

Let us consider the problem of constructing a frame of k linearly independent sections

of the bundle E just over the cycle z. Since SU (k) is the structure group, this is equivalent
to constructing a section of the principal SU(k) bundle P associated to the part of E
over z. Each fiber is then a copy of G = SU (k).

We shall attempt to find a continuous section, since it can be approximated then by

a differentiable one.

Triangulate z4 into simplexes �4, each of which is so small that the part of the bundle

over it is trivial, π−1� ≈ � × G. We picture sections as frames of vectors.
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f1

f2

f3

fk

�4

z4

z 4

SU(k)

�4 )(

Figure 22.15

Now begin to construct a cross section. Over each 0-simplex (vertex) �0 we pick

arbitrarily a point in π−1(�0). Thus we have constructed a section of the bundle P over
the “0-skeleton,” that is, the union of all 0-simplexes.

Given �0, look at a 4-simplex �4 holding this vertex. The part of the bundle over

�4 is trivial, π−1(�4) ≈ �4 × G. To construct a section over �4 is simply to give a

continuous map f : �4 → �4 × G of the form x → (x, g(x)) that extends the given

f over the 0-skeleton.

Let �1 be a 1-simplex of the triangulation. This is a map σ of I into z4. Pick a �4

holding �1. g is defined on the two vertices P and Q of �1 = I ; that is, g(P) and

g(Q) are two points in G.

SU(k )

P

f

g

Q  

g(P)

g(Q)

�

Figure 22.16

Since G = SU (k) is connected, these two points can be joined by a curve g : I → G.

Then define f : �1 → �1 × G by f (t) = (σ (t), g(t)). In this way we have extended
the cross section to each �1 and thus over the entire 1-skeleton.

We now have the section f defined on the boundary of each 2-simplex �2; can we

extend to the entire �2?

Letting πG be the local projection of π−1�4 = �4×G onto G, we see that πG ◦ f is a

map of ∂�2, topologically a circle, into the group SU (k). We know from the “extension
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theorem” (22.17) that this map can be extended to a map of the “disc” �2 if and only if

it is homotopic to a constant map. But SU (k) is simply connected (Problem 22.2(3)),

and so any map of a circle into G is homotopic to a constant map, and πG ◦ f can be

extended to a map F : �2 → G. Define then a section over �2 by f (x) = (x, F(x)), an

extension of f over ∂�2. We have extended f to the entire 2-skeleton of the 4-manifold z.

SU(k)

πG

f

�2

Figure 22.17

We have defined f on the boundary of each 3-simplex. Since each �3 is topologically

a 3-disc with boundary a topological 2-sphere �2, and fG = πG ◦ f is a map of ∂�3

into G, we know that this map can be extended to all of �3 if and only if fG : ∂�3 → G
is homotopic to a constant. But π2(SU (k)) = 0, (22.31), and thus fG is homotopic to

a constant. As before, this allows us to extend the section f to the entire 3-skeleton.

f is now defined on the 3-sphere boundary ∂�4 of each 4-simplex �4. But now

π3(SU (k))) = Z, (22.32), and fG : ∂�4 → SU (k) need not be homotopic to a constant.

We have met with a possible obstruction to extending f to the entire �4 in question!

We “measure” this obstruction as follows: The homotopy class of fG : ∂�4 → SU (k)

is characterized, from (22.32), by an integer (call it j (�4), and we assign this integer
to the 4-simplex �4.

There is now a slight complication. Different �4’s in the 4-manifold z4 will yield

different trivializations of the bundle; that is, the SU (k) coordinate in the frame bundle

over �4 changes with the simplex �4. Consider for example, the case of SU (2), which

is topologically S3. When we map ∂�4 into SU (2) we shall be using different copies of

SU (2), that is, different 3-spheres over different simplexes. If we change the orientation

of the 3-sphere, our integer j will change sign. We shall assume that the fibers SU (2)

can be coherently “oriented.” Similarly, we shall assume that the fibers SU (k) can be

coherently “oriented” so that the sign ambiguity in π3SU (k) is not present. Steenrod

called such a bundle orientable.

In this manner we assign to each 4-simplex in the triangulation of the 4-manifold z
a definite integer; thus we have a singular 4-chain on z with integer coefficients, called

the obstruction cocycle. The reader should note that we did not really use the fact

that the fiber F was SU (k); the only information that was used was that the fiber was
connected and that π j (F) = 0 for j = 1, 2, and that π3(F) = Z.
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If each coefficient is 0 it is clear that one can extend the section to the interior of

each �4, and in this case we have succeeded in finding a section on all of z! If, on the

other hand, some of the integers are not 0, it still may be possible to start anew and

succeed. This will be the case if the sum
∑

j (�) = 0, where the � are oriented so that

z4 = ∑
�. This can be shown using the cohomology theory of obstructions. We wish,

rather, to show how this sum can be expressed as an integral involving curvature.

22.5c. The Meaning of the Integer j(Δ4)

The fact that π3(SU (k)) = Z, proved in (22.32), is a result of two things. First, each

SU (k), k ≥ 3, has the 3-sphere SU (2) as a subgroup and then the homotopy sequence

shows that this 3-sphere is a generator for the third homotopy group of SU (k). In other

words, every map of a 3-sphere into SU (k) can be deformed so that its image lies on

the SU (2) subgroup! But then a map fG : (∂�4 = S3) → S3 has a degree, and this
integer is j (�4).

22.5d. Chern’s Integral

The partial cross section f : ∂�4 → P on the simplex �4 is defined only on its

boundary, but we can immediately extend it to all of �4 with a small 4-ball Bε about

its barycenter x0 removed; we merely make the SU(k) coordinates fG constant along
radial lines leading out to ∂�4.

Figure 22.18

We shall now compute the integral of the second Chern form over �4; since c2 is a

smooth form and is independent of the section∫
�4

c2 = lim
ε→0

∫
�4−Bε

c2

We will be brief since the procedure is similar to that in Section 17.3b.

Let
∑

4 = f (�4 − Bε) be the “graph” of the local section. Then∫
�4−Bε

c2 =
∫

π
∑

4

c2 =
∫
∑

4

π∗c2

Now

c2 = − 1

8π 2
[tr θ ∧ tr θ − tr(θ ∧ θ)]

= 1

8π 2
tr(θ ∧ θ)
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Let eU be a frame on the open U ⊂ Mn holding �4 for which π−1(U ) is a product

U × SU (k). θ = θU is the local curvature 2-form for the vector bundle E . c2 =
(1/8π 2) tr θU ∧ θU . Then at a frame f = eU g we have

π∗c2 = 1

8π2
tr π∗θU ∧ π∗θU

= 1

8π2
tr[g−1π∗θU g ∧ g−1π∗θU g]

and from (18.21)

π∗c2 = 1

8π2
tr θ∗ ∧ θ∗

where θ∗ is the globally defined curvature form on the frame bundle, θ∗ = dω∗+ω∗∧ω∗,

where again ω∗ is globally defined. The same calculation that gave (22.4) shows

π∗c2 = d
1

8π 2
tr

[
ω∗ ∧ dω∗ + 2

3
ω∗ ∧ ω∗ ∧ ω∗

]
(22.36)

Thus the pull-back of c2 to the frame bundle is the differential of a globally defined
3-form, the Chern–Simons form. Thus, for the graph

∑
4 of our section f over z4 −∪Bε ,∫

∑ π∗c2 = 1

8π2

∫
∂
∑ tr

[
ω∗ ∧ dω∗ + 2

3
ω∗ ∧ ω∗ ∧ ω∗

]
(22.37)

Figure 22.19

Recall that we have removed 4-balls from the 4-cycle z4. The boundary of
∑

over

the 4-cycle z4 consists of the part of the section f over the union of the boundary of

the ε-balls, but with orientation opposite to that of the balls (since f is 1 : 1,
∑

carries

an orientation induced from that of z).∫
∑ π∗c2 = − 1

8π 2

∑ ∫
f (∂ Bε )

tr

[
ω∗ ∧ dω∗ + 2

3
ω∗ ∧ ω∗ ∧ ω∗

]
(22.38)

Now over U , for points of
∑

ω∗ = g−1π∗ωU (x)g + g−1dg (22.39)
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where the section f is given by f (x) = eU (x)g(x). The triple integral for that Bε in U
will involve terms containing g−1dg and

ωU = (ωα
j β(x)dx j )

In the integral (22.38), gather together all those terms that do not involve any dx ; one

finds easily that the contribution of these terms is

1

24π2

∑ ∫
f (∂ Bε )

tr g−1dg ∧ g−1dg ∧ g−1dg (22.40)

As in (22.3), we see that the integral in (22.38) over f (∂ Bε) represents the number

of times that the image f (∂ Bε) of the ε-sphere wraps around the SU (2) subgroup of

SU (k)! Furthermore, since the integrand, the Cartan 3-form �3, is closed, Stokes’s

theorem tells us that this also represents the number of times that the image of ∂�4

wraps around SU (2) where �4 is the simplex holding the given singularity. But this is
precisely the index j (�4) that occurred in the obstruction cocycle in 22.5c. We have

shown that ∫
z−∪Bε

c2 =
∑

j (�4) + integrals involving dx (22.41)

Now we can let ε → 0. The left side tends to the integral of c2 over the entire 4-cycle z.

We claim that the integrals involving dx all tend to 0. Introduce coordinates x1, x2,

x3, x4 with origin at the singularity in question.

x1 x2

x3

x4

S2

S3

α

Figure 22.20

For ∂ Bε we choose the 3-sphere given by
∑

x2
j = ε2. This can be parameter-

ized by angles α, θ , and φ; x1 = ε sin α sin θ cos φ, x2 = ε sin α sin θ sin φ, x3 =
ε sin α cos φ, x4 = ε cos α. Each integral in (22.38),

∫
f (∂ B)

A, can be evaluated as the

integral of a pull-back
∫

∂ B f ∗ A. Let φ1 = α, φ2 = θ, φ3 = φ. The pull-back of a

term like g−1dg will be of the form G j (φ)dφ j where the G j are differentiable and

independent of ε > 0 since we have extended the section to the interior of �4 keeping

g constant along radial lines φ = constant. Furthermore, since we have already taken

care of the term involving �3, each integral will also involve dx through ω = f ∗ω∗,

and dxi is of the form (∂xi/∂φ j )dφ j , which will have a factor of ε. Since the functions

ωα
j β(x) are differentiable, we conclude that all the remaining integrals on the right-hand

side of (22.39) vanish in the limit as ε → 0. We have proved the following special case

of a theorem of Chern.
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Theorem (22.42): Let P be a principal SU (k) bundle over Mn. Then the integral∫
z4

c2

represents the following. There always exists a section f : (z4 −∪pα) → P over
z except, perhaps, for a finite number of points {pα}. About each pα we construct
a small 3-sphere S3

α and map it into SU (k) by means of the section f followed by
the local projection πG of the bundle into SU (k). The image of Sα in SU (k) can
be deformed so as to lie on an SU (2) subgroup. Let jα( f ) denote the number of
times that the image covers SU (2), that is,

jα( f ) := Brouwer degree of f ◦ πG : S3
α → SU (2)

Then ∫
z4

c2 =
∑

jα( f )

Thus
∑

jα( f ) is independent of the section f! In particular, a section on all of z
exists only if

∫
z c2 = 0. It is also immediate that∫

z4

c2

is an integer for each integer cycle z! Furthermore, this integral

1

8π 2

∫
z4

tr θ ∧ θ

is independent of the SU (k) connection used in the bundle!

22.5e. Concluding Remarks

If our group G = SU (k) had not been simply connected, for example, if it had been

U (k), then, in our construction, we would have met an obstruction to a section of the

k-frame bundle already at the 2-skeleton. The problem then would have been to try to

construct a section over a 2-cycle, rather than a 4-cycle. The measure of the obstruction

then would be the integral of the first Chern form c1 over the 2-cycle. It turns out

that for a U (k) bundle, the integral of c2 over a 4-cycle measures the obstruction to

constructing not a k-frame, but rather a (k − 1)-frame section, that is, finding (k − 1)

linearly independent sections of the original bundle. It is easy to see, however, that if the

group is SU (k), then a (k − 1)-frame can then lead to a unique k-frame. For example,

in C
2, the most general unit vector orthogonal to (1 0)T is of the form (0 eiθ )T and is

thus not unique, but if we demand that the pair (1 0)T and (0 eiθ )T have determinant

+1 then (0 eiθ )T must reduce to the unique (0 1)T . That is why we considered directly

the search for a k-frame. The general situation is as follows.

Chern’s Theorem (22.43): Let E be a complex vector bundle with structure
group U (k) and connection ω over Mn. Then each Chern form cr defines via de
Rham an integral cohomology class, that is, the 2r-form cr has integral periods
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on a basis of H2r (M; Z). This class is called a characteristic cohomology class
and represents an obstruction to the construction of a cross section to a bundle
associated to E, namely the bundle of (k − r + 1) frames! Although the forms cr

depend on the connection used in the bundle E, their periods do not.

Note that we had considered orthonormal frames of p vectors in R
n in Problem

17.2(3); the space of all such frames forms the (real) Stiefel manifold O(n)/O(n − p).

Similarly, the space of all orthonormal frames of p complex vectors in C
n forms the

complex Stiefel manifold U (n)/U (n − p). For example, the 1-frames in C
n form the

unit sphere S2n−1, and it is easily seen that S2n−1 is U (n)/U (n − 1), since U (n) acts

transitively on this sphere.

Besides Chern classes, there are other characteristic classes, the Stiefel–Whitney

classes and Pontrjagin classes, which were defined before the Chern classes. We have

dealt with the first and second Chern characteristic classes in terms of obstructions to

constructing cross sections to U (n) bundles. For many purposes modern treatments con-

sider characteristic classes from a different, more axiomatic viewpoint. The interested

reader might refer to [M, S] for such questions.

Problems

22.5(1) Consider the real unit tangent bundle T0Mn to a compact orientable Rieman-
nian n-manifold (see Section 2.2b). This fiber bundle has fiber Sn−1. Mimic
our obstruction procedure to show that one can find a section on the (n − 1)-
skeleton of a triangulation, and then one can find a section on all of Mn – except
perhaps for a finite collection of points. Hopf’s theorem (16.12) states that the
index sum is the Euler characteristic.

22.5(2) The unit normal bundle to a closed surface V2 embedded in a Riemannian M5

is a 2-sphere bundle over V2. Show that one can always find a section; that is,
there is always a unit normal vector field to a V2 in M5. What about for a V2 in
an M4?



APPENDIX A

Forms in Continuum Mechanics

We shall assume the reader has read sections O.p, O.q, and O.r of the Overview.

A.a. The Equations of Motion of a Stressed Body

Let x = (xi ) be a fixed cartesian coordinate system in R
3 with coordinate basis vectors

∂ i. Let M3(t) be a moving compact body acted on perhaps by surface forces on its

boundary ∂ M . We shall consider vector (contravariant or covariant) valued 2-forms,

principally the Cauchy stress form

t2 = ∂ i ⊗ ti = ∂ i ⊗ t i j i(∂ j )vol3

Consider a compact moving sub-body B(t) contained in the interior of M(t). In

cartesian coordinates the equations of motion of B(t) are obtained from equating the

time rate of change of momentum of B(t) with the total “body” force (for example,

gravity) acting on B(t) and the stress force acting on the boundary ∂B(t) arising from

the stress force exerted on B(t) by the remainder of the body. Let

m3 := ρ(x(t))vol3

be the mass 3-form. We assume conservation of mass (see 4.3c)

d/dt
∫

B(t)
m3 =

∫
B(t)

Lv+∂/∂t m
3 = 0

Let b be the external force density (per unit mass); we have

d/dt
∫

B(t)
vi m3 =

∫
B(t)

bi m3 +
∫

∂B(t)
ti

=
∫

B(t)
bi m3 +

∫
B(t)

dti (A.1)

617
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Thus, using
∫

B(t) Lv+∂/∂t(v
i m3) = ∫

B(t)(Lv+∂/∂tv
i )m3, we have

[∂vi/∂t + v j (∂vi/∂x j )]m3 = bi m3 + dti

(A.2)
dti = d[t i1dx2 ∧ dx3 + t i2dx3 ∧ dx1 + t i3dx1 ∧ dx2] = [∂t i j/∂x j ]vol3

As mentioned in the derivation of (4.46), this derivation makes no sense in a general

Riemannian manifold with curvilinear coordinates u, but the final formula above,

Cauchy’s equations of motion, can be rewritten so that they make sense in these situa-

tions, by replacing partial derivatives by covariant derivatives with respect to u j

[
∂vi/∂t + v jvi

/j

]
m3 = bi m3 + t i j

/j vol3 (A.3)

Look now at equation (A.3) with any dual frames e and σ for a Riemannian Mn . We

are assuming that t = er ⊗ tr is an (n − 1)-form section of the tangent bundle; thus

from equation (9.31) we have

∇t =∇(er ⊗ tr ) = er ⊗ (dtr + ωr
s ∧ ts) = er ⊗ ∇tr

where ω is the connection form matrix for the frame e on Mn . If, temporarily, we use

r, s, . . . for bundle indices and i, j, . . . for M indices (both sets run in this case from 1

to n), we would write, as usual

ωr
s = ωr

jsσ
j

Equation (A.3) can be written

[∂vr/∂t + vsvr
/s] m3 = br m3 + ∇tr (A.4)

which is our final form of Cauchy’s equations. A specific computation involving

equation (A.4) in spherical coordinates is given in section A.e.

A.b. Stresses are Vector Valued (n − 1) Pseudo-Forms

In considering the stress force on a tiny hypersurface, the transverse orientation of the

normal to the hypersurface must be given and, as we have seen in the opening paragraph

of Section O.p, the stress vector for a tiny hypersurface element is reversed if we change

“sides” of the hypersurface, that is, if the transverse orientation is reversed. Thus the

stress form is a pseudo-form. When no confusion can arise, we shall omit the statement

that t is a pseudo-form, rather than a true form.

As we have shown in (O.44) and (O.45), for most elastic bodies, the Cauchy stress

tensor is symmetric, i.e., in cartesian coordinates xi , used for the form part as well as
the vector part, we have

dxi ∧ t j = dx j ∧ ti

and then

t i j = t ji (A.5)

and since the stress tensor is a tensor, this last symmetry holds in any coordinates xi .
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A.c. The Piola–Kirchhoff Stress Tensors S and P

Consider a body M3 in R
3 and a diffeomorphism M → �(M) of this body in R

3. Let

B ⊂ M be a compact portion of the original body with image �(B). We use any local

coordinates X R for B and any local coordinates xr for �(B), and we write � in the

form xr = xr (X), using the notation of Section 2.7b.

It is traditional in engineering to use capital letters for the coordinates X and the

volume form VOL in the “reference” body B and lower case letters for the coordinates

x and vol in the “current” body �(B). For simplicity we shall initially use the same

coordinates for the form and vector parts in the Cauchy stress form.

The Cauchy stress form t = ∂ i ⊗ ti = ∂ i ⊗ t i j i(∂ j ) vol3 on �(B) is a vector valued

2-form on �(B). We define, as in (O.36), the (second) Piola–Kirchhoff stress form S

on B by pushing the vector part (∂ i ) back to B via (�−1)∗ (which is well defined since

the diffeomorphism � is 1–1), and pulling the form part ti back to B

S = [(�−1)∗(∂ i )] ⊗ �∗ti = ∂C�∗[(∂ XC/∂xi )] ⊗ �∗ti = ∂C ⊗ �∗[(∂ XC/∂xi ti ]

(where �∗[(∂ XC/∂xi ] merely says express ∂ XC/∂xi in terms of coordinates X ), which

is of the form

S = ∂C ⊗ SC Ai(∂ A)VOL = ∂C ⊗ S
C (A.6)

where

S
C = �∗[(∂ XC/∂xi )ti ]

We know that the Cauchy stress tensor is symmetric, (O.44) and (O.45). What about

S? Note first that �∗(dxa) = (∂xa/∂ X A)d X A and so d X A = �∗[(∂ X A/∂xa)dxa].

Then

d X A ∧ S
B = d X A ∧ �∗[(∂ X B/∂xb)tb]

= �∗[(∂ X A/∂xa)dxa] ∧ �∗[(∂ X B/∂xb)tb]

= �∗[(∂ X A/∂xa)(∂ X B/∂xb)] �∗(dxa ∧ tb)

= �∗[(∂ X A/∂xa)(∂ X B/∂xb)] �∗(dxb ∧ ta)

= �∗[(∂ X B/∂xb)dxb] ∧ �∗[(∂ X A/∂xa)ta]

= d X B ∧ S
A

shows that S has the same symmetry as t , that is, the second Piola–Kirchhoff stress

tensor is symmetric

S
AB = S

B A (A.7)

Though we shall not require it, there is a (first) Piola–Kirchhoff 2-form

P = ∂ i ⊗ P
i = ∂ i ⊗ Pi Ri(∂R)VOL3 := ∂ i ⊗ �∗ti (A.8)
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i.e., we pull back the Cauchy stress 2-form to the reference body B, but we leave the

vector value at �(B). Thus for vectors V and W at X ∈ B,

P(V, W) := the vector t (�∗V, �∗W) at �(X) (A.9)

The tensor (Pi R) is called a “2-point tensor” since i is an index on �(B) but R is an

index on B. For this reason one cannot talk about symmetry in the pair (i, R).

A.d. Strain Energy Rate

Consider a body M3 in R
3 with a given cartesian coordinate system (X A), and let

B ⊂ M be our reference sub-body. Let φt : M → R
3 be a be a 1-parameter family

of diffeomorphisms of M into R
3 with φ0 equal to a map �, and put Bt = B(t) =

φt (B) and Mt = φt(M). Let (xa) be a cartesian coordinate system identical to (X A) to

be used for the image points.

We suppose that there are no external body forces b such as gravity that act on Mt ,

but external surface forces on ∂ Mt will be transmitted to ∂ Bt via the Cauchy stresses in

φt(M). We shall also assume that the deformations are so slow that we can neglect the

velocities imparted to M by the deformations. From (O.43) or (A.4) we have dta = 0

in Bt .

An example to keep in mind is the very slow twisting of the cylinder presented in

the Overview by surface forces on the ends z = 0 and z = L .

Since our coordinates are cartesian we can put indices up or down at our convenience.

The “power,” i.e., the rate at which a force F does work in moving a particle

with velocity v is F · v. Then the rate at which the Cauchy stress forces do work on

the boundary ∂ Bt at t = 0 is, putting va = [dxa/dt]t=0 and using dta = 0 and the

symmetry (A.5)

[dW/dt]0 =
∫

∂�(B)

vata =
∫

�(B)

d(vata) =
∫

�(B)

(dva ∧ ta)

=
∫

�(B)

[(∂va/∂xb)(dxb ∧ ta)]

= 1

2

∫
�(B)

[(∂va/∂xb) + (∂vb/∂xa)] dxb ∧ ta (A.10)

The actual deformations φt of M generically lead to a time dependent velocity field

v but our power [dW/dt]0 depends only on the velocity field v at time 0. Hence,

for our calculation we may replace the deformations φt by the time flow (which we

write as ψt ) that results from flowing along the integral curves of the velocity field v
frozen at t =0. We again have (A.10) for this flow. Let us pause to interpret these partial

derivatives in (A.10).

Theorem (A.d): If v is a time independent vector field on a Riemannian Mn then
the Lie derivative of the metric tensor has components

(Lvg)ab = va/b + vb/a
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P R O O F: Let ψt be the flow generated by v. Let X and Y be vector fields invariant
under the flow ψ , i.e., (Lv X)a = vr Xa

/r − Xrva
/r = 0 and likewise for Y . Then,

(Lvg)(X,Y ) = (Lvg)ab XaY b

= d/dt (gab XaY b) (from (4.18)) and gab/r = 0)

= gab(Xa
/rv

r Y b+Xavr Y b
/r)

= gab(Xrva
/r Y b + Xavb

/r Y r ) = Xrvb/r Y b + Xava/r Y r

= Xa(vb/a + va/b)Y
b

as desired.

Now in cartesian coordinates, vb/a = ∂vb/∂xb and so (A.10) says, for our field

v “frozen” at time t =0

[dW/dt]0 = 1

2

∫
�(B)

(Lvg)abdxb ∧ ta

= 1

2

∫
�(B)

[(∂/∂t)0(ψ
∗
t g)]abdxb ∧ ta

= 1

2

∫
B
�∗{[(∂/∂t)0(ψ

∗
t g)abdxb] ∧ ta}

= 1

2

∫
B
(∂/∂t)0{�∗(ψ∗

t g)abdxb} ∧ �∗ta) (A.11)

since � is time independent, which from (A.6) is

[dW /dt]0 = 1

2

∫
B
{(∂/∂t)0[(ψt ◦ �)∗(g)]ab}(∂xb/∂ X B)d X B ∧ (∂xa/∂ XC)S

C

= 1

2

∫
B
{(∂/∂t)0[(ψt ◦ �)∗g]C B}d X B ∧ S

C

= 1

2

∫
B
{(∂/∂t)0[(ψt ◦ �)∗(g) − G]C B}d X B ∧ S

C

since the metric GC B on the reference B is time independent. But S
C = SC Ai(∂A)

VOL and so

d X B ∧ S
C = d X B ∧ SC Ai(∂A)VOL = SC BVOL (A.12)

Thus finally, for reference body B, we have our main result

dW/dt =
∫

B
SC B[d EC B/dt]VOL (A.13)

where E is the Lagrange deformation tensor EC B = 1

2
[(ψt ◦ �)∗(g) − G]C B .

If, during the deformation, no energy is dissipated, for example by heat flux, then

this is the rate dU/dt at t = 0, at which energy U is being stored in the body during

this deformation by the surface forces on the boundary.

For the total amount of energy stored in a body during a deformation, we do not
claim that the same amount of energy is stored during two deformations starting at the

same initial state and ending at the same final state; we expect the result to depend
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on the specific family of deformations from the initial to the final state. When the

result is independent of the path in the space of deformations, the material is called

hyperelastic. This will be discussed in more detail in Appendix D.a.

A.e. Some Typical Computations Using Forms
by

Hidenori Murakami

(1) The equilibrium equations in spherical coordinates. The metric is

ds2 = dr 2 + r 2(dθ 2 + sin2 θ dφ2) (A.14)

with respect to the coordinate basis [∂/∂r,∂/∂θ,∂/∂φ] . To get an orthonormal basis

it is immediately suggested that we define a new basis of 1-forms by

σ =
⎡
⎣ σ r

σ θ

σ φ

⎤
⎦ =

⎡
⎣ dr

r dθ

r sin θ dφ

⎤
⎦ (A.15)

with dual vector basis, which forms an orthonormal frame

e = [er eθ eφ] = [∂/∂r r−1∂/∂θ (r sin θ)−1∂/∂φ] (A.16)

The advantage of using an orthonormal frame and associated 1-form basis to express ten-

sors is that their components give dimensionally correct physical components. A vector

v has tensor components denoted by [v1 v2 v3]T and physical components [vr vθ vφ]T :

v = [∂/∂r ∂/∂θ ∂/∂φ]

⎡
⎣v1

v2

v3

⎤
⎦ = [er eθ eφ]

⎡
⎣vr

vθ

vφ

⎤
⎦

Thus

vr = v1 vθ = rv2 vφ = r sin θv3

The Cauchy vector valued stress 2-form in physical components is

t2 = [er eθ eφ]

⎡
⎣ tr

t θ

tφ

⎤
⎦ (A.17)

where

tr = trrσ θ ∧ σφ + trθσ φ ∧ σ r + trφσ r ∧ σ θ

tθ = t θrσ θ ∧ σφ + t θθσ φ ∧ σ r + t θφσ r ∧ σ θ

tφ = tφrσ θ ∧ σφ + tφθσ φ ∧ σ r + tφφσ r ∧ σ θ

Similarly, the body force per unit mass of the deformed body is expressed in physical

components:

ρ b vol3 = [er eθ eφ]

⎡
⎣ρbr

ρbθ

ρbφ

⎤
⎦ σ r ∧ σ θ ∧ σφ = ρ{er br + eθ bθ + eφ bφ}σ r ∧ σ θ ∧ σφ



S O M E T Y P I C A L C O M P U T A T I O N S U S I N G F O R M S 623

We shall need the matrix of connection 1-forms ω for our orthonormal basis. Letting

∂/∂x be the cartesian basis, using x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ , we

get

er = ∂/∂r = (∂x/∂r)∂/∂x + (∂y/∂r)∂/∂y + (∂z/∂r) ∂/∂z

= sin θ cos φ ∂/∂x + sin θ sin φ ∂/∂y + cos θ ∂/∂z

with similar expressions for eθ and eφ . We then have

e = (∂/∂x)P or [er eθ eφ] = [∂/∂x ∂/∂y ∂/∂z]P

where P is the orthogonal matrix

P =
⎡
⎣ sin θ cos φ cos θ cos φ −sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ −sin θ 0

⎤
⎦

The flat connection 
 for the cartesian frame ∂/∂x is 
 = 0. Under the change of

frame e = ∂/∂x P we have the new connection matrix, as in (9.41)

ω = P−1
P + P−1d P = PT d P

yielding the skew symmetric matrix

ω =
⎡
⎣ 0 −dθ −sin θ dφ

dθ 0 −cos θ dφ

sin θ dφ cos θ dφ 0

⎤
⎦ =

⎡
⎣ 0 −σ θ/r −σφ/r

σ θ/r 0 −σφ cot θ/r
σφ/r σφ cot θ/r 0

⎤
⎦

(A.18)

An additional preparation is to compute dσ of (A.15) and express the result with the

unit 1-form basis using dσ = −ω ∧ σ or directly from (A.15)

dσ =
⎡
⎣ dσ r

dσ θ

dσφ

⎤
⎦ (A.19)

=
⎡
⎣ d dr

dr ∧ dθ

dr ∧ sin θ dφ + dθ ∧ r cos θ dφ

⎤
⎦ = 1

r

⎡
⎣ 0

σ r ∧ σφ

−σφ ∧ σ r + cot θ σφ ∧ σφ

⎤
⎦

The equilibrium equation is expressed using Cartan’s exterior covariant differential

(9.31)

∇t + ρb vol3 = 0 (A.20a)

In component form

ei (∇ti + ρbi vol3) = ei (dti + ωi
j ∧ t j + ρbi vol3) = 0 (A.20b)

With respect to the orthonormal basis (A.16), the ∇t2 term of (A.20b) becomes⎡
⎣ ∇tr

∇t θ

∇tφ

⎤
⎦ =

⎡
⎣ dtr

dt θ

dtφ

⎤
⎦ +

⎡
⎣ 0 −σ θ/r −σφ/r

σ θ/r 0 σφ cot θ/r
σφ/r σφ cot θ/r 0

⎤
⎦ ∧

⎡
⎣ tr

t θ

tφ

⎤
⎦ (A.21)
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Look, for example, at the r -component using (A.17), (A.19), (A.15), and vol3 = σ r ∧
σ θ ∧ σφ

∇tr = dtr −σ θ/r ∧ tθ − σφ/r ∧ tφ

= d(trrσ θ ∧ σφ + trθσ φ ∧ σ r + trφσ r ∧ σ θ) − (t θθ + tφφ)/r σ r ∧ σ θ ∧ σφ

= dtrr ∧ σ θ ∧ σφ + trr (dσ θ ∧ σφ − σ θ ∧ dσφ) + · · · − (t θθ + tφφ)/r vol3

= {(∂trr/∂r + 2trr/r) + (1/r)(∂trθ/∂θ + cot θ trθ ) + [1/(r sin θ)]∂trφ/∂φ

−(1/r)(t θθ + tφφ)} vol3

The er -component of the equilibrium equation is now obtained:

(1/r 2)∂(r 2trr )/∂r + [1/(r sin θ)]{∂(trθ sin θ)/∂θ + ∂trφ/∂φ}
− (1/r)(t θθ + tφφ) + ρbr = 0 (A.22)

The eθ - and eφ-components are handled in the same way. The above procedure of

using an orthonormal frame to write a physical equation, invented by Cartan, takes an

order of magnitude less time for computations. Compared to classical tensor analysis,

the following two tedious computations are eliminated: (i) computation of Christoffel

symbols, and (ii) conversion of tensor components to physical components.

(2) The rate of deformation tensor in spherical coordinates. Consider the metric

tensor

ds2 = gi j dxi ⊗ dx j

in any Riemannian manifold. If v = (∂/∂xi )vi is a vector field then, from Theorem

(A.d) and equation (4.16), the Lie derivative of the metric, measuring how the flow

generated by v deforms figures, is given by

Lv(gi j dxi ⊗ dx j ) = 2di j dxi ⊗ dx j (A.23a)

where

2di j := vi/j + v j/ i (A.23b)

defines the rate of deformation tensor, which plays an important role when discussing

fluid or solid flow. We shall now compute this tensor in spherical coordinates, not by

using covariant derivatives but rather by looking directly at the Lie derivative of the

metric tensor

Lv(gi j dxi ⊗ dx j ) = ∂/∂εφ∗
ε (gi j dxi ⊗ dx j )|ε = 0

where φε is the flow generated by v. We shall do this by using only the simplest

properties of the Lie derivative. We have mainly discussed the Lie derivative of vec-

tor fields and exterior forms, where Cartan’s formula (4.23) played an important role.



S O M E T Y P I C A L C O M P U T A T I O N S U S I N G F O R M S 625

Equation (4.23) cannot be used here since we are dealing now with quadratic (symmet-

ric) forms. However, we still have a product rule

Lvα ⊗ β = (Lvα) ⊗ β + α ⊗ Lvβ

and the basic

Lv( f ) = v( f ) = d f (v)

for any function f . Also, using (4.23) for a 1-form basis

Lvσ
i = divσ

i + ivdσ i = dvi + ivdσ i (A.24)

The metric tensor for spherical coordinates using the unit 1-form basis (A.12) is

ds2 = σ r ⊗ σ r + σ θ ⊗ σ θ + σφ ⊗ σφ (A.25)

The rate of deformation tensor d is symmetric and is expanded as follows:

2d = σ r ⊗ [drrσ
r + drθσ

θ + drφσ
φ] + σ θ ⊗ [dθrσ

r + dθθσ
θ + dθφσ

φ]

+ σφ ⊗ [dφrσ
r + dφθσ

θ + dφφσ
φ]

The above components are computed from the definition (A.23) by taking the Lie

derivative of the metric tensor (A.25)

2d = (Lvσ
r ) ⊗ σ r + σ r ⊗ (Lvσ

r ) + (Lvσ
θ) ⊗ σ θ + σ θ ⊗ (Lvσ

θ)

+ (Lvσ
φ) ⊗ σφ + σφ ⊗ (Lvσ

φ) (A.26)

The Lie derivatives of the basis 1-forms are computed using (A.24) with (A.19) and

(A.25)

Lvσ
r = dvr + ivdσ r = (∂vr/∂r)σ r + (1/r)(∂vr/∂θ)σ θ + (1/r sin θ)(∂vr/∂φ)σφ

(A.27a)

Lvσ
θ = dvθ + ivdσ θ = (∂vθ/∂r)σ r + (1/r)(∂vθ/∂θ)σ θ + (1/r sin θ)(∂vθ/∂φ)σφ

+ iv((1/r)σ r ∧ σ θ)

= (∂vθ/∂r)σ r + (1/r)(∂vθ/∂θ)σ θ + (1/r sin θ)(∂vθ/∂φ)σφ

+ (1/r)(vrσ θ − vθσ r ) (A.27b)

Lvσ
φ = dvφ + ivdσφ = (∂vφ/∂r)σ r + (1/r)(∂vφ/∂θ)σ θ + (1/r sin θ)(∂vφ/∂φ)σφ

+ iv(−(1/r)σ φ ∧ σ r + (cot θ/r)σ θ ∧ σφ)

= (∂vφ/∂r)σ r + (1/r)(∂vφ/∂θ)σ θ + (1/r sin θ)(∂vφ/∂φ)σφ

− (1/r)vφσ r + (1/r)vrσφ + cot θ(vθσ φ − vφσ θ )(1/r) (A.27c)
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By substituting (A.27) into (A.26) and collecting terms for each pair of basis 1-forms,

the physical components of the rate of deformation tensor are obtained

drr = ∂vr/∂r dθθ = (1/r)[(∂vθ/∂θ) + vr ]

dφφ = (1/r)[(1/sin θ)(∂vφ/∂φ) + vr + vθ cot θ ]

2dθr = 2drθ = (1/r)[(∂vr/∂θ) − vθ ] + ∂vθ/∂r

2dφr = 2drφ = (1/r)[(∂vr/∂φ)(1/ sin θ) − vφ] + (∂vφ/∂r) (A.28)

2dφθ = 2dθφ = (1/r)[(∂vθ/∂φ)(1/ sin θ) + (∂vφ/∂θ) − vφ cot θ ]

It is to be noted here that if the velocity components are replaced by the displacement

components, the formula (A.28) gives the relation between the infinitesimal strain

tensor and the displacements.

(3) The Lie derivative of the Cauchy stress 2-form, the Truesdell stress rate. With

respect to a coordinate frame, ∂ i = ∂/∂xi , we define the Lie derivative of the vector

valued

t = ∂ i ⊗ dti = ∂ i ⊗ (t i j i∂ j vol3)

for a time-dependent vector field v, by

L∂t+v(∂i ⊗ t i j i∂ j vol3) = (L∂t+v∂i ) ⊗ t i j i∂ j vol3 + ∂i ⊗ (L∂t+v t
i j )i∂ j vol3

+ ∂i ⊗ t i j (L∂t+v i∂ j vol3)

= [v, ∂i ] ⊗ t i j i∂ j vol3 + ∂i ⊗ (L∂t+v t
i j )i∂ j vol3

+ ∂i ⊗ t i j (Lvi∂ j vol3) (A.29)

Using (4.6) the bracket term becomes

[v, ∂i ] ⊗ t i j i∂ j vol3 = −∂m(∂vm/∂xi ) ⊗ t i j i∂ j vol3 = −∂ i (∂vi/∂xk)t k j i∂ j vol3

(A.30)

Also, the second term on the right of (A.29) becomes

∂i ⊗ (∂t + v)(t i j )i∂ j vol3 = ∂i ⊗ (∂t i j/∂t + vk∂t i j/∂xk)i∂ j vol3 (A.31)

Look now at the last term of (A.29). Using (4.24) and [v,∂ j ] = −(∂vk/∂x j )∂k

Lvi∂ j = i[v,∂ j ] + i∂ j Lv = −(∂vk/∂x j )i∂k + i∂ j Lv

And so

Lvi∂ j vol3 = [−(∂vk/∂x j )i∂k + i∂ j Lv]vol3

= −(∂vk/∂x j )i∂k vol3 + (div v)i∂ j vol3

and the last term in (A.29) becomes, using t i j (∂vk/∂x j )i∂k = t im(∂v j/∂xm)i∂ j

∂i ⊗ [t i j (div v) − t im(∂v j/∂xm)]i∂ j vol3 (A.32)

The stress rate (A.29) then becomes the Truesdell stress rate

L∂t+v(∂i ⊗ t i j i∂ j vol3) = ∂i ⊗ ∇
t i j i∂ j vol3 (A.33a)
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where

∇
t i j := (∂t i j/∂t) + vk(∂t i j/∂xk) − (∂vi/∂xm)tmj − t im(∂v j/∂xm) + (div v)t i j

(A.33b)

In a similar manner, the stress rate of the covector valued Cauchy stress 2-form can be

computed.

A.f. Concluding Remarks

In 1923, Elie Cartan introduced a vector valued 3-form version of the stress tensor in

Einstein’s space–time M4 and combined this with a vector valued version of Einstein’s

energy momentum tensor ρu j uk . For these matters and much more, see the translations

of Cartan’s papers in the book [Ca], and especially A. Trautman’s Foreword to that

book.

L. Brillouin discussed the three index version of the stress tensor in R
3 in his book

[Br, p. 281 ff].



APPENDIX B

Harmonic Chains and Kirchhoff’s
Circuit Laws

Chapter 14 deals with harmonic forms on a manifold. This involves analysis in infinite

dimensional function spaces. In particular, the proof of Hodge’s theorem (14.28) is far

too difficult to be presented there, and only brief statements are given. By considering

finite chain complexes, as was done in section 13.2b, one can prove a finite dimensional
analogue of Hodge’s theorem using only elementary linear algebra. In the process, we

shall consider cohomology, which was only briefly mentioned in section 13.4a. In the

finite dimensional version, the differential operator d acting on differential forms is

replaced by a “coboundary” operator δ acting on “cochains,” and the geometry of δ is

as appealing as that of the boundary operator ∂ acting on chains!

As an application we shall consider the Kirchhoff laws in direct current electric

circuits, first considered from this viewpoint by Weyl in the 1920s. This geometric

approach yields a unifying overview of some of the classical methods of Maxwell and

Kirchhoff for dealing with circuits. Our present approach owes much to a paper of

Eckmann [E], to Bott’s remarks in the first part of his expository paper [Bo 2], and

to the book of Bamberg and Sternberg [B, S], where many applications to circuits are

considered.

We shall avoid generality, going simply and directly to the ideas of Hodge and

Kirchhoff.

B.a. Chain Complexes

A (real, finite) chain complex C is a collection of real finite dimensional vector spaces

{C p}, C−1 = 0, and boundary linear transformations

∂ = ∂p : Cp → Cp−1

such that ∂2 = ∂p−1 ◦∂p = 0. Chapter 13 is largely devoted to the (infinite dimensional)

singular chain complex C(M; R) on a manifold and the associated finite simplicial

complex on a compact triangulated manifold. We shall illustrate most of the concepts

with a chain complex on the 2-torus based not on simplexes (as in Fig. 13.16) but rather

628
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on another set of basic chains illustrated in Figure B.1. This chain complex is chosen

not for its intrinsic value but rather to better illustrate the concepts.

v1 v1

v2

E1

E4 v2

v1 v1E1

E3

E2

E3

E2

F2

F1

Figure B.1

The vector space C0 is 2-dimensional with basis the vertices v1 and v2. C1 is 4-

dimensional with basis consisting of the two circles E1 and E4 and the two 1-simplexes

E2 and E3, each carrying the indicated orientation. C2 has as basis the two oriented

cylinders F1 and F2. We call these eight basis elements basic chains.

A general 1-chain is a formal sum of the form c = ∑
ai Ei , where the ai are real

numbers. This means that c is a real valued function on the basis {Ei } with values

c(Ei ) = ai . Similarly for C0 and C2.

For boundary operators we are led to define

∂ = ∂0(vi ) = 0 i = 1, 2

∂ = ∂1 E1 = v1 − v1 = 0, ∂1 E2 = v2 − v1, ∂1 E3 = v1 − v2, ∂1 E4 = v2 − v2 = 0

∂ = ∂2 F1 = E1 + E2 − E4 − E2 = E1 − E4, ∂2 F2 = E4 − E1

and extend ∂ to the chain groups by linearity, ∂
∑

ai Ei = ∑
ai∂ Ei . Using the usual

column representations for the bases, E3 = [0, 0, 1, 0]T , etc., we then have the matrices

∂0 = 0 ∂1 =
[

0 −1 1 0

0 1 −1 0

]
∂2 =

⎡
⎢⎢⎣

1 −1

0 0

0 0

−1 1

⎤
⎥⎥⎦ (B.1)

We may form the homology groups (vector spaces) of the chain complex. Hp(C) :=
ker(∂p)/Im(∂p+1), which are again cycles modulo boundaries. One sees easily that the

bases of the homology vector spaces can be written

H0 = {v1} H1 = {E1, E2 + E3} H2 = {F1 + F2}
yielding the same bases as (13.24) for the finite simplicial chains on the torus.

There is no reason to expect, however, that other decompositions of the torus will

yield the same homology as the simplicial chains. For example, we could consider a
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new chain complex on the torus where C2 has a single basic chain T , the torus itself,

while C1 = 0 and C0 is the 1-dimensional space with basic 0-chain a single vertex

v, and with all ∂p = 0. The homology groups of this complex would be H0 = {v},
H1 = 0, and H2 = {T }, which misses all the 1-dimensional homology of the torus. We

have chosen our particular complex to better illustrate our next concept, the cochains.

B.b. Cochains and Cohomology

A p-cochain α is a linear functional α : Cp → R on the p-chains. (In the case when Cp

is infinite-dimensional one does not require that f vanish except on a finite number of

basic chains!). The p-cochains form a vector space C p := Cp
∗, the dual space to Cp, of

the same dimension. Thus chains correspond to vectors while cochains correspond to
covectors or 1-forms. Cochains are not chains. However, after one has chosen a basis for

p-chains (the basic chains), each chain is represented by a column c = [c1, . . . cN ]T and

a cochain, with respect to the dual basis, may be represented by a row α = [a1, . . . . aN ].

However, for our present purposes, some confusion will be avoided by representing
cochains also by columns. Then the value of the cochain α on the chain c is the matrix

product α(c) = aT c. We may also think, in our finite dimensional case, of a chain as a

function on cochains, using the same formula

c(α) := α(c) = aT c (B.2)

In our simple situation there will always be basic chains chosen so there is basically

no difference between chains and cochains: both are linear functions of the basic chains,

but just as we frequently want to distinguish between vectors and 1-forms, so we shall

sometimes wish to distinguish between chains and cochains, especially in the case of

Kirchhoff’s laws.

We define a coboundary operator δp : Cp
∗ → Cp+1

∗ to be the usual pull back of

1-forms under the boundary map ∂p+1 : Cp+1 → Cp. Ordinarily we would call this

∂p+1
∗, but as we shall soon see, ∗ is traditionally used for the closely related “adjoint”

operator.

δ = δp : C p → C p+1

is defined by

δpα(c) := α(∂p+1c) i.e., (δ a)i = ar∂
r

i (B.3)

or, briefly

δp(α) = (∂p+1)
T a

for each (p + 1) chain c. As usual the matrix for δp is the transpose of the matrix for

∂p+1, again operating on columns.

It is immediately apparent that

δ2 = δ ◦ δ = 0 (B.4)
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If δ α p = 0 we say that α is a p-cocycle, and if α = δβ p−1 then α is a coboundary. It

is clear that every coboundary is a cocycle.

In the case when Cp is the infinite dimensional space of real singular chains on

a manifold Mn , then an exterior p-form α defines a linear functional by integration

(called Iα in our discussion of de Rham’s theorem)

α(c) =
∫

c
α

and so defines a cochain. Then Stokes’s theorem dα(c) = α(∂c) shows that d behaves
as a coboundary operator. A closed form defines a cocycle and an exact form a

coboundary.

The analogue of the de Rham group, Rp = closed p-forms modulo exact p-forms,

is called the pth (real) cohomology group for the chain complex

H p = ker δp/Im δp−1 (B.5)

Consider the chain complex on T 2 pictured in Figure B.1. Consider the basic chains

also as cochains; for example, E1 is the 1-cochain whose value on the chain E1 is 1 and

which vanishes on E2, E3 and E4. Then δE1(F1) = E1(∂ F1) = E1(E1+E2−E4−E2) =
1, while similarly δE1(F2) = −1. Thus we can visualize δE1 as the 2-chain F1 − F2.

δE1 = F1 − F2

In words, to compute δE1 as a chain, we take the formal combination
∑

r ar Fr of

exactly those basic 2-chains {Fr } whose boundaries meet E1, ar chosen so that ∂(ar Fr )

contains E1 with coefficient 1. Note that

δE2 = 0

since F1 is the only basic 2-chain adjacent to E2, but ∂ F1 = E1 − E4 does not contain

E2.

These remarks about δE1 and δE2 also follow immediately from the matrices in (B.1),

putting δ1 = ∂T
2 .

Observe that δE4 = F2 − F1, and so

δ(E1 + E4) = 0 (B.6)

The 1-chain E1 + E4 is not only a cycle, it is a cocycle. We shall see in the next section

that this implies that E1 + E4 cannot bound.

B.c. Transpose and Adjoint

We shall continue to consider only finite dimensional chain complexes. We have identi-

fied chains and cochains by the choice of a basis (the “basic” chains). Another method

we have used to identify vectors and covectors is to introduce a metric (scalar product).

We continue to represent cochains by column matrices.

We may introduce an arbitrary (positive definite) scalar product 〈 , 〉 in each of

the chain spaces Cp. Given 〈 , 〉 and given a choice of basic chains in Cp we may
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then introduce, as usual, the “metric tensor” g(p)i j = 〈Ei , E j 〉 , yielding 〈c, c′〉 =
ci gi j c′ j = cT gc′, and its inverse g(p)−1 with entries g(p)i j . This inverse yields a

metric in the dual space of cochains, 〈α, β〉 = ai gi j b j = aT g−1b. (The simplest case

to keep in mind is when we choose basic chains and demand that they be declared

orthonormal, i.e., when each matrix g is the identity. This is what we effectively did in

our previous section when considering the chain complex on the torus; 〈E j , Ek〉 was

the identity matrix.)

To the p-cochain with entries (ai ) we may associate the p chain with entries (a j ),

a j := g(p) jkak . Thus g(p)−1 : C p → Cp “raises the index on a cochain” making it a

chain, while g(p) : C p → C p “lowers the index on a chain” making it a cochain. We

shall now deal mainly with cochains. If a chain c appears in a scalar product we shall
assume that we have converted c to a cochain.

Let A : V → W be a linear map between vector spaces. The transpose AT is simply

the pullback operator that operates on covectors in W ∗.

AT : W ∗ → V ∗

If we were writing covectors as row matrices, AT would be the same matrix as as A
but operating to the left on the rows, but since our covectors are columns we must now

interchange the rows and columns of A, i.e., we write wR AR
i = AR

iwR = (AT )i
RwR ,

and so

(AT )i
R := AR

i

(Recall that in a matrix, the left-most index always designates the row.)

Suppose now that V and W are inner product vector spaces, with metrics gV =
{g(V )i j } and gW = {g(W )RS} respectively. Then the adjoint

A∗ : W → V

of A is classically defined by 〈A(v), w〉 W = 〈v, A∗(w)〉 V . A∗ is constructed as fol-

lows. To compute A∗(w) we take the covector gW (w) corresponding to w, pull this

back to V ∗ via the transpose AT gW (w), and then take the vector in V corresponding

to this covector, gV
−1 AT gW (w). Thus A∗ = gV

−1 AT gW . In components (A∗) j
R =

g(V ) jk(AT )k
Sg(W )S R = g(V ) jk AS

k g(W )S R . In summary

A∗ = gV
−1 AT gW

A∗ j
R = AR

j := g(W )RS AS
k g(V )k j (B.7)

Note that in this formulation A∗ would reduce simply to the transpose of A if bases in

V and W were chosen to be orthonormal.

The coboundary operator and matrix have been defined in (B.3), δ p = ∂p+1
T . The

adjoint δ∗ satisfies 〈δ(α), β〉 = 〈α, δ∗(β)〉 . Then

δ∗ ◦ δ∗ = 0

Consider δp : C p → C p+1. The metric in C p = Cp
∗ is the inverse g(p)−1 of the metric

g(p) in C p. Hence, from (B.7), δ∗ = g(p)δT g(p + 1)−1 = g(p)∂p+1 g(p + 1). Since
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(δp)
∗ : C p+1 → C p, we prefer to call this operator δ∗

p+1.

δ∗
p+1 := δp

∗ = g(p)∂p+1g(p + 1)−1 (B.8)

Thus in any bases δ is ∂T , and in orthonormal bases δ∗ = ∂ .

B.d. Laplacians and Harmonic Cochains

We now have two operators on cochains

δp : C p → C p+1 and δ∗
p : C p → C p−1

If a cochain α satisfies δ∗α = 0 we shall, with abuse of language, call α a cycle.

Similarly, if α = δ∗β, we say α is a boundary. We define the laplacian � : C p → C p

by

�p = δ∗
p+1δ p + δ p−1δ

∗
p (B.9)

or briefly

� = δ∗δ + δ δ∗

Note that

� = (δ + δ∗)2 and � is self adjoint, �∗ = �.

A cochain α is called harmonic iff �α = 0. Certainly α is harmonic if δ∗α= 0 = δα.

Also, �α = 0 implies 0 = 〈(δ∗δ+δ δ∗)α, α〉 = 〈δα, δα〉 + 〈δ∗α, δ∗α〉, and since a metric

is positive definite we conclude that δ∗α = 0 = δα.

A cochain is harmonic if and only if it is a cycle and a cocycle. (B.10)

Let H be the harmonic cochains. If γ is orthogonal to all boundaries, 0 =
〈γ , δ∗α〉 = 〈δγ , α〉, then γ is a cocycle. Likewise, if γ is orthogonal to all coboundaries,

then γ is a cycle. Thus if γ is orthogonal to the subspace spanned by the sum of the

boundaries and the coboundaries, then γ is harmonic. Also, any harmonic cochain is

clearly orthogonal to the boundaries and coboundaries. Thus the orthogonal comple-

ment of the subspace δC p−1 ⊕ δ∗C p+1 is H
p. A non-zero harmonic cochain is never a

boundary nor a coboundary! For example, the cycle E1 + E4 of section B.b cannot be a

boundary.

In our finite dimensional C p, we then have the orthogonal (“Hodge”) decomposition

C p = δC p−1 ⊕ δ∗C p+1 ⊕ H
p
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cocycles

cycles

H 
p⊥

H 
p

δCp−1

δ∗Cp+1

Figure B.2

Thus any cochain β is of the form

β p = δα p−1 + δ∗γ p+1 + hp
(B.11)

The three cochains on the right are unique (though α and γ need not be).

We can actually say more. The self-adjoint operator � = δ∗δ + δ δ∗ has H as kernel

and clearly sends all of C p into the subspace H
p⊥ = δC p−1 ⊕δ∗C p+1. Thus � : H

p⊥ →
H

p⊥ is 1 : 1, and, since H
p⊥ is finite dimensional, onto, and so � : C p → H

p⊥ is onto.

Hence any element of H
p⊥ is of the form �α for some α.

Given any β ∈ H⊥ there is an α ∈ C such that �α = β

and α is unique up to the addition of a harmonic cochain. (B.12)

“Poisson’s equation” �α = β has a solution iff β ∈ H
⊥. Now let β ∈ C p be any

p-cochain and let H(β) be the orthogonal projection of β into H. Then β−H(β) is in

H
p⊥

and

β − H(β) = �α = δδ∗α + δ∗δα (B.13)

refines (B.11).

In particular, if β is a cocycle, then, since the cycles are orthogonal to the cobound-

aries, we have the unique decomposition

δβ = 0 ⇒ β = δδ∗α + H(β) (B.14)

Thus,

In the cohomology class of a cocycle β there
is a unique harmonic representative. The
dimension of H

p is dim .H p.

(B.15)
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There is a similar remark for cochains with δ∗z = 0. Since we may always introduce a

euclidean metric in the space of chains Cp, we can say

δz p = 0 ⇒ z p = ∂cp+1 + h p (B.16)

where ∂h = 0 = δh.

In the homology class of a cycle z there
is a unique harmonic representative h, i.e.,
a chain that is both a cycle and a cocycle,
and dim. Hp = dim. H

p = dim. H p.

(B.17)

Three concluding remarks for this section. First, once we write down the matrices

for ∂ and δ = ∂T , the harmonic chains, the nullspace of �, can be exhibited simply by

linear algebra, e.g., Gaussian elimination.

Second, it is clear from the orthogonal decomposition (B.16), that in the homology

class of a cycle z, the harmonic representative has the smallest norm, ‖h‖ ≤ ‖z‖. For

our toral example, E1 and (E1 + E4)/2 are in the same homology class, since E4 ≈ E1

and (E1 + E4)/2 is harmonic from (B.6). While it seems perhaps unlikely that E1 + E4

is “smaller” than 2E1, recall that our basic chains are there declared orthonormal, and

so ‖2E1‖ = 2, while ‖E1 + E4‖ 1 = √
2.

Finally, we write down the explicit expression for the laplacian of a 0-cochain φ0.

This is especially simple since δ∗φ0 = 0. From (B.9) and (B.3) �φ = δ∗δφ = δ1∗δ0φ,

i.e.,

�φ = g(0)∂1g(1)−1∂1
T φ (B.18)

B.e. Kirchhoff’s Circuit Laws

Consider a very simple electric circuit problem. We have wire 1-simplexes forming

a connected 1-dimensional chain complex with nodes (vertices) {v j } and branches
(edges) {eA}, each edge endowed with an orientation. The vertices and edges are the

basic 0- and 1-chains. The circuit, at first, will be assumed purely resistive, i.e., each

edge eA carries a resistance RA > 0, but there are no coils or batteries or capacitors.

We assume that there is an

external source of current i(v j ) = i j at each vertex v j

which may be positive (coming in), negative (leaving), or zero. In Figure B.3 we have

indicated the three non-zero external currents i2, i4, and i7. The problem is to determine

the current IA := I (eA) in each edge after a steady state is achieved. Current is thus a

real valued function of the oriented edges; it defines either a 1-chain or cochain, denoted

by I.
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Figure B.3

In Figure B.3, C0 has basis {v1, . . . , v7}, C1 has basis {e1, . . . e9}.

v

i(v)

Figure B.4

Kirchhoff’s current law KCL states that at any node v, the sum of all the currents

flowing into v from the wire edges and the external source must equal that leaving. But

(see Figure B.4) the edges coming into v form the coboundary of the vertex, and so

0 = I(δv) + i(v) = ∂I(v) + i(v). This suggests that the wire currents form a 1-chain
(since we are taking a boundary) and

∂I = −i (KCL)

The external currents i form a 0-chain. We write I(eA) = I A and i(v j ) = i j .

Kirchhoff’s voltage law involves the electric field in each wire. Let

E(e) =
∫

e
E

1 =
∫

e
E · dx

be the integral of the electric field over the basic 1-chain e. This is the voltage drop
along branch e. Since we are dealing with steady state, i.e., static fields, we know that

the electric field 1-form E
1 is the differential of the electostatic potential φ; see (7.26).

Hence E(e) = φ(∂e) = δφ(e). This suggests that we should consider voltage as a

1-cochain. We have then Kirchhoff’s voltage law

E = δφ (KVL)

and the electrostatic potential at a vertex defines a 0-cochain φ. Write E(eA) = EA and

φ(v j ) = φ j . φ is defined only up to an additive constant.

Finally, Ohm’s law says that the voltage drop across the resistor R is always RI.

Since we are assuming at first that only resistances are present in each branch, we may

say EA = RA I A. (When batteries are present this will be amended; see (B.22). Since E
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is covariant and I is contravariant, we interpret the resistances as determining a metric
in C1, EA = g(1)ABIB . Thus the metric tensor in the 1-chains is diagonal

g(1)AB = RAδAB (B.19)

E = g(1)I

We put the identity metric tensor in C0; thus the vertices {v j } are declared orthonormal

and may be considered either as chains or as cochains.

Kirchhoff’s laws then yield, for the electric potential 0-cochain φ

�φ = δ∗
1δ0φ = δ∗

1E

From (B.9) we have

�φ = δ∗
1E = g(0)∂1g(1)−1

E (B.20)

and from (B.19)

�φ = ∂I = −i

(In circuit theory, ∂ is called the incidence matrix and � the admittance.) If we can

solve this Poisson equation for φ, then we will know E in each eA. Knowing this and

the resistances, we get the current in each branch.

Is there always a solution? From (B.12) we know that a necessary and sufficient

condition is that the 0-cochain i of external currents be a boundary, i = δ∗
1 (a 1-

cochain β) = ∂c, where c is the 1-chain version of β. Let c = ∑
cAeA. Then ∂c =∑

cA∂eA = ∑
cA(vA

+ − vA
−), where vA

± are the vertices of eA. Thus the sum of the

coefficients of all the vertices in the boundary of a 1-chain vanishes. Conversely, in a

chain complex that is connected (such as our circuit), meaning that any two vertices

can be connected by a curve made up of edges, it is not hard to see that any collection

of vertices with coefficients whose sum vanishes is indeed a boundary. We conclude

There exists a solution to (B.20) iff the total
external current entering the circuit equals
the total external current leaving,

∑
k i(vk) = 0 (B.21)

which is of course what is expected. The solution φ is unique up to an additive harmonic

0-cochain. We claim that a harmonic 0-cochain f has the same value on each vertex in

our connected circuit. For if P and Q are any vertices, let c be a 1-chain with boundary

Q–P . Then f (Q)– f (P) = f (∂c) = δ f (c) = 0, since f is a cocycle. Hence, as to be

expected, the potential φ is unique up to an additive constant.

Just to illustrate the computations, consider a pair of resistances in parallel, Figure

B.5. We know that we need to have i2 = −i1 := −i0. Put v1 = [1 0]T , v2 = [0 1]T ,

e1 = [1 0]T , e2 = [0 1]T , φ = [φ1 φ2]T and i = [i0 − i0]T . The matrix g(1) is the 2 × 2

diagonal matrix with entries R1 and R2. We have ∂e1 = v2 − v1 = ∂e2 = [−1 1]T .
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Figure B.5

Then �φ = −i becomes, from (B.18),

�φ = ∂1g(1)−1∂1
T φ = −i

The laplacian matrix is[−1 −1

1 1

] [
1/R1 0

0 1/R2

] [−1 1

−1 1

]
= (1/R1 + 1/R2)

[
1 −1

−1 1

]

Then �[φ1 φ2]T = [−i0 i0]T gives immediately

(1/R1 + 1/R2)(φ2 − φ1) = i0

Since φ2 − φ1 is the voltage in both branches, this gives the familiar result that the

equivalent resistance for the two resistances in parallel is (1/R1 + 1/R2)
−1.

Some words about circuits with batteries but no external currents. First a simpli-

fication of notation. Since only the 1-chains involve a non–standard metric (based on

the resistances), we shall write g rather than g(1). Let B be the 1-cochain, with BA the

voltage of the battery in edge eA, BA being positive if the direction from the negative to

the positive terminal yields the given orientation of eA. Consider a closed loop formed

by a battery of voltage B and a resistor R across the poles of the battery. By Ohm’s

law the integral of E1 over the resistor is RI = B. But the integral of E1 = dφ over the

entire loop must vanish, and so the integral of E
1 over the battery part of the loop must

be −B. Thus when a battery is present in a branch eA we have, as expected, the voltage

drop EA = RA I A − BA. Kirchhoff’s laws are then

∂I = 0 and E = gI − B = δφ (B.22)

and then �φ = ∂1 g−1
E = ∂I − ∂g−1B = −∂[g−1B]

�φ = −∂[g−1B] (B.23)

which always has a solution, since the boundaries are in H⊥.

Note also that

E
T I = E(I) = (δφ)(I) = φ(∂I) = 0

which is Tellegen’s theorem, saying that the total power loss I 2 R in the resistors is

equal to the power B I supplied by the batteries.

Further, we note the following. Look at (B.22), written as B = gI –δφ. Since I is a

1-cycle, ∂I = 0, its cochain version gI satisfies δ∗[gI] = 0. B is thus the sum of a cycle

and a coboundary and the two summands gI and δφ are orthogonal. Thus, in Figure B.2,
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the cochain version of I is the orthogonal projection
∏

B of B into the subspace of
cycles, IA = ∏

A
C BC . Thus if we choose an orthonormal basis for the cycles, the

“meshes,” then given any battery cochain B we can easily project it orthogonally into

the cycle space, and the resulting cochain is the current. (For the chain I we may write

I A = ∏AC BC .) This is a special case of Weyl’s method of orthogonal projection.

The orthogonal projection operator
∏

is self-adjoint and depends only on the metric,

i.e., the resistances in the given branches. In terms of the basic 1-chains {eA} we

have I A = ∏AC BC , where
∏AC = ∏C A

. Consider a circuit where there is only

one battery present, of voltage V , in branch e1. Then the current present in branch e2

is I 2 = ∏2 1 B1 = ∏2 1 V . Remove this battery, put it in branch e2, and look at the

new current in branch e1; I′1 = ∏1 2 V = I 2! This surprising result is a special case of

Green’s Reciprocity.

Finally, we consider the modifications necessary when there are constant current
sources K A present in parallel with the resistors in each branch eA.

KA RA

BA

Figure B.6

We do not consider the current source K A as forming a new branch; {K A} forms rather

a new 1-chain K.

K(eA) = K
A := K A

If I A is the current in branch eA, i.e., I A is the current entering eA at one node of ∂eA

and leaving at the other node, then the current through the resistor RA is now I A − K A.

The voltage drop along the resistor is then, by Ohm’s law, RA(I A − K A), and thus

EA = RA(I A − K A) − BA. Kirchhoff’s laws become, since the total current entering a

node is still 0,

∂I = 0 and E = δφ = g(I − K) − B (B.24)

Poisson’s equation becomes

�φ = −∂[g−1B + K] (B.25)

Orthogonal projection onto cycles now says

IA =
∏

AC(BC + KC) (B.26)



APPENDIX C

Symmetries, Quarks, and Meson
Masses

At the end of Section 20.3b we spoke very briefly about “colored” quarks and the

resulting Yang–Mills field with gauge group SU(3). This was not, however, the first

appearance of quarks. They appeared in the early 1960s in the form of “flavored” quarks,

independently in the work of Gell–Mann and Zweig. Their introduction changed the

whole course of particle physics, and we could not pass up the opportunity to present

one of the most striking applications to meson physics, the relations among pion,

kaon, and eta masses. This application involves only global symmetries, rather than the

Yang–Mills feature of the colored quarks.

For expositions of particle physics for “the educated general reader” see, e.g., the

little books [’t Hooft] and [Nam].

C.a. Flavored Quarks

The description to follow will be brief and very sketchy; the main goal is to describe the

almost magical physical interpretations physicists gave to the matrices that appear. My

guide for much of this material is the book [L–S,K], with minor changes being made

to harmonize more with the mathematical machinery developed earlier in the present

book. As to mass formulas, while there are more refined, technical treatments (see,

e.g., [We, Chap. 19]) applying (sometimes with adjustments required) to more mesons

and to “baryons,” the presentation given in Section C.f for the “0− meson octet” seems

quite direct.

Flavored quarks generalize the notion of the Heisenberg nucleon of Section 20.3a

The symmetry group there, SU(2), is called isotopic spin, or briefly isospin. Isospin

refers to the “internal” symmetry group SU(2) and is not to be confused with the usual

quantum mechanical spin [Su, Section 4.1], which refers to the space symmetry group

SO(3), but the terminology mimics that of ordinary spin. (Recall that SU(2) is the

twofold cover of SO(3).) Thus since isospin for the nucleon has two states p and n, we

say that these nucleons have isotopic spin I = 1/2. In general (number of states) =
2I + 1. The diagonal normalized third Pauli matrix I3 = (1/2)σ3 is, except for a factor

640
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of
√−1, an infinitesimal generator of SU(2) and is called the isotopic spin operator

I3. p, being an eigenvector of I3 with eigenvalue 1/2, is said to be the nucleon state of

isotopic spin 1/2, while the neutron is the state of isotopic spin −1/2.

In the quark model the nucleon is no longer considered basic; it was proposed that

nucleons and many other particles are composed of quarks. For our purposes, we need

only consider particles at a given space–time point. (We shall not be considering kine-

matics nor quantum dynamics.) Associate with this point a complex three dimensional

vector space Q, a copy of C
3, with a given orthonormal basis and the usual hermitian

metric 〈z, w〉 = zT w. A quark is represented by a unit vector

(q1 q2 q3)T = (u d s)T

in Q.

If m = (m1, m2, m3)
T is any vector in Q, then it defines a (complex) linear functional

μ on Q by μ(w) = 〈m, w〉 = ∑
m jw j . (We may use subscripts throughout since our

bases are orthonormal.) Thus the covariant version of the vector m = (m1, m2, m3)
T is

the covector given by the row matrix μ = (m1, m2, m3).

If q = (u d s)T is a quark, then its covector q∗ = (u d s) is assumed to describe the

antiquark of q, written here as q∗ since its matrix is the hermitian adjoint of q. For

formal “bookkeeping” purposes we will concentrate not on the individual quarks but

on bases or frames of three quarks or antiquarks.

Let u, d, and s be the basis vectors of the given Q. These three quarks are called

the up, down, and strange flavored quarks associated with this basis. A second basis

related to this one by an SU(3) change of basis will result in a new set of u, d, and s
flavored quarks. These flavors are not to be confused with the colored quarks of Section

20.3b.

A quark frame q of orthonormal vectors in Q,

q = [u, d, s]

is written as in geometry (p. 250) as a formal row matrix (formal because the entries

are quarks rather than numbers.)

Since the quarks u, d, and s are orthonormal, their three antiquarks u∗, d∗, and s∗

form an orthonormal basis for the dual space Q∗ and we can consider the formal dual
frame of antiquarks,

q∗ =
⎡
⎣u∗

d∗

s∗

⎤
⎦

It was assumed that the part of the Lagrangian dealing with the strong force is

invariant under an SU(3) change of frame in Q. If, e.g., one observer believes the quark

in question to be a down quark d, another could see it as an s. Thus, just as with the

Heisenberg nucleon, u, d, and s are to be considered as three states of the same particle,

the flavored quark. Invariance of the Lagrangian under the eight-dimensional group

SU(3) led to Gell–Mann’s denomination of this theory as the “eight-fold way,” using a

phrase from Buddhist thought.
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To view a nucleon as composed of quarks, quarks are assumed to have fractional

electric charges

Q(u) = 2/3, Q(d) = Q(s) = −1/3 (C.1)

(Charge thus violates SU(3) symmetry, but recall that SU(3) symmetry is assumed only

for the strong force, not the electromagnetic.) It turns out, e.g., that the proton p is made

up of three quarks, written p = duu, whose total charge is −1/3 + 2/3 + 2/3 = 1.

The neutron n = ddu has charge 0. The electric charge of an antiquark is always the

negative of that of the quark. The antiproton p∗ = d∗u∗u∗ has charge −1.

C.b. Interactions of Quarks and Antiquarks

A composite particle formed from a quark q and it its antiquark q∗ is described by

physicists by considering the tensor product q∗ ⊗ q in Q∗ ⊗ Q.

Recall that if e is a basis for a vector space Q and if σ is the dual basis for Q∗,

then for a vector v = e jv
j and covector α = akσ

k we have α ⊗ v = akσ
k ⊗ e jv

j =
ak(σ

k ⊗ e j )v
j and Q∗ ⊗ Q thus has basis elementsσk ⊗ e j . Each basis elementσk ⊗ e j

defines a linear transformation sending Q into itself, (σk ⊗ e j )(v) = σk(v)e j = vke j ,

but we shall largely ignore this aspect. The formal matrixσ⊗e with entries(σ⊗e)k
j =

σk ⊗ e j forms a frame for Q∗ ⊗ Q.

We shall be dealing entirely with the formal aspects of all these matrices. q∗ is merely
a formal column matrix, q is a row matrix, q∗ ⊗ q is a 3 × 3 matrix, and SU(3) acts
by g(q∗) = gq∗, and g(q) = qg−1. We are interested in antiquark–quark interactions

forming composite particles. The appropriate frame is

q∗ ⊗ q =
⎡
⎣u∗

d∗

s∗

⎤
⎦ ⊗ [u d s] =

⎡
⎣u∗u u∗d u∗s

d∗u d∗d d∗s
s∗u s∗d s∗s

⎤
⎦

In the 3 × 3 matrix on the right we have omitted the tensor product sign in each entry;

e.g., u∗u is really u∗ ⊗ u: We are not interested in the fact that, e.g., the entries in the

frame are themselves matrices Note also that in the present case, the tensor product
matrix is the same as the usual matrix product of the column matrix q∗ and the row
matrix q. This would not be the case for the product in the reverse order in which case

the tensor product frame matrix would again be 3 × 3 while the matrix product would

be a 1 × 1 matrix.

The three entries u, d, and s of the row matrix q are identified as the three states

of the quark, while the entries in q∗ are the states of the antiquark. What particle or
particles do the nine entries of the frame q∗ ⊗ q represent?

Any quark q can be sent into any other quark q ′ by some g ∈ SU(3). This is why

we consider the different flavors up, down, and strange as being different states of the

same particle. The group G = SU (3) acts on the tensor product frame by q∗′ ⊗ q′ =
(gq∗)⊗ (qg−1) = g(q∗ ⊗q)g−1, i.e., by the adjoint action Ad(G) as it does on a linear
transformation.
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If any two antiquark–quark frame matrices A and B were necessarily related by a

g ∈ SU (3), B = g Ag−1, then we could conclude that the nine entries in q∗ ⊗ q are

simply the nine states of a single particle. But this is not the case! Clearly the scalar

matrices C = λI, Ci j = λδi j , form a one-dimensional complex vector subspace of the

nine-dimensional C
9 (= space of complex 3 × 3 matrices) that is left fixed under the

G action, gCg−1 = C. We conclude that the states of at least two particles appear in

the frame q∗ ⊗ q. Since Ad (G) acts by isometries on C
9, the orthogonal complement

of the scalar matrices must also be invariant, i.e., sent into itself by Ad(G). If D is

orthogonal to I , then 0 = ∑
i jδi j Di j = trI D, and so the orthogonal complement of

the scalar matrices is the complex eight-dimensional subspace consisting of trace-free
3 × 3 matrices. (Clearly tr A = 0 iff tr gAg−1 = 0.) We say that the adjoint action or

representation of SU(3) on the space of 3 × 3 complex matrices is reducible, breaking

up into its action on trace-free matrices and its trivial (i.e., identity) action on scalar

matrices.

We should remark that if we had been looking, e.g., at antiquark–antiquark in-

teractions, the frame σ ⊗ σ would again be a 3 × 3 matrix with i j entry σi ⊗ σ j

and would transform under G ∈ SU (3) to Griσ
i ⊗ Gsjσ

j = Griσ
i ⊗ σ j GT

js; i.e.,

σ⊗σ → Gσ⊗σG−T = Gσ⊗σG
−1

, which does not preserve traces (because of the

complex conjugation). Since A → G AGT preserves symmetry and antisymmetry, this

is the natural decomposition to use in this case.

We now decompose every 3 × 3 matrix A into its trace-free and scalar parts,

A = [A − (1/3) trA I ] + (1/3) trA I.

In particular, for the matrix q∗ ⊗ q we have the scalar part

(1/3) tr q∗ ⊗ q I = (1/3)(u∗u + d∗d + s∗s)I (C.2)

and then the trace-free part becomes

X := q∗ ⊗ q − (1/3) tr (q∗ ⊗ q)I

= (C.3)⎡
⎢⎢⎢⎢⎢⎣

1

3
(2u∗u − d∗d − s∗s) u∗d u∗s

d∗u
1

3
(−u∗u + 2d∗d − s∗s) d∗s

s∗u s∗d
1

3
(−u∗u − d∗d + 2s∗s)

⎤
⎥⎥⎥⎥⎥⎦

Since the scalar matrix (C.2) never mixes with the matrix X under SU (3) we can use it

to define a new particle, the eta prime,

η′ := (1/
√

3)(u∗u + d∗d + s∗s) (C.4)

Why does the factor 1/
√

3 appear? The quark flavors u, d, and s are unit vectors in

Q, and likewise for the antiquarks in Q∗. Thus u∗u, etc. are unit vectors in Q∗ ⊗ Q, and

the three vectors in (C.4) are orthonormal. The factor 1/
√

3 makes the η′ a unit vector.

Since quarks and antiquarks have opposite charges, the η′ is a neutral particle. [’tHooft,
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p. 46] interprets the sum in (C.4) as implying that the η′ is “continuously changing from
u∗u to d∗d to s∗s”.

The nine entries of the matrix X of (C.3) can represent at most eight particles since

the trace is 0. To understand the action of G = SU (3) on X we notice the following. G
is acting by the adjoint action on the space of traceless matrices. Now SU (3) acts by the

adjoint action on its Lie algebra su(3), which is the space of skew hermitian matrices

of trace 0. This is a real eight-dimensional vector space (i.e., the scalars must be real

numbers); if B is skew hermitian then (a + ib)B is the sum of a hermitian matrix ibB
and a skew hermitian matrix aB. Since every matrix C is the sum of a hermitian plus a

skew hermitian, C = (1/2)(C +C∗)+ (1/2)(C −C∗), we see that if we allow complex

scalars in the real Lie algebra vector space su(3), then this complexified vector space

is just the space of all traceless 3 × 3 matrices, and the action of SU (3) on this space is

again the adjoint action. Thus we may consider our particle matrix X as being in this
complexification su(3). We shall now look at this in more detail.

C.c. The Lie Algebra of SU(3)

Physicists prefer hermitian to skew hermitian matrices, since observables in quantum

mechanics are represented by hermitian operators. Note also that our matrix X is for-

mally hermitian. Gell–Mann chose for a basis of g := √−1 su(3), i.e., the traceless

hermitian matrices

λ1 =
⎡
⎣0 1 0

1 0 0

0 0 0

⎤
⎦ λ2 =

⎡
⎣0 −i 0

i 0 0

0 0 0

⎤
⎦ λ4 =

⎡
⎣0 0 1

0 0 0

1 0 0

⎤
⎦

λ5 =
⎡
⎣0 0 −i

0 0 0

i 0 0

⎤
⎦ λ6 =

⎡
⎣0 0 0

0 0 1

0 1 0

⎤
⎦ λ7 =

⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦

λ3 =
⎡
⎣1 0 0

0 −1 0

0 0 0

⎤
⎦ λ8 = 1√

3

⎡
⎣1 0 0

0 1 0

0 0 −2

⎤
⎦

These matrices are orthonormal with the scalar product 〈A, B〉 := (1/2)tr AB∗ = (1/2)

tr AB in g. Note that λk, k = 1, 2, 3, are just the Pauli matrices with zeros added in

the third rows and columns, and when exponentiated these {iλk} generate the subgroup

SU (2) ⊂ SU (3) that leaves the third axis of C
3 fixed.

Let us expand X = ∑
1≤ j≤8 X jλ j , with all X j real. The only λ with entry in the

(3,3) spot is λ8, and thus −(1/3)(u∗u + d∗d − 2s∗s) = (X 8λ8)33 = X 8(−2/
√

3) and

so X 8 = (1/2
√

3)(u∗u + d∗d − 2s∗s) = η/
√

2, where the particle η is defined by the

unit vector

η := (1/
√

6)(u∗u + d∗d − 2s∗s) (C.5)



P I O N S , K A O N S , A N D E T A S 645

Then

X 8 λ8 =

⎡
⎢⎢⎢⎢⎢⎣

η√
6

0 0

0
η√
6

0

0 0
−2η√

6

⎤
⎥⎥⎥⎥⎥⎦

Then from (C.3) we get for X⎡
⎢⎢⎢⎢⎢⎢⎣

1

2
(u∗u − d∗d) + η√

6
u∗d u∗s

d∗u −1

2
(u∗u − d∗d) + η√

6
d∗s

s∗u s∗d − 2η√
6

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, we define three sets of particles (with explanation to follow):

{π0 = (1/
√

2)(u∗u − d∗d) π− = u∗d π+ = d∗u}
{K− = u∗s K

0 = d∗s}
{K+ = s∗u K0 = s∗d}

(C.6)

and then

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

π0

√
2

+ η√
6

π− K−

π+ −π0

√
2

+ η√
6

K0

K+ K0
−2η√

6

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.7)

C.d. Pions, Kaons, and Etas

The seven particles listed in (C.6) and the eta in (C.5) have physical attributes that led

to their identification in the particle world. First there is electric charge. For example

π− = u∗d has, from the quark charges (C.1) the charge −2/3 − 1/3 = −1. This is

the reason for the minus sign attached to the π symbol. Neutral charge is denoted by

the exponent 0, as for example in π0. This explains the exponents in (C.6). Note that,

e.g., π− is the antiparticle of π+ while π0 is its own antiparticle. Physicists usually

denote antiparticles by a complex conjugation overbar. K
0

is the antiparticle of K0 and

is distinct from K0, as we shall soon see. These eight particles are among those called

mesons, because of their masses being intermediate between those of electrons and

protons.

The diagonal matrices diag{eiθ , eiφ, e−i(θ+φ)} form a two-dimensional, maximal

commutative, connected subgroup of the eight-dimensional SU (3), i.e., a maximal

torus T 2. (The maximal torus of U (n) was discussed in Theorem (15.4).) Note that the
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two generators λ3 and λ8 generate, by exponentiation, two 1-parameter subgroups of

this torus. Thus λ3 and λ8 form an orthonormal, basis for the Lie algebra of T 2, the tan-

gent space h of T 2 at the identity. (The Lie algebra of the maximal torus of any Lie group

G is called the Cartan subalgebra h of g.)

We now change slightly the normalization of four of the Gell–Mann matrices

Ik := (1/2)λk, k = 1, 2, 3

and (C.8)

Y := (1/
√

3)λ8 = diag {1/3, 1/3, −2/3}
The I s generate the SU (2) subgroup of SU (3), call it SU (2) × 1,[

SU (2) 0

0 1

]

called the isospin subgroup, and Y is the generator of the 1-parameter subgroup of

SU (3) called hypercharge.

Since the I s and Y are hermitian they represent “observables”; since further I3 and Y
commute they are “compatible” [Su, p. 57], and so in a sense they can both be measured

simultaneously.

The flavored quarks are eigenvectors of these operators:

I3(u) = I3(1 0 0)T = (1/2)u I3(d) = (−1/2)d I3(s) = 0

Likewise

Y (u) = (1/3)u Y (d) = (1/3)d Y (s) = (−2/3)s

Furthermore, if q = (u d s)T is a quark, then an infinitesimal generator A of SU (3),

say A = I3 or A = Y , is basically a differentiation operator, i.e.,

i A(q) := d

dt
ei At(q)

∣∣∣∣
t=0

= d

dt
ei Atq

∣∣∣∣
t=0

= i Aq

or briefly

A(q) = d

dt
(et Aq)

∣∣∣∣
t=0

= Aq

while if q∗ = (u d s) is an antiquark

A(q∗) = d

dt
(q∗e−t A)

∣∣∣∣
t=0

= −q∗ A

Thus I3(u∗) = −(1 0 0)I3 = (−1/2)u∗. In general, if the quark q is an eigenvector of

a Gell–Mann generator λ then its antiquark q∗ is an eigenvector with oppositely signed

eigenvalue.

Finally, since each generator is a differentiation

A(q ⊗ q ′) = A(q) ⊗ q ′ + q ⊗ A(q ′)
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Since u, d, s, u∗, d∗, and s∗ are eigenvectors of I 3 and Y , any composite particle

built up from them will also be an eigenvector whose eigenvalues are the sums of the

constituents. For example, Y (K0) = Y (s∗d) = (2/3 + 1/3)K0 = K0 while Y (K
0
) =

−K
0

. This shows indeed that K
0

and K0 are distinct particles.
Isospin and hypercharge play a very important role in describing particles. The

eigenvalues of I3 and Y (briefly I3 and Y ) are two numbers that one assigns to strongly

interacting particles with the experimentally observed property that if several particles

collide and become other particles, then the sum of the isotopic spins before collision

is the same as after, and likewise for the hypercharge. These “conservation laws,”

together with Noether’s conservation principle (20.9), suggest that both the isospin and

the hypercharge groups might be symmetry groups of the strong force Lagrangian. This

is the origin of the hope that SU (3), which contains both as subgroups, might even be

a large symmetry group, or at least an approximate one.

In Figure C.1, we exhibit graphically I3 and Y for each of the representations of

SU (3) that we have considered. The result will be called the weight diagram of the

Figure C.1
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representation. Since I3 and Y are a maximal set of (two) commuting operators, we shall

have a two-dimensional graph for each representation. In Figure C.1, the representation

3 is the standard representation of SU (3) on C
3, i.e., on vectors q = (u d s)T . (Physicists

label the representations by their dimension, with or without an overbar.) We have

drawn Cartesian axes labeled I3 and Y and have placed the particle u at the point with

coordinates given by its eigenvalues I3(u) = 1/2 and Y (u) = 1/3, etc.

The next representation is the representation labeled by physicists 3; it is the repre-

sentation on the dual space C
3∗, i.e., on antiquarks q∗ = (u d s). The eigenvalues here

are the negatives of those in 3 and so the weight diagram is the reflection of that for 3
through the origin. We have also used the physicists’ labels u instead of u∗, etc.

The final diagram is that for 3 ⊗ 3. There are three particlesπ0,η, andη′ at the origin,

requiring a point surrounded by two circles. Note that this diagram is easily constructed

graphically from the two previous ones because of the additivity of the eigenvalues. To

construct it we take the whole diagram of 3, translate it so that its origin is at a particle

of 3 (say u), erase that particle, and mark in the positions of the three particles of the

translated 3; then we repeat this operation at the two remaining particles of 3. We have

seen before that this representation is reducible, the particle η′ being fixed under all of

SU (3). If we remove this particle (the one-dimensional space 1 of scalar matrices) we

get the weight diagram of the adjoint representation, denoted by 8. It differs from that

of 3 ⊗ 3 only by having a point and one circle at the origin. Physicists say

3 ⊗ 3 = 8 + 1 (C.9)

There is (at least) one serious problem remaining. Our eight particles – the three

pions, the four kaons, and the single eta – had been matched up by the physicists

with the eight observed mesons with those names. While the observed particles in each

category (e.g., the three pions ) have roughly the same mass, the masses of pions, kaons,

and the eta differ widely. Since masses are coefficients that appear in the Lagrangian and

the Lagrangian is assumed invariant under SU (3), the assumption of SU (3) invariance

will have to be modified.

C.e. A Reduced Symmetry Group

The mass of a pion is observed to be 140 MeV, the four kaons are at 495 MeV, and the

eta has a mass of 550 MeV. (In comparison, the electron mass is about 1/2 MeV.)

This suggests that the strange quark s might be considerably heavier than the up

and the down quarks. On the other hand the equality of the three pion masses sug-

gests that u and d have about the same mass. Individual quarks have never been seen;

in fact there are reasons to believe that they will never be seen (quark “confinement”).

It was then suggested that SU (3) is too large to be the symmetry group for the strong

interactions. Experimentally, however, isospin and hypercharge are conserved in strong

interactions. This suggests that the isospin subgroup SU (2) × 1 and the 1-parameter

hypercharge subgroup U (1) = diag(eiθ , eiθ , e−2iθ ) of SU (3) generate a more realistic

symmetry group. Since λ8 commutes with λk, for k = 1, 2, 3, it is clear that the three
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λks together with λ8 form a Lie subalgebra of su(3) and so, from (15.34), generate

a four-dimensional subgroup, call it SU (2) ∗ U (1), of SU (3). We shall identify this

group, but the identification will play no further role in our discussion since only the
generators will be needed. SU (2) ∗ U (1) consists of all products from the two sub-

groups, but since SU (2) × 1 and U (1) commute we need only consider the product of

pairs g ∈ SU (2) × 1 and h = diag(eiθ , eiθ , e−2iθ ) ∈ U (1). Let a be a 2 × 2 matrix in

SU (2). It is clear that to each of the products (eiθa)× e−2iθ we may associate the U (2)

matrix eiθa, and in fact this correspondence SU (2)∗U (1) → U (2) is a homomophism

onto all of U (2). The kernel consists of those a and θ such that eiθa = the 2×2 identity

I2; i.e., a = e−iθ I2. Since det a = 1 we have the two-element kernel with a = ±I2,

and so the group SU (2) ∗ U (1) can be considered as a two-sheeted covering group of

U (2).

Let now G := SU (2) ∗ U (1) be assumed to be the symmetry group for the strong

interactions. It has generators λk, k = 1, 2, 3 (isospin), and λ8 (hypercharge) and all

operate again on the quarks C
3, antiquarks C

3∗, and mesons C
3∗ ⊗C

3. Our basic meson

frame is again X of (C.7).

G can mix u and d but neither of these mixes with s. Thus we may consider u and

d as two states of the same particle, but s is assumed to be a different quark, with only

one state.

A typical element g of SU (2) ∗ U (1) is of the form

⎡
⎣eiθ

[
x −w

w z

]
0

0 e−2iθ

⎤
⎦ (C.10)

with |z|2 + |w|2 = 1 and the 2 × 2 submatrix in SU (2). Consider the adjoint action

of this matrix on X. Since this operation is linear in X we may single out the particles

in which we are interested. For the antikaons K − and K
0

we may take for X the

matrix

⎡
⎣0 0 K−

0 0 K0

0 0 0

⎤
⎦

and we see easily that the adjoint action by (C.10) will produce mixtures of the K− and

the K
0
. Similar results can be obtained for the K+ and the K0. Since the (K−, K

0
) do

not mix with the (K+, K0), we see that (K+, K0) are to be considered as two states of

a single particle and (K−, K
0
) are the two states of the antiparticle. (They are distinct

particles, as we see from the weight diagram (Figure C.1) that their hypercharges are

opposites.) Similarly, all three pions get mixed; they are three states of a single particle.

Finally, the eta is completely unaffected by the adjoint action. We say that (K+, K0) is

a doublet, its antiparticle (K−, K
0

) is a doublet, the pion (π−,π0,π+) is a triplet, and

η is a singlet.



650 S Y M M E T R I E S , Q U A R K S , A N D M E S O N M A S S E S

C.f. Meson Masses

A fermion is a particle (e.g., an electron, proton, . . . ) whose wave function changes

sign when an observer’s coordinate system is rotated through a complete rotation (see

p. 517), whereas a boson (e.g., a meson) has a wave function that returns to its original

value under such a rotation. Particles composed of an odd number of fermions are again

fermions but an even number will yield a boson. A neutron, made of three quarks, is a

fermion. This leads us to think of quarks as fermions. A kaon, made of two quarks, is

a boson.

Electrons and protons satisfy the Dirac equation, which can be “derived” from a

Lagrangian (20.18). The coefficient of the squared wave function |�|2 is m, the mass

of the fermion in question. Bosons are believed to satisfy something similar to the

Klein–Gordon equation (19.24). To get this from a Lagrangian the coefficient of |�|2
must be the square of the mass, m2. (Actually there is also a factor of 1/2, but this will

play no role in our discussion and so will be omitted.) We shall just accept the “rule”

that the coefficient of the squared term |�|2 in the Lagrangian involves m for a fermion
and m2 for a boson.

The classification of the particles that we have given followed from looking at frames
of quarks, antiquarks, and mesons, i.e., q, q∗, and X. A Lagrangian involves components
(wave functions) rather than the basis elements (frames). For this reason we shall revert

now to the component description of the meson matrix X, which formally is simply the

transpose,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

π0

√
2

+ η√
6

π+ K +

π− −π 0

√
2

+ η√
6

K 0

K − K 0
−2η√

6

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.11)

where the entries now are components, rather than basis elements. For example, K + =
u d.

We are interested in the masses of the mesons. We shall postulate a mass part Lm of

the total Lagrangian. In the original version, when SU (3) was assumed, we could use a

quadratic Yukawa–Kemmer type Lagrangian involving our meson matrix X , namely

L = tr X X ∗, but as we shall soon see, this would result in all the mesons having the

same mass. For the symmetry group G = SU (2) ∗ U (1) generated by isospin and

hypercharge, we shall alter this by inserting an as yet to be determined 3 × 3 matrix M,

Lm = tr X M X∗ (C.12)

To ensure that the mass coefficients are real we shall assume that M is hermitian, for

then X M X∗ will be hermitian and will have a real trace. Under a change of quark frame

q used in Q = C
3 = C

2 ⊕ C
1, M is sent to gMg−1, where g ∈ G = SU (2) ∗ U (1).

Since there is no preferred frame, we insist that M be unchanged under such a frame

change, and so M : C
3 → C

3 must commute with the G action on C
3. It is then not
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hard to see that M must be of the form

M = diag(a, a, b) (C.13)

where a and b are real numbers. In fact, we can apply elementary representation theory,

in particular Schur’s Corollary, as will be developed in Section D.c of Appendix D.

An argument that is similar (but simpler) than that given there for the matrix C in that

section, applied to C
3 = C

2 ⊕ C
1 rather than V = 5 ⊕ 1, will show that M must be

of the form (C.13). The key point is that the action of G on C
3 leaves both C

2 and

C
1 invariant and this action is not further reducible. (I am indebted to Jeff Rabin for

pointing out the uniqueness of this M.)

We then compute, using the fact that formally X = X∗,

Lm = tr X M X = a(|π0|2 + π−π+ + π+π−) + (1/3)(a + 2b)|η|2
+ (K −K +)b + (K

0
K 0)b + (K +K −)a + (K 0 K

0
)a

Now the pion terms can be written

a(|π 0|2 + |π+|2 + |π−|2)
and the kaon terms as

(a + b)[(K −K +) + (K
0
K 0)]

= (1/2)(a + b)[|K +|2 + |K −|2 + |K 0|2 + |K 0|2]

We have chosen this arrangement since all the kaons must have the same mass since

K± are antiparticles, and so have the same mass, and since (K+, K0) are the two states

of a single particle (see the last paragraph of Section C.e.), and so have the same mass.

Similar arguments follow for the pions. Then, since we are dealing with bosons,

mπ := mass of any pion = √
a

mη := mass of eta = √
[(a + 2b)/3]

mK := mass of any kaon = √
[(a + b)/2]

From these we see that

4m2
K = m2

π + 3m2
η (C.14)

one of the famous Gell–Mann/Okubo mass formulas.

The observed masses of the pions and eta are mπ ≈ 140 MeV and mη ≈ 550 MeV.

Use these in (C. 14). Then (C. 14), i.e., the assumption of symmetry group G = SU (2)∗
U (1) together with the simple choice of G-invariant Lagrangian (C.12), yields the

prediction mK ≈ 481 MeV, which is less than 3% off from the observed 495 MeV.



APPENDIX D

Representations
and Hyperelastic Bodies

D.a. Hyperelastic Bodies

In (A.13) we have shown that the rate at which energy is stored in a body during a given

deformation from reference body B(0), assuming no heat loss, is given by∫
B(0)

S AB(d E AB/dt) VOL (D.1)

where S is the second Piola–Kirchhoff stress tensor, E is the Lagrange deformation

tensor (2.69), and the integral is over the fixed reference body B(0). The entire integrand

is not necessarily the time derivative of a function. The stress tensor S is generally a

complicated function of the deformation tensor E . In the linearized theory we assume

generalized Hooke’s coefficients C and a relation of the form

S AB = C AB JK EJK (D.2)

where, since both S and E are symmetric tensors, C is symmetric in A and B and also

in J and K . At each point there are thus 36 constants C AB JK involved. Let us now

assume the hyperelastic condition

C AB JK = C JK AB (D.3)

Then at each point of B(0)

S AB(dEAB/dt) = C AB JK EJK (dEAB/dt) = d/dt
(
1/2 C AB JK EJK E AB

)
and then (D.1) becomes∫

B(0)

S ABdEAB/dt VOL = d/dt

∫
B(0)

U VOL

where (D.4)

U = 1

2
C AB JK EJK E AB = 1

2
S AB E AB

is the volume density of strain energy. As mentioned at the end of Section A.d, a body

with such an energy function is called hyperelastic.

652
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Note that in this linearized case we have

S AB = ∂U/∂ E AB (D.5)

where the partial derivative is taken while keeping the coordinates X of the reference

body fixed.

We remark that in the general (nonlinear) case of a hyperelastic body we may in

fact use (D.5) to define the stress tensor. That is, we can assume that there is some

strain energy function U (X, E) of the position X and of the the Lagrange deformation

tensor E and then use (D.5) to define the second Piola–Kirchhoff stress tensor S.

From now on we shall restrict ourselves to hyperelastic bodies in the linearized
approximation with coefficients C satisfying (D.3) at each point. Note that the number

of independent C AB JK is now reduced from 36 to 21 components at each point of the

body.

D.b. Isotropic Bodies

In the following we shall be concerned only with R
3 with an orthonormal basis. This

allows us to forget distinctions of covariance and contravariance, though we shall

frequently put indices in their “correct” place.

In the linear approximation, S and E are related as in (D.2). At each point we consider

the real vector space R
6 of symmetric 3 × 3 matrices. (D.2) says that S ∈ R

6 is related

to E ∈ R
6 by a linear transformation C : R

6 → R
6,

S = C(E) (D.6)

Consider a given deformation tensor E at a point. (For example, E could result from a

stretching along the x axis and compressions along the y and z axes at the origin.) The

result is a stress S = C(E) at the point. Now consider the same physical deformation

but oriented along different axes; call it E ′. (In our example E ′ could be stretching along

the y axis and compressions along the x and z axes, all with the same magnitudes as

before.) The new stress is S′ = C(E ′). If we call the change of axes matrix g ∈ SO(3),

then the matrices E and E ′ are related by E ′ = gEg−1, but we must not expect S′ to

be gSg−1; the material of the body might react, say, to compressions along the x and

y axes in entirely different ways. If we do have S′ = gSg−1, in other words, if the

(adjoint) action of SO(3) on 3 × 3 symmetric matrices commutes with C : R
6 → R

6,

gC(E)g−1 = C(gEg−1) (D.7)

and if this holds at each point of the body, we say that the body is elastically isotropic.

We now have the following situation for an isotropic hyperelastic body. The real 6×6

matrix C : R
6 → R

6 has at most 21 independent entries and the matrix C commutes

with the adjoint action of SO(3) on R
6 (thought of as the space of symmetric 3 × 3

matrices). We shall sketch, in the remaining sections, how elementary representation

theory shows that there are only two “Lamé” constants required to express C!
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D.c. Application of Schur’s Lemma

Consider a representation μ of a compact group G as a group of linear transformations

of a finite dimensional vector space V into itself; see Section 18.2a. Thus, for g ∈
G, μ(g) : V → V and μ(gh) = μ(g)μ(h). When we are considering only one re-

presentation μ of G on a vector space V, we shall frequently call the representation V
rather than μ.

We have in mind for our application, the following:

Example: G = SO(3), V = R
6 is the real vector space of symmetric 3 × 3 matrices,

and μ(g) acts on a matrix E by the adjoint action, μ(g)(E) = gEg−1.

Since G is compact, by averaging over the group (as in Section 20.4c), we may choose a

scalar product in V so that μ(g) acts on V by unitary or orthogonal matrices, depending

on whether V is a complex or a real vector space.

The representation μ is irreducible if there is no nontrivial vector subspace W that

is invariant under all μ(g), i.e., μ(g) : W → W for all g ∈ G.

If μ is reducible, then there is a nontrivial subspace W ⊂ V that is invariant under G.

In this case the orthogonal complement of W is also invariant since g acts by isometries.

Then by choosing an orthonormal basis for V such that the first dim(W ) basis elements

are in W and the remaining are in the orthogonal complement of W , we see that each

μ(g) is in block diagonal form. If μ, when restricted to W , is reducible, we may break

this reducible block into two smaller blocks. By continuing in this fashion we can

reduce V to a sum of mutually orthogonal invariant subspaces, each of which forms an

irreducible representation of G.

In our example V is the space of symmetric 3×3 matrices E . The deformation tensor

EJK represents a covariant bilinear form and should transform as μ(g)(E) = gEgT ,

but since gT = g−1 for g in SO(3), we may think of E as a linear transformation

:R3 → R
3. (This is nothing more than saying EJK = E J

K in an orthonormal basis). As

a linear transformation, its trace tr E will be invariant, and, just as we did for the meson

matrix (C.3), we shall reduce the six-dimensional space of all symmetric 3×3 matrices

into the sum of the trace-free symmetric matrices and its orthogonal complement of

scalar matrices, which we could write in the same spirit as (C.9) as

V = 5 ⊕ 1
(D.8)

E = [E − (1/3)(tr E)I ] + (1/3)(tr E)I

where we are now indicating the real dimensions. 1 is clearly irreducible, and we shall

give a rather lengthy sketch showing that 5 is also.

Schur’s Lemma: Let (V, μ) and (W, ω) be two irreducible representations of
G and let A : V → W be a linear transformation that commutes with the G
actions on V and W in the sense that

A[μ(g)v] = ω(g)A[v]



A P P L I C A T I O N O F S C H U R ’ S L E M M A 655

Then either A maps all of V to 0 ∈ W or A is 1–1 and onto. In this latter case
we say that the representations μ and ω are equivalent.

P R O O F: The commutativity of A and the G actions shows immediately that the

subspaces ker(A) ⊂ V and Im(A) ⊂ W are invariant under the G actions. Since V
is irreducible, ker (A) is either V , in which case A(V ) = 0, or ker A = 0, showing

that A is 1–1. In this last case, by irreducibility of W , we have Im(A) = W .

Schur’s Corollary: If μ is irreducible and if a linear transformation C : V → V
commutes with each μ(g), and if C has an eigenvector in V, then C is a scalar
matrix, C = λI .

Note that if V is complex, C will automatically have an eigenvector.

P R O O F: Let v be an eigenvector of C with eigenvalue λ. Then C −λI : V → V
will also commute with the G action on V . But (C − λI )v = 0. By Schur’s

Lemma, C − λI = 0.

Return now to our elastic isotropic example. V is the space of real symmetric 3 × 3

matrices. C : V → V is the linear map S = C(E) in (D.6) relating stress to strain in

the linear approximation. In terms of matrices, S AB = C AB JK EJK . (D.7) says that C
commutes with the adjoint action of G = SO(3) on V . Since V is a real vector space,

we must determine if C has an eigenvector. But in the hyperelastic case, (D.3), i.e.,

C AB JK = C JK AB , says that C is a self-adjoint (symmetric) matrix operating on R
6,

〈C(E), F〉 = C AB JK EJK FAB = EJK C JK AB FAB = 〈E, C(F)〉

and so C does have a real eigenvector. Assume for the present that V = 5 ⊕ 1 of

(D.8) is a decomposition of V into irreducible subspaces, i.e., that the real, trace-free,

symmetric 3 × 3 matrices form an irreducible representation of the adjoint action of

SO(3). We shall prove this in our following sections. Note that isotropy (D.7) shows

that the subspace C(1) must be invariant under the G action. Since 1 is G invariant,

the orthogonal projection
∏

C(1) of C(1) into 5 must also be G invariant. Since 5
is assumed irreducible, it must be that

∏
C(1) = 0 ⊂ 5, and so C(1) ⊂ 1. Thus C

sends 1 into itself and, since C is self-adjoint, C : 5 → 5. Then we may apply Schur’s

Corollary to the two cases, C restricted to 5 and C restricted to 1. In both cases C
is a scalar operator. C restricted to 5 is multiplication by a real number a and when

restricted to 1 is multiplication by a real b. From (D.8) we may write

S = C(E) = a[E − (1/3)(tr E)I ] + (1/3)b(tr E)I

but this is classically written in terms of the two Lamé moduli μ and λ as

SAB = 2μE AB + λ(E J
J )δAB (D.9)

which was essentially known already to Cauchy (see Truesdell [T, p. 306]).
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D.d. Frobenius–Schur Relations

Our only remaining task is to show that the trace-free, real, symmetric matrices 5 form an

irreducible representation under the adjoint action of SO(3). If our proof seems overly

long it is because we are taking this opportunity to present very basic results about

group representations. While our elasticity problem involves real representations, and

real representations pose special problems (as in Schur’s Corollary), we shall frequently

use the notation of complex unitary representations (e.g., hermitian adjoint rather than

transpose) but develop mainly those results that hold for real representations also, so

that they can be applied to our problem.

For more about the Frobenius–Schur relations, see, e.g., the small book of Wu-Yi

Hsiang [Hs] (but beware that his Theorem 2 on p. 6 has been labeled Theorem 1).

The principal tool is averaging over a compact group, as in Section 20.4c. If (V, μ)

is a representation, then for each g ∈ G, μ(g) is a matrix and its average, with respect

to a bi-invariant volume form ω normalized so that the volume of G is 1, is again a

matrix P : V → V ,

P :=
∫

G

μ(g)ωg (D.10)

meaning

P(v) =
∫

G

μ(g)(v)ωg

for each vector v ∈ V . Clearly if μ(g)v = v for all g then P(v) = v. Also

μ(h)P(v) =
∫

G

μ(hg)(v)ωg =
∫

G

μ(g)(v)ωg = P(v) (D.11)

shows that P(v) is fixed under all g, and so P : V → V G , where V G is the subspace

of all vectors fixed under all μ(g), the fixed set of the G action. Finally, from (D.11)

we see that

P2(v) = P(P(v)) =
∫

G

μ(h)P(v)ωh =
∫

G

P(v)ωh = P(v)

and so P2 = P; i.e., P is a projection of V onto the fixed subspace V G . Since this is a

projection operator one sees immediately (by choosing a basis whose initial elements

span V G) that

dim V G = tr P =
∫

G

tr μ(g)ωg (D.12)

Let us look at some consequences of this formula. Let U and W be two vector spaces.

Then U ⊗ W ∗ is the vector space of linear transformations of W into U ; (u ⊗w∗)(z) =
w∗(z)u, for all z ∈ W . Suppose that (U, α) and (W, β) are representations of G on

U and W respectively. Then the hermitian adjoint matrices β∗(g) = β(g∗) = β(g−1)

operate on W ∗ by β∗(g)(w∗) = ω∗β(g−1). Thus α ⊗ β∗ is the representation sending

the linear transformation A = u ⊗ w∗ to the linear transformationaα(g)u ⊗ w∗β(g−1)=
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α(g)Aβ(g−1). A linear transformation A is fixed under this G action iff A commutes

with the G action,

(U ⊗ W ∗)G = those A : W → U such that α(g)A = Aβ(g) (D.13)

For any representation μ the function χμ : G → C defined by χμ(σ ) := tr μ(σ) is

traditionally called the character of the representation μ.

We need one more simple fact. Given any two linear transformations α : U → U
and β : W → W , then

tr (α ⊗ β) = tr (α) tr (β)

since if {e j } and {fa} are bases for U and W , then {e j ⊗ fa} is a basis for V ⊗ W and

the coefficient of e j ⊗ fa in α ⊗ β(e j ⊗ fa) is α
j
jβ

a
a (no sum).

Apply (D.12) in the case V = U ⊗ W ∗, and use the fact that β(g−1) is the conjugate

transpose of β(g). We get

Theorem (D.14): The dimension of the space of A : W → U that commute with
the actions of G is ∫

G

χα(g)χβ(g)ωg

In particular, if (W, β) and (U, α) are irreducible and inequivalent, by Schur’s
Lemma this integral is 0.

On the other hand, if U and W are equivalent, there is at least one such map
A and so, in particular, for any representation (V, μ �= 0), we have∫

G

χμ(g)χμ(g)ωg ≥ 1

Theorem (D.15): If (V, μ) is a representation and∫
G

χμ(g)χμ(g)ωg = 1

then the representation is irreducible.

P R O O F: Suppose that (V, μ) is reducible. In Section D.c we showed that V can

be written as a direct sum of orthogonal, invariant, irreducible subspaces V =⊕Vα,

and we can let μα be the restriction of μ to Vα. A simple example to keep in mind

is a representation μ of SO(2) (which as a manifold is the circle S1 with angular

coordinate θ ) acting on V = R
4 by two 2 × 2 diagonal blocks, where m and n

are nonnegative integers:

μ(θ) =

⎡
⎢⎢⎣

cos mθ − sin mθ 0 0

sin mθ cos mθ 0 0

0 0 cos nθ − sin nθ

0 0 sin nθ cos nθ

⎤
⎥⎥⎦
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Call the 2 × 2 blocks (V1, μ1) and (V2, μ2). The two representations μ1 and μ2

are equivalent if and only if m = n. If m = n we would write V = 2V1 while if

m �= n we would write V = V1 ⊕ V2.

In the general case we can similarly write V =⊕ m j Vj , where Vj and Vk are

inequivalent if j �= k. Then, from tr μ = ∑
j m j tr μ j and (D.14) we have∫

G

χμ(g)χμ(g)ωg =
∑

m j mk

∫
G

χ j (g)χ k(g)ωg =
∑

m2
j

∫
G

χ j (g)χ j (g)ωg

Thus if μ is reducible, i.e.,
∑

m2
j ≥ 2, we would have that the integral is ≥ 2.

We remark that a complex irreducible representation will have∫
G

χ(g)χ(g)ωg = 1

since by Schur’s Corollary the matrices commuting with the G action will be scalar

and so have complex dimension 1 . On the other hand, the usual action of SO(2) on R
2

as in (15.0) is clearly a real irreducible representation that has for integral of tr2

∫ 2π

0

4 cos2 θdθ/2π = 2

corresponding to the fact that the two-dimensional subspace of real 2 × 2 matrices

satisfying x22 = x11 and x21 = −x12 all commute with SO(2).

D.e. The Symmetric Traceless 3 × 3 Matrices Are Irreducible

(D.15) implies that we need only show∫
SO(3)

|tr Ad g|2ωg = 1 (D.16)

where SO(3) acts on V = 5, the space of traceless real symmetric matrices, by the

adjoint action, Ad(g)A = g Ag−1.

We have used before that SO(3) can be realized as the real projective space RP3,

pictured, e.g., as the solid ball of radius π centered at the origin of R
3 with antipodal

points on the boundary sphere identified; see Example (vii) of Section 1.2b. The 1-

parameter subgroups are the rays through the origin. This model is unsuitable for the

integral (D.16) because in (D.16) the metric is the same as the metric on RP3, not R
3.

Since the unit sphere S3 ⊂ C
2 is the proper model for SU (2) (see Chapter 19 and

also p. 584), and since SU (2) is the twofold cover of SO(3), we shall use the “upper

hemisphere” of S3 as the model for RP3.

For example, the point (e−iβ, 0) ∈ S3 ⊂ C
2 represents both the matrix u(β) ∈ SU (2)

and the matrix g(β) ∈ SO(3), where

u(β) =
[

e−iβ 0

0 eiβ

]
and g(β) =

⎡
⎣cos 2β − sin 2β 0

sin 2β cos 2β 0

0 0 1

⎤
⎦
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This was shown in the example following the proof of Theorem (19.12). We then have

the following picture (see Figure D.1) on the unit sphere S3 ∈ C
2 with Riemannian

metric ds2 = dα2 + sin2 α(dθ 2 + sin2 θ dφ2), where α is the colatitude, and the “north

pole” is the identity matrix for both SU (2) and SO(3), and the “small sphere” S2(α)

at colatitude α has metric sin2 α(dθ 2 + sin2 θ dφ2) and area 4π sin2 α. We will explain

this diagram more in the following.

Figure D.1

The 1-parameter subgroup u(β) = diag(e−iβ, eiβ) ⊂ SU (2), −π ≤ β ≤ π , is a

maximal torus of SU (2) (see Theorem 15.4), and the image of this circle under

Ad : SU (2) → SO(3)

(see Section 19.1b) covers twice the maximal torus of SO(3) given by g(β), for −π/2 ≤
β ≤ π/2. The parameter β on this subgroup coincides with α for β ≥ 0 and with −α

for β ≤ 0. (α is not a good coordinate at the identity.)

For any point σ of a Lie group G we can look at the conjugates of σ, i.e., the set of

all group elements of the form gσg−1 as g ranges over the group. This set Mσ is thus

the orbit of the point σ under the adjoint action of G on itself. The group elements that

leave the point σ fixed form the centralizer subgroup Cσ of σ , those g that commute

with σ . Thus, from (17.10), the orbit points of Mσ are in 1–1 correspondence with

points of the quotient manifold Mσ = G/Cσ .

Consider Figure D.1 and the point σ = g(β) on the maximal torus. Since Adg : G →
G sending any h to ghg−1 is an isometry of the bi-invariant metric on G, and since Adg

leaves the identity I fixed, Mg(β) must lie on the sphere S2(α) at constant distance from

I. It is not difficult to see (see Section E.a of Appendix E) that Mg(β) in fact coincides

with this 2-sphere. This is not surprising; the centralizer of g(β), β �= 0 or ± π/2, is

exactly the maximal torus T 1, and SO(3)/T 1 = SO(3)/SO(2) = S2.

If β = 0, we have the identity I whose centralizer is all of SO(3), and SO(3)/SO(3)

is the single point I .

If β = π/2, then the centralizer of diag(−1,−1, 1) contains not only the max-

imal torus T 1 (on which it lies) but clearly also the elements diag(1, −1, −1) and
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diag(−1, 1, −1), which are rotations through 180◦ about the x and the y axes respec-

tively. It is not hard to see, in fact, that all rotations through 180◦ about all axes in

the xy plane are in this centralizer. This curve of rotations is the curve C ′ in Figure

17.4. The conjugate set of diag(−1,−1, 1) is [SO(3)/T ∪ C ′]. This is topologically

RP2, because SO(3) acts transitively on the space of lines through the origin of R
3,

and the subgroup leaving the z axis invariant consists of all rotations about the z axis,

i.e., T , together with all rotations through 180◦ around all axes in the xy plane (i.e.,

C ′). In our Figure D.1 the conjugate set for g(π/2) = diag(−1, −1, 1) is the equa-

torial 2-sphere with antipodal identifications, i.e., a projective plane! (The conjugacy

orbits Mσ = G/Cσ have very interesting topological properties in a general compact

connected Lie group. For example, the Euler–Poincaré characteristic of Mσ is equal to

the number of times Mσ intersects the maximal torus, as we easily noticed with S2 and

RP2. See Theorem E.2 in Appendix E).

We return now to our integral (D. 16). Recall that each Ad(σ ) is a 5×5 matrix. Look

at a general point σ in G = SO(3). The character χ has the property

χμ(gσg−1) = tr μ(gσg−1) = tr [μ(g)μ(σ )μ(g)−1] = tr μ(σ) = χμ(σ )

That is, χ is constant on conjugacy orbits. Thus our function χAd(σ ), the trace of the

5 × 5 matrix Ad(σ ), is constant on each of the 2-spheres S2(α) of constant colatitude α

In our volume integral, the two conjugacy sets at α = 0 and α = π/2 can be omitted.

Note that these conjugacy sets to be omitted are precisely those passing through the only

two points g(0) and g(π/2) of T whose centralizers are larger than T itself. We can

then evaluate our integral as follows, thanks to the fact that each remaining conjugacy

sphere Mg(β) meets T orthogonally:∫
SO(3)

|tr Ad(g)|2ωg = 1/π2

∫ π/2

0

|tr Ad g(β)|24π sin2(β)dβ (D.17)

We integrate only from 0 to π/2 (i.e., only half of the maximal torus) to avoid counting

the spheres S2(β) twice. The factor π−2 is required since the Frobenius–Schur relations

require that the volume of G must be normalized to unity, and the total volume of our

SO(3) is ∫ π/2

0

4π sin2(β)dβ = π 2

We now need to know the character function χ of Ad g(β) along the maximal torus.

A straightforward way is as follows. Write down a basis E j , 1 ≤ j ≤ 5, of the real

trace-free symmetric 3 × 3 matrices, starting say with E1 = diag (1, −1, 0). For g(β)

on the maximal torus, compute g(β)E j g(−β) = ∑
Ei ai j (β), and take

∑
a j j . This

calculation yields the result

χAd g(β) = 4 cos2 2β + 2 cos 2β − 1

Finally our integral (D.17) becomes (with help, e.g., from Mathematica)

1

π 2

∫ π/2

0

|4 cos2 2β + 2 cos 2β − 1|24π sin2(β)dβ = 1
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showing indeed that the representation 5 of 3 × 3 real symmetric trace-free matrices is

irreducible. �
One final remark should be noted. The character can be more easily computed by

“general nonsense.” Consider the following vector spaces of 3 × 3 real matrices:

3 ⊗ 3 = all 3 × 3 matrices

3 ◦ 3 = symmetric matrices

3 ∧ 3 = skew-symmetric matrices

5 = trace-free symmetric matrices

1 = scalar matrices

Then 3 ⊗ 3 = 3 ◦ 3 ⊕ 3 ∧ 3 = (5 ⊕ 1) ⊕ (3 ∧ 3). But the Hodge star operator sends

2-forms to 1-forms, ∗ : 3 ∧ 3 → 3. In an orthonormal basis of R
3, the star op-

erator clearly commutes with the actions of SO(3), which shows that 3 ∧ 3 and 3
are equivalent representations, 3 ∧ 3 = 3. Taking traces of the representations, we get

(tr 3)2 = tr 3 ⊗ 3 = tr 5 + tr 1 + tr 3. Thus

χ5 = (χ3)
2 −χ3 −χ1 = [2 cos 2β +1]2 − [2 cos 2β +1]−1 = 4 cos2 2β +2 cos β −1

which agrees with our previous calculation of χAd g(β).



APPENDIX E

Orbits and Morse–Bott Theory in
Compact Lie Groups

There once was a real classy Groupie
Who longed from the homotopyists to mut’nie
Bott appeared, it was Fate,
Made her period 8
By applying Morse Code to her Loopie.

E.a. The Topology of Conjugacy Orbits

We now wish to study in more detail the topology of conjugacy orbits in a compact

Lie group G with given maximal torus T . But first we present an example (more

complicated than the SO(3) case of Figure D.1) to keep in mind.

Let G be the nine-dimensional unitary group U (3). The subgroup of diagonal ma-

trices T = {diag[exp(iθ1), exp(iθ2), exp(iθ3)]} is a three-dimensional maximal torus.

Consider the diagonal matrix σ = diag(−1, −1, 1). The subgroup Cσ that commutes

with σ , the centralizer of σ , is U (2) × U (1), which has dimension 4 + 1 = 5. The

conjugacy set of σ, Mσ = {uσu−1} is, from (17.10), in 1:1 correspondence with the

complex projective plane CP2 = U (3)/U (2) × U (1), the analogue of the real pro-

jective plane discussed in Section 17.2b. It has dimension 9 − 5 = 4. This orbit Mσ

consists of unitary matrices with eigenvalues −1, −1, and +1. Thus Mσ meets T in

the three points σ, diag(−1, 1, −1) and diag(1, −1, −1), the distinct permutations of

the diagonal entries of σ , and, as we shall see in Theorem E.2, the Euler characteristic

χ(CP2) is 3. The same argument would hold for any diagonal τ = diag(eiθ , eiθ , eiφ)

with exactly two distinct eigenvalues. Mτ would again be a complex projective plane.

However, our example σ is special in that σ = σ−1, and so all of Mσ is a component

of the fixed set of the inversion isometry i : G → G, i(g) = g−1, and is thus a totally

geodesic submanifold of G (see Section 11.4d). On the other hand, if μ is a diagonal

unitary with three distinct eigenvalues (such μ are dense on T ), then the only u com-

muting with μ will be diagonal, and so Cμ = T , and Mμ = G/T = U (3)/T , which

has dimension 9 − 3 = 6. The only matrices on T that are conjugate to μ are the six

distinct permutations of the diagonal elements of μ, and we shall see that it must be

that χ [U (3)/T ] = 6.

We now return to the general case of a compact lie group G with maximal torus T
and some σ ∈ T . We know that Mσ = {gσg−1} and we know that this set is in 1 : 1

correspondence with the coset space G/Cσ , which is a manifold in its own right. Define

a smooth map F : G/Cσ → G by F(gC) := gσg−1 ∈ Mσ ⊂ G. First note that F is

662
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1 : 1, for if gσg−1 = F(gC) = F(hC) = hσh−1 then (h−1g)σ = σ(h−1g) says that

h−1g ∈ C, g ∈ hC , and so the coset gC is the same coset as hC.

We now wish to show that this image Mσ is an embedded submanifold. We show

first that the differential F∗ maps no nonzero tangent vector to G/Cσ at the single point

σC into a zero tangent vector at the image point σ ; i.e., that F is an immersion at σC .

An example to keep in mind about failure of immersions is the map f : R → R
2 given

by x(t) = t2, y(t) = t3, which yields a curve with a cusp at the origin. This smooth

map is not an immersion because f∗
(

∂

∂t

) = (
dx
dt

)
∂

∂x +
(

dy
dt

)
∂

∂y vanishes at t = 0. This is

the reason that a cusp can appear.

Since G/C is made up of curves t → g(t)C , a general tangent vector at σC
is the velocity vector of a curve of the form etY C , where Y is in the Lie algebra

g of G. The image of this curve under F is F(etY ) = etY σe−tY , whose velocity

vector at t = 0 is Yσ − σY , and this, by the definition of the differential, is F∗
(velocity of etY C) . Suppose then that this Yσ − σY = 0. Then Y = σYσ−1 and so

exp(tY ) = exp(σ tYσ−1) = σ exp(tY )σ−1 (from the power series). Thus the curve

exp(tY ) in G lies in Cσ and so the curve etY C is a single point curve σC and has zero

velocity at t = 0. Thus F is an immersion at σC . This implies that F is an embedding

of some G/C neighborhood of σC . But since each map Adg mapping G → G defined

by h → ghg−1 is a diffeomorphism sending Mσ onto itself, it is not hard to see that

F is locally an embedding near every point of G/C . Since G is compact, the situation

pictured in the second curve in Figure 6.7 cannot arise. It can be shown that Mσ is a

global embedded submanifold of G.

We now know, for σ ∈ T , that Mσ is a submanifold of G of dimension dim G/Cσ =
dim G − dim Cσ ≤ dim G − dim T , since T ⊂ Cσ . Thus dim T + dim Mσ ≤ dim G.

We shall accept the fact that every conjugacy orbit Mh must meet the maximal torus

T . In the case of U (n), with maximal torus

T = {diag(exp(iθ1), . . . , exp(iθm)}

this is just the statement that every unitary matrix can be diagonalized, i.e., for every

u ∈ U (n) there is a g ∈ U (n) such that gug−1 is diagonal, i.e., in T . Thus each

conjugacy orbit is of the form Mσ , where σ ∈ T .

Note also that our computation here has shown the following lemma.

Lemma (E.1): The orthogonal complement to the tangent space to Cσ at e is
mapped 1:1 and onto the tangent space to Mσ at σ under Y → d

dt etY σe−tY
∣∣
0

=
Yσ − σY .

Theorem (E.2): Each Mσ meets T orthogonally, and is even dimensional, and
the Euler characteristic χ(Mσ ) is the number of intersection points of Mσ and T .

P R O O F: Let σ ∈ T ⊂ Ca . Let Y be orthogonal to Cσ at e. Then, in the bi-

invariant metric in G, Yσ and σY are orthogonal to Cσ at σ . We conclude from
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Lemma E.1 that Mσ is orthogonal to Cσ at σ . A schematic picture is given in

Figure E.1.

Figure E.1

We now compute the Euler characteristic of Mσ by means of the Poincaré–

Hopf theorem (16.12), using an argument that is a variation on ideas used by Weil

and by Hopf and Samelson in the 1930s and 1940s . Let W be a tangent vector

to T at the identity and consider the resulting 1-parameter group of isometries

on G, g → g(t) = etW ge−tW . The velocity Killing field at any g ∈ G is w :=
Wg − gW . Of course this field is tangent to each of the conjugacy orbits, in

particular Mσ . Where are the zeros of this field w on G As computed previously,

w = 0 at g implies etW g = getW , and so g is in the centralizer of etW for all t .
Now we may choose the tangent vector W to T so that the 1-parameter group etW

lies dense on T (see Section 6.2a). For this W, g ∈ G is a zero if and only if g is in

the centralizer of the entire maximal torus T . It can be proved that the centralizer
of a maximal torus T is exactly T itself, C(T ) = T , see, e.g., [Hs, p. 45]. For this

W the zeros of the associated velocity field w make up the entire maximal torus

T . In particular, the zeros of the Killing field w on Mσ are the points where Mσ

meets T , these points being isolated since Mσ meets T orthogonally. What then

is the Kronecker index of the field w on Mσ at such a meeting, say σ? Since the

1-parameter group g(t) is a group of isometries leaving σ fixed, the flow lines on

Mσ near σ must be tangent to a small geodesic codimension 1-sphere S on Mσ

centered at σ . Since w is a nonvanishing tangent vector field to this sphere S, S
must have Euler characteristic 0, and so S must be odd dimensional and Mσ is

even dimensional. By 8.3(11) the index of w at σ is +1 and the sum of the indices

at the zeros of w on Mσ is exactly the number of intersection points of Mσ and

T .
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E.b. Application of Bott’s Extension of Morse Theory

We conclude with some remarks concerning how the topology of the orbits Mσ is related

to that of the entire group G. For this we shall use Bott’s refinement of the presentation

of Morse theory that was given in Section 14.3c.

For simplicity we restrict ourselves to the example U (3) with which we started our

discussion, but similar remarks hold for all the “classical groups,” U (n), SO(n), Sp(n),

(but not SU (n)), with some modifications; see [Fr2]. The elements g of order 2, g2 = I ,

are exactly four orbits, MI = I, M−I = −I , and the two complex projective planes Mα

and Mβ , where a = diag(1, 1, −1) and β = diag(1, −1, −1). It is shown in [Fr2] that

these points are also exactly the critical points of the function f (g) = Re tr(g), the real

part of the trace of the unitary matrix g, and we can call these the “critical orbits.” For

Mα and Mβ , these are not isolated critical points but rather connected “nondegenerate

critical manifolds” and one can apply Bott’s extension of Morse theory (see, e.g, [Bo,

Lecture 3]) to this situation.

Briefly, we require that the hessian matrix for f be nondegenerate for directions

orthogonal to the critical manifold. At a point m of Mσ we can look at the part of the

tangent space to G that is normal to Mσ and note the number of independent normal

directions from m for which f is decreasing, i.e., the dimension of the subspace on

which the hessian form is negative definite. These directions span a subspace of the

normal space to Mσ at m to be called the negative normal space. From nondegeneracy

the dimension of these negative normal spaces will be constant along Mσ and will be

called the (Morse–Bott) index λ(σ) of the critical manifold Mσ . The collection of all

of these subspaces at all m ∈ Mσ form the negative normal bundle to Mσ . We ask

that this bundle be orientable, meaning that the fibers can be oriented coherently as

we range over the base space Mσ . (If they are not orientable, we may proceed but we

may only use Z2 coefficients when talking about homology groups.) Look at the point

α = diag(1, 1, −1) at which f = 1. Then the entire portion of the centralizer Cα given

by U (2) × (−1) ⊂ U (2) × U (1), except for α itself, lies in the region of U (3) where

f < 1 = f (α); U (2) × (−1) is “hanging down” from the critical point α. Thus there

are dim U (2) = 4 independent directions at α along which f decreases. Since f is

invariant under α → gαg−1, we see that this is true along all of Mσ , and so λ(α) = 4.

Similarly, the centralizer of β is U (1)×U (2), the portion U (1)× diag(−1, −1) hangs

down from β, and so the index in this case is λ(β) = dim U (1) = 1. Of course

I is the isolated maximum point and −I is the isolated minimum, and so λ(I ) =
dim U (3) = 9 and λ(−I ) = 0. Nondegeneracy can be proven for each of these critical

manifolds.

We shall need some classical results about the topology of the complex projec-

tive plane CP2, but we shall be very brief. Since CP2 = U (3)/U (2) × U (1), it is a

compact 4-manifold. Recall from Problem 1.2(3) that it is a complex manifold of com-

plex dimension 2. To all points in CP2 with local homogeneous complex coordinates

[z0, z1, z2], where z2 �= 0, we may assign the pair of genuine complex coordinates

(w1 = z0/z2, w2 = z1/z2). For example, these will be local coordinates near the point

[0, 0, 1] that represent the complex line along the z2 “axis” (a copy of the ordinary

z2 plane). (Recall that [z0, z1, z2] �= [0, 0, 0] represents the complex line through the
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origin of C
3 that passes through the point (z0, z1, z2).) We use the schematic picture in

Figure E.2.

Figure E.2

The locus z2 = 0 consists of all points [z0, z1, 0] with z0, z1 not both 0, and thus is a

complex projective line CP1 (i.e., a 2-sphere; see Problem 1.2(3)) with homogeneous

coordinates [z0, z1]. We have aprojection map h : CP2 −[0, 0, 1] → CP1 = S2 defined

by [z0, z1, z2] → [z0, z1, 0]. The locus |w1|2 + |w2|2 = 1 represents a 3-sphere S3 in

CP2 centered at [0, 0, 1] and h, sending S3 → CP1 = S2 by (w1, w2) = [w1, w2, 1] →
[w1, w2], is simply the Hopf map of Section 22.4c. Note also that h : CP2 − [0, 0, 1] →
CP1 = S2 is the endpoint of a deformation ht([z0, z1, z2]) = [z0, z1, (1 − t)z2] that

deforms CP2 − [0, 0, 1] onto CP1. Thus any cycle on CP2 − [0, 0, 1] is homotopic

to one on the subset CP1. In particular, any singular j-cycle on CP2, for j < 4, can

clearly be pushed slightly to miss [0, 0, 1] and can then be deformed into CP1 = S2.

But S2 is simply connected. Thus, since S2 has nontrivial homology only in dimensions

0 and 2, we have the following:

Lemma (E.3): Any loop on CP2 is homotopic to a loop on S2 and is thus de-
formable to a point; hence CP2 is simply connected and therefore orientable.
Hj (CP2, Z) = 0 for j = 1 and 3, and H2(CP2; Z) = H2(S2, Z) = Z. Since
CP2 is a compact, orientable 4-manifold, H4(CP2) = Z. Since CP2 is simply
connected, the negative normal bundles to Mα and Mβ are orientable.

Note also that by pushing S3 by means of the deformations ht we may move S3 to

S3
ε that lies at a small distance ε (in some Riemannian metric) from S2 (see Figure E.3).

But the points of CP2 that are of distance ≤ ε from CP1, for ε sufficiently small, form

a normal 2-disc bundle, N 4 over CP1 in CP2, and the boundary ∂ N forms a normal
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Figure E.3

circle bundle (circles of radius ε). Thus S3
ε = ∂ N is this normal circle bundle to CP1

and the deformation h : ∂ N → CP1 is a realization of the Hopf map S3
ε → S2.

Recall (see Section 14.3c) that the Poincaré polynomial of U (3) is the polynomial

in t with coefficients the Betti numbers bj of U (3), and so PU (3)(t) = ∑
bi t i . Bott’s

generalization of the Morse polynomial is constructed using the Poincaré polynomials

and indices of the critical manifolds (where we write Pσ for the Poincaré polynomial

of Mσ )

MB(t) = 1 + tλ(β) Pβ(t) + tλ(α) Pα(t) + t9

(Note that if each critical manifold reduces to an isolated critical point as in the original

Morse case, then because b j (point) = 0 for j > 0, the coefficient of tλ is again simply

the number of critical points of index λ.)

We have seen in Lemma E.3 that the Poincaré polynomial of CP2 is 1 + t2 + t4, and

so

MB(t) = 1 + t (1 + t2 + t4) + t4(1 + t2 + t4) + t9 = (1 + t)(1 + t3)(1 + t5)

Bott’s generalization of the Morse inequalities are then MB(t) ≥ PU (3)(t) but in [Fr2]

it is shown that in U (n), the “symplectic” groups Sp(n), and SO(n), these are in

fact equalities (except that one must use Z2 Betti numbers in the case of SO(n), for

n > 3, since, e.g., the negative normal bundles to real projective spaces are not always

orientable). Thus the critical orbits Mσ yield exactly the Betti numbers of the group,

but with each k cycle on Mσ yielding a [k + λ(σ)] cycle on G.



“Final Exam”



If students find things that are worthwhile in this book, it is

largely due to what I have learned from my own “teachers,”

among them Aldo Andreotti, Raoul Bott, S.S. Chern, Jim Eells,

G.C. Evans, Harley Flanders, Heinz Hopf, Charles Loewner, Hans Samelson,

Norman Steenrod and John Archibald Wheeler.
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Index

absolute temperature, 187

acceleration, 4-vector, 194

accessibility, 181, 182

accumulation point, 106

action, 152, 274, 524

euclidean, 551

first variation of, 154

group, 454

Hamilton’s principle of stationary action,

154

Jacobi’s principle of least action, 281

relativistic, 196

Ad, 486

bundle, 487, 489

connection, 487

adiabatic

distribution and leaf, 183

process, 180

adjoint, 392, 632

group, 486

representation, 486

admissible boundary form, 378

admittance matrix, 637

affine

connection, 242

group of the line A(1), 394

parameter, 272

Aharonov–Bohm effect, 447–8,

554

Aharonov–Susskind and spinors, 517

algebra homomorphism, 78

Ampere–Maxwell law, 121, 163

annihilator subspace, 167

anticommutator, 478

antiderivation, 89, 135

antisymmetric, 66

antiquark, 641

associated bundle, 482

connection, 483–7

Atiyah–Singer index theorem, 465

atlas, 15

Bernoulli’s theorem, 234

Berry phase, 468–72

equation, 472

Bertrand–Puiseux and Diguet, 288

Betti numbers, 157, 346

Bianchi identities, 300, 489

bi-invariant

connection on a Lie group, 580

forms on a Lie group, 561

Riemannian metric and their geodesics,

563

binormal, 196

Bochner’s theorems, 374, 530

Bonnet’s theorem, 229

boson, 650

Bott’s version of Morse theory, 665, 667

boundary (of a manifold) = edge, 106

boundary

group, 344

homomorphism, 338, 601

operator, 335

boundary conditions

essential or imposed, 527

natural, 527
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bracket

anticommutator, 478

commutator, 408

Lagrange, 80, 100

Lie, 126, 402; of g -valued forms, 477

Poisson, 154

Brillouin and the stress form, 627

Brouwer degree, 210–13, 360

fixed point theorem, 217

bump form, 107

bundle

associated, 482

complex line, 433

cotangent, 52

determinant, 487

dual, 482

electromagnetic, 441

fiber, 415

frame, 453

gauge, 490

line, 433

local trivialization, 417

monopole, 444, 473

normal, 419

orientable, 611

principal, 454, 481

product, 418

projection, 415

pull back, 619

section, 50, 416, 466

space, 415

structure group, 433, 452

tangent, 48

transition functions, 24, 254, 414

trivial, 418

unit tangent, 51

vector, 413–17

volume, 488

canonical form, 394

canonical map, 149

Caratheodory’s

formulation of the second law of

thermodynamics, 181

theorem, 182

Cartan’s

bi-invariant forms, 562

exterior covariant differential, 250, 430

method for computing curvature, 257

structural equations, 249

theorem π2(G) = 0, 606

3-form on a Lie group, 566

H. Cartan’s formula, 135

Cauchy

equations of motion, 618

–Green tensor, 82

–Riemann equations, 158, 159

stress form, 617; Lie derivative of, 626

center

of a Lie algebra, 580

of a Lie group, 565

centralizer, 659

chain complex, 628

chain group, 337

integer, 336

simplicial, 343

singular, 333

character, 657

characteristic cohomology class, 616

charge form, 118

Chern’s

forms and classes, 587–91; as obstructions,

608–16

integral, 612

proof of Gauss–Bonnet–Poincaré, 462–5,

553–7

theorem, 615

Chern–Simons form, 586

Chern–Weil theorem, 589

Chow’s theorem, 178, 187

Christoffel symbols, 229

circulation, 144, 377

Clairaut’s relation, 530

classical

force, 195

momentum, 194

velocity, 193

Clifford

algebra, 500

embedding, 262

numbers, 503

closed

form, 156, 158

manifold, 120

set, 11

closure, 106

coboundary, 630

cochain, 630

coclosed, 370

cocycle, 631

Codazzi equation, 229, 302, 311–13,

320

codifferential d∗, 364

codimension, 6

coefficient group, 337

field, 343
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cohomology H p , 356

integral class, 615

commutative diagram, 338

commutator bracket of matrices, 408

compact, 13

completable relative cycle, 387

complex

analytic map, 158, 214

line bundle, 433; connections, 434

manifold, 21

composing rotations, 499

configuration space, 9, 50

conformally related metrics, 531

conjugate point, 327

conjugates, 659

connected space, 347

connection, 242

coefficients of, 243, 429

curvature of, 244

electromagnetic, 440

flat, 260

forms ω, 249, 256

forms ω∗ in the frame bundle, 462, 480

induced, 309

Levi–Civita or Riemannian, 242, 245

on a Lie group, 580; flat, 581

on a vector bundle, 428–31

on the associated Ad bundle, 486

Simon, 472

spinor, 518–21

symmetric, 245

torsion of, 245

torsion-free, 245

constraint

holonomic, 175

nonholonomic, 175

continuous, 12

continuum mechanics, 617–27; equilibrium

equations, 622

contractible to a point, 161

contraction, 89

contravariant

tensor, 59

vector, 23

coordinate

change of, 29

compatible, 15

frame, 243

homogeneous, 17

inertial, 192

local, 3, 4, 13

map, 20

patch, 20

coset space G/H , 456

fundamental principle, 457

cotangent space, 40

coupling constant or charge, 539

covariance, 430

covariant

components of a tangent vector, 43

constant, 267

derivative ∇X , 235, 241–4, 430; second, 301;

of a tensor, 298–9

differential ∇, exterior, 248

tensor, 58

vector = covector, 41

covector, 41

transformation law, 42

covering space, 569–76

associated to a subgroup of π1, 575

orientable, 573

universal, 570; covering group, 575

critical manifolds, 665

critical points and values, 28, 382–7

homotopically, 382, 387

index, 384

inessential, 383

nondegenerate, 383

(cross) section, 50, 416, 466

curl, 93

current

2-form j , 118

3-form S, 199

3-vector J, 119

4-vector J , 199

convective, 119

electric, as a chain, 656

curvature

of a connection, 243

extrinsic, 318

forms θ , 251, 256, 431; and the Ad bundle, 489;

of a surface, 257; θ∗ on a frame bundle, 462;

θ∗ on a principal bundle, 481

Gauss, 207

geodesic, 235

intrinsic, 318

mean, 207

and parallel displacement, 259–61

of the Poincaré metric, 258

principal, 207

Riemann sectional K (X ∧ Y ), 313

Riemann tensor, 244

of a space curve, 191

of a surface, 207

of a surface of revolution, 258
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curvature (continued)

total, 215

transformation R(X, Y ), 244

vector, 192, 194

cycle

absolute, 344

completeable, 387

group, 344

relative, 379

D, 200

d’Alembertian , 293, 371

deformation

retract, 406, 506

tensor, 82

theorem, 350

degree of a map, see Brouwer degree

de Rham’s

theorem, 355–60

vector space Rp , 356

derivation, 134

derivative

covariant, 235

exterior, 73

intrinsic, 235

normal, 364

determinant line bundle, 487

dictionary relating forms and vectors,

94

diffeomorphism, 27

differentiable, 20

differential

exterior d, 73; covariant, 250

of a function, 40,

of a map F∗, 7, 27

differential form, see form

differentiation of integrals, 138–43

Dirac

adjoint or conjugate spinor, 532

algebra, 509

equation, 503

Lagrangian, 531

matrices, 510

monopole, 444; quantization, 445

operator, 511, 514, 521; in curved space,

515–21

program, 502

representation ρ, 512

(4-component) spinor, 513

string, 162

Dirichlet’s principle, 373

distance from a point to a hypersurface,

579

distribution (of subspaces), 166

adiabatic, 183

horizontal, 263

integrable, 167

divergence, 93, 136, 304

exterior covariant, 545

of a form, 365

of a symmetric tensor, 300

theorem, 139

dual

basis, 39

bundle, 417, 482

Hodge *, 362

space, 39

εJ , 67

eigenvalue of a quadratic form, 63, 209

eight-fold way, 641

Einstein

equations, 296, 316, 317; Wheeler’s version,

318

geodesic assumption, 292, 297

tensor G, 315

electric field E, 119

1-form E, 120

2-form ∗∗E, 121

and topology, 123, 378, 381

electromagnetic

bundle, 441

connection, 440

field strength F2, 197

Lagrangian, 308

stress-energy-momentum tensor, 308

vector potential 1-form A1, 199

electromagnetism and Maxwell’s equations

in curved space–time, 366–7

existence and uniqueness, 378, 387

on projective space, 164

on the 3-sphere, 163

on the 3-torus, 122

embedded submanifold, 27

energy

of deformation, 620–22

density, 316

hypersurface, 148; invariant form, 150

internal, 179

momentum vector, 195

momentum tensor, 295

of a path, 274

rest, 195

total, 148, 196

entropy, 183

empirical, 185
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equations of motion, 144

relativistic, 303

equilibrium equations, 622–4

euclidean metric in quantum fields, 551

Euler

characteristic, 423, 426

equations of fluid flow, 144

integrability condition, 166

principle of least action, 281

exact

form, 156

sequence, 598–600; homology, 604; homotopy,

600; short, 599

exp, 284

exponential map for a Lie group, 399, 403

extension theorem, 592

exterior

algebra, 68

covariant differential ∇, 250, 430;

of a form section of a vector bundle, 488

covariant divergence ∇∗, 545

differential d , 73; coordinate expression, 76;

spatial d, 141

form, 66; and vector analysis, 71

power operation, 588

product, 67; and determinants, 71; geometric

meaning, 70

face, 335

Faraday’s law, 121

Fermat’s principle, 297

fermion, 650

fiber, 49, 415

bundle, 451, 594

coordinate, 416

over p, 416

space, 593

field strength, 64

Flamm paraboloid, 321

flow generated by a vector field, 32, 33

by invariant fields, 408

by Lie bracket, 129

straightened, 35

fluid flow, 30, 143–5

magnetohydrodynamic, 145

foliation, 173

force

classical, 195

Lorentz, 119

Minkowski, 195

form

bi-invariant, 561–3

Cartan, 562

Cauchy stress form, 617

closed, 156

exact, 156

exterior, 66

first fundamental, 202

harmonic, 370

heat 1-form, 179

integration of, 95–102; and pull-backs,

102

invariant, 395

Maurer–Cartan, 476

normal, 376

and pseudo-form, 122

p-form, 41

pseudo-, 86

pull-back, 77–82

second fundamental, 204, 309; and

expansion of the universe, 318,

319

stress: Cauchy, 617; Piola–Kirchhoff, 619–20

tangential, 376

of type Ad, 489, 490

vector bundle-valued, 429

vector-valued, dr and dS, 203, 248

volume, 86, 88

with values in a Lie algebra, 475, 477

work 1-form, 179

frame e, 243

change of, 253

coordinate, 243

orthonormal, 255

of sections, 417

frame bundle, 453

Frobenius

chart, 167

theorem, 170

Frobenius–Schur relations, 656

functional derivative, 307

fundamental

group π1, 567–9, 578

theorem of algebra, 215

vector field, 455

√
g, 88

Galloway’s theorem, 578

gauge

bundle, 490

field, 255, 536

invariance, 441, 449, 533–6

particles: gluons, 540; mesons, 538; photons,

536

principle, 537

transformation, 255, 490; global, 535
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Gauss

–Bonnet theorem, 215, 323, 462; as an index

theorem, 465; generalized, 465–8

curvature, 207

equations, 229, 310, 311–14; relativistic

meaning, 316–18

formula for variation of area, 225

law, 121

lemma, 286

linking or looping integral, 218

normal map, 208, 215, 260

theorema egregium, 231, 317–18

Gaussian coordinates, 284

Gell-Mann

Gell-Mann matrices, 540, 644

Gell-Mann/Okuba mass formula,

651

generalized

momentum, 55

velocity, 50

general linear group Gl(n), 254,

391

general relativity, 291–322

geodesic, 233, 271–4

J. Bernoulli’s theorem, 234

in a bi-invariant metric, 563

circle, 287

closed, 281, 284

completeness, 564

curvature κg , 235, 239

equation, 235

null, 303

polar coordinates, 287

stability, 324, 326

submanifold, 310; total, 311

geodesy, 252

gluons, 540

gradient vector, 45

Grassmann algebra (see also exterior

algebra)

manifold, 459

Green’s reciprocity, 639

Green’s theorem, 368

group

R, Z, Z2, 336

boundary, 344

chain, 337

cycle, 344

de Rham, 356

exact sequence, 598

homology, 345

homomorphism, 337, 398

homotopy, 596

quotient, 345

H, 200

Haar measure, 397, 541

Hadamard’s lemma, 126

hairy sphere, 423

Hamilton, on composing rotations,

499

Hamilton’s

equations, 147

principle, 154, 275

Hamiltonian, 147

flow, 148

operator, 439

relativistic, 196

vector field, 148

harmonic cochain, 633

harmonic field, 376

harmonic form, 370

in a bi-invariant metric, 564

Hawking singularity theorem, 579

heat 1-form, 179

helicity, 145

Helmholtz decomposition, 372

Hermitian

adjoint †, 392

line bundle, 466

Hessian matrix, 383

Hilbert

action principle, 308

space inner product, 361

variational approach, 305–8, 368

Hodge

∗ operator, 362

codifferential d∗, 364

decomposition, 372, 388

theorem, 371

theorem for normal forms, 381

theorem for tangential forms, 377

holomorphic, 158

holonomic constraint, 175

holonomy, 259

homeomorphism, 13

homogeneous space, 458

homologous, 345

homology group, 345–55

relative, 379; sequence, 604

homomorphism, 337, 398

algebra, 78

boundary, 338, 601

induced, 337
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homotopically critical point, 382

homotopy, 591

and homology, 603

covering homotopy, 592

free homotopy class, 282, 283

sequence for a bundle, 600–3

homotopy groups πk , 596–8

computation of, 605–8

and covering spaces, 605

of spheres, 597, 598

Hopf

bundle, 473, 474

map and fibering, 606, 667

theorem, 427

Hopf–Rinow theorem, 564

horizontal distribution, 263–6, 481

Hurewicz theorem, 603

hypercharge, 646

hyperelastic, 622

hypersurface, 6

parallel, 286

1- and 2-sided, 84

immersion, 169, 173

implicit function theorem, 5

incidence matrix, 637

inclusion map, 79

index of a vector field (see also Kronecker index)

of a section, 466

index theorem, 465

indicator, 315

infinitesimal generator, 399

instanton, 550

winding number, 556, 560

integrability condition, 166, 170,

174

integrable

constraint, 175

distribution, 167

integral

curve, 31

manifold, 166

integrating factor, 183

integration

of forms, 96–109

over manifolds, 104–9

of pseudoforms, 114–17

interaction, 534

interior product, 89

intersection number, 219

intrinsic, 234

derivative, 235

invariant

form, 395

vector field, 395

volume form, 397

inverse

function theorem, 29

image, 12

involution, 167

isometry, 230, 314

fixed set, 314

invariant, 231

isotopic spin, 640, 646

isotropic body, 653

isotropy subgroup, 457

J , 432

Jacobi

determinant, 5

equation of geodesic variation, 273

field, 129, 273, 326–9

identity, 403

metric, 281

principle of least action, 281

rule for change of variables in an integral,

101

variational equation, 128

Killing field, 528

equation, 529

kinetic term, 535

Kirchhoff’s current law (KCL), 636

Kirchhoff’s voltage law (KVL), 636

Klein bottle, 348

Klein–Gordon equation, 502

Kronecker

delta, generalized δ I
J , 67

index of a vector field, 216

Lagrange

bracket { , }, 80, 100

deformation tensor, 82, 621

Lagrange’s equations, 147

in a curved M3, 276

tensorial nature, 526

with electromagnetism, 439

Lagrangian, 54

Dirac, 531

electromagnetic, 308

for particle in an electromagnetic field,

436–9

significance in special relativity, 437
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Lambert’s formula, 290

Lamé moduli, 655

Laplace’s formula for pressure in a bubble,

227

Laplacian ∇2, 93, 305

and mean curvature, 305

Laplace operator on a cochain, 633

Laplace operator 	 = dd∗ + d∗d on forms,

368–72

on a 1-form, 370

leaf of a foliation, 173

maximal, 173

Levi–Civita

connection, 242

equation, 297

parallel displacement, 237

Lie algebra g , 402

Ad invariant scalar product, 543

Lie bracket [ , ], 126, 402

Lie derivative LX

of a form, 132–8

of the metric tensor, 620

of the stress form, 626, 627

of a vector field, 125

Lie group, 391–412

1-parameter subgroup, 398, 405–7, 564; on

Sl(2, R), 407

compact, 541; averaging over, 541;

bi-invariant forms, 561–7

connection and curvature of, 580

Lie subgroup and subalgebra,

410–12

lifting paths, 277

in a bundle, 593

in a covering space, 574

lifting spheres, 605

light cone, 193

lightlike, 193

linear functional, 38

linking number, 219

Liouville’s theorem, 148

local

product, 49

trivialization, 417

Lorentz

factor, 193

force, 119; covector, 120, 197

group, 504; and spinor representation of

Sl(2, C), 509

metric, 192

transformation, 46, 198

magnetic field B, 119

1-form ∗∗B, 121

2-form B, 120

and topology, 123, 387

magnetohydrodynamics, 145

manifold, 13, 19

closed, 120

complex, 21

integral, 166

mechanical, 180

orientable, 83

product, 15

pseudo-Riemannian, 45

Riemannian, 45

symplectic, 146

with boundary, 106

map

canonical, 149

coordinate, 20

differentiable, 20

exponential, 284, 399

geographical, 230

inclusion, 79

of manifolds: critical points and values, 28;

regular points and values, 28

projection, 415

matrix group, 394

Maurer–Cartan

equations, 403, 477

form 
, 476

maximal

atlas, 15

torus, 393

Maxwell’s equations, 120–3, 198, 200,

536

on a curved space, 366–7

independence of, 200

on projective space, 164

on a 3-sphere, 163

on a torus, 122

Mayer–Lie system, 174

mean curvature, 207, 311,

529

and divergence, 224

mesons, 538

Yukawa, 540

metric

conformally related, 531

flat or locally euclidean, 263

Lorentz or Minkowski, 192

potentials, 293

pseudo-Riemannian, 45
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Riemannian, 45

spatial, 297

static, 292, 296

stationary, 291

tensor, 43

minimal submanifold, 311, 528

surface, 227, 305

minimization of arc length, 286

Minkowski

electromagnetic field tensor, 197

force, 195

metric and space, 46, 192

Möbius band, 18

mode

normal, 65

zero, 465

momentum

canonical, 439

classical, 194

density, 320, 322

4-vector, 194

generalized, 55

kinematical, 436

operator, 439

monopole bundle, 444, 473

Morse

deformation, 47

equalities, 387, 428

index, 328, 384

inequalities, 385, 386

lacunary principle, 388

lemma, 384

polynomial, 385

theory, 382–8

type number, 385, 604

multilinear, 58

Myers’s theorem, 576–8

negative normal bundle, 665

neighborhood, 12

Noether’s theorem, 527–9

Nomizu’s theorem, 530

normal

bundle, 419, 616

coordinates, 287, 303

derivative, 364

map, 208

mode, 65

nucleon

Heisenberg, 537

Yang–Mills, 538

obstruction cocycle, 609–12

one parameter group, 31

open set, 11, 12

orientability, 83

and curvature, 331

and homology, 349

and two-sidedness, 84

orientable

bundle, 611, 665

manifold, 83

transverse, 115

orientation, 82

of the boundary, 110

coherent, 341

transverse, 115

orthogonal group, O(n), 9, 392

SO(n), 9, 392

osculating plane, 191

paper folding, 315

parallel displacement, 237

independence of path, 260

parallelizable, 252

parameter, distinguished or affine,

272

parameterized subset, 97

partition of unity, 107

and Riemannian metrics, 109

passes peaks and pits, 427

path ordering, 555

Pauli

algebra, 501

matrices, 493

period of a form, 357

periodic motion, 282

for double pendulum, 284

for rigid body, 331

Pfaffian, 167

phase, 448, 535

space, 55; extended, 151

physical components, 48, 630

Piola–Kirchhoff stress forms

first, 619

second, 619

Poincaré

characteristic, 604

duality, 375

index theorem, 421–8

lemma and converse, 160

metric, 239, 258; geodesics, 274,

530

1-form, 56; extended, 151
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Poincaré (continued)

polynomial, 385

2-form, 80; extended, 151, 437

Poisson

bracket ( , ), 154

equation, 293, 371

potential

of a closed form, 158, 160–4

global vector, 443, 448

monopole, 444

singularities, see Dirac string

Poynting vector, 322

principal

bundle, 454, 458, 481

directions, 207, 310

normal, 191

normal curvatures, 207, 310

principle of least action, 281

probability amplitude, 447

projection, 49, 415

homomorphism, 605

projective space, 16, 85

homogeneous coordinates, 17

RPn , 16

CPn , 22

proper time, 193, 292

pseudo-form, 86

integration of, 114–17

pseudo-Riemannian, 45

pull-back

of covariant tensors, 53, 77,

79

in elasticity, 81, 619

and integration, 102

pure gauge, 553

quantization of a gauge field, 536

topological, 261

quark, 540

up, down, and strange flavored, 641

quasi-static, 179

quaternion, 502

quotient group, 345

radius of curvature, 192, 221

rate of deformation tensor,

624–6

regular points and values, 28

relative

boundaries, cycles, and homology groups,

379–81

homology sequence, 604

relativistic equations of motion, 303

mass, 194

reparameterization, 101

representation, 481

adjoint, Ad, 486

dual, 482

irreducible, 654

of a group, 481, 482

reducible, 643

tensor product, 482

residue of a form, 159

rest mass, 194

retraction, 217

Ricci

curvature, 315, 374, 577

identities 302

tensor Ri j , 295

Riemann

–Christoffel curvature tensor, 229

sectional curvature K (X ∧ Y ), 313–14

sphere, 21

theorem, 266

Riemannian

manifold and metric, 45; bi-invariant, 563; on

a surface of revolution, 258

connection, 242

rigid body, 9, 331

rotation group SO(n), 392, 492

Sard’s theorem, 29

scalar curvature R, 296

scalar product, 42

global, 361

of Hermitian matrices, 494

nondegenerate, 42

Schrödinger’s equation, 439

in curved space, 442

with an electromagnetic field, 440,

443

Schur’s lemma and corollary, 654, 655

Schwarz’s formula, 228

Schwarzschild solution, 320–2

spatial metric, 298

section, 50, 416, 466

holomorphic, 467

p-form section of a vector bundle,

488

sectional curvature, 313

self adjoint, 205, 317

self (anti) dual field, 549

Serret–Frenet formulas, 196, 431

Simon connection, 472
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simplex, 333

boundary, 335

face, 335

ordered, 335

orientation, 336

singular, 334

standard, 333

simplicial complex, 343

simply connected, 283, 329, 595

singularity of a vector field, 422

skeleton, 610

smooth, 7

soap bubbles and films, 226–8

spacelike, 193

space–time notation, 141

spatial slice, 316

special, 392

linear group, Sl(n), 11, 392

orthogonal group SO(n), 392

unitary group SU (n), 392

sphere lifting theorem, 605

spin structure, 515–18

spinor

adjoint, 532

bundle SM , 517

connection, 518–21

cospinor, 513

Dirac or 4-component, 513

group Spin(3), 497

“representation” of SO(3), 497

“representation” of the Lorentz group, 509

2-component, 497; left- and right-handed,

513

stability, 324; subgroup, 457

Stiefel

manifold, 459, 616

vector field, 426

Stokes’s theorem, 111–14

generalized, 155

for pseudoforms, 117

stored energy of deformation, 621

strain energy, 652

stress–energy–momentum tensor Ti j , 295

stress forms

Cauchy, 617

first Piola–Kirchhoff, 619

second Piola–Kirchhoff, 619

stress tensor, 295, 618

structure constants, 402

in a bi-invariant metric, 566

structure group of a bundle, 433, 452

reduction, 433

SU (2) ∗ U (1), 649

SU (n), 392, 493–7

subalgebra, 411

subgroup, 411

isotropy = little = stability, 457

submanifold, 26

embedded, 27

framed, 115

immersed, 169

of Mn , 29

of R
n , 4, 8

1- and 2-sided, 84

with transverse orientation, 115

submersion, 181

summation convention, 59

support, 107

symmetries, 527–31

symplectic

form, 146

manifold, 146

Synge’s

formula, 325

theorem, 329

tangent

bundle, 48; unit, 51

space, 7, 25

vector, 23

Tellegen’s theorem, 638

tensor

analysis, 298–303

Cauchy–Green, 82

contravariant, 59

covariant, 58

deformation, 82, 621

metric, 58

mixed, 60; linear transformation, 61

product, 59, 66; representation, 482

rate of deformation, 624

transformation law, 62

theorema egregium, 231

thermodynamics

first law, 180

second law according to Lord Kelvin, 181;

according to Caratheodory, 181

Thom’s theorem, 349

timelike, 193

topological

invariants, 346

quantization, 468

topological space, 12

compact, 13

topology, 12

induced or subspace, 12
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torsion

of a connection, 245; 2-form, 249

of a space curve, 196

torus, 16

maximal, 393

transformation group, 456

transition matrix cU V , 24, 254, 414

for the cotangent bundle, 417

for dual bundles, 417

for tangent bundle, 417

for tensor product bundle, 417

transitive, 456

translation (left and right), 393

transversal to a submanifold, 34

transverse orientation, 115

triangulation, 346

tunneling, 558

twisted product, 415

unitary group U (n), 392

universe

static, 292

stationary, 291

vacuum state, 557, 558

tunneling, 558

variation

of action, 154

external, 523

first, of arc length, 232; of area, 221, 322

internal, 523

of a map, 153

of Ricci tensor, 306

second, of arc length, 324–32

variational

derivative δ, 307, 526

equation, 128

principles of mechanics, 275–81

vector, 128, 153, 272

vector

analysis, 92, 136–8

bundle, 413–19; -valued form, 488

contravariant or tangent, 23

coordinate, 25

covariant = covector = 1-form, 41

as differential operator, 25

field, 25; flow (1-parameter group) generated

by, 32, 33; integral curve of, 31; along a

submanifold, 269

gradient, 45

integral, 144, 308

invariant, 395

Killing, 528

product, 92, 94, 103

transformation law, 34

-valued form, 248

variational, 128, 153, 272

velocity 4-vector, 193

velocity field, 31

virtual displacement, 276

voltage as a cochain, 636

volume

bundle, 488

form, 86, 88

invariant: in mechanics, 148; on the energy

hypersurface, 150; on the unit hyperboloid,

200; on a Lie group, 397, 541; on Sl(2, R),

398

vorticity, 145

wedge product, see exterior product

weight diagram, 647

Weingarten equations, 204

Weizenböck formulas, 370

Weyl’s

equation for neutrinos, 515

method of orthogonal projection, 639

principle of gauge invariance, 441

theorem on the fundamental group of a Lie

group, 565, 581

Whitney embedding theorem, 23

winding number

of a curve, 212

of a Yang–Mills instanton, 560; in terms of

field strength, 585–7

of a Yang–Mills vacuum, 560

work 1-form in thermodynamics, 179

world line, 193

wormhole, 446

Yang–Mills

action, 544

analogy with electromagnetism, 547, 548, 550

equations, 545

field strength, 539

instanton, 550; winding number, 560, 585

Yukawa–Kemmer, 650

Z2, 336

zero modes, 465
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