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Preface to the English Edition

The theory of variational methods, in particular, gauge theory and the the-
ory of harmonic maps has developed explosively over the last decade. The
theory is of essential importance in both physics and mathematics. In this
theory, the notion of a manifold, particularly an infinite-dimensional mani-
fold plays an essential role. However, a physicist colleague at my university
said to me once that mathematics, especially the notion of "manifold", is dif-
ficult to learn. Every physicist wants to know mathematics, but every book on
differential geometry begins with an explanation of the notion of "manifold".
This is a hard obstacle for beginners. At the time, I could only reply that the
earth is round and that to analyze it as lying in a flat plane is easy but would
lead only to a theory appropriate to the time before Columbus. When the
opportunity arose for me to write a book about harmonic maps, I recalled the
above dialogue and decided to write a book in which the first chapter contains
no definitions of mathematical notions, but rather contains an introduction
that explains the importance of learning the notion of "manifold".

Such being the case, I started this book by giving a perspective of the roles
of variational methods and infinite-dimensional manifolds in mathematics
and in physics followed by elementary examples of physical problems includ-
ing problems in classical mechanics.

Readers of this book, who are familiar with Riemannian geometry and
want to get quickly to the theory of harmonic maps, can start with Chapter
4.

Logically, this book is constructed as indicated by the diagram on the next
page.

In Chapter 2, the notions of a Banach manifold, Hilbert manifold, and
the usual finite-dimensional manifold are introduced. Several notions in Rie-
mannian geometry and several examples of Riemannian manifolds are given,
and this chapter closes with the example of the infinite-dimensional manifold
consisting of all L a-maps from a compact manifold M into another com-
pact manifold N. This manifold, denoted by L1 D(M, N), is important in
Chapters 3, 4, and 6.

ix



X PREFACE TO THE ENGLISH EDITION

In Chapter 3, the Morse theory on Hilbert or Banach manifolds, which was
initiated by Palais and Smale under the assumption of the Palais-Smale con-
dition (C), is explained. It is proved that if p > dim M, then the manifold
LI p(M, N) satisfies the condition (C).

In Chapter 4, the notion of harmonic maps and the first variation formula
are introduced. Several examples of harmonic maps are presented.

The main topic in Chapter 5 is the second variation formula, and the
notion of stability of harmonic maps is defined. Xin's instability theorem is
proved, and related results about the stability of holomorphic maps between
KAhler manifolds are given along with their proofs.

This book closes with Chapter 6 whose main topics are the existence and
construction problems of harmonic maps to the unit sphere, the complex
projective space, the unitary group, or to a compact nonpositively curved
Riemannian manifold.

I hope this book will be helpful to students of mathematics and to math-
ematical scientists who want to know and to study the recent developments
in the theories of harmonic maps and the variational methods which have
applications to broad areas of science.

Chapter 1

I
Chapter 2

Chapter 3 --- Chapter 4

1

Chapter 5

Chapter 6

Hajime Urakawa
Sendai

February 1993



Preface

In ancient times, Queen Dido of Carthage ordered her subjects to enclose
a maximum area of land making use of a given string made from the skin of
a cow. This problem has been known as the isoperimetric problem and one
of the origins of the calculus of variations. What did the Queen's subjects
answer to her ?

As time went by, it was observed by J. Kepler, I. Newton, and G.W.
Leibnitz that the laws of nature can be described in terms of differential
equations. In particular, the law of universal gravitation due to Newton
became the origin of the differential calculus.

In the middle of the eighteenth century, L. Euler and J.L. Lagrange found
that the equation due to Newton is induced from "the problem of maximum
and minimum". This was the origin of variational calculus and analysis.
Since then, Cauchy, Weierstrass, and Fourier established the foundations of
the differential calculus. At present, in high schools and the first year of
college, one studies differential and integral calculus from these historical
perspectives.

In the nineteenth century, Lobachevsky, Bolyai, and Gauss discovered the
notion of non-Euclidean spaces, and Riemann discovered the notion of Rie-
mannian metrics, and the differential and integral calculus of curved mani-
folds, that is, differential geometry. In the early part of the twentieth century,
A. Einstein's theory of general relativity led to an increase in interest in Rie-
mannian geometry and in differential geometry.

The word "Geometry" originally meant measuring "Geo = the earth", the
origin of geometry is geodesy. A geodesic is, roughly speaking, a shortest
curve between two points. This means that one should treat the notion of
"shortest curve" in the space of all curves. This is a typical model of the
calculus of variations. The space of all curves is a very big space of infinite
dimension, and the differential calculus and the calculus of variations due
to Newton, Euler, and Lagrange allowed the study of calculus in an infinite-
dimensional space. Several principles in physics can be described by this
fundamental idea in the calculus of variations, which is the search for the
minima of some function such as the length.

xi
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M. Morse began the study of the relation between critical points of a func-
tion on a curved manifold and the topology of the manifold by making use
of these studies about geodesics. But to systematically study several varia-
tional problems one had to treat infinite-dimensional spaces which were also
important in the quantum field theory due to Dirac and Heisenberg. Fur-
thermore , the notion of a curved infinite-dimensional space, a so-called
"infinite-dimensional manifold" was necessary to handle a space of curves in
a satisfactory manner. From the latter half of the 1950's to the early 1960's,
J. Eells, R.S. Palais , and S. Smale showed the space of all smooth mappings
to be an infinite-dimensional manifold, and established a general theory of
differentiation of smooth functions on it and a critical point theory of func-
tions. The notion of harmonic mappings was established as critical points
of the energy (the action integral), and the existence of a harmonic mapping
into a nonpositive curved manifold was shown by Eells and Sampson.

Another origin of the theory of harmonic mappings was a problem pro-
posed by J. Plateau in the nineteenth century. This is a problem concerning
the existence and uniqueness of soup bubbles bounding a given wire (a closed
Jordan curve) in the 3-dimensional Euclidean space, in other words, to search
for a surface minimizing the area among all surfaces bounding a given Jor-
dan curve. T. Rado and J. Douglas solved this problem independently in
1930 - 1931. C.B. Morrey solved Plateau's problem for an arbitrary Rie-
mannian manifold in 1948. These results can be regarded as theories of
harmonic mappings defined on a two-dimensional region with the boundary
conditions.

Today the theory of harmonic mappings is one of the most important
theories in areas of geometry such as the theories of Einstein metrics (=
theory of gravitations), Yang Mills connections (= gauge theories), and it
has many applications in several fields.

It has been known for some time that there are difficulties in applying the
theory of Palais and Smale to several variational problems, for instance, the
theory of harmonic mappings. In particular, to apply the theory we need
the condition (C) of Palais and Smale. For condition (C) to be satisfied
we need the boarderline estimate of Sobolev's Lemma which is one of the
fundamental tools in analysis. So one can not apply variational methods
which do not satisfy condition (C). Many interesting geometric problems,
the theories harmonic mappings and Yang-Mills connections do not satisfy
condition (C). So one of the crucial objectives is to find a detour that bypasses
condition (C). K. Uhlenbeck succeeded in 1981 in finding a method that
gives an alternative proof of the Eells and Sampson's theorem about the
existence of harmonic mappings into nonpositively curved manifolds, and
she proved, independently of L. Lemaire, the existence of a harmonic map
of a 2-dimensional manifold without boundary into a target manifold N
with n2(N) = JO), which is the analogue of Plateau's Problem. But in the
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case of a domain manifold of higher dimension, the existence problem for
harmonic maps is still unsolved, and there are a lot of unsolved interesting
problems in the calculus of variations.

In this book, except for the "Coffee Breaks"in Chapters 1, 3, and 4, we
have devoted the exposition to presenting a general theory of the calculus of
variations and the theory of harmonic mappings. If one reads through this
book, one obtains a fundamental knowledge of differential geometry and can
start to do research on harmonic mappings after referring to the three vast
works due to J. Eells and L. Lemaire. We hope this book becomes a good
handbook to researchers working on harmonic mappings and the calculus of
variations. This book is based on the author's lectures at Hokkaido Univer-
sity, Osaka University, Hiroshima University, Tokyo Institute of Technology,
Ryukyu Univiversity, Tsukuba University, and on lectures in undergraduate
courses at Tohoku University. During the time this book was being prepared
at M. S. R. I., Berkeley, I was stimulated by a workshop related to the global
analysis, algebraic topology, and quantum field theory which has been stud-
ied by Atiyah, Witten, Manin, Segal, Tsuchiya, Kanie, and others. We hope
that reading through this book will also become a first step toward the study
of these vast research areas.

Finally, I express my sincere gratitude to Professor Shingo Murakami and
Mr. Shuji Hosoki of the Shokabo Publishing Co., Ltd. who encouraged me
to publish this book and who have given many valuable suggestions during
the preparation of this book.

Hajime Urakawa
Sendai

Fall 1990





CHAPTER 1

Calculus of Variations

The calculus of variations is a theory based on the belief that it is possible
to explain all things in the universe. In this chapter, we shall observe several
important theories of mathematics and physics that are derived by variational
methods and we will present some examples of the calculus of variations.

The aims of this book are to present a general theory of the calculus of vari-
ations, its applications, along with some serious difficulties with the calculus
of variations and how to overcome these difficulties in applying the theory
of harmonic mappings, which have been called nonlinear sigma models by
theoretical physists. In this chapter, we give an outline.

§1. The aims of this book

The aims of this book are, using a principle, called the variational method
or the calculus of variations which is useful in natural sciences, to under-
stand harmonic mappings (nonlinear sigma model) which are the most nat-
ural objects among smooth mappings and to introduce development of their
theories.

What is the method of variations, or the variational principle ? 71

This is a method to select the best among a variety of objects. It is the
following process (see Figure 1.1, next page):

(1) Gather all relevant objects into a space X.
(2) Take an appropriate function E on X. If E is appropriate for the

purpose, then minima or maxima of E in X are the best objects.
Putting this idea into practice has been very difficult. However, a lot of

people have been fascinated by this idea.
From the time of I. Newton, G.W. Leibnitz, P.L. Maupertuis, L. Euler,

and J. L. Lagrange, the calculus of variations has been carried out as follows:
(1) On the space X, one may consider the concept of the differential E'

of E.
(2) Then if x0 E X is best, then it should attain the maximum or mini-

mum of E. So the derivative of E vanishes at xo , i.e.,

E'(xo) = 0.

I



2 I. CALCULUS OF VARIATIONS

X =

X=

Among the elements of X, there
are good ones, xI , x2 , ... ;
how does one find them?

FIGURE 1.1

(3) The point x0 satisfying E'(xo) = 0 (called a critical point of E)
could be written and characterized in term of some differential equa-
tion (called the Euler-Lagrenge equation).

(4) Thus, it remains only to solve this differential equation.
Sometimes, we can trace the inverse of the above approach:

(1) One should solve some differential equation which is important but
difficult to solve.

(2) To solve this equation, one could consider a certain space X and a
function E on X in such a way that the Euler-Lagrange equation
corresponding to E, i.e., E'(xo) = 0 corresponds to the equation in
question.

(3) Then one may only find a maximum or minimum of E on X.
For many interesting problems in mathematics and physics, one could

formulate the calculus of variations in this way, but it often happens that
both to find maxima and minima of E and to solve the corresponding Euler-
Lagrange equation are very difficult.

In the mid-1960s, R. Palais and S. Smale independently clarified under
which conditions on E and X, E has minima. This condition is called the
Palals-Smale condition (C).

To explain the Palais-Smale condition (C), we consider the following ex-
amples:

j(x) = x2, -oo < x < oo, (1)

g(x) = ex3, -oa < x < oo. (2)

Both functions have infima 0, have only one critical point at x = 0, and tend
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Here is the point. '

FIGURE 1.2

to infinity as x - oo. (See Figure 1.2.) But they are very different from each
other. (1) has a minimum 0 at x = 0, but (2) does not attain any minimum.
What is the reason for these phenomena ?

One answer. For (1), r(O) = 2 > 0, but for (2), g"(0) = 0, g"'(0) = 6.
(so-called a study the sign of the second derivative of a function.)

Another answer. The former satisfies Palais-Smale's condition (C), but the
latter does not (see §2, Chapter 3).

The first answer can be formulated in a theory of stability of critical points,
i.e., to study the sign of the second derivative E" (the second variation, or the
Hessian) of a function E on X. The second answer, i.e., to check whether
the Palais-Smale condition (C) holds or not is a litmus test as to whether
a given variational problem is difficult or not. We shall show that if the
condition (C) holds and the corresponding function E is bounded below,
then E attains a mimimum, which gives the desired answer! Otherwise, the
problems are very difficult. It so happens that many interesting problems
arising from geometric problems do not satisfy condition (C), but E has a
minimum.

This book consists of the following chapters:
Chapter 1. We shall give several examples of the method of variations,

calculate the first variation E', and learn how to derive the Euler-Lagrange
equations.

Chapter 2. Considering the derivative E' of E on X is, strictly speaking,
introducing a "manifold structure" on X and a differentiable function E on
it, and considering the derivative E'. This chapter is the foundation for a
rigorous treatment of the methods of variation.

Chapter 3. We shall explain the notions of critical point of a differentiable
function E on X, and the second derivative (the Hessian). We shall also
explain the Palais-Smale condition (C) and show that if it is satisfied, then the
function E which is bounded below, attains a munimum. We shall present
a theorem that holds when the condition (C) is satisfied.
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Chapter 4. As applications of the above theory, we shall introduce the
theory of harmonic mappings, called nonlinear sigma models by theoretical
physicists. Chapters 4, 5, and 6 can be read independently of the previous
chapters.

Chapter 5. We shall present the second variation formula for harmonic
mappings, and the stability or unstability of harmonic mappings as applica-
tions.

Chapter 6. The theory of harmonic mappings does not, in general, sat-
isfy the Palais-Smale condition (C). We shall explain Uhlenbeck's method to
overcome this difficulty, and present recent developments on the existence,
construction, and classification theories of harmonic mappings.

§2. Methods of variations and field theories

Methods of variations are essentially important in physics, in particular,
in the field theories. In this section, we shall give an overview of harmonic
mappings and other related field theories.

It is known that there exist in nature, four kinds of forces - the grav-
itation, electromagnetism, weak interaction, and strong interaction. There
have been attempts to join these forces in a unified field theory. Gravitation
has been described as Einstein's general relativity theory, and electromag-
netism as Maxwell's theory. These four forces are understood as gauge field
theories by physicists. Recently, superstring theory, conformal field theory,
and topological quantum field theory have received much attention in both
mathematics and physics.

Mathematics, especially geometry, has been developed, sometimes deeply
influenced by and sometimes independently of such developments in physics.
In fact, some of the theories in physics correspond to theories in mathematics.
See Table 1.1

TABLE 1.1

Mathematics Physics

Einstein metrics Gravitations
Geometry of connections Gauge theory
Harmonic maps String theories (Nonlinear sigma models)

Here, postponing any rigorous definitions, we describe these three theories as
derived by methods of variations.

Einstein metrics. We take as the space X the totality of Riemannian met-
rics with volume 1 on a fixed m-dimensional manifold, and as the function
E on X we take

E(g) := rM Sg vg (called the total curvature of (M, g)), g E X.

Sg is the scalar curvature, and vg is the canonical measure given by
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E

IM

FIGURE 1.3

Vg = det(g,,) dx1 dzn for a Riemannian metric g = E g1j dx1 ® dx, .

It is known (cf. [N], called Hilbert's theorem) that for any deformation
g1, -e <t<e, go=g,

g is a critical point of E in X d I E(g) = 0,
t r=u

e--* g is an Einstein metric, i.e., p = c g.

Here p is the Ricci tensor of g, and c is some constant.
Yang-Mills connections. Let E be a vector bundle over a compact Rie-

mannian manifold (M, g), for example, E = M X C" (a direct product).
See Figure 1.3.

Then for the a space X we take , the totality of connections t of E,
and as a function E on X we take

E(0) 2 f II0II2Vg, VEX.
M

Here R° is the curvature tensor of t of E, and II II is its norm (see 1.3
in Chapter 4). Then by definition for any deformation Vr of t' -e < t <
E, 0=v,

is a critical point of E r--* d
I - E(Vr) = 0,

t r-0
e--* V is a Yang-Mills connection.

Harmonic mappings. We consider two compact Riemannian manifolds
(M, g), (N, h) and take for X the set C' (M, N) of all smooth mappings
of M into N. For the function E on X, we take

E X = C°°(M, N),

where (Idol) is the norm of the differential do of a mapping 0 E C°°(M , N)
with respect to the metrics g, h. (See Figure 1.4, next page.) Then by
definition (see 1.2, Chapter 4) that for any deformation 0r of 0, -e < t <
E, 1o=0,
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F tGuRE 1.4

is a critical point of E = d
I E(Or) = 0,dt t-0

4--* ¢ is a harmonic map,
i.e., a nonlinear sigma model.

It is known that there are several mysterious and strong similarities among
these three theories. See Table 1.2.

TABLE 1.2

Einstein metric Yang-Mills conn. Harmonic map

Stable nothing (A.) S.D. conn. holom. maps

Moduli E-met. deform. moduli of S.D. Calabi constr.
Homog. invar. E-met. invar. Y.M. minimal orbits
O.D.E. inhomo. E-met. non-S.D. Y.M. O.D.E. constr.

In Table 1.2, "Stable" means stability or minimality of E ; "nothing" in-
dicates that every Einstein metric is unstable, but Einstein-Kiihler metrics
have some stabilities; "(A.) S. D." stands for (anti)selfdual connections, and
"holom. maps" stands for holomorphic maps between KAhler manifolds (cf.
§3, Chapter 5)

"Moduli" stands for theories of moduli spaces or deformation theories; "E-
met. deform." , stands for deformation theories of Einstein metrics; "moduli
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of S.D." stands for moduli theories of (anti)selfdual connections, and "Calabi
constr." stands for the Calabi construction of harmonic mappings from 2-
spheres into symmetric spaces (cf. 2.3 Chapter 6).

"Homog." stands for homogeneity; "invar. E-met." stands for group action
invariant Einstein metrics on homogeneous spaces; "invar. Y.M." stands for
group action invariant Yang-Mills connections on homogeneous spaces, and
"minimal orbits" stands for the theory of homogeneous minimal submani-
folds (cf. (H.L], [T.T], [M.O.U]).

"O.D.E." stands for the theories of ordinary differential equations arising
from equivariant theories; "inhomo. E-met." stands for the constructions of
inhomogeneous Einstein metrics; "non-S.D. Y.M.", stands for the construc-
tions of unstable non-(anti)selfdual Yang-Mills connections; "O.D.E. contr."
stands for the theory of constructions of harmonic mappings using by ordi-
nary differential equations(cf. 2.4, Chapter 6). (This table could be contin-
ued.)

A moral obtained from Table 1.2 is that if one finds an interesting result
in any box of these three theories, then one can expect to find analogues in
the others! This suggests a possibility of the existence of a unified field theory
in physics.

This book is an exposition introducing the methods of variations and fo-
cussing on the theory of the last vertical line in Table 1.2, harmonic mappings.

§3. Examples of the method of variations

In this section, we shall introduce examples of the "method of varia-
tions" known classically and show how to derive the Euler-Lagrange equa-
tions. The calculations in this section are in the textbooks for the first course
in physics at many universities. We recommend that the reader refer also
these textbooks.

3.1. Equation of Equilibrium States of Strings. Let us consider a homo-
geneous elastic string put first on the closed interval [0, L] in the xy-plane
and not pressed by any external forces. See Figure 1.5, next page. Next
we assume an external force acting in the direction y-axis and with strength
f(x) at each point x E [0, U. In this case, we consider a problem finding
the position of equilibrium state of this string. Here our assumptions for a
string being homogeneous and elastic mean the force of tension is constant
j u, and the density is constant p.

We denote by u(x), x E [0, fl, the position of the string. Then the
position energy U is the sum of the energy U, arising from the tension p
and the energy Ue arising from the external force pressing on the string. We
write

U=U,+Ue
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FIGURE 1.5

Here Ul and Ue are given by

U, = p {(length of string - L}1
1

=p{ jL I+uX2dx-L}=µ IL{ l+uX2-1}dx,
L

JJJ l 111

UJ = f f(x)u(x)dx,

respectively, where ux := f . Therefore, the total energy E of the string
with position at u(x), x E [0, L], is given by

E( fu) = U = p L { 1 + uX2 - 1 } dx + f L f (x)u(x) dx.
0 7 0

Recall the least potential energy principle.

The equilibrium position should minimize the total en-
ergy E.

From this principle, we obtain

d E(u+Ev)=0.
de ,-0

Here u + e v is a position near the equilibrium, and v is an (admissible)
function on [0, L]. Then we get

( l

dE
lfE(u + Ev) = dE c=O I /L f{/i + (UX + EVX)2 - 11 dxao

L 1

+ f f(u+cv)dx
01L21121L

fvdx

=
JL{d((1

+ u2)2u) + f} v dx

+ [µ(1 +
uX2)-112uXv]X=L

X=o
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using the partial integral formula. Thus, we obtain
1t j_YTx ((1+ux2)-il2u )+j}vdx (3.1)

+ p {(1 + ux(L)2)-Il2ux(L)v(L) - (1 + ux(0)2)-I/2ux(0)v(0)} = 0.

Thus,
(i) if the endpoints of the string being not fixed, then the function v

may be chosen arbitrarily, and we get

1
dx ((1 + U"2)-112U.") = f(x), on the open interval (0, L),

(3.2)
ux(0) = ux(L) = 0;

(ii) if both the endpoints are fixed, then v should vanish at both of the
endpoints 0 and L, and we have

pdx ((1 + ux2)-I J2ux) = f(x), on the open interval (0, L), (3.3)

u(0) = a, u(L) _ fi
Since

d
dx ((1 +Ux 2)-I/guar) = uarar(1

+ux2)-3/2, (3.4)

the above nonlinear differential equation can be also written as

,Uuxx(l + ux2)-3/2 = f
In summary, we have

(3.5) REsuME. (I) In order to determine the equilibrium position of a string
in the field which the external force acts vertically to the x-axis, one may
search for a minimum of the function defined by

E(u) := p f L + u2 - 1 } dx + f ` f(x)u(x) dx.
o J o

(II) To do the above, one may solve the nonlinear differential equation on
the open interval (0, L) given by

p
d

ux = f(x) or puxx(1 +
ux2)-3/2 = f(x),

dx l + ux2

under the boundary conditions

ux(0) = ux(L) = 0 or u(0) = a, u(L) =.8.
REMARK. If we take

E(u):=? jLux2dx+iLfudx,

one can derive the Poisson equation

puxx = f.
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3.2. Equation of a vibrating string. We next consider the equation of a
vibrating string. We denote by u(t, x), the position of a string changing
with time 1. The position energy U(t) at t is given by

U(t)=µfL{s/i + u2 - i} dx +
fLf(x)u(x)dx.

0

At each point of a string, the kinetic enegy is locally mass Ispeedl2 , so
the kinetic energy T(t) of the string is

T(t)=f L ,µu, dx.
0

Therefore, the total energy E(t) at time t is given by the formula:

E(t) = T(t) - U(t)
rr=fL

{2pur2-µ 1+ur2+µ-fu}dx.
o tt

Here recall Hamilton's principle:

The total energy is defined by

r2

E := f E(t) dt
r,

for an arbitrary position u(t, x) of a string. The real motion
of the string from time tI to time t2 minimizes E among
the totality of all possible positions which coincide with the
real motion at times t, I. t2 .

Since E is a function of u, we denote it by E(u) . For all v(t, x) satis-
fying

v(t1, x) = v(12, x) = 0, x E [0, L],

the position u(t, x) of the real motion of a string must satisfy

d E(u+Ev)=0.
dE E -0

Here E(u) is given by

E(u)= It { purµ l+uX2+µ-fu}dtdx.
0 2
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Therefore, we get

d E(u+Ev)
dE E=o

ft,
L

1/2

f {pu, +EVt) 2 -µ(l+(ux+EVX) 2f

+µ- f(u+EV)}dtdxr 1L

{putvt-µ(1+ux2)-1/2uxvx- fv} dtdx.
JOO

Using the partial integral formula, we find that it is equal toJL{[]::::J12}
dx

t, r x=L L
U(l + u 2112 u vJ - J µd ((1 + ux

-1/2 u) v dx dt/ I x x
t, l x x=0 0 W X

Lft,

fvdtdx
, 0

2 L ((l+UX2)-1/2UX)_ {-putt+µdxr,

0

ft.

rt/2
- µ{ (l + ux(t, L)

2)
ux(t, L)v(t, L)

111

-f}vdtdx

\ 1/2

- (i + ux(t, 0)2) ux(t, 0)v(t, 0) } dt.

Therefore, the last equation should vanish for all v satisfying v(t1, x) =
v(12, x) = 0, x E [0, L]. Taking first v in such a way that the closure of
{(t, x); v(t, x) A 0} is contained in the set (t1, t2) x (0, L), we get the
equation

p utr - µ
dx

((1 +ux2)-1/z ux) + f = 0 on (t1 , 12) x (0, L). (3.6)

Next taking v such that v(t1, X) = v(t2, x) = 0, x E [0, L], we get

fl2
{ (1 + u(t, L)2) u(t, L)v(t, L) (3.7)

,

/ 1/2

- (1 + ux(1, 0)2) ux(t, 0)v(1, 0) } dt = 0.

Hence, we get
(i) The endpoints of a string being not fixed, there are no restrictions of u
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and v, so we have

p urr - µ dx ((1 + U.,2)-1/2 U.) + I = 0, R x (0, L), (3.8)
u,r(t,L)=uX(t,0)=0, tER.

(ii) When the endpoints are fixed, v(t, L) = v(t, 0) = 0, Then in this
case, (3.7) holds always. Therefore,

p urr - µ
d ((1

+ uXz)-1/z uX)dx +I=O, Rx(O,L),
(3.9)

u(t,L)=a,u(t,0)=p, tER.
Moreover, we need the initial condition at t = to in order to determine

the motion of a string:

J u(to, x) = uo(x),
(3.10)

1 ur(to,x)=u,(x), xE[0,L].
Summing up the above, we have

(3.11) R SUME. (I) To determine the motion of a string under an external
force acting vertically the x-axis, for all times t 1 , t2 , we may search for the
minimizer of the function E(u) of u defined by

p ur2+uX2+-fuIdtdx.E(u)
11,12, 1JJJJ

(II) The equation of the motion of a string is the following nonlinear wave
equation on R x (0, L) given by

dpurr-µ
ux

dx 2
+f=0

l + uX

or

purr - µ uXX(1 +
uX2)-3/2

+ I = 0.

In order to determine the motion, we may solve this equation under the Initial
condition at time t = to :

u(to, x) = uo(x), ur(to, x) = u1(x), x E [0, L],

and the boundary condition at both the end points x = 0, L :

uX(t,L)=uX(t,0)=0 or u(t,L)=a,u(t,0)=i.
REMARK. If we take as the function E,

l
E(u):=J f

`
pur2- luX2- fudtdx,

r, l 11

then we derive the wave equation

puu-0UXX+f=0.
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I

FIGURE 1.6

33. Equation of equilibrium states of membranes. Assume first that a
membrane is at a stationary state under no external force and is put on
a domain i2 c R2 . Then when an external force with strength f(x) at
x = (x1, x2) E Q acts vertically the xy-plane R2 , we shall find the equations
of equilibrium state and a vibrating motion for the membrane. We sketch
them briefly since they are similar to the material in subsections 3.1 and 3.2.

(3.12) We assume the strength of the membrane is constant u and its
density is also constant p. Then the total energy of the membrane being at
u(x), x E !Z is given by

E(u)=U,+Ur,

where

Ut u{surface area of membrane - Jill)

=/tfa j l+1Du12- 1 }dx,

and

2
19UIDuI2 :_ L (au)2 , dx := dx1 dx2 , Jill := j dx

i-I ax

Ui:=Jfudx.

See Figure 1.6. Therefore ,

E(u)J {/l +IVul2-1}dx+J fudx.
n 111 n

For v a function on it and It + e v a position of a membrane near the one
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u of equilibrium, we get
l

d I E(u+e v)= d
I111

1 }dx (3.13)
de 0 - de

+ f f(u+ev)dx]
n

= µ fA{F (Vu, Vv) + fv} dx,

where F :=(I+ IVul2F1/2 and (Vu, Vv) gx ez Recall the fol-
lowing Stokes' theorem:

STOKES' THEOREM. For continuous functions P, Q on i2 smooth on 12,

j(Pdxi +Qdx2) = f
()dxldx2s

a 1 z

where S2 is the closure of a domain 11.

Applying Stokes' theorem to P := -vF j- , Q := vF ex , we get

aQ aP 2 u av 2 a (F±U-).
8XI ax ax. ax. ax. x.i=I

Thus, we get

d E(u + ev) _
we- I

2j[_.(F.)
+ L I

Here denoting by do the canonical surface measure of aft , by v the inward
unit normal vector at aft, and by a the derivative of u in the direction
V, we get

the second term of the above = - fn vF 8v d a.

Therefore, we obtain

2

j[_P(F)+f]vdx_ fovFBvdo=O. (3.14)

Thus,
(i) if the membrane is vibrating freely, then v may be taken arbitrarily,

and so
2

f in f2,µex; axti-I
au
8v

= 0 on aft.

(3.15)
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(ii) If the boundary of the membrane is fixed, then since v = 0 on Oil,
we get

2

A F 8x, (Fax) = f in n,

u=q' on Oil,

(3.16)

where la is a given boundary value on all. Summing up the above, we have

RgsuME. (I) To determine the position of the equiblium of a membrane
under the external force which acts vertically to the xy-plane R2 , search for
a minimizer of

r

IV`
E(u)=pfa+iVW -1}dx+infu dx.

(II) To do this, we may solve the nonlinear equation

2 8 1 8u
inp r=1 8x, 1 +'2 8x, = f

-1 ax,

under the boundary condition = 0. on 811, or u = , on 011.

REMARK 1. If f = 0, this equation is called the minimal surface equation
or the Euler equation.

REMARK 2. If we take

E(u) := IVu12 - fu} dx,{2f
n

then we get the Poisson equation
2

p E 82 z =f (in i2). (3.17)
,=1 8x,

REMARK 3. The nonlinear equation of a vibrating membrane can be
obtained in a similar way and is of the form

2 8 1 8upurr - p - + f = 0 (in 0),«18x. 2 8x

and the linear wave equation is

pull-AE 82u +f =0 in 12.
2

-1 8x,

3.4. Closed geodesics on the standard spheres.Next we shall consider a
more geometric problem. A closed smooth curve in R3 whose period is 2n
is written of the form

41(x) = (01(x), 02(x), 43(x)) E R3, X E [0, 2n].

Here periodicity of period 2a means 41(x + 2n) = ¢(x) , i.e., 0,(x + 2a) _
0,(x), i = 1, 2, 3. Let us consider the following problem:
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PROBLEM. Among such curves, which are the critical points of the energy
given by

E(0):= 2of2x dx?
dx (3.18)

To answer this question we take a deformation of such a curve 0, 0e (x) =
(0(.1(x), 0,,2(x), 0E,3(x)), X E [0, 2n], where 00 = 0 and 0e (x+2ir) =
0e(x), x E [0, 2;r]. Then

d
le_0

1 f2x d I
3

d,0e ,(x))2- dx
i_1 dxdE 2 0 y e-

2x 3 d d0E ;(x) d0l(x) dxL E 7, " =o dx dx

e

-
2x 3

(L0.j(x)) d2'(x) dx
dx2

3 d d0t(X) x=2xr E 1(x)udEe0 dx Ix_0

Since both 01(x) and 0e ,(x) are periodic of period 2ir, the first term of
the final expression above vanishes. Moreover, for

d
dE Ie=oOE(x) = (dd

E_
E.1(x), we

d
I0E'2(x) A i

E=00E'3(x)) ,

since is an arbitrary deformation of 0, we may take for -00",1(x),
an arbitrary smooth periodic function. Therefore, that the above vanishes
implies

2

dx2`(x)=0, i=1,2,3.
Thus, we get 0.(x) = B. x + Al , i = 1, 2, 3, where A. , B. are constants.
But periodicity yields B. = 0; thus, we obtain 0,(x) = A., x E [0, 27r], i.e.,
we obtain only trivial solutions in this case.

On the other hand, we add to smooth curves 0 of period 2n , the following
constraint condition: all curves 0 should lie on the unit sphere

S2 := {(Y1,Y2,Y3) E B3;Y1 +YZ+y; = 1}.

We consider the similar problem that among such curves which are the critical
points of E.

In the same way as before, calculating Ie=0E(0e) = 0, after taking a
deformation 0,(X), x E [0, 2n], we get

Jo2x 3 (L04).ix) d20; Zx) dx = 0.
dx
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Here we must take account of the constraint condition: 0f (x) E S2, x E
[0, 2x].

For this, we consider the tangent space of S2 at y E S2 , which is the
plane perpendicular to the vector y, i.e.,

TyS2 := (V E R3; (V, y) = 0), (3.19)

where (,) is the standard inner product of R3 . Then each vector V E R3
can be decomposed into

V = (V, y)y + (V - (V, y)y), (3.20)

and the second term belongs to T,,S2 .

Now the constraint condition that ¢f (x) E S2 for each x implies that
(4 (x), (x)) = 1. Differentiate it at e = 0. Since ¢0(x) = O(x)

(eO' ow) = 0, i.e.,
dE

j,"0,(x) E T(X)S2.

At each y = O(X), d 1,00, (x) E Tm(X)S2 can be taken to be any element in
Tm(X)S2 ; by (3.19) the TdX)S2-component of the element

d246 = (d20I d2,02 d203

dx2 dx2 ' dx2 ' dx2
must vanish. By (3.20), we get

d2
= Cd2c6(x) , 95(x)> c5(x)

dx2 dx2
which can be rewritten as

(3.21)

d20+(d )0=0, (3.22)
dx dx'

dO
dx

since by differentiating (O(x), O(x)) = 1 at each x E [0, 2n], we get

(d,,(x) , 4(x)) = 0.\ dx / (3.23)

Differentiating (3.23), we get
\ //d2o(2) , Q(x)) + (dcb(x) ,

dO(x) \
= 0. (3.24)\ dx / \ dx dx l

Here due to (3.22), notice that is constant in x . Indeed,

d d4 ld2¢
dx
d¢>

=2\dx2' dx1

-2\ d>0, dx> (bY (3.22))

-2Cdx' dzl = 0 (by (3.23)).
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FIGURE 1.7

So assuming ¢ is nontrivial, we may set

L 2

dx'dx -c c>0.

Then

dx
+(dx'dx>0-Ors 4+c21=o,i=I,2,3

4= 0,(x) = Al cos cx + B1 sin cx, i = 1, 2, 3
e--* .6(x) = cos cx A + sin cx B,

where A := (A1, A2, A3), B := (81, 82, 83) E R3 . Necessary and sufficient
conditions for such a curve O(x), x E (0, 2a], to lie in S2 and to be periodic
in x with period 2a are

((A,A)=(B,B)=1, (A,B)=0, and
(3.25)

Sl c = m, integer.

Thus, such a 4(x) is a great circle of S2 and turns m times when x varies
from 0 to 2a (if m < 0, it turns in the reverse direction). See Figure 1.7.

(3.26) REsuME. Among the set of all smooth periodic curves O(x) =
(¢1(x), ¢2(x), 03(x), x E [0, 2n] of period 2n, all critical points of E given
by

E(q5) = 1
I2: 3

(Ji)2dx.0x
are, under the constraint condition that lies in the unit sphere

S2={(y1,y2,y3);y1
2

+y22 +y3= 1},
solutions of the differential equation

d20+(d d4 -0.
dx `dx' dx
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All such solutions are great circles of S2 turning around m times when x
varies from 0 to 27r.

§4. A guide to the further study of the calculus of variations

Summing up the calculations of §3, we shall give some guidance to the
further study of the calculus of variations and the benefits of this book.

(1) It would be a misunderstanding of the calculus in §3 if someone were
to guess that he found the Euler-Lagrange equation, the only remaining thing
might be to solve it, and even if he could not do it, he might find any ap-
proximate solution by using a computer. For such a person, the instability
theorem stated in §2 of Chapter 5 might be a good moral. It says that any
nonconstant harmonic mapping from the unit sphere of dimension higher
than two is unstable. The notion of harmonic mapping is quite natural, and
it is easy to find the Euler-Lagrange equation. Nevertheless, this theorem says
one can only constant mappings even to intend to find an approximate so-
lution unless one comes up with ideas. But to the contrary, Theorem (2.52)
in Chapter 6 claims that any smooth mapping of the unit sphere of lower
dimension than eight into itself can be deformed to a harmonic mapping.
We should continue to elaborate to solve the equation.

(2) Following the next chapter, we shall treat the notion of "a mani-
fold" and in addition, "an infinite dimensional manifold". Our only aim is to
derive and solve the Euler-Lagrange equation. This seems to be a long detour,
however, the reason for using the notion of manifold is this: Once one seizes
the concepts of a manifold, a smooth function on it, its tangent vectors, then
one can see the calculations of §3 in perspective. This is the most important
thing in global differential geometry.

The meaning of the calculations in §3 is this: We took

X = the totality of all possible positions of a string
= the totality of smooth functions on [0, L],

for the problem of determining the equilibrium of a string in subsection 3.1,
and we took X = the totality of smooth periodic mappings of period 2n of
(0, 2n] into S2, for the problem of finding closed geodesics in the unit
sphere in subsection 3.4. We then take a deformation u + Ev or 0E of
U E X , 0 E X , respectively, and we require the condition

d I _ E(u+ev)=0 or d I E(4E)=0,
de E-0 de a=0

for all deformations. At first glance, this might appear rather strange, but it
is quite natural if one introduces the notion of manifold:

Let us consider a manifold X, and a differentiable function E on X.
This guarantees we can consider smooth curves in X, a differentiation of
E, etc. In this way, the meaning of the rather lengthy calculation in §3 is
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FIGURE 1.8

clearly like the situation of a surface in 3-dimensional Euclidean space. See
Figure 1.8.

a Take a deformation of 0E of 0, that is, a smooth curve
e l- 0E in X.

a Then consider the tangent vector, say v , of this smooth
curve:

_ dv-
de

Eo
a We see 1E=oE(OE) is the partial derivative of E at
in the direction v

dEe(v) =
d

LoE(4PE)
de

a Therefore, 46 a critical point of E means that all the
derivatives of E at 0 in the directions v vanish, i.e., the
total derivative of E at 0 vanishes:

dEm = 0 e--* dE0(v) = 0 for each v.

Thus, that the first derivative of E at 4 is zero is just that 0 is a critical
point of a function E on X. This enables us to understand the Palais-Smales
condition (C) which is a key to the theory of the calculus of variations.

Even if it is difficult to solve problems of the calculus of variations, it is
very important to imagine a 3-dimensional geometrical figure. The concept
of a manifold in a differential geometry is to guarantee this magic. Of course,
one needs some effort to get such magic.

Exercises
1.1. For a smooth function u on [0, L], we put

J(u) :=
J

L uxD dx (0 < p < oo), E(u) :=1
L

ux2 dx,
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where ux=u(X)=27.
(i) Find the Euler-Lagrange equation corresponding to E.

(ii) Find the Euler-Lagrange equation corresponding to J.
(iii) For 0 < e < oc, find the Euler-Lagrange equation to EE (u) := E(u)+

eJ(u).
1.2. Find a general solution of the following ordinary equation for an un-

known function y = y(x),

d (_
a TX

y
z = f(X)

l

Here a is a positive constant, f (x) is a given function, and y' = PX .

1.3. Let S2 C R2 , be a bounded domain, and let

A=-
aX2+ax2 2)
a2 a

I 2

Then using the method of the separation of variables, solve the following
differential equation

Au=0 on Rxi2,
under the initial condition at t = to,

u(10, x) = uo(x), u,(to, x) = u,(x),

and the boundary condition on 0Q,

u(t,X)=0, (t,x)ERx011.

1.4. Let (x, y) = (x, , x2) E R2 . Then if u = u(x, y), the equation of a
minimal surface is

uYx
I 0.

y ' ` v/l +ux2 + uyz49X 1 +ux2+u 2 a

Show that this is equivalent to the equation

uxx(1 + uy2) - 2uxy ux u,, + uyy(1 + ux2) = 0.

Coffee Break > Classical mechanics
In his epochmaking book Principia mathematica philosophiae naturalis

(1687), I. Newton clarified the motions of planets of the solar system which
obey the following three laws:

The first law the law of inertia,
the second law the law of motion,
the third law the law of action and reaction.

Here we note briefly the second law "the law of motion" and its develop-
ment.
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By the second law, the orbit of a particle of mass m in the space R3 with
a potential field given by a function V(x), x = (x1, x2 , x3) E R3 , traces a
curve x = x(t) = (x1(1), x2(t), x3(t)) which obeys the equation

m i + grad V(x) = 0. (1)

Here we denote the first and second derivatives of x with respect to time t
by f = ( ) and z = (e?# , a? , a) By definition,

aV aV aVgrad V(x) = aI
, ax2 ' 19x3 '

so (1) can be written as

d(macj)+X -0, i=1,2,3. (1')

Moreover, putting F := -grad V(x), called a field of conservation potential,
(1) is also written as

F=mx, (1")

which is the famous formula in classical physics.
Euler and Lagrange reformulated this into the following form (which is

the origin of the method of variations).
Consider a function on R3 x R3 , called a Lagrange function, given by

L(x, i) := Z 11X112 - V(x), (x, x) E R3 x R3.

Here we regard is = (x1 , x2 , x3) E R3 as an independent variable. Then we
consider the equation of motion of a particle through two points x0 , x1 at
times to, t1 (to < t1) . Euler and Lagrange showed the orbit of motion of a
particle is given by a curve which among the curves a(t) = x(t) satisfying

U(to) = x0, 0(t1) = x1,

minimizes the following function E : for any curve in R3 ,

[t0, t1j 9 t - Q(t) = (01(t), 02(t), a3(t)) E R3,

we define

E(o) := L(a(t), o(t))dt.
10,

(3)

Indeed, the orbit of the motion, a = a(t) satisfies the condition that for all
R3-valued functions h(t) = (h1(t), h2(t), h3(t)) E R3 on [t0, t1j satisfying
h(t0)=h(11)=0,

d
E(o + eh) = 0. (4)

de f=0
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Using the partial integral formula, we get

d
I _ E(o + Eh) = d I L(o(t) + eh(t), o(t) + eh(t)) dt

dE f_0 I0 dE c=0

3Y: BLh,+BLh1

=,to {8x,. - dt8x,.}hidt+ az

h

h = (hI, h2, h3) is any smooth function with h(t0) = h(t1) = 0.
Therefore, the equation which the curve o(t) = x(t) satisfying (4) should
obey is

8L d OL
x; dt 8z; 0, i = 1, 2, 3, (5)

8

which is called the Euler-Lagrange equation of motion. Moreover, since the
function L is given by (2),

8L 8L 8V_ M- x '
= 1, 2, 3,x 8xj xj

which are substituted into (5), and (1) is obtained.
As above, Euler and Lagrange reconstructed Newton's motion equation

through the method of variations.
After them, W.R. Hamilton called p := m Y k, the momentum, and consid-

ered the function H on R3 x R3 (called the Hamilton function)

H(x, p) := 2m IIPII2+ V(x), (x, P) = (XI , x2 , x3 , pI , p2 , p3) E R3 x R3,
(6)

and the equation for a curve (x(t),p(t))=(xI(t),x2(t),x3(t),p1(t),p2(t),p3(t))
in R3 x R3 in time t,

(7)d =--, i=1,2,3,
i

which is called Hamilton's canonical equation. The first term of (6), and
the second term of (6) are called the kinetic energy, the potential energy,
respectively. Since the function H is given by (6),

OH _ p OH 8V
: 2 3= 1

8p; m ' 8 x; 8x; ' , , ,
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which is substituted into (7), then (1) is obtained. Therefore, Newton's
equation of motion can be obtained through Hamilton's canonical equation
corresponding to Hamilton's function on R3 x R3 .

The theory for studying the Euler-Lagrange motion equation (5) is called
analytical dynamics. The theory of Hamilton's canonical equation can be
formulated into a geometry on the cotangent bundle T* M of a manifold
M, which is one of most important theories of differential geometry and has
been developed greatly. This beautiful theory is called classical mechanics.
We recommend for the mathematical theory of classical mechanics, a famous
book by V. I. Arnold, Mathematical methods of classical mechanics, Grad-
uate Texts in Math., vol. 60, Springer-Verlag, Berlin and New York, 1978.
Classical mechanics is the foundation of both mathematics and physics and
is a treasureland of unsolved problems.

In 1744, in Berlin, L. Euler while 37 years old, wrote the first book in
history about methods of variation. He moved to Petersburg, in Russia, at
the age of 59. He lost his eyesight, but remained active mathematically until
his death at the age of 76. He is called a father of Russian Mathematics.



CHAPTER 2

Manifolds

The notion of differentiation initiated by Newton, Leibnitz, Euler, and
Lagrange needed to be extended to differentiation on an infinite dimensional
space which goes beyond ordinary differentiation or the partial derivative
with respect to n variables. We start to lay the foundation to carry this out.
To do this, we shall need the notion of a manifold.

From the partial derivatives of n variables, one got naturally the notion of
an n-dimensional manifold, which gave a foundation for Einstein's general
relativity and for Riemannian geometry. But it was not sufficient to deal in
earnest with the calculus of variations. An infinite dimensional manifold was
necessary. From the late 1950's to the mid 1960's, this theory was established.
We shall explain it in detail.

§1. Continuity, differentiation, and integration

We start with continuity and differentiation. We shall extend these notions
given in the first undergraduate course, to a Banach space. For readers not
familiar with Banach spaces, not much is lost if it is regarded as the calculus
on the n-dimensional Euclidean space R" .

1.1. Continuity and Linear Operators.

(1.1) Banach spaces. A Banach space is by definition (E, II II) such that
E is a vector space over R with the following three conditions (i), (ii), (iii)
satisfied:

(i) Addition and scalar multiplication.

X, yEE, A, PER AX+pyEE,
are defined.

(ii) A norm 11 11 on E, i.e.,
(u-a) IIx+YII <_ IIxII+IIYII,x, YEE,
(ii-b) IIAXII=IAIIIxII,AER, xEE,
(u-c) IIxII ? 0, x E E, and equality holds if and only if x = 0, is

given and satisfies the following condition:
(iii) Completeness.

25
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A sequence {xn}' i in E is a Cauchy sequence if Ilxn -xmll ---0 (if n, m -+
oc) . A vector space (E, 11 11) with a norm 11 11 is complete if for any Cauchy
sequence {xn}' , there exists a point p in E such that x" converges to
p, i.e., IIx" - pIl 0 if n - oo . (We denote this simply by x" -» p.) We
assume this condition.

(1.2) A Hilbert space. A Hilbert space is by definition, (H, (, )) such
that

(i) H is a vector space over R,
(ii) an inner product (,) on H, i.e.,

(ii-a) (AX +uy,Z)=2(x,Z)+µ(y,z), A,pER, x, y, ZEH,
(u-b) (x,y)=(y,x), x, yEH,
(ii-c) (X, x) > 0, x E H, equality holds if and only if x = 0, is

given and if we give a norm on H by IIxII (x, x)''2, x E H,
(iii) (H, 11 11) is complete in the sense of (1.1).

EXAMPLE 1. Let H = It". We define the usual inner product on H by
n

(x,y)=F,x;y;, x=(x,,...,xn), y=(yl,...,yn)ER".
i=I

Then (H, ( , )) is an n-dimensional Hilbert space, which is called
n-dimensional Euclidean space.

EXAMPLE 2. (i) Let 0 < p < oc. We denote by E = Lp(R") the set of
all real valued measurable functions f on R" satisfying

Ej00 I/p

Ilfllp :_ (f_
00

I f(x)Ip dx1dxn) < 00.

For f, , f2 E Lp(R°) , we write f = f2 if f, (x) = f2 (x) for almost every
XER", and we set

(Af, + µf2)(x) = Af,(x) + pf2(x), x E M.

Then (E, 11 IIp) is a Banach space. If p = 2,

( f , , f 2 ) := J

00
... f00 f, ( x ) f 2 (x) dxl ... dxn ,l00

gives an inner product (,) on L2(R") , and (L2(R"), (, )) is a Hilbert space.
(ii) Let C°([0, 1]) be the space of all real-valued continuous functions

on the closed interval [0, 1) with the same addition and scalar multiplication
as the above example (i). Then by the following norm 1111., it is a Banach
space:

IIIIl00 := sup{lf(x)I; x E [0, 1]).

In the following, we denote Banach spaces by, E, F, ... , and denote by
the same letter 1111, each norm on E, F, ... .
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FIGURE 2.1

For P E E, r > 0, the open ball centered at p and with radius r is the
set

B,(p) :_ {x E E; IIx - PII < r}.

A subset U of E is called an open set if for each point p in U, we can
take a small number r > 0 such that B,(p) c U. See Figure 2.1.

(1.3) Continuous functions. Let E, F be two Banach spaces and let U
be an open subset of E. An F-valued function f defined on U, f : U -
F, is continuous at p E U if for any sequence {x}1 in U convergent to
p, f(p) (n -. oo). A function that is continuous at each point in
U is said to be continuous on U .

A mapping T : E - F is said to be linear if T satisfies the equation

T(Ax + py) = AT(x) + pT(y), A, P E R, x, y E E.

A mapping T is bounded if there exists a positive constant C > 0 such that

IIT(x)II <- Cllxll for all x E E. (1.4)

(1.5) Any bounded linear mapping is continuous, and conversely any con-
tinuous linear mapping is bounded.

In fact, if a linear mapping T : E - F is bounded, since

T(p)II = IIT(x,, -P)II <- Cllx.-PII - O (n x),
T is continuous. Conversely, assume that a linear mapping T is continuous
at p E E. Then there exists B > 0 such that

IIx - pHI <-B IIT(x - P)II = IIT(x)-T(P)II <- 1.

Then if IIYII !5 B, II T(y)II 5 1. Hence, for all 0 # z E E,

IIT(z)II =
IIIIDT(B

)O <-
,B

B I Z-

Therefore, taking C = , we get the inequality (1.4). 0
(1.6) We denote by L(E, F) the totality of all bounded linear mappings

of E into F. Then L(E, F) becomes a Banach space as follows:
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(i) Addition and scalar multiplication. For T1, T2 E L(E, F) , A, µ E
R,

(AT, + pT2)(x) :_ AT, (x) + 4T2(x) , x E E.

(ii) Norm on L(E, F). For T E L(E, F), we define its norm IITII to
be the infimum of the constants C satisfying (1.4), i.e.,

IITII := sup{IIT(x)II/IIxII; 0 # x E E}.

Then by definition,

IIT(x)II 5 IITII IIxII, X E E.

(iii) Completeness of (L(E, F), 1111). Let { Tn} , be a Cauchy se-
quence in L(E, F) with respect to 1111. Then for each x E E, {T(x)j11
is also Cauchy sequence in F. Since F is complete, there exists y, say
T(x), such that TT(x) - y E F. We need only check such T belongs to
L(E, F) and IITT - TII 0 (see exercise 2.2).

(1.7) Direct product of Banach spaces. For n Banach spaces E1, ... , En,
let

E:=E1 EEl ,... ,xnEEn}.
Define the addition and scalar multiplication on E by,

AX +µy=(Ax1+µy,,... ,Axn+µyn),
for x = (x1,... , xn), y = (y1, ... , yn) E E, A, µ E R, and define the
norm IIxII of x=(x,,...,xn)EE by

n 1/2

IIxII = ( IIxiII2)
,aI

Then (E, 11 11) _ (E1 x . . . x En , II II) becomes a Banach space, called a direct
product Banach space.

(1.8) n-multilinear mappings. A mapping T of a direct product Banach
space E1 x x E. into a Banach space F is called n-multilinear if for each
number i = 1, ... , n,

T(x1,...,Axi+µx',...,xn)

for A, µ E R, xi, x' E Ei. We denote by L(E1, ... , En ; F), the totality
of all bounded n-multilinear mappings of E1 x x E. into F. Here an
n-multilinear mapping T : E1 x x E. F is bounded if there exists a
positive constant C such that

IIT(x, , ... , x.)11 5 C IIx1I1... IIxII , xi E E;.

The space L(E1, ... , E,,; F) becomes a Banach space as follows. The
boundedness of T is equivalent to its continuity in the same way as (1.5).
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The addition and scalar multiplication of L(E,, ... , E,.; F) is clearly de-
fined. The norm is defined as follows. For T E L(E,, ... , E,,; F), define
II TII as the infimum of the above constants C, i.e.,

IITII:=sup{IIT(xl, 1 <i<n}.

(1.9) In particular, if El = = E. = E, we denote L(E1 , , E.; F)
= L"(E; F). There exists a canonical isomorphism (as Banach spaces):

L(E1, E2; F) a5 L(E1, L(E2, F)).

In fact, the isomorphism is given as follows: For T E L(E,, E2 ; F),
define a linear mapping of EI into L(E2, F), El 9 xl T(xl) E L(E2, F),
by

T(xl)(x2) := T(xl, x2), x2 E E2.

Repeating the above inductively, we get

L(El,...,E";F)^='L(El,...,Ej;L(E,.I,...,E";F)), (1.10)

in particular,
Ln+I(E; F) 25 L(E; L"(E; F)). (1.10)

1.2. Differentiation. Here we consider a mapping f : U -- F, not linear
in general, defined on an open subset U of E. f is differentiable at p E U
if there exists a bounded linear mapping T E L(E, F) such that

IIf(p + x) - f (p) - T(x)II/IIxII -y 0 as x - . 0. (1.11)

Note that since U is open in E, if x is close to 0, then p + x E U and
f(p + x) is well defined.

This T E L(E, F) is uniquely determined as we shall show below, thus,
T is called a differential of fat p, denoted by dfo , f.o , f'(p) .

In fact, assume that there is another T' E L(E, F), then

T(x) - T'(x) _ - { f(p + x) - f (p) - T(x)}
+ MP (p + x) - f (P) - T'(x)} ,

and using (1.11) we get

II T(x) - T'(x)II/IIxII -, 0, as x -. 0. (1.11')

Then for arbitrarily given 0 # z E E, we shall show IIT(z) - 7(z)II = 0.
For a sufficiently small e > 0, we get p + e z E U , and so substituting x = e z
into (1.11') we get

IIT(ez) - 0, as a -- 0.

On the other hand, since T, T' are linear, the left hand side coincides
with IIT(z) - T'(z)II/Ilzll which is independent of c. Therefore, we obtain
II T(z) - T' (z) II = 0, which is the desired result. See Figure 2.2, next page. 0



30 2. MANIFOLDS

FIGURE 2.2

(1.12) If f : U --- F is differentiable at p , then its differential dfo E
L(E, F) is defined by setting

dfp(x) = lim { f(p + tx) - f(p)} for x E E.

Here the right-hand side is a limit in the Banach space F, and we denote it
also by

d = f(P +
Ix),

ro
which we call the x-direction derivative of f at p .

Conversely, we have the following

PROPOSITION (ZOrn [Z]). Assume that f : U --. F satisfies the condition
that for each p E U,

dff(x):= dtl f(p+tx), xEE
r 0

exists and dfo E L(E, F), i.e., E 3 x - dfo(x) E F is bounded linear.
Moreover, we assume E 3 p - dfo E L(E, F) is continuous. Then f is
differentiable on U and dfD is a differential of f at p.

OUTLINE OF PROOF. We need the mean value theorem (1.26) below, which
asserts that taking v E E such that p + tV E U, 0 < t < 1 ,

i

f(p + v) - f(p) =
J

dfo+rv(v) dt.
0

For such p , v , we put
cv(p, v) = f(p + v) - f(p) - dff(v) E F. (1.12)

Then by a proof of the Hahn-Banach theorem below (1.27), there exists a
bounded linear mapping A : F -, R such that

A((O(p, v)) = IIw(p, v)II and IIAII = 1.

Then by (1.12),

Ilw(p, v)II =A((O(p, V))

= A(f(p + v) - f(p)) - A(dff(v))

= j
'a((dfv+rv -dfo)v)dt.
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Together with IIAII = 1 , we get

IIw(p, v)II <- IIvII sup Ildfp+t,, -dfpll
0<1<I

By the assumption that dfp is continuous in P, we have

sup Ildfp+t - dfpll - 0 as Ilvil -. 0.
0<t< I

Together with the above, we get

V-0 IIw(p, v)II/IIvII = 0,

which implies that f is differentiable and its differential at p coincides with
dfp.

The interpretation of the above Zorn's proposition is that a function f
which is partially differentiable in all directions and satisfies the additional
continuity assumptions about the partial differentials, is in fact, differentiable.

(1.13) If f is differentiable at p , then f is continuous at p .

Indeed, if x - 0, the assertion follows from the inequality

IIf(p + x) - f(p)II <- IIT(x)II + IIf(p + x) - f(p) - T(x)II - 0.
The following facts can be seen by definition, their proofs are left to the

readers.
(1.14) If f is differentiable at p, and p E V C U open subsets, then

the restriction g = fIv , of f to V is differentiable at p and dfp = dgp .
(1.15) If f : U -+ F is constant, then f is differentiable at any p and

fp = 0.
(1.16) If T : E - F is a bounded linear mapping, p E U c E, an open

set, and f = TL the restriction to U, then f is differentiable at p and
dfp=T.

(1.17) If f, g: U F are differentiable at p E U, and A, U E R,
then Af + pg is also differentiable at p and d(Af + pg)p = Adf, + pdgp .

(1.18) Differentiation law of the composition. Let E, F, G be three
Banach spaces, let U C E, V c F be open sets, let f: U-, F, g: V G
be mappings differentiable at p E U, f (P) E V, respectively, and assume
f(U) c V. Then the composition g o f : U G is differentiable at p and
d(go f)p=dgf(,)odfp

EXAMPLE 3. A mapping f : R"' -. R" can be expressed using the coor-
dinates of R"' , R" as

f(X)=VI (X),...,fn (x)), X=r (XI,...,X,,,)E UCR"',
where t is the transposed matrix. Then the differentiation dfp : R" R"
of f at p E U is given by

aaxL(p) ... EL (P) u u1

(dfp)(u) _ u = E R .
Of Of

(P) ... t . ) ((P) um um



32 2. MANIFOLDS

In fact, if we denote by T the (n, m)-matrix on the right-hand side of
the above, then the ith component of f(p + u) - f(p) - T(u) coincides with

l(p+u)-f,(p)-Eef (p)uj.
j-1 j

Therefore, if each j is differentiable at p, then

IIf(p + u) - f(p) - T(u)II/IIuII -. 0 as u - 0. 0

(1.19) CI function. If f : U - F is differentiable everywhere on U,
then df : p -, dfp is an L(E, F)-valued function on U. We say f is C'
if df : U - L(E, F) is continuous.

Moreover, if df is differentiable at p E U, the differentiation of U 3
x '- dfx E L(E, F) at p is d(df)p E L(E, L(E, F)) and T = d(df)p
satisfies

II (df) +X - dfp - T(x)II/Ilxll -0 as x - 0.

We write also d 2fp for d (df)p and call it second derivative. Using (1.9)
and the identification L(E, L(E, F)) L2(E; F), we find that d2f is a
bilinear mapping of E x E into F and moreover,

(1.20) d 2 fp is symmetric, i.e.,

2 2fdfp(x, y) = dp(Y, x), x, y E E.

This implies that twice differentiation of f at p, first in the x-direction
and then in the y-direction coincides with the twice differentiation first, in
the y-direction and then in the x-direction. This can be proved using the
mean value theorem in subsection 1.3, and it is left for the reader (see also
(1.21) below).

If d 2 f: U 3 p i d 2 fp is continuous, we say f is C2.

(1.21) C°° functions. Define inductively, if dkf : U - Lk(E; F) is
defined and differentiable at p, then

dk+Ifp
= d(dkf)p E L(E; Lk(E; F)) = Lk+I (E; F)

is called (k + I )th differentiation.
dk+I fp : E x xE

- F.
k+I

is a (k + 1)-tuple linear mapping and is symmetric, i.e., for all permutations
a of {1,...,k+l},

dk+I fp(Xa(I), ... , Xa(k+I)) =
dk+1fp(XI , ... , xk+I), X. E E.

If dk+I f : U 3 p .-+ dk+Ifp ELk+I (E; F) is continuous, then f is said to
be Ck+I . If all k > 1, f is Ck on U, then f is said to be C°° on U.
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If f is Ck, then for all x1 , ... , xk E E, it follows that
k

dk fo(xl , ... , xk) = all
a

.
atk I(t,

11 X I +...+I kXk)

which is very useful for calculating dkfc .

For its proof, for instance for k = 2 with x1, x2 E E, we get

d2fp(x, , x2) = dd{dill-o(P + txl)
J

(x2)

8t21 r2=o{a
1`r,=of(P+t2x2+t1x1){

10 10

a2

= ar er f(P + 11x1 + 12x2).
1 2 (t, . t')=(0. 0)

For more details of the differential calculus of Banach spaces, see E. Hille
and R.S. Phillips [H.P] and S. Lang [L2].

(1.22) Curves. If E = R (1-dimensional Euclidean space), then f : U C
E -. F is a carve in F. Any linear mapping T : R - F is given uniquely by
the value T(l) at 1 E R, since T(A) = A T(1) , A E R. So for a differentiable
mapping f : U C R - F, define a derivative coefficient ((p) by ((p) =
dfo(1) . Note that dfp(x) = x f (1) , x E R. If f is differentiable everywhere
on U, then we get a mapping f : U - F. If f is C2, then (f )' : U F
is defined. If f is Ck , then f(k) :_ is defined.

(1.23) If f : U C R - F and g : F - G are differentiable, then

(gof)'(p) =dgf(p)°1'(P), P E U.

1.3. Integration and the mean value theorem. Let I = [a, b] be a closed
interval in R, and let F be a Banach space. For an F-valued function on
1, the Riemann integral of f is defined as follows:

For any division A : a = to < tl < ... < t. = b, take any point 4, E
[ti-1, t;] and consider the Riemann sum E

1
f(4,)(t; - t;_1) E F. Define

the width of the division A by b(A) := ti-1). If the limit in
F with respect to the norm 11 11

n

lim

exists, then we denote the limit by fa f(t)dt E F, called the (Riemann)
integral of f . The following proposition is the same as in the case of F = R,
and its proof is left for the reader.

PROPOSITION (1.24). For any continuous function f : I -+ F, the integral
fb f(t)dt is defined.
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FIGURE 2.3

For a continuous function f : I -- F , if there exists a continuous function
g : I F such that

g (t) = f(t), t E (a, b),

then we call g an indefinite integral. The following proposition is also the
same as in the case of F = R. We omit the proof.

PROPOSITION (1.25). For a continuous function f : I -4 F, define g(x)
f; f(t) dt, x E I. Then g is an indefinite integral of f .

THE MEAN VALUE THEOREM (1.26). Let E, F be Banach spaces, let p E
U c E be an open set, and let v E E be such that p+ t v E U, 0< t< 1
and put x = p + v . Let f : U ---F be a Ck mapping, k > 1. Then

I

f(x) - f(p) =1 dfp+, (v) dt.
0

See Figure 2.3.

PROOF. We use the following Hahn-Banach theorem.

LEMMA (1.27) (Hahn-Banach). Assume that y E F satifies 2(y) = 0 for
all bounded linear mappings A : F R. Then y = 0.

SUBLEMMA (1.27) (Hahn-Banach). Let M c F be any subspace, let A :
M R be any bounded linear mapping, and let xo E F satisfy x0 0 M.
Then A can be extended to the subspace M + [xo] without changing its norm.
Herefor yEF,set M+[y]={x+ay; xEM, aER}.

PROOF. We shall determine a:= 2(x0) at the end and put A(x + a x0)
A(x) + act, x E M, a E R. We may assume 112II = I. We should determine
a satisfying the claim with

I2(x) + a aI 5 IIx + a x011 for each x E M and a # 0.

Dividing both sides of the above by a and rewiting the equation, we get

-2(x1) -11x1 + x011 <- a <_ -2(x2) + 11x2 + x011, x1, x2 E M.

But by the assumption that 112II = I , it is true that the left-hand side of the
above is smaller than the right-hand side because

2(x2) - 2(x1) _ 2(x2 - x1) 5 IIx2 - x111 <_ IIx2 + x0II + 11x1 + x011
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Therefore, we can choose a satisfying the desired inequality. We obtain
Sublemma (1.27').

PROOF OF (1.27). For y 54 0, it suffices to show that there exists a
bounded linear mapping A : F - R satisfying A(y) = IIYII and IIAII = I
First, we can define a linear mapping A : [y] -- R with IIAII = I by A(ay) =
a IIYII Let X be the totality of all subspaces X of F including [y] such
that A can be extended to X with norm 1. We define a partial order > on
I by X> Y if X D Y for X, Y E X. Then for any subset (X,, i E Al
of X satisfying X, > X, or Xj > Xt for any i # j E A, A can be extended
to a subspace U,EA Xi of F with norm 1. Therefore, by Zorn's lemma there
exists a maximal element M in X with respect to the partial order >. But
M is F itself. Because if there exists an x0 E F such that x0 f M, then
due to Sublemma (1.27') and the definition of M, A can be extended to
M + [x0] with norm I which contradicts the maximality of M. We obtain
Lemma (1.27).

PROOF OF THEOREM (1.26). For any bounded linear mapping h : F , R,
we have

A(f(x) - f(p) - f I df+w(v) dt)
0

I

_ (Ao.f)(x) - (Aof)(p) -f d(Ao f)p+,,,(v)dl.
0

Because d (A o f) = A o df for any bounded linear mapping A : F - R,
and any Ck mapping f : U - F, due to (1.16) and (1.18). For a real-
valued function g(t) := (). o f)(p + tv) on [0, 11, g'(t) = d(2 o f) p+,,,(v)
and g(1) - g(O) = fp g'(1) dt. Therefore, the above equation should vanish.
Hence, by Lemma (1.27), we get the mean value theorem (1.26). O

By repeated application of the mean value theorem (1.26), we get the
following Taylor's theorem.

TAYLOR'S THEOREM (1.28). Under the same hypotheses as the mean value
theorem (1.26),

d kfp+tv(v, ---'V)
k times

is continuous in t, and the following holds

AX) = f(p) + I dfp(v) + ... +
(k

11)!dk-I fp(v , ... , v)

'Idk lp+t(7J, ... v)dt.+JI (I
(k

-
-
t)k

I). J
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In particular, if we put M := supo<,<1 IldkfP+,vII , then

01(x) - f(p) - 1dff(v) - ...
k

- (k 1 1)!dk-IfP(v, ... , v)II < Mlkv II
(1.29)

REMARK. Let P E V C U, where V is an open convex set, i.e., if x, y E
V then 1X+(1 - t)y E V. for each t with 0<1<- 1. For m < k , let

Rm(x) .
o (m - 1)!

d fp+,(X-P)dt.

Then Rm(x) E Ln(E; F) and V 3 x -+ Rm(x) E L'"(E; F) is a C"-k

mapping called the remainder term.

1.4. The inverse function theorem. Let E, F be Banach spaces, and let
U C E, V C F, be open subsets, respectively. A mapping f: U -+ V is
called a Ck-dlffeomorphism (k > 1) if f : U -' V is one-to-one and onto,
andboth f:U-.V and f-':V-'U are Ck.

THE INVERSE FUNCTION THEOREM (1.30). Let E, F be Banach spaces,
and let U C E, V C F, be open subsets, respectively. Let f : U -' V be a
Ck mapping. Assume that at p E U, dfP : E --+ F is a linear isomorphism.
i.e. , dfP : E -. F is a bounded linear mapping, and bijective, and the inverse

(dfP)-' : F - E is bounded. Then there exists an open set W such that P E
W C U and f(W) is an open subset containing f(p), and f : W - f(W)
is a Ck-di eomorphism.

PROOF. Since dfP : E - F is a linear isomorphism, it is also a C°° dif-
feomorphism by (1.16). Therefore, without loss of generality we may assume
E = F, dfP = 1, the identity mapping, and moreover, p = 0 and f (p) = 0.

Define g : U -i E by g(x) := x - f (x) , x E U. Then d gP = 0. By the
continuity of g, there exists r > 0 such that

Ilxll < 2r implies IIdgXII < 2

Then by the mean value theorem (1.26), we get that

Ilxll < 2r implies IIg(x)11 <- 211x11

Therefore, if we denote by B,(q) := {x E E; Ilx - qll <- r} the closed ball
centered at p with radius r, then g(T4,(0)) C'N,12(0) .

Here we note that any closed ball B,(q) is a closed subset in E, and we
can define a distance or metric d on '9,(q) by

d (x , y) := Ilx - yII, X, Y E ff,(q)
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Then (B,(q), d) is a complete metric space.
REMARK. In general, (X, d) is a metric space if

(i) d(x, y) = d(y, x), x, y E X,
(ii) d(x, y)+d(y, z) > d(x, z), x, y, z E X,
(iii) d(x, y) > 0 and the equality holds if and only if x = y.

A sequence {x,,}' I is a Cauchy sequence if d(x,,, x,") - 0 for n, m -
oc. A metric space (X, d) is called complete if every Cauchy sequence is
convergent.

Now we shall show:

For each y E B,,2(0), there is a unique x E B,(0) such that f(x) = y.
(1.31)

In fact, let gy(z) := y + z - f(z). Then if IlyII S and IIzI) <- r, then
Ilgy(z)U < r. Therefore, gy is a mapping of the complete metric space
B,(0) into itself and satisfies

Ilgy(zI) - gy(z2)ll = Ilg(z1) - g(z2)II

f
= II J

' dgz,+I(z,-z_) (zI - z2) dtll (by (1.26))
0

S 2112, - z2II , zI, z, E B,(0)

Therefore, by the following fixed point theorem (1.32) for a contraction map-
ping, gy has a unique fixed point x in B,(0): gy(x) = x. Note that

gy(x) = y + x - f(x) = x if y = f(x), x E B,(0)
which yields (1.31). Thus, we obtain the inverse mapping of f :

B,12(0) - B,(0).

THEOREM (1.32) (Fixed point theorem for a contraction mapping). Let
(X, d) be a complete metric space, let f : X - X be a contraction mapping,
i.e., there exists a constant K with 0 < K < I such that

d(f(x), f(y)) S Kd(x, y), x, yEX.
Then there exists a unique x0 E X such that f (xo) = x0. (We call such a
point x0, a fixed point.)

PROOF. Uniqueness. Let x, , x2 be two fixed points of f . Then

d(xl,x2)=d(f(x1),f(x2))<Kd(x,,x2);
thus, we get

0<(1 -K)d(x,,X2):5 0. . d(x,,x2)=0, xI =x2.

Existence. For X E X , we shall show that { f"(x) := f(. (f(x)) . ))3c, is
a Cauchy sequence in X. In fact,

d(lt+,(x), f (x)) S Kd(l1(x), f'-'(x)) <- ... K' d(f(x), x).
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Thus, for m>n>N,
d( f"2(x), f"(x)) <- d(r(x), r-'(x))+d(f"-'(x),

fm-2(x))+...

+d(f"+'(x), f (x))
<

(K"'-I

x)
K" KN<

1
Kd (f(x), x):5 1 - Kd(f(x), x) _. 0,

asN

which implies { f"(x)}' , is a Cauchy sequence. But since J, d) is com-
plete, it converges, say its limit is x0 := lim"_. f"(x) . Since f is continu-
ous,

f(x(,) = f ("lim r(x)) = Rlirm f
+I(x) = xo.-00 00

We get (1.32).
CONTINUATION OF THE PROOF OF (1.30). The inverse mapping c of f

satisfies
II9(Y1) - 9p(Y2)II <- 211y, - y211, Y1, Y2 E 8,12(0) (1.33)

and is continuous. Because for x1 = Oy') , x2 = 9(y2), f(xI) = y, , and
f (x2) = Y2, and since g(x) = x - f(x),

11x, - x211= 11f(XI) - f(x2) + 8(x,) - 8(x2)11
<- IIf(x,) - f(x2)II + Ilg(x,) - 8(x2)$1

<- Ilf(x,) - f(x2)II + 211x' - X2 11

which yields that

?IIx' -x211 <- IIf(x,)-f(x2)II
Thus, we get (1.33).

(1.34) q is differentiable on B,12 (0) . Because if y1 = f (xI)
Y2 = f(x2), Y, , Y2 E B,12(0), x' , x2 E b,(0) , we get

II9(Y,)-402)-dfx2-'(,' -Y2)II
= 11X, -x2

-dfx2-I(f(x,)-f(x2))II

= Ildfx2-'IIIIf(x,)-f(x2)-dfx2(x1-x2)II

Since 11x, - x211 S 21IY, - y211 and f is differentiable, we get

119P(Y,) - c(y2) - dlx2-' (Y, - Y2)II/IIY1 - y211

< 211dfx2-'IIIIf(x,)- f(x2)-dfx2(x, -x2)11/11x, -x211 0,

if 11y, - Y211 -. 0 since f is differentiable. This implies that iD is differen-
tiable and day = df«Y) -I , y E 8,/2(0) . Since ip , df , df-' are continuous,
do is also continuous and then 'p is C' . Repeating the above arguments,
we see , is Ck . 0
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I

vector field and an integral curve

FIGURE 2.4

1.5. Ordinary differentiable equations. Let F be a Banach space, and let
U c F be an open set. We call a Ck mapping X : U F, a Ck-vector field
on U. For an open interval I c R, a C' -mapping a : 1 - U is a solution
curve (integral curve) of X if

ap(t) = X(O(t)), I E I.

If 0 E I, we call a(O) the initial condition of the solution a . It is well
known that

(1.35) For a continuous curve a : I U and a continuous vector field
X : U -- F, a necessary and sufficient condition for a to be an integral
curve of X With 6(0) = x0 E U is that

i
a(t) = x0 +

J
X(a(s)) ds, t E I.

0

(1.36) Uniqueness and existence of solution. Let F be a Banach space,
let U c F be an open set, let X be a Ck vector field on U (k > 1), and
let p0 E U. Then there exist an open subset V with p0 E V c U and a Ck
mapping Sr : (-e, e) x V - F such that

(i) f o r p E V, putting Oa(t) := g(t, p) f o r t E (-e , e) , then ao is a
solution curve of X at the initial condition p.

(ii) The solution curve a : (a, b) -. F of X of an arbitrary initial
condition p, satisfies

a(t) = ap(t), -E < t < E.

See Figure 2.4.

§2. Ck-manifolds

In this section, we introduce Ck-manifolds, Ck-mappings, tangent spaces,
differentials of Ck-mappings, vector bundles, vector fields, etc. These notions
are basic and are needed for later uses. We shall give several examples of
finite dimensional manifolds in §3 and of infinite dimensional manifolds in
§4.
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2.1. Definition of Ck-manifold. A (connected) Hausdorff topological
space M is called a manifold modelled to a Banach space E if for each
p E M there exist an open neighborhood U. of p and an into homeomor-
phism a : U. -i E such that a(UQ) c E. A pair (UQ , a) is a coordinate
neighborhood in M. When a collection {(U0, 0); a E A} satisfies the fol-
lowing two conditions (i), (ii), then it is called a Ck-coordinate system, and M
is called a Ck-manlfold modelled to a Banach space E, or simply a (Banach)
manifold.

(i) M = UQEA U. ,
and

(ii) for any two coordinate neighborhoods (UQ, , a,), (UQ2 , a2) with
U1nU296 0, the mapping

a20 aI-I:EDal(UQ) nUQ
2

a,(U , nU
2
)CE

is a Ck-diffeomorphism.
In particular, if E=R", then a Ck-manifold modelled to the n-dimensional

Euclidean space R" is called an n-dimensional Ck-manifold.

2.2. Ck-mapping. Let M, N be two Ck-manifolds modelled to Banach
spaces E, F, respectively. A mapping 0 : M -. N is Ck if, denoting by
{(U0, a) ; a E A}, ((V#,,8); fi E B1, Ck-coordinate neighborhood systems
of M, N, respectively, for each x E M, there exist a E A, .8 E B such
that

(i) X E UQ, cb(x) E VV,
(ii) O(UQ) C V'6,

and

(iii) fi o a- : E a(UQ) C F is a Ck-mapping.

(2.1) If M- N is Ck,then fi'o0oa-i:a(UQ.)-9'(VQ,)

is also Ck . Therefore, the above definition is independent of a choice of
a E A, fEB. Because

/j o pf' 000a -' _ co, o $ o 10 o a-1) o
(a' o a-I)-1

is also Ck by the definition of Ck-manifolds and be (iii) above. See Figure
2.5. 0

We denote by Ck (M, N) the totality of Ck-mappings of M into N, and
if N = R, we also denote Ck(M) = Ck(M, R).

2.3. Tangent spaces and differentials of mappings.

(2.2) Tangent spaces. Let p E M, and let I be an open interval of
R containing 0. A curve c : 1 -. M passes through p if c(0) = p. A
curve c through p is Ck at p if for a coordinate neighborhood (UQ , a),
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FIGURE 2.5

a o c : I a(UQ) c E is Ck . Two C"-curves c, , c2 through p are
equivalent if for a coordinate neighborhood (U., a) of p,

(a o cl)'(0) = (a o c2)'(0).

See Figure 2.6. We denote an equivalence class u containing a Ck-curve c
through p, by

u=c(0)= d I _ c(t)dt ,-o

which is called a tangent vector at p. We denote by TM the totality of all
tangent vectors at p.

We can define naturally an addition, a scalar multiplication, and a norm
on TM which is isomorphic to the Banach space E, and TM is a Banach

FIGURE 2.6
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space itself which is called the tangent space of M at p (see also subsection
2.8).

(2.3) Differential of a mapping. Let M, N be Ck-manifolds and let 0 :
M N be a Ck-mapping. For p E M, define a linear mapping dip
TpM T ,,)N as follows: Letting u = c (0) E TpM and c, a Ck-curve
in M through p, 0 o c is a C"-curve in N through 0(p). Then define
d4p(u) := (0 o c)'(0) E TT(p)N. Here note that for two Ck-curves c, , c2

contained in u through p, if (a o c,)'(0) = (a o c2)'(0) , then by (1.23)

(f o4 oc,)'(0)=d(/3o0oa-I)(aoc1)'(0)

= d(f o a-I)(a o c2)'(0)

= (f o 0 0 C2),(0)

which implies that dcp(u) is determined uniquely independent of the choice
of elements ci , c2 in u. This linear mapping d4p : TpM 9 u d4p(u) E
Ta(p) N is called the differential of ¢ at p and is denoted by d cp or O.P .

2.4. Vector bundles and the induced bundles.

(2.4) Vector bundles. For two Ck-manifolds E, M, E is a Ck-vector
bundle over M if

(i) there exists a Ck-mapping, say x, of E onto M, (called the projec-
tion)

(ii) for each p E M, n (p) =: EP (called the fiber over p) has a Banach
space structure, and

(iii) (local triviality) for each point p0 E M, there exist a neighborhood
U in M of po and a Ck -diffeomorphism `I' of U x Epa onto n- I (U) such
that

n(`l'(P, v)) =P, pEU, VEEpo,

and for each p E U, the mapping E,, 9 v - `I'(p, v) E EP gives a linear
isomorphism between two Banach spaces Epo and EP.

(2.5) Bundle mapping. For another Ck vector bundle n' : E' - M'
a Ck-mapping f : E - E' is called to be Ck-bundle mapping if for each
p E M, there is a unique p' E M' such that f (EP) c E'p and f : EP E'p
is a bounded linear mapping. In this case, defining f (p) = p' , a mapping
f : M - M' is induced from f , which is still a Ck-mapping. It is called
the induced mapping from f .
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E f I E'
'il

Iii,

M M'

(2.6) Induced bundle. Given a C'-vector bundle n : E M and a C'-
mapping ¢ : M' -. M from another Ck-manifold M', we can construct the
following vector bundle n' : E' M'

E' := {(PI

, v) E M' x E; 4(p') = n(v)}, n'((P', v)) := p'.

That is, the fiber of this bundle over p' E M' is E4(,P,) the fiber of E over

¢(p') . We denote E' by 0'E or ¢-IE and call it the induced vector bundle
of E by 0. Its local triviality can be seen by considering that (U) x

Em(1O)
,,, n,-1(¢_1(U)) if U x E4(P0) '= n-I(U) .

0-IE-yE
X, hi
M' M

(2.7) Cross section. For a Ck_vector bundle a : E , M, a Ck-mapping
s : M - E is a Ck-(cross) section if it o s = id; that is, n(s(p)) = P, p E M.
A Ck-section s of the induced bundle - I E of E by 46: M' -' M is by
definition a Ck-mapping s : M' - E satisfying s(p') E E0(P,) , P' E M'.

2.5. Tangent bundle.
(2.8) For a Ck+1-manifold, let T(M) :_ JPE., TpM , and define it

T(M) - M by n(TTM) = p, p E M. Then T(M) is a Ck-manifold, and
a : T(M) -. M is Ck-vector bundle. In fact, for p E M, take a coordinate
(U0 , a), a : U. -. E, and let Aq : Tq E be the linear isomorphism in
(2.2) for each q E U,. We define 'I'Q(q, v) := Aq-I (v) . Then it turns out
that this is a homeomorphism giving the local triviality (iii) of (2.4) 'I' :

UQ x E 9 (q, v) - 'l'o(q, v) E n-1(U.) c T(M) and also giving a local
coordinate of T(M) (see also subsection 2.8). T(M) is called the tangent
bundle of M.

(2.9) Let M, N be C'+'-manifolds, and let 0 : M -. N be a Ck+1-

mapping. Then a mapping do : T(M) T(N), which is denoted also by
is given by dO(v) = d4o(v), v E ToM . Then d¢ is a Ck-bundle

mapping inducing 0: M -. N.
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2.6. Submanifolds and product manifolds.
(2.10) Let D be an open subset of a Ck manifold M, and let {(V, a) ;

a E A } be a coordinate system of M. Then { (UQ n D, a) ; a E A) gives a
coordinate system of D, and D becomes a Ck-manifold called a Ck-open
submanifold of M.

(2.11) For a closed set N of a Ck manifold M, if { (UQ n N , a) ; a E Al
gives a coordinate system of N, i.e., there exist two closed subspaces F, E'
of a Banach space E such that E = F ® E', i.e., E = F + E', and F n E' =
{0} and each a : U. n N -. a(UQ n N) C F is a heomomorphsm and
satisfies the conditions (i), (ii) of subsection 2.1 for N, we call N a Ck-
closed submanifold. Then the inclusion mapping I : N C M is Ck .

(2.12) For two Ck-manifolds M, N, let {(UQ, a); a E Al, {(V,, fl);
P E BI be coordinate systems of M, N, respectively. Then the direct
product M x N:= {(p, q) ; p E M, q E N) with coordinate system given
by {((I x VB, a x fl); (a, 9) E A x B} is a Ck-manifold called the product
manifold of M and N.

2.7. Vector fields and (differential) forms.
(2.13) A Ck-sector field on a Ck+'-manifold M is a Ck-section X,

i.e., a Ck-mapping X : M -. T(M) satisfying 1l o X = id, i.e., X(p) E
TIM, P E M. The value X(p) of X at p is also denoted by XD E TIM.

(2.14) For P E M, let Tp M := L(TM, R), which is a Banach space with
addition, scalar multiplication, and norm given by (1.6). T, *M is called the
cotangent space of M at p. T' (M) := UIEM TP*M, which is also a vector

bundle over M, is called the cotangent bundle. A Ck cross section is called
1-(differential) form.

(2.15) For s > 1 , an integer, we denote by A3 TD M, p E M , the totality
of all s-tuple linear mappings

w: -+R,

satisfying the condition

w(ua(I), ... , U,(,)) = sign(a) w(ul , ... , us), u; E TIM, 1 < i:5 s,

for any permutation a of (I, ... , s} and sign (a) is its sign. Then it is
a closed subspace of a Banach space L5(TM; R). Moreover K T'(M) :_
UPEM K 7o M is a Ck-vector bundle over M. A Ck-cross section is called
a Ck -(differential) form.

(2.16) Let XL , ... , X, be s Ck-vector fields, and let co be a Ck-s-
form. Then p - %(XL(p), ... , XJ(p)) is a Ck-function on M.

(2.17) In general, considering the tensor space T 5M := ®' TIM
®57M, p E M, we get the tensor bundle T''5M whose Ck-section is
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called a Ck-tensor field of type (r, s). An s-form is a tensor field of type
(0, s) satisfying the alternating condition in (2.15).

(2.18) Let ¢ : M - N be a Ck+1-mapping. Then for a Ck-tensor filed
w of type (0, s) on N, we can define the same type Ck-tensor field O'w
on M by

(00w)(ul , ... , u3) w(d¢(ul) , ... , d¢(us)), ul , ... , u3 E TpM.

¢'w is called the pullback of w by .

(2.19) Given a Ck-r-form to and a Ck-s-form n on M, we define a
Ck- (r + s)-form w n n , called exterior product of co and 17, by

(wA,)(XI,...,Xr,Xr+1,...,Xr+s)
:= E(sign a) w(Xa(1) , . . , Xo(r)) n(Xa(r+1) , .. - , Xo(r+s)),

for r+s Ck-vector fields X,, ... , Xr+s on M. Here the sum on the right-
hand side runs over all permutations a of { I, ... , r + s} .

2.8. Vector fields and coordinate neighborhoods. In this subsection, we
give an alternative definition of vector fields using coordinate systems.

First note that a Banach space E is itself a C°°-manifold and that for
each point p E E, the tangent space T,E at p can be identified with E
itself by considering c`(0) = v where a curve c(t) = p + t v through p for
each v E E.

Now we can give an alternative definition of the tangent space TpM at

p E M of a Ck+1-manifold M.

(2.20) Tangent space. Let M be a Ck+1_manifold and take a point p E
M. For U, v E E, u, and v are called to be equivalent if we can choose
coordinate neighborhoods (U., a), (Up, fi) of p E M with

d(.8 oa-I)uv,
where d(fl o a-I) is a differential in the sense of subsection 1.2 at a(p) of
a Ck+1 diffeomorphism .8 o a-I : E D a(UQ n Ua) P(UQ n U,,) C E.
Define a tangent vector at p by its equivalence class, and define the tangent
space TpM at p to be the totality of all equivalence classes. Namely, if
we take a coordinate neighborhood (U., a), where a : U. - a(UQ) C E is
a homeomorphism, then E can be regarded as the tangent space of M at
p. If we take another coordinate neighborhood (U., fi) of p, we should
identify according to the above relation.

This definition of the tangent space is equivalent to the one in (2.2), and
the local triviality of T(M) : n-1(U.) ?° U x E is automatic, i.e., for a fixed
coordinate neighborhood (U0 , a), all tangent vectors at each point q E U.
are determined by both the point q itself and a vector in E. This gives the
local triviality. See Figure 2.7, next page.
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FIGURE 2.7

(2.21) A Ck-vector field X is defined by taking a coordinate neighbor-
hood (U0, a) and writing

X(q) = Xa(a(4)), q E Uo,

where Xa : a Ck-mapping satisfying the condition

d(B o a_1)Q(v)X0(a(9)) = XX(f(9)), q E U, n Up,

for two coordinate neighborhoods (U0 , a), (Us, f) , with U. n U, # 0.
We denote also by Xp, the value X(p) E T,,M of X at p. For a Ck+i-

function f : M - R, if we denote by df : TM TR the differential of f ,
then for all C'-vector fields X we can define a Ck-function X f by

Xf(P) P E M.

Here the right-hand side is the X(p) E TTM-direction derivative of f at p E

M and we identify T f(P)R 25 R. That Xf is Ck is proved as follows: that

f is Ck+I is by the definition in subsection 2.2, fa := f o a-' : a(UQ) -. R
is Ck+1 and

Xpf = dfp X(P) = df0IKP) X0(a(P))

which is Ck since X. : a(U0) -- E is C'.

(2.22) Commutator of vector fields. For two Ck-vector fields X, Y on
k

M, we define a
C _ 1

-vector field [X, Y), called a commutator or bracket, as
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follows. For P E M, [X, Y]o E T,M is a tangent vector which is represented
by

d Y..," . XQ(a(P)) - dXQ Y (a(P)),

for a coordinate neighborhood (U , a) of p E M. Here d Y X (a(p)) is

the X (a(p))-direction differentiation of a C'-mapping Y. : E D a(UQ) -. E
at a point ca(p), and dX YQ(a(p)) is defined in the same way. If we take

another coordinate neighborhood (U., f) , then we can calculate directly

d(,6 o a_I)(dYoui'X(a(p))-dXa . Y (a (P))

= dYY`" XX(R(p)) - dX, ' Ye(fl(p)).

Moreover, for each f E Ck(M),

ix, Y]Pf = XX(Yf) - Yo(X f). (2.23)

In fact, the left-hand side is by definition,

dfQ
' (d Y°ao)

' X0(a(P))) - df0 (d XQo', }'Q(a(p))).

The XX(Yf) of the right-hand side is by definition, d (dfQ Y) XQ(a(p)),
which satisfies

d (df0 . Y) X (a(p)) = d 2f0(YQ(a(P)) , X (a(p)))
+ dfQ (d Y0 ' XQ(a(p)))

By (1.20), the first term satisfies

d2f0(Y (a(p)), X(a(p))) = d2f0(XQ(a(p)), Y (a(p)))

The similar equations hold for Y (X f) , and we get (2.23). 0
REMARK. One can use (2.2') for an alternative definition of [X, Y).

But in this case, one must check that f .- XP (Y f) - Yo (X f) gives a tangent
vector at p. We shall find this troublesome to do in the case where dim M =
00.

(2.24) Exterior differentiation of a form. For a Ck- r-form o j, we define
a Ck-[-(r+ 1)-form dw by

r+1(dw)(X1,

... , X,+[):_ (- l )t+'X1(w(X. , ... , Xr , ... , Xr+i ))

+ E(-1)i+iw((X1, X1], X1, ... , X;, .. , 2 , ... , Xr+l),
i<j

for r+ I Ck-vector fields X, , ... , X,+1 . Here we write X, to indicate that
X. is deleted. Then one can check that

d(dw) = 0. (2.25)
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2.9. Integral curve of a vector field. Let us recall that a C' -curve a in a
Ck+'-manifold M is by definition a C'-mapping of an open interval I =
(a, b) (an 1-dimensional manifold) into M. Then we get a continuous
mapping a' : I -, T(M) by

Q(t)=dar(t), tE1.

For the mapping n : T(M) -» M in (2.8), n(a'(t)) = a(t), t E I.
(2.26) A C'-curve a : I -, M is an integral curve (solution curve) of

a Ck-vector field X if a' = X o a, i.e., dar(t) = of(t) = X(a(t)) E
Tg(r)M, t E 1. When 0 E 1, a(0) is called the initial condition of a.

T(M)

1

THEOREM (2.27). Let k > 1. For a Ck-vector field X on a Ck+I -manifold
M and P E M, there exists an integral curve ao of X whose initial condition
is p and satisfies the following condition: Any integral curve a of X with
the initial condition p is a restriction of ao . (This ao is called the maximal
integral curve of X with the initial condition p. We denote the existence
interval I of a. by (1_(p), 1+(p)).)

OUTLINE OF THE PROOF. Using a coordinate neighborhood U. , a : U. -
E, transform a C'-curve a through p to a curve a o a: I -s E in E. Then
the condition a' = X o a for or to be an integral curve of X is transformed
to the corresponding condition for a o a which is given by

(a o a)'(t) = daa(r)(X(a_'(a o a(t))))-

Therefore, if we define a vector field X on a(U0) C E by

X0(z) := da0_I(--)X(a-'(z)), z E a(UQ) C E,

then a o a satisfies
(aoa)'=X o(aoa).

That is, a o a is an integral curve of X . Together with the uniqueness and
existence (1.36) of a solution of a differential equation, and using the relation
d(8 o a-'),,(Q)X(a(q)) = XX(f(q)), q E UQnUa in (2.21) for X and X.,
we obtain the existence of such a ap . See Figure 2.8.

By Theorem (2.27), we immediately obtain

COROLLARY (2.28). We put q := a. (s) for a fixed s E (t- (P), 1+ (P)) - Let
as be a maxima! integral curve of X with the initial condition q. Then

aq(t) = ar(t +s)
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FIGURE 2.8

and t+(4) = t+(p) - s . t (9) = t-(p) - s.

THEOREM (2.29). (i) If t+(p) < oo, then ap(t) has no accumulation point
in M as t tends to t+(p).

(ii) If -oo < t - (p) , then ap(t) has no accumulation point in M as t
tends to t-(p).

COROLLARY (2.30). If M is compact, then t+(p) = oo, and t-(p) = -oo
for any p E M M.

PROOF OF COROLLARY (2.30). Assume that there exists a p E M such that
t+(p) < oo . Take a sequence such that in - t+(p) < oo (as n oo) .

Then since t+(p) < oo, we may assume that 1 is bounded. Since
M is compact, has a convergent subsequence, say

Then t t+(p) and a(t,k) -y yo E M as k -y oo, which contradicts to (i)
of Theorem (2.29). See Figure 2.9. We get (ii) in a similar manner. 0

FIGURE 2.9
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PROOF OF THEOREM (2.29). Assume that there exists '1, } such that t" -.
t+(p) < oc and ov(t") -. yo E M. Taking a sufficiently small neighborhood
V of yo and a sufficiently small open interval I = (-J, S) such that for all
z E V , we find that there exists an integral curve a. : I -. M with the initial
condition z by (1.36). For a large n, we can take t" such that

t+(p) - S < t" < t+(p) and a (t,,) E V.

Considering a maximal integral curve oZ : I M with the initial condition
z = ov(t") , we see that a curve t i- ov(t + t") is also an integral curve with
initial condition z. By uniqueness, it follows that a_(t) = a (t + t") for
some interval containing 0. So we define

1ov(t), t-(p) < t < t+(p),o(t) :=
O:(t - t"), t+(p) < t < t" + S.

Then or is an integral curve of X with initial condition p, and its defin-
ing domain is larger than interval (t-(p), t+(p)) which is a contradition.
0

2.10. Riemannian metric.

(2.31) Hilbert manifold. Let M be a Ck+I -manifold, and let (H, (, ))
be a separable Hilbert space, i.e., it has a basis consisting of a countable
number of elements. If M is a Ck+i-manifold modelled to (H, (, )) , then
M is called a Hilbert manifold. Since the Euclidean space (11", (, )) is
an n-dimensional Hilbert space, any n-dimensional manifold is a Hilbert
manifold.

(2.32) Riemannian metric. If a Ck-tensor g of type (0,2) on M satisfies
(i) go(u, v) = gv(v, u), u, v E TTM, p E M, and
(ii) gc(u, u) > 0, and the equality holds if and only if u = 0, then

we call g a Ck-Riemannian metric on M, and (M, g) is called a Ck-
Riemannian manifold. We write gv(u , U)112 = (lull for brevity.

If we take a coordinate neighborhood (U°, a), a : a - H, for each
x E U°, then using d a : TX M - H we can express

gg(u, v) = (G°(x)da(u), da(v)), u, v E TIM.

Here G°(x) : H H is a positive definite operator of (H, (, )); that is,

(G°(x)w , w) > 0, w E H, and the equality holds if and only if w = 0.

That g is Ck means that the mapping (Jr, 9 x i- G°(x) E L(H, H) is Ck .

The inner product gv on T,M, p E M, induces the ones on the cotangent
space TM, p E M. The tensor space r"M, p E M, of type (r, s) is de-
noted by the same letter gp or simply by (,) . We denote the corresponding
norms by 1111
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(2.33) Length of a curve. For a C1-curve a : [a, b] - M, i.e., for a
sufficiently small e > 0, a is extended to a C 1-mapping of (a - c, b + c)
into M, the function [a, b] 3 t 11Q(t)II is continuous, and then the length
of a

b

L(a) := I IIa'(t)II dt
a

is well defined.

(2.34) Riemannian distance. For each pair of points X, y E M, we de-
fine p(x, y) by

p(x, y) := inf{L(o); a is a C1-curve connecting x and y},

(here we assume M is connected, i.e., x and y can always be connected by
a finite number of C1-curves.) Then p satisfies the three axioms of distance:

(i) P(x,Y)=P(Y,x), x,YEM,
(ii) P(x,Y)+P(Y, Z) ? P(x, z), x, Y, Z E M,
(iii) p(x, y) > 0, and the equality holds if and only if x = y.

Moreover, the topology on M induced from this distance coincides with
the original topology of M. If (M, p) is complete as a metric space; that
is, any Cauchy sequence {x}.1, i.e., p(x", x,") 0 as n, m - oc, is
convergent, then we call (M, g) complete. If M is compact, then (M, g)
is always complete.

§3. Finite-dimensional C°°-manifolds

For the remainder of this book, a C°°-manifold always means a finite di-
mensional C°°-manifold. We shall always indicate when we are considering
an infinite dimensional manifold.

3.1. Local coordinates. Let M be an n-dimensional C°°-manifold, and
let (x1, ... , x") be the standard coordinates of R". For any local coordinate
neighborhood (U., a) of M, where a : U. -4 R", define a local coordinate

a o(x1,...,x") by
x°:=x;oa:U.-'R, i=1, ..,n.

Then each point of U. can be uniquely expressed by the coordinate
(x", ... , .x) . We often simply write U, (x1 , ... , x") for the coordinate
neighborhood and its local coordinate, omitting a.

(3.1) Coordinate expression of vector field. Let U , (x. , ... , x°) , be the
local coordinate of M, and then for p E Ua we denote by
(x` (p),...,x`(p)) = (a1,...,a") . Then we consider a C1-curve c, through
p defined by

c;(t):=(a,,...,a,-1,ai+t,ai+1,...,a"),
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and we denote by (e )o , its tangent vector c'(0) at p. Then

Cax, )o' ... , tan ),1

is a basis of the tangent space TpM of M at p. A C°°-vector field X on
M is written on U. as

nX,= (p)(ax°) PE U.,

where a , i = 1, ... , n, are in C°°(U0) . Moreover, if we take another
coordinate neighborhood U , (x,,O, ... , x.) and denote also on U.,

=X
=I athen

both .O) satisfy on U. n U.,

It axP
Eax°e;-

j=I 1

Compare this to (2.21). We denote by X(M) the totality of all C°°-vector
fields on M.

For X, Y E X(M), denoting X and Y on U. by
It a a n u a

we see the commutator [X, Y] of X, Y is given by

[X, Y] Idv-(X) - dC;(Y)I
ax*

In
a a

E ax°I-Ajax°I fax,-,

i=I j=I

because [ ] = 0 and by definition (2.22).

(3.2) Local expression of forms. For a C°°-function f on a coordinate
neighborhood UQ , we defined in (2.21) a C°°-1-form df on UQ by (df),, :
T,M -+ T f(P)R = R, p U( , . For a coordinate (x', ... , x,' ) on UQ ,

{(dxa)o}" I is a basis for the cotangent space TpM because

(( l l a

(dxa)°axj// 8x =dij, 1<i, j:5 n.
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Then df, f E C°°(M) can be written on Uo as
n

adf I dx,,-
i-I 8x+

We denote by A'(M) the totality of all C°°- r-forms on M. Each W E
A'(M) can be written on a coordinate neighborhood U. using (x', ... , x, ),

n 0cv=r! wr...rdx; A...Adx;
,

cv;...I dx'A...Adx°,

where w; E C°° (U) . Since, for P E UQ ,

(dx°)pA A(dx°)p, I <iI <...<i,<n
is a basis of A' 7 p M . Moreover, the exterior differentiation d w of w E
A'(M) is calculated by

1 ndw= Adx° n... Adx; .

(3.3) Local expression of a Riemannian metric. Assume that g is a C°O-
Riemannian metric on M. Write g := g( ate , e r) using coordinates
(x*, , x,) on U. . The n x n-matrix is a positive definite sym-
metric matrix and

n

g= gjdx°dx) .

i.I=I
Here dx,° dxj' = dx° ® dx° is a quadratic form
by

TDM x TDM - R defined

dx,° ®dx*(u, v) = dx°(u)dx0(v), u, v E TDM.

3.2. Levi-Clvita connection.

(3.4) Connection. A connection (covariant differentiation) V on a C°°-
manifold M is a mapping

V:X(M) xX(M) 9(X, Y)I-.VXYEX(M),
satisfying the following conditions:

(1) VX(Y+Z)=VXY+VXZ,
(2) VX+YZ =VXZ+VYZ,
(3) VfXY=fVXY,
(4) Vx(fY)=(Xf)Y+fVXY,

for f E C°°(M), X, Y, Z E X(M). Due to (3), it turns out that the value
(V X Y) p E TDM of V X Y at p E M depends only on u = XD E TD M and
Y , it can be written as V Y .
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THEOREM (3.5). Let (M, g) bean n-dimensional C°-Riemannian man-
ifold. Then a connection V (called the Levi-Civita connection) can be given

2g(VXY, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y))
(3.6)

+ g(Z, [X, Y]) + g(Y, V, XD - g(X, [Y, Z]),
for X, Y, Z E 3:(M) . Moreover, the Levi-Civita connection V satisfies

(i) X(g(Y, Z)) = g(VXY, Z)+g(Y,VXZ)
and

(ii) VXY-VyX-[X,Y]=0.
Conversely, any connection V satisfying (i), (ii) coincides with the Levi-

Civita connection.

Using local coordinates U, (x, , ... , x,,) , we put

,/ 8En

va,8Xj k ' '

,

jf7Xk

where by (3.6) and [ - A - ,ax, e ] = 0, the functions I'f` are given by

1
n

ki 8git agit 0giiI;2 , (8x, +8xj 8xt)'

I" E C°°(U),

(3.7)

Here let g,, = g(/- , 0) , and let (gkt) denote the inverse matrix of (gi f) .

Tkj is called Christoffel's symbol of the Levi-Civita connection.

3.3. Parallel displacement. For a C'-curve a : [a, b] - M, X is called
a C'-vector field along a if

(1) X(t)ETa(,)M,forall IE[a,b],
and

(2) if we express X(t) _ ,(t)(e )a(,) using local coordinates U,

(x, , ... , xn), then each 4,(1) is C'
Such a vector field X along a is called parallel along a if

Va,(,)X = 0, t E (a, b). (3.8)

X (b')

p= a'a)

FIGURE 2.10
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See Figure 2.10. A parallel vector field X along a is uniquely determined
by the initial value X(a) at a(a) in the following way: In terms of local co-
ordinates (x1, ... , x"), we write the curve a by a(t) = (al(t),
then we have o'(t) = = a'(t)( -)a(,) . By properties (1)-(4) of V, (3.8)
is equivalent to

d4i(t) da (t)
dt + jk(o(t)) dt

k(t) = 0, i = 1, ... , n. (3.9)
j,k=1

Therefore, if a curve a and the initial condition 4"(a)) at
p = a(a) are given, then such a 4i(t) is uniquely determined due to the
existence and uniqueness of solutions of the ordinary differential equation.
In particular, the value (41(b), ... , "(b)) at q = a(b), and hence, X(b)
are uniquely determined.

Therefore, in particular, we obtain the correspondence

T,,(a)M a X(a) -+ X(b) E Ta(b)M,

which is denoted by Pa . Then this mapping

Pa : T,,(a)M T,,(b)M

is a linear isomorphism and satisfies

ga(b)(PP(u), P0(v)) = ga(a)(u, v), u, v E T,,(a)M.

Because, in (i) of Theorem (3.5), substituting for Y , Z , two parallel vector
fields along a satisfying Y(a) = u, Z(a) = v and for X = a'(1), we get

d
ga(r)(Y(t) I Z(t)) = g(V (r)Y, Z) + g(Y, V.,(r)Z) = 0

which implies that go(r)(Y(t), Z(t)) is constant in 1. 0
This mapping P, is called the parallel displacement (transport) along a.
Using the parallel displacement, the covariant derivative V can be defined

in the following way. Indeed, for U E TIM , X E X(M), V,X E TIM ,
p E M satisfies (cf. [K.NJ)

dt I
a(t), (3.10)

r=0

where a is a CI-curve in M satisfying a(0) = p, a'(0) = u, and for all 1,

or(s):=a(s), 0<s<t.
Pa, : TIM - T,(r)M is the parallel displacement along a,. Then the curve

a(t) in (3.10) is the CI-curve in TM given by

a(t) := P, I X(a(t)) E TIM.

The differentiation of the right-hand side of (3.10) expresses the tangent vec-
tor of the curve a(t) in T. at t = 0. The equation (3.10) can be regarded
as the definition of the covariant derivative.
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FIGURE 2.11

3.4. Geodesics. A C '-curve in M, a : I - M is a geodesic if

Vo.a' = 0, (3.11)

on each point of the open interval 1. (See Figure 2.11.)
In terms of local coordinates (x1 , ... , x,,) of M, denoting a(t) = (a, (t),

a. (t)) and o'(t) _ " a'(t)( we see that (3.11) reduces to the
equation

d2ai day dak -
dt2

+
rjk dt dt - 0, i = 1, ... , n, (3.12)

in the same way as for (3.9). Putting ;el (3.12) is reduced to the follow-
ing ordinary differential equations in the unknown functions

d` _ - i = I,-, n. (3.13)dt

do do

J,k-l

ze,Therefore, for given initial data (a, (0), ... , and (W(0), ... , (0))
there exists a unique solution for all t near 0. That is, for given p E M
and U E TDM, there exists a unique geodesic a(t) for small Itl satisfying
a(0) = p and a'(0) = u, denoted by a(t) = expp(tu). By putting a(1) _
expp u E M for u e TDM , the exponential mapping

expp:TDM

is well defined on a neighborhood of 0 in TDM . Concerning the question
of when for all u E TDM, the geodeisc expp(tu) can be extended to -oo <
t < oo, the following theorem is well known.

THEOREM (3.15) (Hopf-Rinow). The following are equivalent:
(i) (M, g) is complete (ef. (2.34)).
(ii) For any p e M, the exponential mapping expp : TDM - M is well

defined everywhere on TDM M. Therefore, in this case, any two points p , q E M
can be joined by a geodesic of length p(p, q) (if M is connected).

By theorem (3.15), if M is compact, then for any p E M, expp : TDM
M is well defined everywhere on TDM .
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3.5. Curvature tensor. For an n-dimensional C°O-Riemannian manifold
(M, g), R(X, Y)Z E X(M), X, Y, Z E X(M) is defined by

R(X, Y)Z =VXVYZ -VYVXZ - V(XY1Z, (3.16)

where V is the Levi-Civita connection on (M, g). R is a tensor field of
type (1,3) and satisfies

R(fX, gY)(hZ) = fghR(X, Y)Z, j, g, h E C'O(M). (3.17)

R is called the curvature tensor field of (M, g). By (3.17), R(X, Y)Z
depends only on u = X(p), v = Y(p), W = Z(p) E TpM at p E M. We
can write R(u, v)w = (R(X, Y)Z)p E TpM.

In terms of local coordinates (x,, ... , x,,) of M, writing

a a a a
R

1 < i , j , k< n,(8x; ax;)axk =

we get

a
Rk'i=8xJ-8x I'k;+Irkj,4., -rkiQ;}.

, J o=1 11

(3.18)Curvature. For any two linearly independent vectors {u, v} of
the tangent space TpM of M at p, we define

Ku,v) ==
g(R(u, v)v, u)

(
g(u, u)g(v, v) - g(u, v)2

K(u, v) is called the sectional curvature along {u, v} . (M, g) is positive
curvature (negative curvature) if for all p E M and two linearly independent
vectors {u, v} of TpM, K(u, v) > 0 (K(u, v) < 0).

(3.19) Ricci operator. The tensor field p : TDM TpM, P E M of type
(1,1), called the Ricci operator, transform, is well defined by

P(u) R(u, e;)e;, u E TpM, P E M,

where {e;}" I is an orthonormal basis for (TM, gp) . And the symmetric
tensor field of type (0,2), denoted by the same letter p and defined by

p(u, v) := g(P(u), v) = g(u, p(v)) _ g(R(u, e;)e;, v),

is called the Ricci tensor.
The Coo-function S on M defined by S := >", p(e;, e;) , is called the

scalar curvature of (M, g) and is independent of the choice of orthonormal
basis {e;} .
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3.6. Integration. In this subsection, we define an integral fey f vg of
any continuous function f on an n-dimensional C°°-Riemannian manifold
(M, g). We always assume M is compact, but integration can be defined,
in general, for a paracompact manifold M, i.e., for any open covering there
exists its locally finite refinement. In any case, we use a partition of unity
{0Q ; a E A) for a coordinate system 1(1I , a) ; a E Al. That is, ¢Q E
C°°(M) satisfying

(i) 0<cQ(x)<1, xEM,aEA,
(ii) the support supp (0.) := {x E M; ca(x) TO-) is contained in U.

for all a E A, where the overline denotes the topological closure, and
(iii) for any point x E M, EQEA 0Q(x) = I.

Now for a coordinate neighborhood (UQ , a) and for a continuous function
f on U. , we define

J fv :=f fQ:=foa
, 8 (U,)

where g := det (g (a , ew)) , and the right-hand side is the usual Lebesgue

integration of a ccntinuous function fQ on an open set a(UQ) of R" .
In general, for a continuous function f on M (we assume supp (f) :=

(x E M; f(x) O O) is compact in M if M is noncompact), we define inte-
grate of f by

J fvg.- f EmafV =>2 g0fv,,
M M aEA aEA M

using the partition of unity {¢Q ; a E A) . In fact, it is well defined. Because,
if f is expressed in two ways as: f = Ei fi = F j gj , where fi satisfies for
each i , there is an a such that supp (fi) c U. , and gj satisfies the same
condition, then for all a E A, since

fioQ gio.
i j

we get

and supp(gft0), supp(fOQ) C UQ,

fMf'0.V' _ EfMgjoav8j
On the other hand, since

j = F'joa , gj = F'g,Y)Q ,
aEA aEA

by the assumptions on fi , gj , we can define fM f v8 and jM gj v8 and get

IM j v= and f , = f g4Q v.
aEA aEA 'd
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Therefore, we obtain

f4
fvg=Elf fcbavg=EE f fonvg

i l i aEA nEA i

=EEJ gj-0,Vg=EEfA gj 4aVg=rf gj
Vg

nEEAA / M j 0EEAA uuj M

which implies that fm fvg is well defined independently of the expression
for f .

If f = I, then Vol (M) := fm v8 is called the volume of (M, g). If M
is not compact, then the volume is not necessarily finite.

For f E C°(M) , i.e., a continuous function f on M, we define the norm
II IID, 0<p<oc,by

IIfIID (IM IIIDVg)
I/D

(3.21)

and denote by LD(M) the Banach space obtained by the completion of
C°(M) with respect to the norm II IID . We define the norm II II on C°(M)
by

IIIII := sup{I f(x)I ; x E M), f E C°(M). (3.22)

3.7. Divergence of a vector field and the Iaplacian. For a C°°-vector field
X E X(M), we define div (X) E C°°(M) by

n

div(X)(p) :_ g(ei , Ve X)(P)
i=1

pEM, (3.23)

where {e1 } I are n C°°-vector fields on a local coordinate neighborhood U
satisfying the condition that {ei(x)}°I is an orthonormal basis for (TM,g.,)
for each point x E U (i.e., a local orthonormal frame field). The existence
of such a frame field can be shown by using the Gramm-Schmit process of
orthonormalization on { f , ... , } on a local coordinate neighborhood
(U, (x1 , ... , xn)) . Due to the form of its normalization, the {e,} =I are
C°° on U. The right-hand side of (3.23) does not depend on the choice of
{e1}'

I
and defines an element in C°°(M), called the divergence of X.

If we write X = F,"
I

Xia in terms of local coordinates (x1 , , xn) ,

then it can be shown (cf. exercise 2.3) that

div(X) = I a (/X.), (3.24)
g

i=1

where g=det(g(A-, -)).

(3.25) Gradient vectors. For f E C°°(M), the gradient vector field X =
grad f = V f E X(M) is the one satisfying

g(Y, X) = df(Y) = Yf, YEX(M).
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Then it can be shown (cf. exercise 2.4) that

grad f=Vfe,(f)e,= g''af a
j=1

ax; azt (3.26)

We also denote by the same letter g the induced inner product on 7M, p E
M. Then we get (cf. exercise 2.4)

g(grad f, , grad f2) = g(d f, , d f2), fl, f2 E COO (M).

Next we define the important differential operator.

(3.28) Laplacian. We define (cf. exercise 2.5) a second order elliptic dif-
fential operator acting on C°°(M), called the Laplacian, by

Af=-divgrad f
Of

v t j_1 a, aXj

__ , 2 i
g

- rk
(OXI-O . k=i

tf aXk

_ - {e,(etf) - (Vee,)f} , f E C°°(M).
i=t

The Laplacian depends on a Riemannian metric g, so we write A. if we
wish to emphasize a Riemannian metric g. The following holds if M is
compact.

PROPOSITION (3.29). The following hold for f, fl, f2 E C°° (M) ,
XEX(M),

(i) fm f div(X) vg = - fm g(gradf , X) vg .

(ii) fM(Af,) f2 vg = fM g(grad f, , grad f2) vg = fM I, (AI2) vg .

(iii) fm div(X) vg = 0 (Green's formula).

PROOF. For (i), since Ve (f X) = (e, f) X + f Ve X, we get div (f X) _
g(gradf , X) + f div(X) . Integrating this, we get (i) by (iii). For (ii), substi-
tuting f = f, , X = gradf2 in (i), we get the second equality of (ii), and by
g(gradf,, gradf2) = g(gradf2, gradf,), we get the first equality of (ii).

For (iii), we use the partition of unity (cf. 3.6): 1 = EaEA ¢Q . It can be
seen that X = E" , X° on UQ . Then

,

JM IM(()= X I v/

QEA
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Here since supp (0o X) = {x E M ; 4'0(x) Xx # 0} is included in UQ , we get

IM
div(go X) v8 = f div(4p X) v8

a

f a8°(,rg-.OaXQ)vrg- dx-...dx°

n

Ju',

aa
i

where for each i=1,...,n, aEA,weget

fu.
aza(V Xa)dxi ...dx° =0.

Because the integral f equals to the value of 0oX° at
the boundary of U. , which vanishes since supp (O°X) c U,, we obtain (iii).
A

3.8. Laplacian for forms. We denote by A'(M) = r(A' rM) the total-
ity of all C°°-sections of the C°°-vector bundle A' TM, which admits a
canonical inner product induced from g on each fiber A' 7M, p E M,
denoted by (,) . We assume in this subsection that M is compact. Then
A'(M) admits the inner product (, ) defined by

(co, q) := JM(W, q) v8, w, q E A'(M). (3.30)

The codifferentiation 8 : A'+'(M) A'(M) of the exterior differentiation
d : A'(M) A'+'(M) is by definition

(dw, q) = (w, 6q), w E A'(M), q E A'+'(M). (3.31)

In fact, the codifferentiation 8q , q E A'+' (M) is given (cf. Exercise 2.6) by
n

817(X1, ... , X,) = - E(Ve )(e, , X1, ... , X,), X1, ... , X, E X(M),
i=1

(3.32)
where {ee}n=1 is a locally defined orthonormal frame field as in subsection
3.7. We explain the Vq, X E 1(M) in the right-hand side: In general, the
mapping

A'(M) 9 w. VXw E A'(M), X E X(M)

is called the covariant derivative for forms and is defined by

(VXw)(X1, ... , X,) := X(w(X1, ... , X,))

,VXX1,...,X,).
i=1
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Then it is known (cf. exercise 2.7) by definition of dcv and (ii) of Theorem
3.5, that for cv E A'(M) ,

.+I
(dw)(X1, ... , X,+1) _

(-1)i+1(
r.cv)(X1, ... , Xi , ... ,

i=I

We define the Laplacian acting on r-forms by

A,:= dd + ad : A'(M) A'(M).

By definition, we have that

(A,w, q) = (cv, A,q), W, h E A'(M). (3.37)

In particular, for r = 0 f E A°(M) = C- (M) ,

n

0of = ad f = -EVe (df)(e;) _ ->{e;(e;f) - Vice;f} = Agf
i=1 i=1

For more details about the Laplacian of r-forms, see [Mt].

§4. Examples of manifolds

4.1. Finite-dimensional C°°-Riemannian manifolds.

(4.1) Euclidean space R" . The Euclidean space R" is an n-dimensional
C°°-manifold, and if (x, , ... , x") are the standard coordinates on R" , then

g°:=Edx1®dx;
i=1

is a Riemannian metric on R" whose sectional curvature is zero.

(4.2) Flat torus R"/A. Let (v1, ... , vn) be a basis for R" , and let

nA=1,...,n){>.m1v1;m1Ez(i=
;-1 111

A is called a lattice of R" . See Figure 2.12.

V1

FIGURE 2.12
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We say two elements X, y E R" are equivalent if x - y E A, and we
denote by R"/A the totality of all equivalence classes n(x), X E R". Then
R"/A is an n-dimensional compact C°`-manifold. We may take as its local
coordinates, R"/A 3 a(y) = a(E 1 y, vi) '"" (y1, ... , y,,). We may define
a Riemannian metric gA on R"/A by

n

gA= E g, dyi®dy,,
i.1=1

where g,, = (vi , v.). Then a'gA = go, where it is the projection of
R" -y R"/A (cf. exercise 2.8). The resulting compact Riemannian mani-
fold (R"/A, gA), called a flat torus, has zero sectional curvature.

(4.3) Unit sphere S". The unit sphere
n+1

(x. , .. , xn+1) E Rn+i ; E x? = 1 I C
Rn+I

i=1

is an n-dimensional compact C"-manifold and a closed submanifold of
Rn+1 We may define a Riemannian metric gr on S" by the pull back
gs. := I'go by the inclusion I : S" C R"+I

. The sectional curvature of
(S" , gs.) is one (cf. (2.17) of subsection 2.1 in Chapter 4).

(4.4) Unit ball B" . The unit open ball

((
n

B".= S(X1,...,X.)ER";EX2< l}
tll i=1

is a noncompact C`-manifold which is C°°-diffeomorphic to R". The Rie-
mannian metric gr on B", defined by

4 r"En 2 dxi edx,,
1 - i=1 xi i=1

has constant sectional curvature -1 . There are an infinite number of n-
dimensional compact C-Riemannian manifolds (M, g) such that B" is
the universal covering of M and gB. = n' g , where a : B" -. M is the
covering mapping. The sectional curvatures of all such manifolds M are
always -1 .

Here in general, an n-dimensional C°°-manifold M is the universal cover-
ing of a C°°-manifold M of the same dimension if M is simply connected,
i.e., the fundamental group a1 (M) = {0} (see (4.45), below), and there exits
the following CO°-mapping of Al onto M, x : M -. M (called the covering
mapping) : For each point p E M there exists a neighborhood V of p such
that

a-I(V)=UV, VnV,=O (iq6j),
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and for each i, it : V. -' V is an onto C°°-diffeomorphism, respectively.
Moreover, if the Riemannian metrics j, g on R, M, respectively,

satisfy g = n*g, then we say (M, g) is a Riemannian covering of (M, g).
The Euclidean space (R", go) with it : (R", go) - (R"/I', gr) is such an
example.

4.2. Lie groups and homogeneous spaces. Here we introduce Lie groups
and homogeneous spaces which give interesting examples of manifolds. For
details, see [Mt].

(4.5) DEFINITION. If a group G is itself an n-dimensional C°°-manifold
and the group actions

GxGa(x,y)-xyEG, EG

are both C°° mappings, then G is called a Lie group. We denote by e the
identity element of G. The C°°-mappings L.,,, Rx : G - G defined by

LXy:=xy, Rxy:=Yx, x, yEG,
are called the left translation, right translation by the element x, respectively.
Lx and Rx are C°°-diffeomorphisms of G onto itself.

A Coo-vector field X E X(G) on G is called left invariant if

L..Xy=Xxy, x, yEG,
where we denote by Xx E TxG the value in TG of X at x E G. X
is called right invariant if Rx. Xy = Xyx , X, y E G. We denote by g the
totality of all left invariant C°°-vector fields on G. g is a subspace of X(G).
The mapping defined by

0 (4.6)

is bijective and dim(g) = dim(TG) dim G. Surjectiveness of (4.6) follows.
Let V E TG. If we define

Xx:=Lx.vETXG, xEG,
then X E g and X,=v.

For X, Y E 9, since their commutator [X, Y] satisfies

Lx.[X, Y] _ [Lx.X, Lx.Y], X E G,

[X, Y] belongs to g. This g is called the Lie algebra of G.
Here we explain the exponential mapping of the Lie algebra g into the

Lie group G. For X E g, let a(t) be an integral curve of X with the initial
condition e. That is,

a(0) = e, op(t) = X.(r).

This equation has a solution for all -oo < t < oo. Because, if for Itl < e
there exists a solution, then we can extend it by a(t + to) := a(to) a(t), for
0 < to < e . Then c(t0) = a(to) , and since X is left invariant, it follows that

a'(t + to) = L.(, ).ap(t) = L.,(to).X.(t) = Xa(to)o(t) ='Yo`(t+to)
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which implies that a is an integral curve of X through a(to) at t = to.
By the uniqueness (2.27) of the solution of an integral curve of X, we get
Q(t+to) = a(I+to) , for 0 < t+to < E . Therefore a can be extended beyond
the open interval (-e , e) .

We denote this integral curve a(t), -co < t < oc, by exp(tX). By
definition, it follows that

exp(IX) exp(sX) = exp((t + s)X), -00 < t, s < oo.

The mapping exp : g 3 X .-+ exp(X) E G is called the exponential mapping
of a Lie group. (Don't confuse it with (3.14) !)

A subgroup K of a Lie group G is called a Lie subgroup if K is a sub-
manifold of a manifold G. In particular, if K is a closed submanifold of
G, it is called a closed Lie subgroup. Then if we put

t:={XE9;exp(tX)EK, foreachtER}, (4.7)

then t satisfies [X, Y] E t for all X , Y E t, and it is the Lie algebra of K
if we regard K is a Lie group. We call t the Lie subalgebra corresponding
to K.

For two Lie groups GI , G2 , a C°°-mapping 91 : GI G2 is called a
homomorphism if

g(xy)=c(x)q(Y), x,YEGI.
Then the differentiation ip+e : TeGI TeG2 of induces, via the identifi-
cation (4.6), a linear mapping d9i : gI -. 92 which satisfies

d9o([X, Y]) = [dg(X), dp(Y)], X, Y E 91, (4.8)
1 ip(exp X) = exp dp(X), XE9I.

If a homomorphism qi : GI -+ G2 is bijective and the inverse #v-I is C,
then we say c is an isomorphism. If G = GI = G2 , then q' is called an
antomorphism and dip : g -+ g is called an automorphism of the Lie algebra
9-

For x E G, an automorphism Ax : G -+ G defined by

Axy=LxRxI y=RxILxy=xyx-',
YEG, (4.9)

is called an inner automorphism. Since Axe = e, the differentiation A. :

TTG -+ TeG of Ax at e induces an automorphism of g. We denote it by
Ad (x) : g g. We call G 3 x ,-+ Ad(x) the adjoint representation of G.
This satisfies by (4.8),

exp Ad(x) X = x exp(X) x- ' , x E G , X g. (4.10)

If dim(G) = n and {XI , ... , X,,} is a basis for g, then for x E G,
n

xexp(ExiX) '_ (x1,...,x,)
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gives local coordinates in a neighborhood of x in G.
For a Lie group G and its closed Lie subgroup K, let us consider the

quotient space defined by

G/K := {xK ; x E G}.

The mapping n : G 3 x - xK E G/K is called the projection of G into
G/K. We introduce a Hausdorff topology on G/K by saying that a subset U
of G/K is an open set if n-' (U) is open in G. Moreover, letting dim(G) =
n, dim(K) = s, and taking as a basis f o r 9, {XI , ... , Xs , Xs+I , ... , X" }
in such a way that {X, , ... , XS} is a basis of t, then we may give an (n -s)-
dimensional C°°-manifold structure in such a way that

"
G/K9xexp(>

i=s+

are local coordinates on a neighborhood of xK. Then the mappings G x
GIK 3 (x, yK) --+ xyK E GIK and n : G GIK are C'. Moreover, for
X E G, a mapping tx : GIK - GIK defined by

r (yK) := xyK, y E G

is a C°° diffeomorphism of G/K onto itself, called the translation by x.
(4.11) EXAMPLE 1. Let us denote by M(n, R) the totality of all n x n

real matrices, and let

GL(n, R) := {x E M(n, R) ; det x 3& 01.

GL(n, R) is an open submanifold of M(n, R) = R"'. It can be shown that
GL(n, R) is a Lie group, i.e., the mappings defined by

GL(n, R) x GL(n, R) 3 (X, y) - xy E GL(n, R),

GL(n,R)3x-x-I EGL(nR)
are both C'. The mappings GL(n, R) 3 x = (xi J) . xi, , I j <
n, give the coordinates of GL(n, R). We denote by 91(n, R), M(n, R)
endowed with the Lie bracket given by

[X,Y]:=XY-YX, X, YEM(n,R).

For each X = (Xil) E 91(n, R), we can define uniquely a left invariant vector
field X on GL(n, R) by

aX.:= E aik Xki \ ) ,
a = (air) E GL(n, R).

i.1.k=1 axil
°

(4.12)

The linear mapping X I is bijective and satisfies

[X, k) = [X, Yr, X, Y E gf(n, R),
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which implies that gl(n, R) can be regarded as the Lie algebra of GL(n, R).
Then the exponential mapping exp : gl(n, R) -+ GL(n, R) is given by

00

Aexp(X) = e = n! , X E gl(n, R),
n=0

see exercise 2.9.

(4.13) EXAMPLE 2. (i) The groups

0(n) := {x E M(n, R) ; 'x x = x 'x = 1),
SO(n):={xEO(n);detx= 1)

are compact closed Lie subgroups, called the orthogonal, the special orthogo-
nal groups, respectively. Here we denote by `x , det x the transposed matrix,
and the determinant of a matrix x, respectively. I is the unit matrix.

(ii) We denote by M(n, C) the totality of all n x n complex matrices.
Then

U(n):={zEM(n,C); rzz=z`z=I},
SU(n) := (z E U(n) ; det z = 1)

are both compact Lie groups, called the unitary and the special unitary groups,
respectively. Here z implies the complex conjugate of z E M(n, Q.

(iii) The Lie algebra of both 0(n), SO(n) is

so(n) := {X E g1(n, R); `X +X = 0),

and the Lie algebras of U(n) , SU(n) are

u(n) := {Z E M(n, C); `Z+ Z = 0},
su(n) := {Z E u(n); trZ = 0},

where the Lie bracket is given by [Z, W] = Z W - W Z , for Z, W E
M(n, C), and tr Z := F,", Z,,, Z = (Zip) E M(n, C) (see exercise 2.10).

DEFINITION (4.14). A Lie group G is said to act on a C°°-manifold M
if there is a C°°-mapping G x M -3 (x, p) " x pEM such that

(i) (xy) p = x (y P), X, y E G, P E M,
(ii) for all x E G, the mapping M-3 p x- p E M is a C°°-

diffeomorphism of M onto itself.
By (i), e p = p, p E M. We say G acts effectively on M if for each

x E G, the condition that x p = p, for all p E M implies that x = e.
We say that G acts transitively on M if for all p, q E M, there exists an
element x E G such that q= x- p.

(4.15) If G acts transitively on M, we fix p E M and let K := {x E
G ; x -p = p} which is a closed Lie subgroup of G. The quotient space G/K
is C°°-diffeomorphic onto M by G/K 9 xK - x pEM . We call K the
isotropy subgroup of G at pEM .
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In the following, we assume G is a compact Lie group and K is a closed
Lie subgroup of G. Then a Riemannian metric g on the quotient space
G/K is G-invariant if for all x E G,

Txg=g.

When K = (e), we say the Riemannian metric g is left Invariant (resp.
right invariant) if LXg = g, for all x E G (resp., RXg = g, for all x E G).
We call a metric g bi-invariant if it is both left and right invariant.

Given an arbitrary inner product (,) on 9. Then we can define a left
invariant Riemannian metric g on G by

gx(Xx,Yx)=(X,Y), X, YEg, XEG, (4.16)

where Xx , Yx E TxG, x E G. In particular, if (,) is Ad (G)-invariant, i.e.,

(Ad(x)X, Ad(x)Y) = (X, Y), X, YEg, x E G, (4.17)

then the metric g on G defined by (4.16) is bi-invariant. Any compact Lie
group admits a bi-invariant Riemannian metric. For instance, if G = SO(n),
U(n) , SU(n) , then the inner products on g = so(n) , u(n) , su(n) satisfying
(4.17) are given by

(X, Y) = -tr(XY), X, YEg.

Any G-invariant Riemannian metric on G/K can be given as follows:
First, we fix an inner product (, )o on g satisfying (4.17) and then let m be
the orthogonal complement oft in g with respect to (,) , i.e.,

m := {X E g; (X, Y)o = 0, for all Y E t}.

Then the subspace m satisfies

J g = t ®m (direct sum),
Ad(k)XEm forallXEm, kEK.

Then each X E in can be identified with a tangent vector X. E T°(G/K)
at the origin o = {K} E G/K which is the tangent vector of a curve t F-+
exp(tX) o E G/K at t = 0:

exp(IX) o.X := d

11---0° d t

Then this linear mapping m 9 X '- X° E T°(G/K) is bijective. Now we take
an inner product (,) on m satisfying

(Ad(k)X, Ad(k)Y) = (X, Y), k E K , X, Y E m. (4.19)

Then we can define a G-invariant Riemannian metric g on G/K by

g.K(zx.X0,Tx.Y0)=(X,Y), X, YEm, xEG, (4.20)
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where Tx. Xo , rx.Y0 E TxK(G/K) are the images of X,,, Yo E To(G/K) by
the differentiation of Tx. Since xK = xkK for k E K, to show the well
definedness of g by (4.20), it suffices to show that

gxkK(Txk.Xo Txk.Y.) = gxK(Tx.X.I Tx.Yo) I X E G, k E K. (4.21)

Note that Txk = Tx.Tk. and the differentiation Tk. of Tk : G/K -. G/K
maps To(G/K) into itself. Moreover,

rk,XO = (Ad(k)X)o, X E m, k E K,

because for f E C'°(G/K), we have

Tk.Xo(n = Xo(f C rk) = at I

r-
f(k exp(1X) o)

= dl f(exp(tAd(k)X) o) (by (4.10))dtr-0
= (Ad(k)X)of.

Thus, to obtain (4.21) we need that (Ad(k)X, Ad(k)Y) = (X, Y) for all
k E K, X, Y E m which is (4.19).

Given a G-invariant metric g on G/K, we call (G/K, g) a Riemannian
homogeneous space and G/K a homogeneous space.

DEFINITION (4.22). For two Riemannian manifolds (M, g), (N, h),
a C°°-mapping 0: (M, g) - (N, h) is called an isometry if 0 is a C'-
diffeomorphism of M onto N and satisfies g = t'h. The isometry group
Iso (M, g) is by definition the totality of all isometries of (M, g) into itself.
This is a Lie group by the following multiplications:

Iso(M,g)xIso(M,g)cV)o cVEIso(M,g)
is the composition map,

Iso(M, g) 9 ¢ -' 0-I E Iso(M, g),

is the inverse map, and it acts on M by

Iso(M, g) x M -3 (¢, p) '-y ¢(p) E M (see [K.N]).

Note that
{T,; X E G} C Iso(G/K, g)

if (G/K, g) is a Riemannian homogeneous space.
(4.23) EXAMPLE 3. Let us denote

Rn+I t:={p= (pl,...,p"+I);pi ER(1<i<n+1)},
S":= {pER"+I; (DpII= 1}.

Then SO(n+ 1) acts on S" by multiplication of matrices and column vectors
as

SO(n+I)xS"-a (x, p)- xpES".
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We write o=`(1,0,...,0). Then

X-0= `(x11, ... , x"+1 1) (the first column vector of x) .

SO(n + 1) acts transitively on S", i.e.,

for each p E r, there exists x E SO(n + 1), p = x o.

Because n + I column vectors of an orthogonal matrix of degree n + 1 give
an orthonormal basis of Rn+1 and any orthogonal matrix can be given by
this way.

The isotropy subgroup K of G = SO(n + 1) at o is given by

_
I0

t

K={(0 x);xESO(n)SO(n),

where 0 = `(0, ... , 0) . Thus, the unit sphere S" is expessed as

S" = G/K = SO(n + 1)/SO(n).

The Lie algebras 9, t of G, K are

g=so(n+1)Dt= {(0 X) Eso(n+1);XEso(n)

and the orthogonal complement m of t in g with respect to the inner prod-
uct (X, Y) = -tr(X Y) , X, Y E g = so(n + 1) is

m= {r 0 -01) ;X1 ='(XI,...,x")ER"
1\X1 O J JJ

We give the inner product (,)o by

(X, Y)o :_ -2 tr(XY), X, Y E m

which satisfies (4.19). The corresponding G = SO(n + 1)-invariant Rieman-
nian metric g1 on G/K = SO(n + 1)/SO(n) = S" coincides with the one
gs, = t'go. Because gs. is also SO(n+ 1)-invariant, the corresponding inner
product on m is of the form c (, )0, c > 0, and the constant c = 1 . In fact,
for

Z:=
0

01) Em,
1

where e1 ='(1, 0, ... , 0), the geodesic

-oo<t<oo
satisfies

gr(Q'(0), a '(O)) = (Z, Z)o = 1.
REMARK. Recently, there has been a breakthrough in the development

of the theory of homogeneous spaces. One of the fundamental problems in
the theory is the following due to Hsiang-Lawson: Let G be a compact Lie
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group and let K, K' be its two closed subgroups. Does homeomorphicity
mean diffeomorphicity for G/K and G/K' ?

But M. Kreck and S. Stolz [K.S] found the following counter example.
Let G = SU(3), and k, t integers mutually prime. Then

eke
0

Tk,t 0 e'10
0 0

0
0 ;9ER ,

e-'(k+[)e

is a one-dimensional closed Lie subgroup of G and they showed that among
the family of 7-dimensional homogeneous spaces {G/Tk t ; k , t) , there are
distinct pairs (k , t) , (k', l') such that (i) G/Tk I and G/Tk. 1, are home-
omorphic, but (ii) G/Tk t and G/Tk. t. are not diffeomorphic. They claim
such pairs are

(k, t) = (-56788, 5227), (k', t') = (-42652, 61213).

The family of the above homogeneous space G/Tk r is famous: For all
(k, t), (i) G/Tk, admits a positively curved G-invariant Riemannian
metric (cf. [A.W]). (ii) G/Tk l admits a G-invariant Einstein metric (cf.
[W]). (iii) The spectrum of the Laplacian of the metric in (i) is determined
(cf. [Ur2], [Ur4]). Kreck-Stolz's result implies that there exist two positively
curved Riemannian manifolds which are homeomorphic but not diffeomor-
phic. It is very suprising that such a phenomena occurs among such rather
simple homogeneous spaces.

4.3. Infinite dimensional manifolds. In this subsection, we assume (M, g),
(N, h) are m, n dimensional compact C°°-manifolds, and (N, h) satisfies:

(i) N is a closed submanifold of the Euclidean space RK , and if t
N C RK denotes the inclusion, then

(ii) At = t'go, where go is the standard metric of RK
By J.Nash's theorem, we may always assume (N, h) satisfies the above.
In 1958, J.Eells [E] showed that the totality of smooth maps of M into N

can be regarded as an infinite dimensional smooth manifold, and this study
was developed into the study of harmonic mappings, one of the themes of this
book. It is also related to infinite dimensional Lie group theory (see [Om]).
We prepare some materials in analysis in order to state Eells' theorem for
more precisely.

(4.24) For k = 0, 1'... , oo , let Ck (M , RK) be the totality of all C"-
mappings of M into RK . We denote elements in Ck (M, RK) by

u=(u1,...,UK)ECk(M,RK),

where uA E Ck(M, R) = Ck(M), I < A < K . For k> 1 , we put

du := (du1, ... , duK), (4.25)
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where d uA , 1 < A < K , are Ck- I -1-forms on M. At each point x in M,
we take the following norms I - Ix , I - I :

K I/2

Idulx (Idu4IX) (4.26)
A=1 /
K 1/2

I u(x)I := (E uA(x)2) , X E M,
A=1

where the norm I Ix in the right-hand side of the first equality is the one on
7X M induced from the Riemannian metric g on M. We often abbreviate
x as Idul, Jul. Moreover, for I < p < oc, we define the II II1 D

on

C°°(M, RK) by

lluii1.D

(JdUPvg+fUPvg)I/P,
u E C°°(M, RK). (4.27)

M

We denote by L1 D(M, RK) the Banach space completion of C°°(M, RK)
with respect to the norm II - II 1. D We also denote by LD (M, RK) the Banach

space completion of C°° (M , RK) with respect to the norm II - lip defined
by

I/D

l

ul"vg) , u E C°°(M, RK).IIuIID
(IM

We also define the following norm on the totality C°(M, RK) of all contin-
uous mappings of M into RK :

IIuII0 := sup{Iu(xl ; x E M}. (4.29)

It is known (see [Sm], [Lw.M]) that

SOBOLEV'S LEMMA (4.30). (i) If I > c , m = dim(M), then we have

L1.D(M, RK)Cc0(M, RK),

and the inclusion is completly continuous.
(ii) If k - c > 1, k, t > 0. k and t are integers, then

Lk.D(M, RK) C C'(M, RK),

and the inclusion is completely continuous.
(iii) If k- m >I-21, k>t, k, I ER, then

Lk.D(M, RK) c Lt.v(M, RK),

and the inclusion is continuous. In particular, if k - c > 1 - v and k > 1,
then the inclusion is completely continuous.

Here the inclusion L1
D
(M , RK) C C°(M , RK) is said to be completely

continuous if whenever is is a bounded sequence in L1 D(M, RK) ; that
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is, there exists a positive constant C > 0 such that

II4iflI,o:C for all i=1, 2, ...,

73

then there exists a subsequence {0,& }k= which is convergent in C°(M, RK),

II'rk - 011. - 0 as -+ oc

for some 0 E C°(M, RK).
Now we explain Eells' theorem. In the following we always make the

important assumption:

1 >
m

, m = dim(M) (4.31)

which implies that by (i) of Sobolev's Lemma (4.30), each element in
LI o(M, RK) can be regarded as a continuous mapping of M into RK .
Thus, we can define the space

LI o(M, N) := {0 E LL o(M, RK); 4(x) E N, X E M}

C C°(M, N).

Then we obtain

THEOREM (4.33) (J. Eells [E], 1958). Assume that 1 > n , m = dim(M).
Then LL o(M, N) is an infinite dimensional C°°-manifold, and the tangent
space at ¢ E LI o(M, N), T4,LI ,(M, N), is

LI p(,-I TN) := {X E LI o(M, RK); X(x) E N#(x), X E M}. (4.34)

Before giving a proof of this theorem, we explain its meaning.

(4.35) The meaning of Theorem (4.33). Note that for each point y E RK ,
the tangent space TyRK is identified with RK itself. The differentiation of

the inclusion map I: N C RK at y E N,

di : TN--- TYRKQRK

is injective. We denote by NY, the subspace di(TTN) of RK . Any C°-
section of O-I TN is a continuous mapping X : M --- TN satisfying

X(x) E T#(XIN, X E M.

By the above, X can be also regarded as a continuous mapping X : M - RK
satisfying

X(x) E NN(X), x E M. (4.36)

Therefore, together with Sobolev's lemma (4.30), the left-hand side of (4.34)
can be regarded as the intersection of LI o(M, RK) and the totality of all
continuous mapping of M into RK satisfying X(x) E No(x) for all x E M.
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(4.37) L1
v(4-I TN) is a closed subspace of the Banach space

L1 p(M, RK), and then it is itself a Banach space.

In fact, for X, Y E L,.,(0_1 TN), A, A E R, let (AX + pY)(x)
AX(x)+pY(x), xEM.Then AX+µYELI o(M,RK),andforall xEM,
(AX+pY)(x) E N4X) since X(x), Y(x) E N4(X). Furthermore, if a sequence

{X,}°°1 in LI,(4-I TN) converges to X E L1 p(M, RK ) with respect to the
norm I) II ! c , then by Sobolev's lemma (4.30), it converges with respect to
II 1100 . Therefore, for each x E M, X; (x) - X (x) as i -. oo. Since
X1(x) E NdX) , which is a closed subspace of RK , X (X) E Nm(X) . Thus,

X E LI p(q-I TN) . 0
(4.38) We explain intuitively that LI o(4-I TN) is regarded as the tan-

gent space of L1 o(M, N) at 0.
In general, a tangent vector of a manifold M at p is by definition the

tangent vector c'(0) of a C'-curve c(t) through p, i.e., c(0) = p (cf. (2.2)).
At a point 0 of LI p(M , N) we may consider a C'-curve in LI o(M , N),

c, , : 19 t " cm(t) E L1 p(M, N), with c(0)=4). Here I is an open interval
containing 0. That is, is a one parameter family of C'-mappings
of M into N satisfying cc(0) = 0:

cc(t) M B x - cm(t)(x) E N c RK
{ cm(0) _ 0; that is, cm(0)(x) = 4)(x), x E M.

Then the tangent vector of cm(t) at t = 0 is

X:=dtlr=ocd(t)'

(See Figure 2.13.) This means that for x E M,

X(x) =
d

Idt

FIGURE 2.13
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and 19 t cb(t)(x) E N is a CI-curve in N through O(x) at t = 0. Thus,
since

X(x) = dt I_acm(t)(x) E T,(.)) V:':! No(x) C RK

it follows that

X : M RK , is a continuous mapping

With X(x) E Nix) , x E M.
(4.39)

Moreover, since t'-- ca(t) is a C'-curve in the Banach space LI P(M, RK),
X = E LI P(M, RK). Therefore, together with (4.39), we get
X E L1 TN).

Thus, we adopt L1(TN) for the tangent space T,,LI P(M, N) at
¢ E LI P(M, N), so in order to introduce a C°°-structure to LI P(M, N),
it suffices to show that L, ,,(M, N) is a manifold modelled by a Banach
space L, P(46- TN) .

REMARK. The definition of a manifold in subsection 2.1 is the one to
be modelled to a fixed Banach space E. In order to show how to equip
LI P(M, N) with a manifold structure, we should redefine the notion of a
manifold as follows (then several notions in §2 are given in a similar way).

DEFINITION (4.40). A Hausdorff space M is a manifold if for each point
p E M, there exists an open neighborhood U. in M containing p, and a
diffeomorphism a of U. onto an open subset a(U) of a Banach space EE .

Moreover, M is a Ct-(Banach) manifold if
(I) M = UQEA Ua'
(ii) f o r t w o (Ua , a1), (Uaz , a2) with Ua,

afl
U

:
# 0, the mapping

020 a2 I :k D a1(U01nUa.) - a2(U1nU =) c E isa C'`-diffeomorphism.
We call also (U., a) a coordinate neighborhood of M.

Now we start to prove Eells' theorem (4.33).

(4.41) The first step in proving Theorem (4.33). We give a coordinate
neighborhood around ¢ E LI P(M, N) as follows:

(i) First, we define the exponential mapping

expm : TLI.P(M, N) = LI P(0-I TN) LI P(M. N).
Let exp be the exponential mapping of (N, h). Then we define

expo : X'.- exp oX. (4.42)

The circle in (4.42) denotes the composition of two mappings. For X E
LI P(0-ITN), by means of X(x) E Nox) - T«X)N, X E M, we get
(exp o X)(x) := expdx) X(x) E N. Since N is compact, by Hoph-Rinow's
theorem (3.15), (N, h) is complete, so we can define expax) X(x). Since
0 E LI P(M, N), and X E LI p(0-I TN), we get exp 0 X E LI P(M, N).
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The mapping expm maps 0 E LI o(r-'TN) to 0 and is the one onto a
neighborhood of 0 in L, ,,(M, N).

Because if 0' E L1 o(M , N) is close to ¢ in the sense of the norm II II p
then it is close in the sense of II II© by Sobolev's lemma (4.30). Note
that any point y' in a neighborhood of y E N can be written uniquely as
y' = exp, u, u E T,,N. Therefore, for any x E M, there exists a unique
X(x) E T,O(X)N such that

0'(x) = expd(X) X(x).

Since ¢' E L1 p(M, N), we get X E Li p(4-' TN) and 0' = exp o X by
definition (4.42).

(ii) Using expe T,OLI p(M, N) LI p(M, N), we can define a co-
ordinate neighborhood of each ponit 0 in L1 p(M, N) as follows. Take a
sufficiently small neighborhood Vm of 0 in TmLI p(M, N) = Lj ,,(4) TN) ,

put Um := exp,(Vi) . Then we obtain a coordinate neighborhood of 0

expo : U, - VV a L1 p(4 'TN).

(4.43) The second step in proving Theorem (4.33). Choosing such two co-
ordinate neighborhoods U,,, U. with Usn Um, # 0, for 4) , 4)' E L1 p(M, N) ,

it suffices to show

4):= expm,' o expm LI.v(O 'TN) V0 -. Vm, c L1.v(- -STN)

is a C°°-diffeomorphism. See Figure 2.14.
For X E VO, Y = 4)(X) is determined as expm(X) = expm, (Y) , i.e.,

expaX) X (x) = expm,(X) Y(x), x E M M. Since the diffeomorphisms of the

neighborhoods around 4)(x) , 4)'(x) into open sets in R" are given by exp-x) ,

expm,1X) and satisfy Y(x) = o exp,(X))X (x) , the mapping IF defined
by

'YX := expm,'(X) o exp,(X), x E M

is a C°°-diffeomorphism by definition since N is a C°°-manifold. Show-
ing that 0 is a C°° mapping of an open subset in L1 o(4-' TN) onto
an open subset in L1 o(4)'-'TN) reduces to proving the following lemma

using the definition of 0, the inclusions L1 p(4-'TN), L,,,(4)'-'TN) c
Li p(M, RK) and the partition of unity on M (cf. subsection 3.6). See
Figure 2.15.

LEMMA (4.44). Let 1 > v , m = dim(M). Let V be a coordinate neigh-
borhood in M, and let U be an open set in M satisfying t1 e V. Assume
that the mapping

'Y: VxRK9(x,4)-'F(x,4)ERK
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exp,

FIGURE 2.14

T«,,N? R" T.,:)N ? R"

FIGURE 2.15
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satisfies the following conditions

(i) For E Rk , the mapping V 9 x F-. `P(x, ) E Rk belongs
to LI P(V , RK) . Denoting its norm by I ,P . then C

C)III,P is continuous.

(ii) For each x E V, the mapping RK 9 -+ %P(x, ) E RK is C°° .

Then it follows that.

(1) Defining 'PoX(x):=`P(x,X(x)), xE U. for XELI P(U,R"),
IF o X belongs to LI P(U, RK).

(2) The mapping 4V : LI.P(U, RK) 3 X " `P o X E LI,P(U, R K
) is a

C°°-mapping of the Banach space LI P(U, RK) into itself

PROOF OF THE LEMMA. (1) By means of the composition rule of differen-
tiation, the differentiation of the mapping x `P(x, X(x)) is

d,'P(x, X(x))!(x, X(x)) + 8_ (x, X(x))dxX.

Therefore, we get

fu Id 'P(x, X(x))I° dx)
UP

I
< Cfu

1(x, X(x))IPdx

+ fu (X(x))IP

IdxXI°dx\

< CEpfuIa (x,
)IPdx)I/P

+(
supIB (x,X(x))1° f

I/P
<00.

XEU

Here we use the fact that {X (x) E RK ; x E U) is bounded in RK. By a
similar argument, we get fu I `P(x , X(x))r dx < oo, so we obtain (1).

(2) If t F-, X, is a C°°-curve in LI P(U, RK ) satisfying X° = X at t =
0, then t i- `P(., is also a C°°-curve in LI P(U, RK) since `P(x, )

is C°° in . So using Zorn's proposition (1.12), we can show that 0 is
C110. 0

Thus, we obtain Theorem (4.33). 0
Before closing Chapter 2, we explain connectivity with regard to C°(M,N).

(4.45) Connectivity about C°(M, N) and the homotopy. Here we explain
the connectivity about the set C°(M, N) of all continuous mappings of M
into N, briefly. See [Ml] for more detail. Two points , v in C°(M , N)
are called connected if there exists a continuous curve 0 < t < 1 in
C°(M, N) satisfying 00 = 4 6 and 0I = v .



EXERCISES 79

4o=

FIGURE 2.16

That is, putting

F(t,x):=¢,(x), XEM, tEI=[0, 11,

F satisfies

(1) F: I x M - N is continuous,
(2) F(0, X) _ O(x), X E M,
(3) F(l, x) = w(x) , x E M .

In this case, the continuous mappings 0, w are called to be homotopic and
we write 0 - V. See Figure 2.16. This is an equivalence relation:

(i) 4 ' .

(ii) w implies w -
(iii) 46 - V, and w " q implies ¢ 1.
We call the set of all equivalence classes [fl, ¢ E C°(M, N), the free

homotopy, denoted by [M, NJ. In particular, if M = S' (m-dimensional
sphere), then [S", NJ admits a natural group structure. This group is called
the m-th homotopy group of N, denoted by a,"(N). al (N) is called simply
the fundamental group of N. If al(N) = 10), then N is called simply con-
nected. Since S° = {-1, 1 I, the number of all elements of 7r°(N) coincides
with the number of connected components of N. In general, [M, NJ does
not consist of just one element and then C°(M, N) is not connected.

Exercises

2.1. Let E, F be two Banach spaces, let B : E x E -. F be a continu-
ous bilinear mapping. Define a mapping f of E into F by f(x) _
B(x, x), x E E. Then prove the following-

(i) df, (x) = 2B(p, x), p, x E E,
(ii) d2fo(x, y) = 2B(x, y), p, x, y E E,
(iii) d3fo = 0, p E E, thus f is a C°°-mapping.

2.2. In the totality L(E, F) of all bounded linear mappings of a Banach space
E into another one F, define addition, scalar multiplication, and norm
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by

(2T1 +,uT2)(x) := AT, (x) +#T2(x),
A,14 ER, T1, T2EL(E,F), XEE,

IITII := sup{IIT(x)II/IIxII; 0 # x E E}, T E L(E, F).

Show L(E, F) is a Banach space.
2.3. For an n-dimensional Riemannian manifold (M, g), show that

div(X)g(ei,V X) = 1 E 8 (vg-X1),ex.
i-I i=I

for X = =1Xiax E 1(M). Here {e1}=1 is an orthonormal frame

field and = det(gij) .

2.4. For f , f, , f2 E Coo(M) , show that

(i) gradf = E 1 ei(f)ei = E".i=1 g`jaI ,

(ii) g(8radf1, 8mdf2) = g(df, , df2)
2.5. For f E C°°(M), show that

of = -divgraaf = -71= ax `fig ax.
E a (

ilafi.;=1 i
"

i
82 f

n r of /

" 2

) _ (e. f - v e. f)
i.!=1

g OX OXj
k=I

i8xk i=1 r, ,

2.6. Show that
n

8q = -1:(Ve,1)(ei) = -div(X), q E AI (M),
i=1

where X E 1(M) is determined by g(X, Y) = ,(Y), Y E 1(M) .

2.7. Show that
r+l

dct)(X1 , ... , Xr .1) =
E(-l)i+l (VX,W)(X1 , ... , Xi , ... , 'Yr+1)

i=1

for coEA'(M), X1, ..., X,+1 E1(M).
2.8. Let {vi}n 1 be a basis for R", and let A = {E" 1 mivi ; mi E Z, I <-

i < n} . Show that the Riemannian metric gA on R"/A induced from
the standard one go on R" has the form

n

gA = gi j d yi ®d yj.
i.j=l

Here giJ = (vi , vj) where ( ,) is the standard inner product, and
(y1, ... , y,,) is the local coordinate given by R"/A 9 n(E 1 yi vi) 3'-'
(YI, Yn)
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2.9. Show the vector field (4.12) 1 in Example 1 (4.11) is left invariant on
GL(n, R), and the equations

[1, k) _ [X, Y]-, exp(X) = ex,

for X, Y E gl(n, R).
2.10. In (4.13) Example 2, show that O(n), SO(n) are compact closed Lie

subgroups of GL(n, R), and U(n), SU(n) are compact Lie groups.
Moreover, show that so(n) is Lie algebra of O(n), SO(n) and that u(n),
su(n) are Lie algebras of U(n), SU(n), respectively.





CHAPTER 3

Morse Theory

To study the topology of the manifold, M. Morse developed the theory,
called Morse theory, of minima and maxima of a function on a manifold. In
the early 1960's, R. Palais and S. Smale studied the theories of critical points
of a function on an infinite dimensional manifold to apply the variational
method. They clarified that the socalled condition (C) is necessary for a
given function to admit a minimum. However, to satisfy the condition (C),
we need the borderline estimate of Sobolev's lemma. We explain this theory
in this chapter.

Unfortunately, many interesting variational problems do not satisfy the
condition (C). To overcome this difficulty is one of the main problems in the
fields of analysis and geometry. We shall show one of the methods to solve
it in Chapter 6. This method is due to K. Uhlenbeck.

§1. Critical points of a smooth function

1.1. Introduction. We start with the study of the behavior of a given
function on a neighborhood of the origin in the Euclidean space near its
critical point. For examples, we consider the following functions on the xy-
plane:

(i) j1 (x , Y) = x2 + Y2,

(u) f2(x,Y)=-x2+y2,
(iii) f3(x , Y) = -x2 - y2 ,

(iv) j4(x,Y)=Y2.
For these functions, one can see easily their graph by their form, and we

know their behavior around the (x , y) = (0, 0) . (See Figure 3.1, next page.)
As above, if a given function on R" around the origin 0 is written in the

following form (called the canonical form)

j(x)=j(x,,...,x")=./(0)-x12-...-xx2+xA+12+...+x"2, (I.I)

then one can see the behavior of a function around the origin. The following
Morse lemma guarantees this.

51
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MORSE LEMMA (1.2). Assume that a given smooth function f(x) =
Ax. , ... , x") on a neighborhood of a point p = (pi, ... , p") of R" satisfies

(1) 8xI (p) 8x" (p) = 0,

and

2

(ii) the n x n matrix (Oxjaf (p)) is nonsingular,
oxj

that is, the determinant is not zero. Then by changing the variable y, =
x , ) .

reduce to

f(ys, ... ,y")=f(p)-y,2-...-ya2+yd+12+...+y"2. (1.3)

Here a point p is a critical point of f if it satisfies (i) of the Morse
Lemma (1.2). The matrix in (ii) in (1.2) is called the Hessian of f at the
critical point P, and the number A, i.e., the number of the negative terms
-y,2 , (I < i < A) is called the index which influences greatly to the graph

/: X. y' _ - r2 * v:

!, X. V - u:

FIGURE 3.1
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of f . The index coincides with the number of the negative eigenvalues of
the Hessian. If (ii) in (1.2) is satisfied, then the critical point p is called
nondegenerate. It turns out that a nondegenerate critical point p is isolated;
there is no other critical point in some neighborhood of p. In general, a
critical point might be degenerate like the function in (iv), and the Hessian
might have zero as an eigenvalue. The multiplicity of the zero eigenvalue is
called the nullity of the critical point.

Let f be a differentiable function on a finite dimensional smooth manifold
M. Then P E M is called a critical point of f if it satisfies dfp = 0. This
is equivalent to u(f) = 0, for each u E T;M. Studying this critical point
of a smooth function on M is very useful for studying the topology of M.
Such a theory is called Morse theory. For instance, it is known (see [Ml] for
more detail) that

THEOREM (1.4) (Reeb). A compact n-dimensional C°°-manifold that ad-
mits a smooth function with only two nondegenerate critical points is homeo-
morphic to a sphere.

1.2. Critical points and regular points. We start with a finite or infinite
dimensional Ck-manifold as in §2 in Chapter 2.

Let M be a CI-manifold, and let f: M- R be a C1-function on M.
Then by definition, for any point p E M, the differentiation dfp : T,M -' R
is a bounded linear mapping. If p E M is a critical point of f at p if
dfp = 0, that is, dfp(u) = u(f) = 0, for all u E T,M (which implies,
intuitively, the differentiations at p in all directions vanish). Otherwise, p
is a regular point. For any c E R, f 1 (c) is called a level set (of height c ).
f_1(c) is called regular if any point in it is regular. Otherwise, f-' (c) is
called critical. Moreover, c is a regular value (resp., a critical value) if f' (c)
is regular (resp., critical). (See Figure 3.2.)

In the following, we always assume that M is a C2-manifold and f is a
C2-function on M.

FIGURE 3.2
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PROPOSITION (1.5). Let p E M be a critical point of f. Then there
exists a unique bounded symmetric bilinear mapping

H(f)p : T,M x TM - R,
such that for any coordinate neighborhood (Uo , a), a : U. -. E ,

H(f)p(u, v) = d2(f o a-I )a(p)(da(u), da(v)), u, v E T,M, (1.6)

where da(u), da(v) E TQ(p)E = E. H(f)p is called the Hessian off at p.

PROOF. By definition, f o a-' is a C2-function on an open set a(UQ )
in a Banach space E (cf. subsection 2.2 in Chapter 2) and its second dif-
ferentiation with respect to the directions da(u), da(v) coincides with the
right-hand side of (1.6). It suffices to show that H(f )p is independent of
the choice of (U(,, a). We need the following lemma:

LEMMA (1.7). Let U, U' c E, be two open sets, and let q : U U'
be an onto Ckdifleomorphism (k > 2), let f : U' -' R be a CZ function ,
and l e t g := f o 9P : U R. If d gp = 0 at p E U. then

d2gp(u, v) = d2fi(P)(dpp(u), dfop(v)), u, v E E.

PROOF. For X E U, and U, v E E, we have that dgX = dfi(X) o d qx and

d2gX(u, v) =d2f,(X)(dcDX(u),
cX(v)+dfr(X)(d29pX(u,

v)).

Letting x = p,
0=dgp=df,(p)odfop.

Since {p is a Ck-diffeomorphism, djPp is a linear isomorphism, so that
df,(p) = 0; that is, the second term of the above equation vanishes, which is
the desired result. 0

PROOF OF PROPOSITION (1.5) CONTINUED. We take two coordinate neigh-
borhoods a : U.-E, fl : U.-E. Put q := a o fl 1 : fl(UQ n U,)

a(UQ n U.) which is a C2-diffeomorphism. Then for U, v E TM, we get

da(u) = dq(df(u)), da(v) = djP(df(v)).

Then we obtain

d2(f o a-I )a(p)(da(u), da(v)) = d2(f o a-I )o(p)(d9P(df(u)), dc(df(v))

= d2(f o a-I o p)0(p)(dP(u), df(v)) (by Lemma (1.7))

= d2(f o r_I),(v)(dfl(u), dfl(v)). 0

DEFTNmoN (1.8). Abounded symmetric bilinear mapping B : E x E
R on a Banach space E is called nondegenerate if we can define a bounded
linear mapping T: E 3 v T(v) E E' by

T(v)(w) := B(v, w), w E E,
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such that T is a linear isomorphism of E onto E'. Otherwise, T is called
degenerate. The index is by definition

sup{dim(W) ; B is negative definite on W},

where W runs over all subspaces of E. Here B is negative definite if

B(v, v) < 0, for all nonzero v E W.

The nullity of B is

dim{v E E; B(v, w) = 0, for all w E E}.

Both the index and nullity may be infinite.
DEFINITION (1.9). Let f : M -+ R be a C2-function on a C2-manifold

M, and let p E M be a critical point of f. Then p is called degenerate
(resp., nondegenerate) if the Hessian H(f )o : TDM x ToM R is degenerate
(reap., nondegenerate). The index (resp., nullity) is the index (resp., nullity)
of the Hessian of fat p. A critical point p is weakly stable if the index of
f at p is zero; that is,

H(f)p(u, u) > 0, for each u E T;M.

Note that the minimizer of f is always weakly stable.

MORSE LEMMA (1.10). Let H be a Hilbert space, let U be a convex
neighborhood of 0 in H, and let f : U R be a Ck+2 function, k > 1, with
f (O) = 0. Assume that 0 is a nondegenerate critical point of f. Then there
exist an open neighborhood V of 0 contained in U and a Ck-d, eomorphism
qP : V V of V into itself with qq(0) = 0 and

f(w(v)) = IIPvII - II(1- P)v112, V E V,

where P : H -+ H is a projection (see subsection 1.3).

REMARK. If H = R" , then (1.10) is (1.2).

1.3. Spectral resolution of a selfadjoint operator. We review basic facts
about a selfadjoint operator on a Hilbert space which are necessary to explain
the Morse Lemma (1.10). See Yosida [Y] for more detail.

(1.11) (Selfadjoint operators) The adjoint operator of a bounded operator
A : H -» H of a Hilbert space (H, (, )) is a bounded operator A' : H --
H satisfying

(Ax,y)=(x,A'y), x, yEH.
A bounded linear operator A is called selfadjoint if A = A*; that is,

(Ax, y) = (x, Ay), x, y E H.

A selfadjoint operator P : H - H is called a projection if P2 = P, where
P2 := P o P, the composition.

(1.12) (Resolution of the identity) A family {E(A) ; -oo < A < oo} is
called a resolution of the identity if it satisfies
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(0) E(A) is a selfadjoint operator of (H, (, )) and satisfies E(A)2 =
E(A),

(i) E(A) o E(µ) = E(min{A, µ}) ,

(ii) E(-oo) = 0, E(oc) = 1, lim2_,,+o E(A) = E(p).
Here 0, 1 are the null operator and the identity operator, respectively.

E(-oc) := limi__,,E(el), E(oc) := limx_.0E(d), and limA_,,+o E(A) _
E(µ) is strong convergence; that is,

urn II(E(A) - E(u))xII = 0, x E H.
ALM

By (i) of (1.12), the operator E(a , 8] := E(fl) - E(a) is a projection.
Moreover, by (1), (ii), for all x, y E H, the function A (E(A)x, y) in
A, is said to be of bounded variation; that is, for any division A of [a, b],
A: a=X10<A, <...<2, =b,

II(E(A,) - E(A,-. ))xll < C < 00.

Here C is a positive constant depending only on a, b, x E H.
(1.13) Given a resolution of the identity {E(A) ; -oc < A < oo} and

a real-valued continuous function f (A) on R, and x E H, the integral
b d) dE(A)xj( ()x with values in H on [a, b] is defined as follows: For any

division of [a, b), A : a = A0 < Al < < An = b, consider the Riemann
sum

n

Ef(xt)E(A+-1, A.)x E H,

where x; E (2;_I , A,] is chosen arbitrarily. Then as J(A) := max,.,,,,,n(A, -
Ai_ 1) tends to zero, there exists a limit in (H, (, )),

n

lira E f(x,)E(A,_I , A,]x

denoted by fb f(A) dE(A)x . We denote by 1)1(H), the set of all x E H
such that the Riemann-Stieltjes integral f o, f(A) dIJE(A)x112 of the function

A .- IIE(A)x1I2 of bounded variation, is finite. Then it turns out that D1(H)
is a dense subset of H and for all x E D f(H) ,

Afx := f(A) dE(A)x E H
00

is well defined. In general, for any Borel measurable function f (A) , the
operator Af : D f(H) - H is well defined. Moreover, if f is bounded
measurable, then D1(H) = H and Af is well defined on the whole space H
and is a bounded selfadjoint linear operator.
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(1.14) Spectral resolution of a selfadjoint operator. Conversely, for any
bounded selfadjoint linear operator A with f (A) = A, there exists a unique
resolution of the identity {E(A) ; -oo < .l < oo} such that

°° 00A =
foo

A dE(A), i.e., Ax = f AdE(A)x E H, X E H.

(1.15) Spectrum of a bounded selfadjoint operator. For a bounded linear
selfadjoint operator A of a Hilbert space (H, (, )), the set of all A such
that the inverse (A I - A)-1 of A I - A is a bounded linear operator of H
is called the resolvent of A, denoted by p(A), and its complement is called
the spectrum of A, denoted by o(A) := R\p(A). Then

A = f A dE(A) = f AdE(A),
°° (A)

and if we define ra(A) := called the spectral radius of A,
then

ra(A) < IIAII and ra(A) = sup IAI. (1.17)
AEa(A)

1.4. Proof of Morse Lemma (1.10).

(1.18) The first step. Assume that there exist a neighborhood V of 0 and
a Ck -diffeomorphism yr V -. V with V(O) = 0 such that f is given by

f(v) _ (AW(v), V(v)), V E V, (1.19)

where A is an invertible selfadjoint operator. Then we prove Lemma (1.10).
Let A = j L A dE(A) be the spectral resolution of A. Let h (A) be the

characteristic function of the half interval [0, oo). That is,

h(A)=0 (-oo<A<0) and h(A)=1 (0<,1<oo).

Define
00

P := Ak = f
00

Then by the definition of h ,

h(A) dE(A).

A) = E(oo) - E(0) =1- E(0).P = Joo dE(

Thus, P2 = P. On the other hand, since A is invertible, 0 f a(A). Taking
g(A) := IAI-1j2 , we see that g(A) is continuous and never vanishes on a(A).
Thus, we can define an invertible selfadjoint operator on H by

T:= A, =
foo

g(.1) dE(A)
00

which commutes with A. Note that if A # 0, then

A g(A)2 = A IAI-I = sgn(A) = h(A) - (1 - h(A))
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which implies by (1.13) that

AT2 = P - (I - P). (1.20)

Therefore, we can take q := iv-1 o T as the 9 in Lemma (1.10). In fact,
q(0) = 0, and !n is a Ck-diffeomorphism of a neighborhood of 0 and satisfies

f(,P(v)) = f(w-,Tv)
= (ATv, Tv) (by (1.19))

= (AT2v, v) (since T is selfadjoint and commutes A)
= (Pv, v) - ((I - P)v, v) (by (1.20))

= IIPvI12 - II(I - P)v112

since P, I - P are projections. This is the desired result.

(1.21) The second step. The yv, A in the first step are obtained as fol-
lows: For f, take p = 0, x = v, and apply Taylor's theorem ((1.28) and
the remark below it in Chapter 2) for k = m = 2. Then we get

f (x) = f (O) + dfo(v) + R2(v)(v , v).

But since f(0) = 0 and dfo(v) = 0, we have

f(v) = R2(v)(v, v). (1.22)

Then R2 is a bounded symmetric bilinear mapping defined on U

R2 : U 3 v' - R2(v) E L2(H; H).

Therefore, by a suitable selfadjoint operator A(v) of H, R2 can be written
as

R2(v)(w, z) = (A(v)w, z), w, z E H.

Moreover, since R2(0) _ Id2f0, we obtain

(i) f(v)_(A(v)v,v), VEU,
(ii) d2f0(v, w) = 2(A(0)v, w), V , W E H, (1.23)

(iii) A(0) is invertible.

(iii) follows from the assumption that 0 is a nondegenerate critical point of
f.

Therefore, define A := A(0) , and define v as in the following procedure:
By (iii) in (1.23), taking a sufficiently small neighborhood U of 0, we may

assume A(v) is invertible for all v E U. So, putting

B(v):= A(v)-'A(0), V E U,

B is a Ck-mapping U - L(H, H), each B(v) is invertible, and B(0) =1.
Remembering the binomial expansion formula for a real a,

(1 +x)° = 1 +
1)

1xI <
1! n!



§ 1. CRITICAL POINTS OF A SMOOTH FUNCTION

we define, taking a smaller U if necessary,

C(v) := B(v)1/2 , v E U.
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Then C is also a Ck-mapping U L(H, H), and each C(v) is invertible.
Then

C(v)'A(v)C(v) = A(0), i.e., A(v) = C1(v)'A(0)C1(v), (1.24)

where C1(v) := C(v)-1 . Because, since A(0) and A(v) are selfadjoint,

B(v)'A(v) = (A(v)-1 A(0))'A(v) = A(0) and A(v)B(v) = A(0).

Then
B(v)'A(v) = A(v)B(v).

This holds for all polynomials in B(v) and all series in B(v) which are
limits of polynomials. Therefore, it holds for C(v) = B(v)1/2 :

C(v)'A(v) = A(v)C(v).

Thus, for the right-hand side of (1.24),

C(v)'A(v)C(v) = A(v)C(v)2 = A(v)B(v) = A(0)

which is (1.24).
So we define

y/(v) := C1(v)v. (1.25)

Then W is Ck on the neighborhood U of 0, and furthermore, by (i) of
(1.23),

f(v) = (A(v)v, v)
= (C1(v)'A(0)C1(v)v , v) (by (1.24))

= (A(0)C1(v)v, C1(v)v) (by definition of C1(v)')

= (Ayi(v), yi(v)) (by definition of A and yr.)

Here we shall show that d W0 : H - H is an isomorphism. Then by the
inverse function theorem ((1.30) of Chapter 2), w is a Ck -diffeomorphism
of a neighborhood of 0 as desired.

(1.26) The third step. d W0 = I : H - H. In particular, d yio is an
isomorphism.

In fact, differentiating W(v) = C1(v)v in the direction w at v , we get

d pU(w) = dt r_0C1(v + tw)(v + tw)

= jC1(vI

=
+ tw)v + C1(v)w.tr0

Here putting v = 0, the first term of the above vanishes, so we get

dyi0(w) = C1 (0)w, w E H.



92 3. MORSE THEORY

But note that
CI(0) = C(0)-I = B(0)-"2 = I

which implies, together with the above, that d wo =1.

COROLLARY (1.27). Under the assumption of the Morse Lemma (1.10), the
index of f at 0 coincides with the dimension of

range(I - P) := {(I - P)u; U E H}.

PROOF. By the equation of the conclusion of the Morse Lemma (1.10),
we get the estimate index < dim range(I - P). We shall prove the reverse
inequality. By definition of the index, it suffices to show that the operator
I - P is one to one on W if W is a subspace of H on which d2 fo is
negative definite. Indeed, this can be shown as follows. Suppose to E W
satisfies (I - P)w = 0. Then by the Morse Lemma (1.10),

2

d2fo(w, w) = d2I {(P(tw), P(tw)) - ((I - P)(tw), (I - P)(tw))}
d t r=0

=211Pw112-211(1-P)w112=211Pw112>0.

Therefore, if to E W is nonzero, then d 2 fo(w, w) < 0, which contradicts
the above. Thus, w = 0.

1.5. The canonical form at a regular point. By the Morse Lemma (1.10),
we determine the form of f at a nondegenarate critical point. In this sub-
section, we shall show that f is of linear form around a regular point.

PROPOSITION (1.28). Let U be an open neighborhood of 0 in a Banach
space E. and let f : U - R be a Ck function on U satisfying f (O) = 0.
Assume 0 is a regular point of f. Then there exists a neighborhood W
contained in U on which f is of the following form:

f(p(v)) =I(v), V E W,

where q+ : W -. U is an into Ck-difleomorphism and I : E -' R is a
bounded linear mapping.

PROOF. Let l := dfo jt 0. We choose x E E satifying t (x) = 1. Let
N:= {v E E; t(v) = 0). Then the linear mapping

T: E9v.- T(v):=(v-t(v)x,l(v))ENxR
is an isomorphism. The injectivity is clear. The surjectiveness is as follows.
For (vo, a) E N x R, we put v := vo + ax. Then we get T(v) = (vo, a).

Now define

w: U9v'-» w(v) =(v-l(v)x, f(v))ENxR.
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Then w is Ck and

w(u + tv)d wu(v)
d

11-0dt_

(L0tv-t(u+tv)x), f(u+tv))dteo
_ (v - t(v)x, dfu(v)).

In particular, we obtain

dwo(v) = (v -t(v)x, dfo(v)) = T(v), i.e., dwo = T.

Therefore, by the inverse function theorem ((1.30) in Chapter 2), q' := w-I T
is a Ck -diffeomorphism of some neighborhood of 0 in E into E satisfying
ip(0) = 0. Moreover, we have

f(PM) = t(v), v E W.

Because if we put v' := w-1 Tv , then

(v'- t(v)x, f(v')) = w(v) = Tv = (v - t(v)x, t(v)).

Therefore, we obtain f(v) = 1(v).

COROLLARY (1.29). Let M be a Ck-manifold f : M - R a Ck function,
(k > 1). Assume that a E R be a regular value off . Then the level set f- (a)
is a C" -closed submanifold of M.

PROOF. For P E f- 1 (a) , let UQ , a : U. -+ E be a coordinate neighbor-
hood of p. Then define a Ck-function i:= f o a-I - f(p) on a(UQ) C E.
Apply Proposition (1.28) to 1. There exist a neighborhood W of 0 con-
tained in a(U) and a Ck-diffeomorphism 9 : W -. a(U0) such that
f(,p(v)) = 1(v), v E W. Then letting W1 , W2 be neighborhoods of 0 in
N = {v E E; t(v) = 0} and R, respectively, satisfying T-1(WI x W2) C W,
it turns out that

UQ := a-I(Sp(T-I(WI x {0})))

is the disired coordinate neighborhood of p in f- 1(a) .

1.6. Gradient vector fields.
(1.30) Let (M, g) be a Ck+1_Riemannian manifold, and let f : M --+ R

be a Ck+I -function. Then at each point p E M, dfp : TDM - R is a
bounded linear mapping, so there exists a unique vector, say (V f)p E ToM,
satisfying

dfp(v) = gp(v, (Vf )p), v E TDM.

We call (V f)p the gradient vector of f at p, and

Vf: M3pI-(Vf)pETDM
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the gradient vector field of f . (We wrote grad f in (3.25) in Chapter 2. Next
(1.31) is clear from (3.26) in Chapter 2 in the case dim(M) < oo. )

(1.31) The gradient vector field V f is a Ck-vector field on M.
PROOF. Let (U°, a), a : U° -+ H be a coordinate neighborhood in M,

(H, (, )) a Hilbert space which is a model of M. We define a mapping

T: H'3le-'TIEH
by

t(v)=(v,Ti), vEH, t EH*.
Then T is a linear isomorphism, so it is a C°°-mapping ((1.16) in Chapter
2). The function h := f o a-' is a Ck+I-function on a(U°), and then
the differentiation dh : U -» H' is a Ck-mapping. Thus, A := T a dh :
a(U°) -. H is also Ck . Moreover, for X E U°, v E H, we get

(G°(x)daX(Vf)X, v) = gg((Vf)X, d(a-')v) (by (2.32) in Chapter 2)

= dff(d(a-I )v) (by definition of of)
= dh°(X)(v) (definition of h and the composition rule)

= (v , T dhO(X)) (by definition of T).

Since V E H is arbitrary, we get

daX(vl)X = G°(x)-I T dh°(X),

where x _ G°(x)-i E L(H, H) is Ck , and x s- T dh°(X) is Ck , so we can

conclude that x -+ d aX (V f )X is Ck as desired. O

The following is clear.
(1.32) (V f)p = 0 e--* p is a critical point of f.
Thus, the set of all critical points coincides with the nullset of IIVJ1I

Moreover, since

/,, /(Vf)f(p) = dfp((V )p) = gp((Vf) , (V/)p) = II(Vf)pIIZ,

(V f) f > 0 on the set of regular points of f .

§2. Minimum values of smooth functions

In this section, we show which smooth functions admit minima. In the
following argument, the condition (C) given by Palais and Smale is essential.

2.1. The condition (C). Assume that (M, g) is a Ck+i-Riemannian man-
ifold and that f : M -' R is a Ck+t-function (k > 1).

DEFINITION (2.1). f satisfies the condition (C) if the following holds:
Assume a subset S of M satisfies (2.2).

f is bounded onS, and inf IIVfII = 0. (2.2)
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Then there exists a point p in the closure S of S such that p is a critical
point of f , i.e., V f, = 0.

EXAMPLE. Consider the following two functions on M = R given of § I
in Chapter 1:

(i) f (X) = x2 , -oo < x < oo ,

(ii) g(x) = ex , -oo < x < oo .
Then f satisfies the condition (C) and takes a minimum at x = 0, but g

does not satisfy the condition (C) and takes no minimum.
In fact, if we take S:= (-oc, a], then g(x) > 0 on S and it follows that

infxES g'(x) = 0. But there is no element x in S = S such that g'(x) = 0;
thus, g does not satisfy the condition (C).

By Weierstrass' Theorem, any continuous function on a compact set admits
both minimum and maximum. But this is a rather delicate problem for a
continuous function on a noncompact set. The above simple example suggests
that the condition (C) is essential. The condition (C) is very similar condition
to "a given function is defined on a compact set ". It seems that the naming
of the condition (C) by Palais and Smale comes from "compactness". We
shall show that under the condition (C), every thing is OK as on a compact
set.

2.2. Minima of smooth functions.

PROPOSITION (2.3). Let (M, g) be Ck+2-Riemannian manifold, and let

f : M R be a Ck+2 function (k > 1). Assume that f satisfies the
condition (C) and admits only nondegenerate critical points. Then for any
two real numbers a < b, the set of all critical points p of f satsifying
a < f (p) < b is finite. In particular, if c is a critical value of f , then the set
of all critical points of f contained in f- 1 (c) is finite.

PROOF. Assume that the conclusion is false. Then there exists a sequence
of mutually distinct critical points {p.)', of f satisfying a < f (p.) <
b. Since prt is nondegenerate, by the Morse Lemma (1.10), there exists a
neighborhood such that f admits no other critical point. Thus, such critical
points are isolated. Thus, for each n, there exists a regular point q of f
satisfying that

IIvf II<n and

Then w e apply the condition (C) to the set S := {q,,; n = 1, 2, ... ) and
choose a subsequence I of (q.1', convergent to some point p
which is a critical point of f . But, by qqt) < 1Ink ,
p . This implies that nondegenerate critical points of f converge to a critical
point of f , which is a contradiction.

PROPOSITION (2.4). Let (M, g) be a complete Ck+'-Riemannian mani-
fold and let f : M -' R be a Ck+I function satisfying the condition (C),
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(k > 1). Let a : (a, fi) -s M be a maximal integral curve of V f defined
an open interval (a, P). Then we have

(i) either lim,-, f(a(t)) = oo, or fi = oo and if t -. oo, then a(t) admits
a critical point as accumulation point.

(ii) Either lim,, j(o(t)) = -oo, or a = -oo and if t -' -oo, then o(t)
admits a critical point as accumulation point.

Before going into the proof, we prepare with the following:
We define the length of a C'-curve defined on an open interval. For a

C' -curve a : (a, b) --- M, , the length of a is by definition

L(o) := lim f. III (t)II dt.
0-b °

L(a) may be infinite. If L(a) < oo, then for any e > 0, there exists a
division of (a, b), A : a = to < ti < . < In = b , such that, for anyi=1, n,

J

t,

IIa (t)II dt < E.

Therefore, if B,(p) := {x E M; p(x, p) < r} for r > 0 and p E M,
n

a((a, b)) C UB,(a(ti)).
i=1

That is, o((a, b)) is totally bounded. Therefore, we get

LEMMA (2.5). Let (M, g) be a Ck+'-Riemannian manifold, (k > 1),
and let or : (a, b) M be a C'-curve with L(o) < oo. Then or ((a, b)) is
totally bounded in M. In particular, if (M, g) is complete, then the closure
of o((a, b)) is compact.

LEMMA (2.6). Let (M, g) be a complete Ck+'-Riemannianmanifold (k >
1). let X be a Ck-vector field on M, and let a : (a, b) -s M be a maximal
integral curve of X. Then

(i) if b < oo, f' IIX(a(i))Il dt = oo. In particular, IIX(a(t))II is un-
bounded on [0, b).

(ii) If -oo < a, then f0IIX(a(t))Il dt = oo. In particular, IIX(a(t))II is
unbounded on (a, 0).

PROOF. Since o(t) is an integral curve of X, a'(t) = X(a(t)). Therefore,
if fo II X(a(t))Il dt < oo, we get fo Ila'(t)II dt < oo. By Lemma (2.5), the
closure of a((0, b)) is compact. Then a(t) has an accumulation point if
t -s b. This contradicts Theorem (2.29) in Chapter 2. (ii) follows by a
similar argument. D

PROOF OF PROPOSITION (2.4). We prove (i). (ii) follows by a similar argu-
ment. Let g(t) := f(a(t)). Then

g'(t) = dfo(,)(a'(t)) = dfC(,)(VfO(,)) = Ilofa<<)112 > 0.
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Thus, g(t) is nondecreasing, so lim,_,, g(t) exists, say B. Assume that
B < oo. We shall show f = oc and o(t) has an accumulation point which
is a critical point of f as t - oc . Note that

g(t) = g(O) + I r g'(s) ds = g(O) +
1

r IIV f,(,)112 ds.
0 0

Thus, by the assumption that B < oc, we get ftt Ilofa(,)112 ds < w. By the
Schwarz inequality,

1/2

J

0

IIVff(,)11ds<pI/2(

Therefore, if .8 < oo, the right-hand side of the above is finite which implies
f' Ilof,(,)II ds < oc. But this contradicts (i) of Lemma (2.6). Thus, f = oo.

Moreover, since we get fo 11V10($)112 ds < oc, we have

lisminflloj,(s)112 = 0.
-00

Thus, there exists a sequence {s, }"o , which converges to 0o and Ilof,(,,) II -
0. The assumption that B < oo implies that {f(o(s)); 0 < s < oo} is
bounded, so applying the condition (C) to

1, 2,...},
o(t) has an accumulation point which is a critical point of f as t - oo.
0

PROPOSITION (2.7). Let M be a connected C' -manifold let f : M - R
be a nonconstant C '-function, and let K be the set of all critical points of f .

Then we have
f(K) = f(aK),

where aK :=17- K° is the topological boundary of K (K° is the interior of
K).

PROOF. It suffices to show that for all p E K, there exists an q E aK such
that j(x) = f(p). See Figure 3.3, on next page. Since f is nonconstant,
there exists q E M such that f(q) 0 f(p). Connect p and q by a C'-curve:

o: 1=[0, 1]-'M, C', o(0)=p, o(l)=q.
Define g(t) := j(o(t)). Then g'(t) = df,(,)(o'(t)) and g is nonconstant, so
g'#0. Thus, a(1)0K. Let

to := inf{t E I; o(t) f K},

and let x := o(t0) . Then X E aK and o'(t) = 0 for all t E [0, to]. Thus,
g(t0) = g(0) . Therefore,

f(x) = f(a(ro)) = g(to) = g(0) = f(p).
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e(to:

FIGURE 3.3

PROPOSITION (2.8). Let (M, g) be a C'-Riemannian manifold, let f :
M -+ R a C1 function satisfying the condition (C), and let K be the set of all
critical points off . Then for any two real numbers a < b, 0K n f'' ((a , b])
is compact.

PROOF. Let a sequence
1

in the set 8K satisfying a < f(p,,) < b.
We have to show that there is a convergent subsequence.

Since P,, E OK, we may choose the regular points qR of f which are
arbitrarily close to p,,. Since lI Vf II is continuous and Ilof,+ II = 0, we can
choose the q in such a way that

IIOfq+ II<n, and

We apply the condition (C) to S := {q ; n = 1, 2, ... } , so there exists a
subsequence {qn }k

1
of (q.)', which is convergent to some point of K,

k

say p. Then by p(p., ,
q.k)

< 1 ink , converges to p . D

THEOREM (2.9). Let (M, g) be a complete C`-Riemannian manifold, and
let f : M - R be a CZ function satisfying the condition (C). Assume that f
is bounded below on a connected component Mo of M. Then the restriction
of f to Mo attains this infimum.

PROOF. We need prove the theorem only in the case M = Mo. Let B:=
inf{ f (x) ; x E M). By definition, for any e > 0, there exists p E M such
that f(p)<B+E.

Let a : (a, fl) --, M be a maximal integral curve of V f . By the assump-
tion that f is bounded below and by (ii) of Proposition (2.4), a = -oo and
a(t) has an accumulation point which is a critical point of f as I - -oo.
By the proof of Proposition (2.4), f(a(t)) is a nondecreasing function in 1,
so

+ , E .

Since our theorem holds trivially in the case that f is constant, we may
assume f is not constant. So by Proposition (2.7), f(K) = f(OK). Then
there exists x E 8K such that

f(x) = f(q) < B+E.
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Thus, for e = n , we may take X. E 8K such that

B<f(9)=f(x,,)<B+n.

However, by Proposition (2.8), f-'([B, B + 1]) n OK is compact. Thus,
(x,}' I has a covergent subsequence, say {x,, }k . convergent to some point
z. Then

k

which implies that f (z) = B. O

Theorem (2.9) is what we want to show. The next theorem is also im-
portant for determining the topology of M, but we do not need it in our
subsequent arguments.

STRONG TRANSVERSAUTY THEOREM (2.10). Let (M, g) be a complete
Ck+I-Riemannian manifold and let f : M -. R be a Ck+I function satisfying
the condition (C), (k > 1). Assume that f admits no critical value in the
interval [a, b]. Then M. := {x E M; f(x) < a} is Ck+'-di,Qeomorphic to
Mb:={xEM; f(x)<b}.

To outline the proof we first consider an integral curve of V f starting any
point of M.. Then assigning the first point of the integral curve crossing
Mb we get a mapping from M. to Mb. By using the assumption that f
has no critical value in [a, b), it can be shown that this mapping is a Ck+I_

diffeomorphism of M. onto Mb.

2.3. Finsler manifolds. We should extend Morse theory from the case of
Riemannian manifolds to the case of Banach manifolds in order to apply it
to LI p(M, N), 1 > Im , where m = dim(M).

(2.11) Finsler metric. A Ck-manifold M treated in subsection 2.1 in
Chapter 2 was a manifold modelled on a Banach space. In general, it is not
true that it admits a Riemannian metric g. However, we can consider a
Finsler metric 11 11 instead.

DEFINITION. 11 11 is called a Finder metric if for each point x E M, II (lx

is a norm on a Banach space TXM such that:
(i) The topology induced from II IIX coincides with the original one as

its Banach space.
(ii) (Local triviality) If we specify the local triviality of the tangent

bundle T(M) for each point p E M using a coordinate neighborhood
(U., a), a: Uo-.E,

v.: U. x E -+ ar-I((I) c T(M),
where n; T(M) - M is the projection, and define the norm on E through
W. by

111V111. ':= v)IIX. x E U0, V E E
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then there exists a constant C > 0 such that

CIIIVIIIp <_ IIIVIIIX <_ CIIIvIII,, V E E, XEU..

A Banach manifold with such a Finsler metric 11 11 is called a Finsler
manifold. In this case, we can define the length L(o) of a CI-curve a

by
b

L(a) := la IIQ'(t)II dr.

If p, q E M belong to the same connected component of M, then the
distance p(p, q) is defined by

p(p, q) := inf{L(o); ois a Cl-curve connecting p, q}.

Indeed, it turns out that p satisfies the three axioms of distance, and the
topology on M induced by p coincides with the original one on M. When
the metric space (M, p) is complete, a Finsler manifold M is called com-
plete. We simply write M to abbreviate a Finsler metric 1111.

(2.12) A Finsler metric on the cotangent bundle of a Finsler manifold
M is defined as follows: for p E M and l E TP M,

11111:= sup{Ie(u)I; u E TpM, IIuhI = 1}.

Then it is clear that if f : M -, R is a CI-function, then M 9 p Ildffll is
a continuous function on M.

(2.13) The condition (C). A Ck-function f : M - R on a Finsler Ck-
manifold M satisfies the condition (C) if a subset S of M has the property
that if

f is bounded on S and inf Ildfll = 0,

then there exists a point p in the closure S of S such that dfp = 0; that
is, p is a critical point of f .

Then we use the following pseudogradient vector field X instead of the
gradient vector field V f of f in the argument in subsection 2.2.

DEFINITION (2.14). Let M be a Finsler Ck+1 _manifold and let f : M --+ R
be a Ck+l-function (k > 0). Then a tangent vector X E T,M at a point p
is called a pseudogradient vector of f at p if

(I) IIXII <_ 2 lldfpll ,

(ii) X f = df,(X) >_ Ildfflh2 .
Moreover, if at each point p of an open subset S of M, XP is a pseu-

dogradient vector of f at p and X is Ck on S, then X is called a Ck-
psendogradient vector field on S.

The existence of such a pseudo gradient vector can be shown as follows:
If p is a critical point of f , i.e., dfp = 0, then the zero vector of TpM

is the pseudogradient vector of f at p. If p is a regular point of f , then
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we first choose Y E TpM for any 0 < e < 1, in such a way that

IIXII = l and dfo(Y) > (1- e) IIdf,II

This follows from the definition of Ildfoll in (2.12). So for any S > 0, letting

X := i
±- IIdff II Y,

then

IIXII = ± a Ildfoll

and

lldf IIdjo(Y)>(l+a)IldfXf=df,(X)=
i- f oll2.

Therefore, we can choose S > 0 and 0 < e < I as IIXII' is arbitrarily close to
Ildfoll such that X f > Ildfo112. (Note that the number `2' in (i) of Definition
(2.14) can be replaced to any number bigger than 1.

LEMMA (2.15). Let M be a Finsler Ck+I -manifold and let f : M -» R be a
Ck+1 function (k > 0). If P E M is a regular point of f , then we can choose
an open neighborhood U of p on which there exists a Ck pseudogradient
vector field.

PROOF. For P E M, we choose XP E T,M such that

IIXII < 211dffIl and X f > Ildfoll2

This can be shown by the above argument. Here we extend Xo to a Ck-
vector field on a neighborhood V of p. Then letting

U := {qEV; XQf>Ildfa112 and IIXQII<2IIdfg11}.

U is an open set containing p and the desired result follows because X f ,

IldfII, IIXII are continuous on V.

PROPOSITION (2.16). Let M be a Finsler C2-manifold, let f : M -+ R
be a CI function, and let M' , be an open submanifold of M consisting of
regular points of f . Then there exists a pseudogradient vector field on M'
which is locally Lipschitz continuous.

Here a vector field X' is locally Llpschitz continuous on M' if for each
p E M' , and each coordinate neighborhood (UQ , a), a : U - E, with the
local triviality of T(M) given by W. : U x E -. n-I ((I) C T(M), where

y/QI(Xx) = (X, XQ(x)), X E UQ, XQ(X) E E,

then there exists a positive constant C such that

IIIX(x) - X (y)IIIo <- C IIa(x) - a(Y)II, X,yEU0.



102 3. MORSE THEORY

OUTLINE OF THE PROOF OF PROPOSITION (2.16). For each p E M' , let U.
be a neighborhood of p in M' and let X(P), be a CI-pseudovector field
on Up. M' is paracompact (see definition in subsection 3.6 of Chapter 2),
because M' admits a distance induced from the distance p of M and any
metric space is always paracompact. Therefore, there exists an open covering
{U,; ft E B} which is a refinement of an open covering { Up ; p E M*) and
is locally finite. Then there exists a partition of unity {q+p}pEB (in the sense
of Lipschitz) corresponding to { Up ; 8 E B) . That is,

(i) 0<,p(x)51, xEM'.
(ii) supp( q+p) c Up for each fi E B.
(iii) EpEB 99p(x) = 1 for each x E M' .
For each p E Up , there exist an open neighborhood V of p contained in

Up and a positive constant C such that

I,p(x)-pp(y)I <<CIIR(x)-fl(y)II, for all x, yE V.

Then for each ft E B, let Up be an open neighborhood of p(ft) in Lemma

(2.15), and let X°(p) be a CI-pseudogradient vector field on U. . Define

X:= E Vp
X"(p),

PEB

which is the desired pseudo gradient vector field of f on M' . 0
Using the pseudogradient vector field X instead of V f , the following

theorem can be shown.

THEOREM (2.17). Let M be a complete Finsler C2-manifold, and let f :
M -, R bea C2 function satisfying the condition (C). Then

(i) if f is bounded below on a connected conponent Mo of M, then f
attains a minimum on Mo.

(ii) For any two reals a < b, if f has no critical value on [a, b], then
Ma := {x E M; f(x) < a) is locally Lipschitz diffeomorphic to Mb := {x E
M; f(x) < b} .

(This can be shown by a similar argument to the one in §2 and so is
omitted. Refer to R.S. Palais [P2] for a proof. )

§3. The condition (C)

3.1. Main Theorem. In §2, we showed that any C2-function with the con-
dition (C) which is bounded below on a connected component of a manifold
attains a minimum there. So our next problem is to clarify which functions
satisfy the condition (C). But a general theory is still unknown. We only
show Theorem (3.3) about L, .,(M, N) following [P3].

Let us recall the situation in subsection 4.3 in Chapter 2. Let (M, g),
(N, h) be compact m-, n-dimensional C°°-Riemannian manifolds, respec-
tively. We assume (N, h) satisfies
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(i) N is a closed submanifold of RK, and it holds that
(ii) h = i*go, where r : N C RK is the inclusion and go is the standard

Riemannian metric on RK .
In this setting, we consider the Banach space L, .,(M, RK) and the C°°-

manifold L1.o(M, N) (1 > v , where m = dim(M) ).

(3.1) Finsler metric. We define a Finsler metric III) on the Banach
space L, ,,(M, RK) as follows: For any element v of the tangent space
TTL1 p(M, RK)?5 LI p(M, RK) of L1 p(M, RK) at u, define

j:= (IM I dvlp v8 +
W

IvIp Vg)
I/p.

Here for V E L, p(M, RK) , we denote v = (v1, vK), and

K 1/2

Idvlx (EIdv4I2) , X E M,
A-1

where IdAIx is the norm of 1-form dvA with respect to the inner product
on the cotangent space Tx M induced from the Riemannian metric g . And
IvI is given by

K 1/2

lvl (Eiv4I2)
A1

X E M.

Then II II I p
defines a Finsler metric on the Banach space L1

p
(M , RK) ,

and we denote the induced distance by po which is given by

po(u, v) = Il u - VIII.,, u, v E L,.P(M, RK)

Since the metric space (L1 p(M, RK), po) is complete, the Finsler metric
II 111.p on LI p(M, RK) is complete (cf. (2.11)).

Next since L1 p(M, N) is a closed submanifold of the Banach space
L1 p(M, RK) (cf. Theorem (4.33) in Chapter 2), we can give a Finsler met-
ric, denoted by the same letter II 11,.P, on LI p(M, N) from the pull back
of II II1,p on LI p(M, RK) by the inclusion :: N C RK. Then for each
0 E L1 p(M, N) and for

X E T#LI.p(M, N) = L1 p(W-I TN) C L,.P(M, RK),

we get
I /p

IIXIII.p= (JldXI1't)g+Ji't)g) .

Now denote by p the distance with respect to the Finsler metric II III .p
on LI, p(M, N). Then this distance has the property that for ¢I , 02 E
L1.p(M, N),
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p(O1 , 02) := inf{L(y); y is a C1-curve in L1 D(M, N) connecting ¢1, 02}

> inf{L(y); y is a CI-curve in LI D(M,RK) connecting 10,1 021

p0(01 , 02)'

Moreover, we get

PROPOSITION (3.2). The Finsler manifold (LI D(M, N), II II1,p) is com-
plete.

PROOF. Let (oi}ooI be a Cauchy sequence in LI D(M, N) with respect to

p. Then by the above inequality, it is also a Cauchy sequence in LI D(M, RK)

with respect to po. But (LI o(M, RK), po) is complete, so this sequence is
convergent:

45, ,00EL1.v(M,RK) asi -'oo.

However, LI p(M, N) is closed in LI o(M, RK) , so 00
0

Next we define the function f on LI D(M, R K ) by

,V(u):=
fm

Idul" Vg , u E LI.v(M, RK).

E LI p(M, N).

Moreover, we define the function J on LI D(M, N) to be the restriction of

(O) = J (0), 0 E L1.n(M, N).

Then our main theorem is as follows

MAIN THEOREM (3.3). Let (M, g), (N, h) be compact m-, n-dimensional
Riemannian manifolds, respectively. Assume that N is a closed submanifold
of RK and h = t* go, where go is the standard Riemannian metric on RK .
Assume that 1 > v , where m = dim(M). Then the above function J
LI.v(M, N) -+ R satisfies

(i) J is a C2-function on LI D(M, N).
and

(ii) J satisfies the condition (C).

(3.4) PROOF OF (i) OF THEOREM (3.3). Since LI. p(M, N) is a closed
C°°-manifold of LI p(M, RK), it suffices to show that F is C2 on
L1.v(M, RK)

For u, v, wEL1 D(M,RK),wehave

u, du)°l2"1(du, dv) v8. (3.5)df (v) = p fm (d
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Indeed, we may calculate
rdf(v)=d(u+tv)=dt I (d(u+tv),d(u+tv))Pl2Vg.
M

Now we use Holder's inequality: letting r' = r/(r - 1),

f 14.4211),:511411,1142110
f1 E L,(M), f2 E L; (M). (3.6)

M

Since I(du, dv)I < Idu1Idvl , we get

fright-hand side of (3.5)1 < p Z. IduIP-2Idul Idvl vg
M

= p f Idu lP-1 Idvl vg

<p
(P-1)1P(fMldvl"Vg)l/P

(JM1tht)g)

M

p
(IIulI1.P)P-I

11V111 .P ,

where we use (3.6) in the last step putting r = p/(p - 1), r' = p. Therefore,
dom.: LI P(M, RK) 9 v i-' d/(v) E R is a bounded linear mapping.

Furthermore, for d2/u ,

d2'FU(v,w)= a 1(,.,)=(O.O)f Id(u+tv+sw)IPvetas M
g

= d p f (d(u+tv), d(u+tv))P/2-1 (d(u+tv), dw)vg
T t t-0 M

= p(p - 2)f (du, du)P/2-2 (du, dv) (du, dw)Vg
M

+pf (du, dv)P/2-1 (dv, dw)vg.
M

Using Holder's inequality in a similar way, it turns out d2/, : L1 P(M, R) x
LI P(M, R) -+ R is a bounded bilinear mapping, and due to Zorn's Propo-
sition (1.12) in Chapter 2, F is C2 .

3.2. Proof of the condition (C). We shall prove the following two lemmas
in subsections 3.3 and 3.4. Here we prove (ii) of Main Theorem (3.3) under
these lemmas.

LEMMA (3.7). Assume that a sequence {O;)°1 in LI P(M, N) is bounded
in LI P(M, RK) that IIdJJ,II - 0 as i oo. Then there exists a subse-
quence, denoted by the same letter for simplicity, such that

dA,,,(¢i-Oj)- 0 asi, j --roc.

REMARK. Remember that for a C2-function J : LI P(M, N) --- R and
4) E LI P(M, N), the differentiation of J at 0, dJ¢ is a bounded linear
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mapping dJ, : TOL, P(M, N) = LI P(0-1 TN) -, R. Then as in (2.12) its
norm is

IIdJJII := sup{IdJ,(u)I; u E L,,,(4-1 TN), IIuII,,P = 1).

LEMMA (3.8). There exist positive constants C1 , C2 satisfying the fol-
lowing:

(d, f.' d.Xp2)(u1 - u2) >- CI IIuI - u2111.v - C2 IIu1- u211p (3.9)

f o r uI . u2 E LI P(M, RK).

Then putting

w(x) := CI xP-1 , C(x) := C2xP-1 , 0 < x < 00,

(i) V is strictly monotone increasing and yr(0) = 0, limX_. V(x) = 00.
maps any bounded set of R+ := Ix; x > 0} into a bounded set of R+.

(ii) Moreover, (3.9) can be rewritten as

(d.F.1- d/y2)(u1 - u2) ? Ilu1- u2111.P cv(IIuI - u2111.p) (3.9')

- Ilu1- u211p(Ilul - u211p)

for u1 , U2 E L1 P(M, R').
(3.10) We note that LI "P(M, N) is a bounded set in LP(M, RK) .

Therefore the convex closure of L1 P(M, N) in LP(M, RK) defined by

k

CH(LI.P(M, N)) := {aiui; U1 E L1P(M, N),
i l

k

0<a1<1(1<i<k), Ear=1
=1 111

is also bounded in LP(M, RK) .
In fact, since N is compact, N C RK is a bounded set. Since 1 > c

we get by Sobolev's Lemma (4.30) in Chapter 2, L1 P(M, N) C C°(M, N).
Thus, f o r any u E L, P(M, N),

f IuIPVB < sup lu(x)IP Vol(M, g) < 00,
M XEM

which yields the conclusion. 0
By (3.10) and Lemma (3.8), there exists a constant B > 0 such that

t < 2 sup{IIuIIp; u E CH(L1 P(M, N))} 4(1):5 B. (3.11)

This follows from (i) of Lemma (3.8) and the inequality IIuIIp <- IIuIII,p
which follows from the definition. 0
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COROLLARY (3.12). For any u1 , u2 E CH(L, P(M, N)),

(dam, - d.Y=)(u, - u2) >- IIu, - u2111,, (w(IIu, - u2111,P) - B). (3.13)

PROOF. For u, , U2 E CH(L1 P(M, N)),

flu, - u211P <- 2 sup{IIull ; u E CH(LI P(M, N))}.

Thus, by (3.11), (IluI - u211p) <- B, (3.9) can be rewritten as (3.13). o
With these preparations, we prove the condition (C) in the following three

steps. In order to prove the condition (C), we should show that:

If a subset S C L, P(M, N) satisfies that J is bounded on
S and infs 0. Then there exists a Cauchy sequence
{O;}°°1 such that 0 as i oo.

Then since L1 P(M, N) is complete, there exists 0 E L, P(M, N) such
that {¢;} converges to 0 in LI ,(M, N) and dJm = 0 since is
continuous.

(THE FIRST STEP). S is abounded set in L, ,(M, N).

PROOF. For any u, aEL1 P(M,N),let Q(t):=a+t(u-a), 0<t< 1,
then a(t) E LI P(M, RK). By (3.13) in Corollary (3.12), we get

(d.(t)-d/)(t(u-a))>tllu-all,.P(w(tllu-all,.,)-B). (3.14)

Therefore, using (3.14), we get

.F(u) = f (a) + d4 (u - a) dt

(dfo(t)-df)(t(u-a))dt=f(a)+df(u-a)+ f
0

1

> f(a)+df(u-a)+llu-all f w(tllu - all, P)dt-B}.

Thus, taking a positive constant K as K > Ildfll, we get that

f(u)>f(a)+IIu-all,.,{ f w(tllu-all,.P)dt-(K+B)}.
1

0

For any arbitrary e > 0, there exists r > 0 such that

y/(2)>2(1+e)(K+B),

since 1im,_. yi(x) = oo. Moreover, if Ilu - all,,P > r, then we get

0
f 1 w(tllu-all,.,)dt> f I/2 w(tr)dt> f/2Iw(r/2)dt

1

1

> f/2 2(1+e)(K+B)dt=(I+E)(K+B),
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since w > 0 is strictly monotone increasing. Thus, we obtain that

Ilu - a1l1.P > r f (u) > F (a) + e (K + B)llu - all1,P. (3.15)

So we put C := sups J(4) < oo by the assumption that J is bounded
on S. Then if u E S satisfies IIu - all .p > r, by (3.15), we have

Ilu - all.P <
f(u) - f (a) - J(u) - J(a) < C - J(a) < x.

(K + B) E(K + B) e (K + B)

That is, S is included in the closed ball centered at a with radius

C - (a)
max r,

E(K + B)

in L1 P(M, RK). Thus, S is bounded.
(THE SECOND STEP). Since infs 0, we can take a sequence

in S such that I I d J, , , ll - 0 as i -' oo . By the first step, {4}7 °
1

is a bounded
set in L1 P(M, N), so by Lemma (3.7), we can choose a subsequence, de-
noted by the same letter, such that d j,', (O; - 0j) -. 0 as i, j - oo . There-
fore, we obtain

(dff,-dfm) asi, j oc. (3.16)

(THE THIRD STEP). The sequence
{o,}7

in the second step contains a
Cauchy subsequence. (Thus, we obtain the desired result, and the condition

PROOF. By the first step, (0,)i=1 is bounded in L1 P(M, N), so it con-
tains a convergent subsequence, denoted by the same letter, in LP (M , RK )

by Sobolev's Lemma (4.30) in Chapter 2. Thus, by (i) below Lemma (3.8),

Il ,-ojll,4(ll'i-o;IIP)-0 asi, j-+oo.

This {0;}i=1 also satisfies (3.16), so by (3.9') below Lemma (3.8), we obtain
that

110, - 0;111,P w(lloi - o;111,P) 0 as i, f 4 3c.

Thus, for any small given e > 0, there exists an N > 0 such that if i, j > N,
then

II4i - ';II J ,P w(Il 1- o;II1.P) < E w(E),

since c w(E) > 0. Here since the function x '-+ x y/(x) is strictly monotone
increasing, we can conclude that

1101-cb1111,P<E

as desired.
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3.3. Proof of Lemma (3.8).

SUBLEMMA (3.17). For u = (u1,.... uK) E C°°(M,RK), we put F(du):=
Idul°. Then the twice differentiation of F at du to the direction dv satisfies

d2Fdu(dv, dv)>pIdvIp-2ldv12, u, v E C°°(M, RK).

PROOF. Putting p = 21,
2

d2Fdu(dv, dv) = d ZI (du+tdv, du+tdv)t
dt l=o

= 41(1 - 1)(du, du)1-2 (du, dv)2

+2l(du, du)t-1 (dv, dv)

> p Idul°-2

Idv12,

since the first term of the last second of the right-hand is nonnegative. 0

SUBLEMMA (3.18). Let V be a finite dimensional real vector space with a
norm 11. Let m be a positive integer. Then there exists a positive constant
C such that

L
1

Ix+tyl'"dt> Clylm, X, Y E V.

PROOF. We may assume y 96 0. Dividing the desired inequality by lylm ,

we should show

1' I IYI + t IYI
Id t > C,

that is, defining

1F(x, y):= f Ix +
tylm

for IYI = 1,
0

we should show there exists a positive constant C > 0 such that F(x, y) > C
f o r all x, y E V with IYI = 1 .

(i) For IxI > 2, we get

f,x+ty,mdf 1,

since Ix + tyl > 1 for all 0 < t:5 1.
(ii) On the other hand, F(x, y) is a positive continuous function on a

compact set {(x, y) E V x V; Ixl < 2, lyl = 1}. Because, if there were
some Ixl < 2 and IyI = I such that

If Ix +tylmdt = 0,
0

then Ix + tyl =0 for all 0!5 t:5 1. Then x + ty = 0 for all 0t < 1.
Since Iyl = 1 , we obtained lxI = t for all 0 < t < I which is a contradiction.
Thus, F attains a minimum C' > 0 on this compact set.

We may take the desired constant C > 0 as C = min{ 1, C'} . 0
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(3.19) PROOF OF LEMMA (3.8). We may take C, = C2 = PC, where C
is a constant in Sublemma (3.18) for m = p - 2.

Now for u, . u2 E L, p(M , RK ), put

a := du1(x), b := du2(x), x E M,

and

c(t) := b + t(a - b), 0 <<- t < 1.

Then by Sublemma (3.17), we obtain

d2F,(,)(a - b, a - b) ? pIc(t)Ip-21a - b12 (3.20)

and

(3.21)j d2F(a - b, a - b) = [di(,)(a-b)J1

= dF0(a - b) - dFb(a - b).

Now since F(u) = fu F(du) vg ,

dfm(u) dtl
fU

dtl r-oF(d¢+tdu)vg

= fA

Therefore, we obtain

IM"(d/1 - dg2)(u1 - u2) = - dFdU2)(dul - dU2) Vg

1

= JMJO d2Fc(t)(dul -due, du1 -du2)dtvg (by (3.21))

1

IIdu212 dt v8 (by (3.20))
JMJO

I

> IM PC Idu1 - du2lp-2 Idu, - du2I2Vg (by Sublemma (3.18))

= PC Ildu1 - du2II pp (by definition of II IIp)

=PC(11u1- u211,,0 -11u1 - u211pp) (by definition of 11 11 ,p)

which implies the desired inequality. 0

3.4. Proof of Lemma (3.7). Let 1 > o , where m = dim(M). For
E L1 p(M, N) C C°(M, RK), define the mapping

PO : L1, p(M, RK) 9 u - PPu E TOL,.p(M, N)

by

(Pmu)(x) := P(O(X)) u(x), x E M. (3.22)
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Here note that

T#LI o(M, N) = {X E L, .,,(M, RK); X(x) E No(x), X E M},

and for Y E N, P(y) is the projection of RK onto the subspace N. with
respect to the decomposition

RK=NY eNy1,

where NY := di(T,N) with the inclusion I : N C RK, and Nyl is the
orthogonal complement of NY in RK . That is, for a E RK , P(y) = aT ,

where
a = aT + a1 , aT E Ny, al E Nyl.

Then we obtain

SUBLEMMA (3.23). Let 1 > o , m = dim(M). For all 0 E LI 9(M , N),
the mapping Pm : LI,o(M, RK) - TeLI,v(M, N) C LI.o(M, RK

) is a sur-
jective bounded linear projection. Moreover, the norm of this mapping defined
by

IIP,II := sup{IIPouIII.v/Ilu(I1 ,; 0 U E LI.v(M, RK)}

maps a bounded set of Li o(M, N) in 0 to a bounded set.

PROOF. Since P(O(x)) is the orthogonal projection of RK onto a sub-
space Ni(x) , P. satisfies P2 = PO o PP = Pm and

Pou=u4=* u(x)EN4(x), XEM

4=4 U E T,L1 o(M, N) = LI D(¢-I TN)

which implies the surjectivity of Pb P.
Moreover the boundedness of P., i.e., IIP,u1I I .v 5 Cllull I ,D follows from

the calculation of IIPmuIII
D

by using

dx(P,u) = dx(P(O(x))) - u(x) + P(O(x)) dxu.

The last claim follows from the continuity of the norm 11 11 whose calculation
is left to the reader. 0

(3.24) Moreover, for 0 E C°(M, N), define by a L(RK, RK)-valued
function P(4) on M by

P(O)(x) := P(O(X)) E L(RK, RK), X E M.

By Sobolev's Lemma (4.30) in Chapter 2, for k > with m = dim(M),
Lk.v(M, N) C C°(M, N), and then

(I) if 0 E Lk.v(M, N), P(cb) E Lk.v(M, L(RK, RK))
and

(ii) the mapping 0 -- P(¢) is continuous.
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SUBLEMMA (3.25). Let {0,}', be a bounded sequence in L, p(M, RK).
Then there exists a subsequence, denoted by the same letter, such that for all
Coo-vector fields X E X(M),

X(P(0,))(0; - O,) + (P(4,) - P(0;))(X0;)

converges to zero in LL (M , R) as i, j - oo.

PROOF. Let us take any small 0 < e < I in such a way that I - e >
v , with m = dim(M). Then by Sobolev's Lemma (4.30) in Chapter 2,
the inclusion L, p(M, RK) L,_, D(M, RK) is completely continuous.
Thus, a subsequence of {0,}', , denoted by the same letter, is conver-
gent in L,-, .,(M, RK), say its limit 0a. Thus, by part (ii) in (3.24),
in L,-,,,v(M, L(RK, RK)),

P(o,) - P(00) as i -+ oo.

That is, 110, - 0o111_E ,v - 0 and IIP(W1) - P(t 0)II,_f .v - 0 as i -' oo . Here
for all X E X(M), we have that

X(P(O,)) E Lp(M. L(RK, RK)) and XO, E LD(M, RK),

and moreover,

0J -O, E L,_,.v(M, RK) and P(O,)-P(O;) E L,_,,v(M, L(RK, RK))

Thus, we get

II X (P(o,))(O; - d,) + (P(o,) - P(0))(X0;)II,

< C, (IIX(P(0,))IIp II0; - 4' II _' .P + IIP(o1) - P(0;)II1-E ,P 11X0,11,)

< C2(IIP(0,)II1.D II0; - 0111-,.D + IIP(O1) -

Since {0!}0, is bounded, by (ii) of (3.24), {IIP(o,)II1,,}', is also a bounded
set. Thus, the above converges to zero as i, j -+ oo. 0

SUBLEMMA (3.26). Assume that a sequence (0,)"0, in L, o(M, N) is
bounded in L, D(M, RK). Then there exists a subsequence, denoted by the

same letter, in L, D(M, RK),

(I - Po')(Oi - 0) -0 as i, j -+oo.

PROOF. (The first step) Since P(o,(x)) : RK -+ No (x) is the projection,

for any u E LI p(M, RK),

1(1- P(4,(x)))u(x)I <- Iu(x)I

thus, we get
11(1- P,,)uII, <- IIuII,.
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In particular, putting u = 0, - 0j,

11(1-P,)(O,-o,)IID<-II0,-0jilp.

On the other hand, since the inclusion LI c (M , RK) Lo (M , RK) is col-
pletely continuous, a subsequence, denoted by the same letter, of {4i }°° I is

a Cauchy sequence of LD W, RK) . Thus, together with the above inequality,
we get

II(I-Po)(t,-O,)IID-.0 asi, j - oc. (3.27)

Furthermore, we shall show in the following steps that for any C°°-vector
field X E X(M),

0 as i, j - oc, (3.28)

in the space Lp (M , RK) . Then one may take a large enough r > m =
dim(M) and r C°°-vector fields on M, {X1, ... , X,), in such a way that
at each point x E M, each u E TM can be expressed as

uv,(X,)s,
r=I

VIER, 1=1,...,r.

Then by (3.27), (3.28), and the defnition of II II,, , , as i,

11 (1-PP,)III.o < {iii -PP,)(o;-O;)llo
r I/p

+EIIX,((I-Pm)(O1-0,))II,} -0
r=I

which implies the conclusion.
(The second step) To show (3.28), due to Sublemma (3.25), it suffices to

see the following equation holds in Lo (M , RK) ,

X((I - P0,o, - O;)) = X(P(O;))(O/ - 0,) + (P(0;) - P(0j))(X0j)-

But this can be shown as follows:
For 0 E C°°(M, N), u E C°°(M, RK) , by definition of P. and P(O),

we have
X(Pmu) = X(PMu) = X(P(4))u + P(O)(Xu),

and both sides are continuous functions in (0, u), the same equation holds
for 0 E LI p(M, N), u E Li o(M, RK ). Therefore, we get

X((I - PP,)(4' - Ol))

=X(4';-4) -X(PP'(Oj-4' ))
= X(4'1- 4j) - X(P(4;))(4'; - 4') - P(4';)(X (4', - Off))

= X(P(4';))(Oi - 4';) + (P(O1) - P(4'1))(X4'1)
+ P(Oi)(X4l) + X(01 - ebb) - P(4';)(X4',).
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Hence, if we show the underline should vanish, we get the desired equation.
(The third step) The underline coincides with

1X01 - P(o1)(X41)} - {X0; - P(0J)(X0;)1.

Thus, it suffices to show that for all 0 E L1 p(M, N) and X E X(M),

X4 = P(c)(Xo)
However, this can be seen as follows. Notice that

(XO)(x) = dcX(XX) E T9X)N No(,), x E M,

(3.29)

and P(¢)(x) = P(4(x)) is the projection of RK onto NIX) . Thus for any
¢ E COO (M, N),

(X4)(x) = P(c(x))(Xc)(x), X E M,

that is, X4 = P(4)(Xb). In both sides of this equality, the mappings

0 X0, 0 - P(cb)(Xc)
are continuous from L1 o(M, N) into Lo(M, N) and C°°(M, N) is open
and dense in L1 p(M , N). Thus, this equation holds for all OE L1 o(M, N),
and we obtain Sublemma (3.26). o

(3.30) PROOF OF LEMMA (3.7). A C2-function J : LI o(M, N) - R is
by definition J = f ILI '(M. N) with a C2- function f : L, o(M, RK) -, R.
Then notice that f o r a n y 0 E L1 o(M, N),

dJm = dfal and
7 L,.r(M.N)

by definition.
Now if a bounded sequence in L1 o(M, N) satisfying IldJm,ll 0

as i - oc , then

df0,(O; - ) = dfm(PP,(4; - ;)) +dfm'((I - P,o)(01- 0))
= dJJ,(PP'(0i - 0)) +dfa,((I -

Thus, by the definition of 1111, we get

Idfm,(0; - 1;)I <- IIP®,II III; - o;Ilt,v
(3.31)

+ ,0,1111(1 - PP,)(O; -')III .o
Since is bounded, {II0; - 0;Ilt,o}'1 is also bounded. And the
mapping

df : Lt,v(M, RK ) a u - df E L(L,.v(M, RK), R)

sends a bounded set to a bounded set, so {d ffJ°° 1 is also bounded. By
Sublemma (3.23), is bounded. On the right-hand side of (3.31),
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II d fm, II - 0 as i oo by the assumption, and by Sublemma (3.26), taking
a subsequence, denoted by the same letter, we have

II(I-PP)(O;-O,)111.p-'0 as i, J-+oc.

Therefore, we obtain

Id,Fo(0,-01)I- 0 as i, j
which is the conclusion. O

Thus, we complete the proof of Theorem (3.3). All together with Theorem
(2.17), Proposition (3.2), and Theorem (4.33) in Chapter 2, we obtain our
main theorem:

THEOREM (3.32). If I > o with m = dim(M), the CZ junction J on
L1 p(M, N) attains a minimum on each connected component.

REMARK. A critical point of J is called p-harmonic (cf. [Ha.L]). Theo-
rem (3.32) says that if I > n , then there exits a p-harmonic map in each
homotopy class which minimizes. The existence, stability, and regularity of
p-harmonic maps are very interesting unsolved problems. See Chapter 6.

§4. An application to closed geodesics

In this section, we apply Theorem (3.32) to the theory of geodesics. As-
sume that dim(M) = I; that is, M = S' = R/Z, a circle. Let (N, h) be an
arbitrary compact Riemannian manifold. We also assume that by J. Nash's
Theorem, N is a closed submanifold of a large dimensional Euclidean space
RK , and h = r'g0, where I : N C RK is the inclusion and go is the standard
Riemannian metric on RK.

Note that any element in C°(S' , N) can be regarded as a continuous
curve of the closed interval [0, 1) into N with the period 1.

Now let p = 2. Since m = dim(M) = dim(S') = I, c = 1 < 1 . Notice

that L1 2(S' , N) is a closed submanifold of the Hilbert space L1 2(S' , RK).
By Sobolev's Lemma (4.30) in Chapter 2, we get

L1 2(S' , N) C C°(S' , N), L1 2(S' , RK) C C°(S' , RK).

For each point a E L1 2(S' , N), the tangent space of L1 2(S' , N),

T,L1.2(S' , N) = L1 2(a-'TN)
is given by

ToL1 2(S' , N) = {X E L1 2(S' , RK) ; X(t) E T0(,)N,

foralltE[0, 11, X(0)=X(1)}.

The inner product (, )1 as a Hilbert space of L1 2(S' , RK) is given by

(a, p)1:= f (Q(t), P (t))dt+ f (a(t), p(t)) dt,1

0 0
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for a, p E LI 2(S', RK). Here writing a(t) = (a, (1), oK(t)), and
P(t) = (p1(t), ... , PK(t)), we define

K K

(ap(t), P (t)) EaA'(t)PA'(t), (a(t), P(t)) EaA(t)PA(t)
A-1 A-1

The Riemannian metric go on the Hibert space LI 2(S' , RK) is given as fol-

lows: At each point a E LI 2(S', RK) , since TgL1 2(S', RK) = LI 2(S', RK) ,

for all u , v E L1 2(S' , RK) ,

go(u, v) := (u, v)1.

The distance of LI 2(S' , RK ) induced from go, p0, is

Po(a, P) = Ila - P1I1.2 = (a - p, o -
p)1'/2,

a, p E L1.2(S' , RK),

and then (L1 2(S' , RK) , go) is a complete Hilbert manifold.

Since LI 2(S', RK) is a closed submanifold of a Hilbert space L, 2(S', RK ),
we can give a Riemannian metric g by g := t'go, where

is L1 2(S',N)cL1 2(S',RK)

is the inclusion. This Riemannian metric g is for all a E LI 2(S' , N), X,
Y E TTL1 2(S' , N),

I
ga(X, Y) = f (X'(t) , Y'(t)) dt +f t (X(t), Y(t))dt.

0 0

As the same way of Proposition (3.2), (L1 2(S' , N), g) is a complete C°°-
Riemannian manifold. The function J on LI 2(S' , N) is

I

'(a) := f (a'(t), a'(t)) dt = f hC(1)(a'(t), a'(t))dt,
0 0

where h is a Riemannian metric on N. Then applying Theorem (3.32), we
find there exists an element y in each connected component of LI 2(S' , N)
which minimizes J . As we shall show in the next chapter, each critical point
of J is a geodesic and it turns out that it is smooth, the above y is a periodic
geodesic, called a closed geodesic. Thus, we obtain a well-known theorem:

THEOREM (4.2). For any compact C°°-Riemanniann manifold (N, h), in
each element in the fundamental group (cf. (4.45) in Chapter 2) ire (N) of N
there exists a closed geodesic which attains a minimum of J in the homotopy
class.

REMARK 1. The function J of L1 2(S' , N) in (4.1) is called the energy
or the action integral. In the next chapter, we shall denote it by E. For a
geodesic, in particular, for a closed geodesic, see [K1], [K2].
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REMARK 2. Theorems (3.3), (3.32) cannot be applied to the theory of
harmonic maps in Chapter 4 because of the crucial condition " 1 > m , m =
dim(M) ". However, these theorems are still fundamental and essential to
show the existence of harmonic mappings. The existence theory can be
treated also in Chapter 6, and for more detail see [S.Uh], [Uh 2], [M.M].
Overcoming the condition (C) is still one of the most important problems in
differential geometry and analysis.

<< Coffee Break» The isoperimetric problem and Queen Dido
The isoperimetric problem is the problem of finding the maximum area of

a plain domain enclosed by a simple closed curve with a given length. The
ancient Greeks seemed already to know the answer that only a disc achieves
a maximum area. This problem is one of the origins of the calculus of the
variations. To solve this problem is to show that letting L, be the length of
the perimeter of a domain and letting A, be its area,

4n A < L2 (the isoperimetric inequality),

and the equality holds if and only if the domian is a disc. To give a rigorous
proof is rather new, and H. A. Schwarz gave the first proof in 1890. Here we
introduce J. Steiner's idea called "symmetrization" to give the proof which
appeared in J. Reine Angew Math. 24 (1842), 93-152.

Steiner's idea of the proof is as follows: Let D be a domain and let C be
its smooth simple closed boundary curve. Take an arbitrary line t. Draw
perpendicular lines toward the given line l to make the following domain
D, which is symmetric with respect to l .

Take a perpendicular line t' to t. Let M be the intersection of l and
t'. Choose two points M1, M2 on the line t' in such a way that M is the
midpoint of the segment between M1 and M2 with the length equal to that
of the intersection of l' and D. Continuing this process to all perpendicular
lines t', we get Dr (see Figure 3.4).

FIGURE 3.4
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N,'-M

FtouRE 3.5

Then comparing the areas and the length of D, and these of the original
domain D, denoting by At , A and Lr , L the corresponding areas and
lengths to D, , D, respectively, we get

A=At, L>Lt.
Because A = At by definition of area, and for the lengths of boundaries, it
suffices to show

2M2M2 < N1 N41 + N2N2 ,

if we assume
M1 M2=N1 N2 and M0MZ=NiN2,

for two trapezoids N1 N,'N?N2 and M1 MW MMM2 with M1 M,' = M2M? . See
Figure 3.5.

Now drawing another line l' and doing the same procedure to D, , we get
a domain D,,, which has a more symmetry, the same area A,,, = A and a
shorter length L,,, for the boundary. Continuing this process repeatedly, we
finally reach to a disc Do. Denoting by A(D0) , L(D0) , the area and length
of the boundary of the disc Do

A=At =A«, _...=A(Do),
L>L,L1r,>...>L'(DO).

But for the disc Do, 4s A(D0) = L(Do)2 , so we obtain finally the desired
inequality:

4,rA<L2.
These process is the main idea of Steiner's symmetrization, but there is the
problem of reaching the disc Do.

If we consider the same problem near a seaside with a straight coastline,
the answer is a semicircle faced toward the coast line. In fact, let us give a
curve C whose endpoints touch the coast, and a mirror curve C' reflecting
it with respect to the coast, we get a simple closed curve CC'. Denote by AC
the area of the domain enclosed by C and the coast, and let L be the length
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of C. Then applying the isoperimetric inequality to a domain enclosed by
CC', we get the inequality:

4n (2 AC) < (2 L)2 ,

the equality holds if and only if C is a semicircle. Then for a given L, the
maximal area is L2/(2a) . See Figure 3.6.

Now the "Aeneid" by Virgil ( 70-19 B.C. an ancient Roman poet) tells us
a famous story of Queen Dido of ancient Carthage:

Dido was a princess of ancient Phoenicia who lived at Tyre.
But her brother, Pygmalion, killed her husband and took the
position of King. She escaped from Tyre by getting on board
a boat with her followers and reached land in 900 B.C. at a
place later named Carthage. To build their own country, they
were willing to buy land from King Jarbas at Numidia who
governed there. But the King did not like this and promised
only to sell a tiny bit of land of the same area as could be
enclosed by the spread out skin of a cow. In order to make
full use of this condition, Dido extended the interpretation
and let her follower cut a cow's skin into thin threads and
connect them making a long string with length almost 1 km
(0.62 mile). Using this string, they enclosed a land by a semi-
circle from the coast of the Mediterranean Sea. She enclosed
a land area of almost 16 hectare (40 acres).

Fiou 3.6





CHAPTER 4

Harmonic Mappings

It seems the theory of harmonic mappings was started with a study of
J. Eells in 1958 which showed the space of mappings becomes an infinite
dimensional manifold and with the natural idea of asking for a mapping
which is critical for some function (called the energy or the action integral)
on the space. This is the work of J. Eells and J. H. Sampson, in 1964.

In this chapter, we derive the first derivative of the energy (called the first
variational formula). We explain the notion of harmonic mappings (or the
nonlinear sigma model) and give several examples. Readers can start with
this chapter independent of the previous chapters. The notions and notations
used in this chapter are all explained.

§1. What is a harmonic mapping?

In this section, we define the quantity called the energy or the action inte-
gral for any smooth mapping between two compact Riemannian manifolds
(M, g), (N, h), and we define a harmonic mapping as its critical point.
We calculate the first derivative of the energy and derive the Euler-Lagrange
equation. Solutions of this equation are harmonic mappings.

In the calculations of this chapter, we always use the following notations.
We put

dim(M) = m, dim(N) = n.

We often embed (N, h) isometrically into the Euclidean space RK of a
sufficiently large dimension K. That is, N is a closed submanifold of the
Euclidean space RK , and the Riemannian metric h is the pull back of the
standard metric go on RK by the inclusion i : N c RK ,

h = i' go.

We use the subscripts such as

1 < i , j , .. ':5 m, 1 < a, 8, .. , < n , 1 < A, B, .. , < K.

The Levi-Civita connections and the curvature tensors of (M, g), (N, h),
(RK , go) are denoted, respectively, by

v, NV, V0; R, NR, R0.

121
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1.1. The energy (action integral).

(1.1) The energy density function. For a C 1-mapping 0 E C' (M, N) ,

we define the energy density function of 0, e(¢) E C°(M) , by

e(4) = 2Trg(&*h)(x) = E(m*h)(ui, ui) (1.2)
=1

M= 2 h(-O.ui, -0.ui), X E M,
i=1

where c*h is the pull back of h by 0, Trg(o*h) is the trace of a tensor
field c*h by g of which the definition is twice the right-hand side of (1.2).
We denote by .: TXM T,4( x)N, the differentiation of ¢. Here {ui}Iin1
is an orthonormal basis of the tangent space TxM at x with respect to gx .
(1.2) does not depend on a choice of {u1}1.

The continuity of e(o) and that e(O) E C°°(M) if .0 E C°°(M, N) can
be seen as follows:

We extend an orthonormal basis {u1}1 of (TXM , gx) at x E M to m
C°°-vector fields {ei}m1 on a coordinate neighborhood U at x such that
at each point z E U, {ei(z)}m 1 is also an orthonormal basis of (TM, gz)
as follows. We call such {e1}1 a locally defined orthonormal frame field
on U. Take a coordinate (x1 , ... , x a way

that (e )x = ui, 1 < i < m, (see §3 in Chapter 2), and orthonormalize
{ e }m

1
into {ei}° 1 by Schmidt process at each point z. Then by

means of the form, ei are C°° on U. We may give an alternative proof as
we take a small neighborhood U such that each point z can be connected
by a unique geodesic emanating from x. Then we define e, (z) to be the
parallel transport of ui along such a geodesic from x to z. Then using
{ei}iM1 on U,

e(O) =
2

E>*h)(ei, ei),
i=1

the right-hand side of which is a continuous function, or C°° on U if 0 E
C°°(M, N).

Taking local coordinates (x1, ... , x,,,) , (y1, ... , y,) on neighborhoods
of x, ¢(x) in M, N, respectively, and putting e:= yQ o o , a = 1, ... , n,
then (1.2) can be expressed as

9

e(o)(z) =
2

8z (z) ax (z), (1.3)

at each point z in the neighborhood of x. Here (g'1) is the inverse matrix
of (gij), h ( , ) .

3 T. iy )
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(1.4) Alternative expression. If I : N C RK , a closed submanifold and
h = i'go, then e(o) can be expressed as

e(c) = 2IdOI2 = 2 Id¢A12. (1.5)
A=1

Here we explain the notations. We denote

fi(x)=1 c O(x)=(01(x),...,.bK(x))ERK, xEM,
then OA E CI (M) and d0A , 1 < A < K are K 1-forms on M. 11 is the
norm on T'M induced from the Riemannian metric g on M.

(1.5) can be proved as follows: Since h = I'go and the pull back ¢'go
of ¢ = I o 0 is given by

K

O'go=EdcA®dcA,
A=1

we get
m m K K

E(4'h)(ei, e1) = EEd,A(ei)dcA(e,) = EIdcA12.
i=1 i=I A-I A=1

Here we used the equation Id0A12 = E =1 dOA(ei) d¢A(ei) which follows by
the definition of I I on T'M.

The expression (1.5) is useful because it is available everywhere on M
which was used also in Chapter 3.

(1.6) The energy or the action integral. For t E C 1(M , N) , the integral

E(cb) := L e(O) v8 = 2 IM IdOI2 Vg

is called the energy or the action integral of 0.
REMARK. As in Chapters 2 and 3, let LI °(M, RK ) be the Banach space

completion of C1(M , RK) by means of the norm 11111 .p defined by

l I/p
110111.p:= fM Id,01° v8+ Ihi ICI°vg)

for all p > 0. If I > v , Sobolev's Lemma (4.30) in Chapter 2, says that

LI.P(M, RK) C C°(M, RK), so

LI °(M, N) := {0 E LI p(M, RK); ¢(x) E N, Vx E M}

can be well defined. On the other hand, regarding the definition (1.6) of
E(0), since

E(q5) = 2 f Id-0I2 v8
M

and taking p = 2, it seems natural for E to be a function on

LI 2(M, N) := 10 E LI 2(M, RK); O(x) E N, a.e. X E M}.



124 4. HARMONIC MAPPINGS

Here one meets some problem on the constrain condition: "4,(x) E N a.e.
x E M". LI 2(M, N) is only a subset of LI 2(M, Rx), and it is difficult
to give a definition for critical points of E. In general, if dim(M) > 3, it is
known that LI 2(M, N) n C°(M, N) is not dense in L1 2(M, N). See R.
M. Schoen [Sc] for more detail. In this section, we avoid these troublesome
points, and shall treat only C(M, N) without further comment.

1.2. Definition of harmonic mappings.
DEFINITION (1.7). We call 0 E C°°(M, N) a harmonic mapping (or a

nonlinear sigma model) if 0 is a critical point of E at C°°(M, N), i.e., for
any smooth variation 0r E C°°(M, N) with -e < t < e of 0, we have

dt _ E(Or) = 0.
r-°

Here a smooth variation 0r means that ¢0 = 46, and 0r depends on t of
class C'; that is, the mapping F : (-e, e) x M -' N defined by

F(t, x) := 4,,(x), -e < t < C, x E M,
satisfies

(F(0, x) = 4,(x), x E M, and
F : (-c, e) x M - N, a C°O-mapping.

(1.8) Variation vector fields. For any smooth variation 0r of 0, -e <
t < e , putting

V(x) := d I4,,(x), x E M, (1.9)dtr-0

then V is a C°°-mapping of M into the tangent bundle TN satisfying

V(x) E T4x)N, x E M. (1.10)

Conversely, for any CO°-mapping V : M - TN satisfying (1.10), defining

Or(x) := exp4(x)(t V(x)), X E M,

we see that 0r E C°O(M, N) and

d I _ 0r(x)=V(x), XEMdt r-o
by definition. Such a vector field V is called a variation vector field along 4, .

See Figure 4.1.
Variation vector fields can be regarded as sections of some vector bundle

over M in the following way:
Let 4-1 TN be the induced bundle over M of TN by 0, that is, let

n : TN N, the projection, and let

TN ((x, u)EMxTN; a(u)=4,(x), XEMI
= U T*(x) N,

xEM
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FIGURE 4.1

then the set of all C°°-sections of q-1 TN, denoted by rw 1 TN) , becomes
the set of all variation vector fields:

r(r I TN) = IV; M - TN, C°°-mappings, V(x) E T«x)N, X E M}.

As LI P(O-I TN) is identified with the tangent space TEL, P(M, N) of a
manifold LI P(M, N) (Theorem (4.33) in Chapter 2), the set of all variation

vector fields, r(46-1 TN), can be regarded as a tangent space TC°°(M, N)
of a "manifold" C°°(M, N).

1.3. The induced connection on the induced bundle. In order to derive the
first variation formula, we prepare some notions.

(1.11) Connections of a vector bundle. In general, let E be an arbitrary
C°0-vector bundle over M,

E= U Ex,
xEM

where x : E M is the projection and Ex = x-1(x) is a vector space of
dimension r (not depending on x E M ), called the fiber at x. We denote by
r(E), the set of all C°D-sections of E, that is, the set of all C°°-mappings
s : E - M such that

xos=id, that is,s(x)EEE, xEM.
Then r(E) is a vector space and a C(M)-module; that is, for all f E
C°°(M), S, sI, s2 E r(E), if we define

(f s)(x) := f(x)s(x), (sI +s2)(x) := s,(x) +s2(x), x E M,

then sl +s E r(E).
Then i7 is a connection (or covariant differentiation) of E if for all C--

vector field X E 1(M), a mapping

VX: r(E)9s-OXSEr(E)
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satisfies the following conditions: for all f E C°°(M), X, Y E 1(M) ,

S, S1, SAE r(E),
(I) Vx+YS = VXS + VYs,
(ii) VfXS=fVXs,
(iii) VX(S, + s2) = VXSI + VXS2,

(iv) VX(fs) = X f s + f VXs.
By (ii), (V XS)(x) E X,, x E M is uniquely determined only on u = Xx E

T,,M, so it can be written as (VXs)(x).
For X, YEX(M), SEr(E),welet

R°(X , Y)s := VX(VYS) - VY(VXS) - V1X, Yes.

R° is called the curvature tensor field of E relative to t. We have

R' (fX, gY)s = fgRV(X, Y)S, f, g E C°°(M).

Next a vector bundle E admits an inner product h if each fiber Ex has
an inner product

hx:E.xE., -+R,

and hx depends on x smoothly of class C°° ; that is, for any sl , S2 E r(E) ,
the function h(s,, s2) on M defined by h(s,, s2)(x) := hx(sl(x), s2(x)),
x E M is C°° . Moreover, a connection t is compatible with an inner
product h of E if for each X E X(M), SI , s2 E r(E),

X.h(s,,S2)=h(VXs,,s2)+h(sl, VxS2). (1.12)

(1.13) The induced connection. Let us denote by V, NV , the Levi-
Civita connections on (M, g), (N, h). Then for 0 E C°°(M, N), we
can define the induced connection t on the induced bundle E _-1 TN =
UXEM T.x)N as follows:

For X E 1(M), V E r(c-ITN), define VXV E rw ITN) by

(VXV)(x) =
NVm,xV:=

dt l
V(c(t)), X E M, (1.14)

where t " c(t) E M is a C' -curve in M satisfying c(0) = x, c'(0) = Xx E
TxM, and a, is a curve given by at(s) := a(s), 0:5 s < 1, i.e., the restriction
of a to the part between x and c(t) . NP#Oa, : T.O(x)N - TQ(,))N is the

parallel transport along a CI-curve 4, o ct with respect to the Levi-Civita
connection NV on (N, h).

Indeed, that t is a connection on E _ 4-i TN follows from checking
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(i)-(iv). For example, (iv) says that for f E C°°(M), V E T(i-1 TN),

VX(.f V)(x) = dt l

tsoNPo°a,

(f(a(t)) V(a(t)))

{d l f(a(t))} V(x)+f(x){dtl
NPaoo,-1 V(a(t))}

t 0 t-0
= Xx f V(x) + f(x) (vX V)(x), x E M.

The other properties can be shown by similar arguments. See Figure 4.2.
Furthermore, E = 0-' TN admits an inner product from the Riemannian

metric h on N , denoted by the same letter h , by

h0(x) : TT(x)N x To(x) N - R,

since Ex = To(x)N. The above induced connection V is compatible with

this inner product h . In fact, for VI , V2 E T(¢-' TN), X E 1(M) , x E M,

Xxh(V1 , VI) dtl t=0h000)(Vj(a(t)), V2(a(t)))

NPQOQ,-I V2(a(t)))

(d
T

-1

= hm(x1(dt l P,00 Vi(a(t)), V2(x)

-1
+hm(x) VI(x), dt

t_0NPV2(a(t))

h#(x)(VX.VI
,

V2) + h0(x)(VI , VXxV2),

where we used the fact that NP0., : (TO(,) N, hm(x)) -+ (To(,(,)), ho(Q(t))) is an

isometry.

(1.14') Examples of elements of I'(¢-' TN) . (i) For X E 1(M) and for
TXM -+ T,(x)N the differentiation of 0 : M - N, let

(¢.X)(x) :_ O.Xx E To(x)N, X E M.

FIGURE 4.2
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Then 46.X E r(4-'TN). Let {e;} =1 be an orthonormal frame field on an
open neighborhood U in M, then 4,e,, I < i:5 m, are C°°-sections of
E=0-'TN over U.

(ii) For Y E X(N), let

(0-1 Y)(x) := Y0(X) E TO(x)N, x E M,

then 4-1 Y E F(4-1 TN), denoted also simply by Y.

1.4. The first variation formula. Now we calculate the first variation of
E. We take a smooth variation of 0, 0t E CO° (M , N), -e < t < e, with
a varition vector field V E r(4)-1 TN) . That is, F : (-e , c) x M -' N, a
C°°-mapping satisfying

I
F(O,x)=4)(x), XEM,
F(t, x) = Ot(X), -e < t < C, X E M.

We extend vector fields ft , X on (-e , e) , M , respectively, to the direct
product (-e, e) x M canonically, and we denote them by

a
at )(t,x),

X(r.X) for (1,x)E(-e,E)XM.

We also extend {e1 }'1 to (-e, e) x M, denoted by eI (t x) . By definition

irt
11_001(X),V(x) = for x E M , and hence, we get

F e =V(x), xEM,F
(O.x)

where F. is the differentiation of F .

Now differentiate the function t i-- E(4)t) at each t, and at the final step
we set t=0.

t h(4)t.e1,
cbt.e;)V .

2IM E
i-1

Here at each point x E M, we calculate

dth(ot.e;, Ot.e;) = jjh,(X)(4)(.eIX, 4)t.e1X) ( for ¢t : M -' N)

=
d

hF(t x)(F ei(t x) , F e;(t x))

(for F: (-e, e)xM-'N)
(a) h(F,et, F et)- (t x)

a(at is regarded as a vector field on (-E , e) x M

= 2h(0 fF.et, Fe;),
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in the last two equations, the F e1 are regarded as sections of the induced
bundle F-I TN over (-e, E) x M by the mapping F : (-E, c) x M -, N
and the last eqution follows from the compatibility of V and h of F TN.

Here we need the following lemma:

LEMMA (1.16). For any C°-mapping : M -. N and X, Y E 1(M) ,
we have that

°X(0.Y)-°Y(0.X)-0.([X, Y])=0.
PROOF. We denote the left hand side of the above equality by T(X, Y).

Since q.(fX) = f4,X, f E C°°(M), X E 1(M), it follows that

t (f,
X,

f2 Y)
=

f1f2T(X , Y), fl, f2 E C°°(M), X, Y E X(M).

So it suffices to show that taking local coordinates (x1,. .. , xm) ,

of M, N at x0, O(xo), respectively,

a aT
'

0atxa.
axi ax,)

But since [f f-] = 0, we only have to show

a a

If we put y° o qS and 0 j rx, then

'0.(8 ;)x=°F0,(x)(ay
)°(x)

at each point x in a neighborhood of x0. Now for calculating the above, let
m CI-curves t i- a, (t) , 1 < i < m , be defined as

a
a;(0) = x0, a,(0) axi x0

then by the definition of V , for X = aX , Y = aX

(° (c.Y))(x) =
d

I "'V P-1 I 0°(ai(t))aY
? 1

T, I
{0j (Q1(t)) NPoo(",), \a)100s1 r=o Y° m(o,vn

°

F, a21°
(xp) ( a ) + F' of (xo)Op(xo) (N° a

0=1 axiax; ay° ",
°.e=1 ay° c)
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By a similar argument, we get

(VY(0,X))(x0) _ ex ax (xe)(a
ars I J i yQ (xo)

R

+ QE I ej (xo)(xo)1 NV.8 y_) m(xo).

Here since

82_° a2oa N N a
8xi8xj (x0)

__
8xx8x1(x°)' V 0yB V a D 8yQ

we obtain the desired result. 0

(1.17) Calculus of the first variation. Applying Lemma (1.16) to the C°°-
mapping F: (-e,e)xM--+ N and X, YEX((-e,e)xM),weget

VX(F.Y) -VY(F.Y) - Y]) = 0.

Apply this to X = , Y = ei , since [8 , e,]=O, we get

2h(VtF,ei, Fei) = 2h(Ve'F,Bt , Fe,)

= 2 {e1 . h(F at , Fei) - h(F a,

in the last part of which we use the compatibility of t and h. Let X, E
X(M) be determined by

g(Xt, Y) = h ( F. Bt , F. for all Y E X(M),

then we get

i=1 i=1
M

_ F{g(ve,X,, e.) + g(X,, Ve,ej)} (by (3.5) in Capter 2)
i=1

m

= div(X1) + E ex,, Ve ei) (by definition of div(X,))
'i_1

= div(X,) + E h(F, 8t
,
F (V"ei))

i=1

Thus, we obtain

dte(oi) = JdiV(Xt)Vg

(by definition of X,).

(1.18)

IM h
(.,2-, vg'

i=1
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the first term on the right-hand side of which vanishes because of Green's
formula (cf. (3.29) in Chapter 2).

Here putting t = 0, since

F'8t(0, x) = V(x), F.ei(0, x) _ c.e;(x), F.Veei(0, x) _ 0.Vei(x),

we obtain

I !M'
(V, E(0 46.ei V e) v. (1.19)

71-1-0 AMd t=1

In the right-hand side of (1.19),
m

i(0)(x) :_ E(te 4).ei - 4).Ve ei)(x), X E M (1.20)
i=I

does not depend on a choice of an orthonormal frame field {e1}i=1 and
defines an element of F(4-I TN) called the tension field of 4).

Therefore, we obtain:

THEOREM (1.21) (THE FIRST VARIATION FORMULA). Let 0 E COO (M, N).

For any smooth variation 4)r , -e < t < e, of 0, let V (X) :=
Lo

4)r (x) , x Eadt

M, then

d I E(Or) _ -IM h(V , _(4)) v8. (1.22)

Thus, 40 E C°°(M, N) is a harmonic mapping if and only if

t(0) = 0 everywhere on M. (1.23)

(1.23) is called the Euler-Lagrange equation.

The tension field t(4)) can be expressed using the local coordinates
(XI , ... , xm) , (y1 , ... , yn) in M, N as follows. Let 4)° = y° o 0, and
write r(o)(x) E T&(x)N as

n

i(O)(x) _ E r(O)Y8y ,
y=1 Y

T(O)Y(X) gig{8x 8x - j(x)-- (1.24)
i,j=l i J k=1 k

n+
C7XQ

C7Xj

_ -A47 + E giiNr0, 1150

8xi 81.1,°.B
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Here NFl, are Cristoffel's symbols on (M, g), (N, h), respectively.
A4' is defined by the action of the Laplacian (cf. subsection 3.7 in Chapter
2) on C-functions 0' on a neighborhood in M. By this expression, the
Euler-Lagrange equation is a nonlinear equation with n unknown functions
¢1, ... , 0" . But this expression here has a difficulty in that each O, is defined
only on a neighborhood in M.

§2. An alternative expression for the first variation

In this section, N is regarded as a closed submanifold of RK , and h =
i' go is the pull back of the standard Riemannian metric go of RK by the
inclusion i : N C RK. Then 0 E C°°(M, N) can be written as

O(X)=(01(X)....,OK(x)), XEM.

Then we shall express the Euler-Lagrange equation in terms of cbA E C°°(M),
1 <A<K.

2.1. Geometry of submanifolds. Here we prepare briefly basic materials
about a closed isometrically embedded submanifold (N, h) of (RK , go) .

We assume that N is a closed submanifold of RK and that h = I' go ,
where i : N C RK is the inclusion. We denote the differentiation of I : N C
RK by di = I. : TYN 9 v '- di(v) E TYRK . Setting di(T,,N) = N,,, we
see that NY, can be regarded as a subspace of RK under the identification
T,RK n, RK. Letting Ny be the orthogonal complement of NY in RK with
respect to (, ) , we get the orthogonal decomposition:

RK=NyeNY. (2.1)

Any C°°-vector field on N, W E 3:(N), can be regarded as a C°°-
mapping W : N RK satisfying

W(y)EN,,CRK, YEN,

if we put W(y):=di(W,,)ENY,CRK:

X(N)={WEC°D(N,It K); W(y)ENY,, yEN}. (2.2)

Denoting WEX(N) by W=(WI,...,WK),all WA, 1 < A < K are
C°°-functions on N, and the d WA are 1-forms on N. Put

dW:=(dW1,...,dWK)

which is K-tuple of 1-forms on N. For each tangent vector u E Ty,N of N
at Y E N, d WA(u) = u - WA E R, 1 < A < K, which is the differentiation
of WA with respect to the direction u, and we set

dW(u) := (dW1(u), ... , dWK(u)) E RK. (2.3)
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FIGURE 4.3

Let Vo be the Levi-Civita connection on the Euclidean space (RK ,
go).

Then
(V0UW)y = u W = dW(u), u E TEN, Y E N. (2.4)

PROOF. Let a(t) be any C' -curve in N satisfying that a(O) = y, a'(0) _
u. Regarding a(t) as a curve in RK , we have

dt
_0

(VouW)y
=

d op
-1

W(a(t)),

where 0Po is the parallel transport of Vo in RK along a curve a, being

a,(s) = a(s), 0 < s < t. That is, 0P,, sends any vector at y to the one

at a(t), being parallel in RK as in Figure 4.3. Thus the right-hand side
coincides with

dt1=oW(a(t))=

(_W(a(t)). ... , dll=aWK(a(t)))
= (dW1(u), , dWK(u)) =dW(u).

Now decompose dW(u) E RK according to the orthogonal decomposition
(2.1) RK=NN®Nyl,

dW(u) = (V'uW)y +Ay(u, W),

where E NY, and Ay(u, W) E Nyl.
Then for f E C°°(M), W E X(N), and U E TEN we get:
(2.5) df(u) W + f(y) VU' W.
(2.6) Ay(u, fW) = f(y)AE(u, W).
PROOF. Since d(fWA)(u)=df(u)WA+fdWi1(u), 1 <A<K,

d(fW)(u) = df(u) W + fdW(u).

Comparing the Ny N,'-components of this, respectively, we get (2.5), (2.6).

Note that VuW and Ay(u, W) are linear in W since dW(u) is linear
in W.
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(2.6) implies that Ay(u, W) depends only on WY E TYN, and we get a
bilinear mapping

Ay:

We call A the second fundamental form of the submanifold I : N C RK.
Moreover, (2.5) implies that if we define for Z, W E X(N), and y E N,

(VZW )y := V Z(Y)W

then V' gives a connection on N, (cf. (3.4) in Chapter 2).
Now we show that for Z, W E X (N) , y E N, we have

[Z, W ]y = dW(Z(y)) - dZ(W(y)). (2.7)

PROOF. Extend Z , W to vector fields Z', W' on a neighborhood U in
RK of Y E N which coincide with Z, W on U n N, respectively. Then
the right hand side is equal to

[Z', W'], = (VZ,W')y - (Vk,,Z')y

= dW'(Z'(Y)) - dZ'(W'(y))

which is equal to the right-hand side of (2.7). 0
In particular, compare both sides of the NY-, and the N,,1-components of

(2.7), we obtain for all Z, W E X(N), y E N, that

[Z' W Jy = V, (Y) W - V, (Y)Z, (2.8)

Ay(Z(Y), W) = Ay(W(Y), Z). (2.9)

Let (u I , ... , UK) be the standard coordinate of RK . Then

K

go =1duA®duA.
A=I

For Z E X(N), we make the identification

N
di(Zy) = Z(y) = (ZI(Y), ... , ZK(y)) = EZA(Y)(88uA)y.

A-I

N

h(Z, W) = ZA WA, Z, W E X(N)
A=1

which is also denoted by (Z, W).
Then we obtain for uETYN, Z, WEX(N),

W)=h(V,Z, W) + h(Z, V'W). (2.10)
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PROOF. Let a(t) be a CI-curve in N satisfying a(0) = y, 0'(0) = u,
then

u h(Z , W) dt L-0 A=1 ZA(Q(t)) WA(Q(t))

= (dZ(u), W) + (Z, dW(u))

=h(V'Z, W)+h(Z,VuW)

which implies (2.10). 0
Thus, by (2.8), (2.10), and Theorem (3.5) in Chapter 2, V coincides with

the Levi-Civita connection NV on (N, h).
Summing up the above, we obtain

PROPOSITION (2.11). (i) The second fundamental form Ay : TYN x TYN -'

N- C RK is a symmetric bilinear form, and for all Z, W E X(N). N -3 y

AY(Z(Y), W(Y)) is
C00

(ii) The connection V' is the Levi-Civita connection NV of (N, h).

PRoPosrnoN (2.12). Assume that a vector field i of RK defined only on a
neighborhood U in N satisfies

(Y)ENY', yEU.

According to the decomposition RK = NY ® NY', write

-(ACZ)y + (2.13)

Then we obtain

(ACZ, W) = (A(Z, W), ), Z, W E X(N). (2.14)

PROOF. By the assumption, for Z, W E X(N), we get (W, 0. Thus,
we get

(NVZW + A(Z, W), ) + (W, -A4Z + DZ4)
=(A(Z, W),4)-(W,AcZ).

Thus, we obtain (2.14). 0
Now for X, Y, Z E X(N), let X(Y(Z)) be the twice differentiation

of a C°°-function Z : N -+ RK first in the Y-direction, and then in the
X-direction. Then by the definition of A, (2.11), and (2.12), we get

X(Y(Z)) = X(NVYZ + A(Y, Z))

= N
V

X(NVYZ) + A(X , NVYZ)-AA(Y,Z)X +DX(A(Y, Z)),
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changing X, Y mutually, we get also

Y(X(Z)) = NV (NVXZ) + A(Y, NOXZ) - AA(X,Z) Y + Dy(A(X, Z)).

And we get

[X, Y](Z) = NV[X.Y]Z +A([X, Y], Z).
Thus, computing the Nv-component of

0 = X(Y(Z)) - Y(X(Z)) - [X, Y](Z),
we obtain

0 = NR(X , Y)Z - AA(Y.Z)X + AA(X.Z) Y.

Together with (2.14), we obtain

h(NR(X, Y)Z, W) = (A(Y, Z), A(X, W)) - (A(X, Z), A(Y, W)).
Summing up the above, we obtain

THEOREM (2.15) (Gauss). For any closed submanifold (N, h) of (RK , go)

satisfying h = I' go, with the inclusion I : N e RK , the curvature tensor NR
satisfies

h(NR(X, Y)Z, W) = (A(Y, Z), A(X, W)) - (A(X, Z), A(Y, W)),
for X, Y, Z E X(N).

In particular, for the case of the unit sphere N=S'= {y E RK; (y, y) =1 }
c RK with K = n + 1, the second fundamental form A and the curvature
tensor R are given as follows.

Let C be the C°°-vector field defined on S" which is the unit normal
outerward to S, i.e., C(y) E T,S"l, y E S". Then we can identify 4(y) _
y, with y E S". Then we obtain

A(Z, W) _ -(Z, W)4. (2.16)

Thus, we obtain by Theorem (2.15),

gs. (R(X, Y)Z, W) = gs. (Y, Z) gs. (X, W) - gs. (X, Z) gs. (Y, W),
(2.17)

for X, Y, Z, W E X(S") . Thus, the sectional curvature of (r, gs.) is
one everywhere.

PROOF OF (2.16). We apply Theorem (2.15) to (N, h) gs.). It
suffices to show

h(A(Z, W), 4) _ -h(Z, W), Z, WE X(N).
We calculate

h(A(Z, W), (dW(Z), )
n+1

_ FdWA(Z)CA
A=1

WAd4A(Z).= d
1n

WACA/
(Z) - Fn+1I

al A=1
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Here since (W, ) = 0 everywere, so the first term vanishes. For the second
term, since (y) = y, we have SA = uA , I <A < n + 1 . Since Z=

A=1 Z, , we get duA(Z) = ZA . Thus,

n+1 n+I

1: WAd A(Z)=1: WaZA=h(W,Z)
A=I A=I

which implies (2.16).

2.2. The first variation formula. We calculate the first variation formula
of the energy in an alternative way. Recall that for any 0 E C°°(M, N), the
space of variation vector fields along 0 is

T,C°°(M, N) = r(¢-'TN)

_ {W : M -. TN, C°C-mapping, V(x) E T,0(.,)N, X E M}

_{W: M.RK,C°Cmapping, V(x)EN,(X), xEM},

identifying T,, N L- N, c RK , y E N. Then we get

LEMMA (2.18). For 0 E C°° (M, N). W E r(0-1 TN), U E TiM, X E
M. let

dW(u) := (dWK(u),... , dWK(u)),

where d WA , I < A < K, are 1 -forms on M. Then the N,(.,) -component
of d W(u) coincides with

A,(x)(dO(u), W(x)), U E TYM,

where do is the differentiation of 0.

PROOF. Let Y1 , ... , Y, be C°°-vector fields on a neighborhood V in
N satisfying { Y1(y) , ... , Y(y) } is a basis of NY at each point y E N .

Then since W(z) E Ni(.,), z E ¢-I (V) , it can be written as

nW(z) _ ER(z) Y (0(z))
,l=I

Since E C°°(0-I (V)),

dW(u) _ E{(u . ) Y,(q5(x)) + (x) d Y9(dO(u))}.

Here since Y(¢(x)) E NO(x), and by definition of A, the No(x)1-component
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of d W(u) conicides with
n

No(X)1-component of FL (x) d Y(dO(x))
0=1

= Am(X) (dt(u). ,,(x) Y,(0(X))
a=1

= AO(X)(dO(u), W(x))

which implies Lemma (2.18).
Now take any smooth variation of 0 E C°°(M, N) , -e < t < E , with

00 = 0. Using the inclusion I : N c RK , we can write

01(X) _ (011(X), ... , 40,K(X))I X E M,

then the variation vector field W(x) = d 11=001(X), x E M, can be written
as

W(X) = (WI(X), ... , WK(X)), WA(X) dll t=OOtA(x) , 1 < A < K.

The constraint condition 0,(M) c N yields that

. W(X)ENo(X), XEM.

Furthermore, we obtain by (1.5),

d lt_
-0E(-0t)

=f
d

lt-_0e(,01) vgdi M dl

2 E f m d l l
t_0 (d 0r A d Ot A) vg

A=I
K

_ f (d WA, dQSA)vs
A=1 M

=Ef,,(WAI A'OA)v8=fM(W ,At¢)v8

A=I

from (3.29), (3.27) in Chapter 2. Here we denote A¢ := (A01 , ... , AOK)

Since WE C°°(M, RK) is any element satisfying W(x) E NIX), for X E
M, we obtain that

0 is harmonic t the NN(X)-component of AO(x) = 0, x E M.
(2.19)

But we shall show that the N,(.,,) 1-component of A¢ coincides with

m

dO(e,)), (2.20)
=1
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where A is the second fundamental form of N c RK and (ei}m1 is an
orthonormal frame field in a neighborhood U of x in M.

Indeed, since (3.28) in Chapter 2, we get

1
m a ii aOA

°OA

71F ax,
'Fg

g axj

where g is the determinant of a matrix (g1 j) _ (g(/j-, e)) . Then define

a C°°-mapping Xi : U -, RK , 1 < i < m, by

XiVrg- g`l dOax.
i=1 l

That is, if we set Xi = (Xi 1, ... , Xi K) , then we get

ate,,XIA = g'1 dOA(a ) = vgrj ax. .
j=1 1 j=1 1

Since d0(1) E No(X), Xi(x) E Ni(x), X E U and

m m

°¢=
71F

E Xi=*EdX1(t).

(2.21)

Thus, using Lemma (2.18), we obtain that the 1-component of °4(x)
coincides with the of -* E"' 1 dX1(g) which is equal
to

_ E A4X, (dO(ax,) , Xi(x))

i
j=,A.NX)(dO(a

i),dcb(axj))g`l
m

_ (dcb(ei), d¢(ei))
i=1

Thus, we obtain the following theorem.

THEOREM (2.22) (The first variation formula). A sufficient and necessary
condition for 0 E C°°(M, N) to be harmonic is

A (x) + F, A,(X)(d,(ei), dO(ei)) = 0, x E M, (2.23)
i=1

where A is the second fundamental form of N c RK , °0 = (°01, ... , °OK)
and , OK) .

REMARK. For the equation (2.23), the unknown functions OA ' 1 < A < K
are well defined everywhere on M, so it is much easier to treat than the
equation t(¢) = 0.
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In particular, if (N, h) _ (RK , go) with n = K, then the second funda-
mental form should be A = 0. If (N, h) = (S", gsa') , the unit sphere, then
by (2.16), for any C°O-mapping 0: (M, g) - (S", gs.),

m m

EA0(X)(d4)(e;), d4)(e;)) _ -E(d4)(e,), d4)(e,))4)(x) = -2e(O) O(x).

Thus we obtain:

COROLLARY (2.24). (I) A necessary and sufficient condition for 0 : (M, g) -
(R" , go) to be harmonic is

A0=0
which implies 4) is constant when M is compact. Here A4) _ (A41,
and 0=(,01,...,On).

(II) A necessary and sufficient condition for 46: (M, g) - (S" , gs.) to be
harmonic is

AO(x) = 2e(4)) 4)(x) , x E M, (2.25)

that is
AOA=2e(O)OA 1 <A<n+l, (2.25')

where (01, , 0"+1)-

REMARK. If 0 is an isometric immersion of (M, g) into (S"' g..),
this Corollary (2.24) is called T. Takahashi's Theorem (1966) (see also Chap-
ter 6).

§3. Examples of harmonic mappings

(3.1) Example I (Constant maps). For two compact Riemannian mani-
folds (M, g), (N, h) and a fixed q E N, any constant mapping 0: M -
N,

4)(x) = q, for all x E M

is harmonic. In fact, 0 is constant if and only if the energy density function
e(4)) vanishes which is equivalent to E(4)) = 0. Thus for any smooth varition
of 0, 4), , -E < t < E , with 00 = 0, we have

0=E(4)) <E(01), -E <t<E,
which implies that 0. It is also easy to check r(0) = 0.

(3.2) Example 2 (Harmonic functions). (N, g) = (RK, go). Since
Nr7,, = 0, denoting 0 = (01, ... , 0") for 0 E C°°(M, RK),

0: (M, g) -, (RK , go) is harmonic e-*4; is harmonic,
i.e., A4); = 0, 1 < i < n.

When M is compact, 0 must be a constant (see Corollary (2.24)).
(3.3) Example 3 (Geodesics). Let (N, h) be any (compact) C°°-

Riemannian manifold, and dim(M) = m = 1, i.e., M = R/Z = SI . Then
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C°°(SN) is the totality of all periodic C-curves in N with period one.
Let e1 = fz , x E R, then Ve e1 = 0. Put ¢' = O'e1 = do(e1) , then for 0
to be harmonic, r(4) = 0, everywhere on M, is equivalent to

Ve,l.e1 = 0 NVeq' = 0

which is the equation of geodesics (cf. (3.11) of Chapter 2).
On the other hand, assume that (N, h) is isometrically embedded into

(RK , go). Then the condition (2.23) for a C°°-mapping : S' - RK

satisfying O(S1) C N to be harmonic is

-0"(x) + Ad X)(0'(x), 0'(x)) = 0. (3.4)

In the case of the unit sphere (S", gs.), by (2.16), (3.4) is

0"(x) + W(x) , 0'(x)) i(x) = 0,
which is the equation treated in subsection 3.4 in Chapter 1. As shown there,
(3.4) is easier than the eqation NO0.0' = 0 to treat in the case where the
embedding I : N C RK is known.

(3.5) Example 4 (Minimal isometric immersions). A C°°-mapping
0 : (M, g) -+ (N, h) is said to be an isometric immersion if

(i) for each x E M, the differentiation 0.: TxM -p T,(X)N is injective,
and

(ii) O'h = g
(Note that (ii) implies (i). If (i) holds, g := O'h gives a metric on M.)
In this case, we shall identify x E M with ¢(x) E N, and identify X EX(M)

with 4j.
For each x E M, we decompose

TXN = TXM ®TXM' ,

with respect to g,. According to this, decompose NVXY as
NVXY = VXY + A(X, Y),

for X, Y E X(M). Then A induces a symmetric bilinear mapping TXM x
TXM -. TN- L, called the second fundamental form of the isometric immer-
sion ¢ (which is the same as in subsection 2.1). If

m

tr(A)A(ei,e1)=0, (3.6)

' is called a minimal isometric immersion. Here {e,}; ` 1 is a local orthonor-
mal frame field of (M, g). It is known (cf. [Wal) that this condition (3.6)
is equivalent to the condition that

dt Vol(M, ¢r'h) = 0
r=0
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for all smooth variation of immersions 0, whose varition vector field V
satisfies V (X) E TxM1 , x E M . In this case,

m m

A(ei, ei) _ E(NV,,ei -Ve,ei) = t(0),
i=l i=1

so for an isometric immersion (M, g) -, (N, h), the minimality is
equivalent to harmonicity.

(3.7) Example S (Riemannian submersions).
DEFINITION. An onto mapping 0: (M, g) -' (N, h) is called a Rieman-

nian submersion if
(i) for each point x E M, the differentiation TxM -. T,(x)N is

surjective, and
(ii) for each point x E M, there exists a unique orthogonal decomposi-

tion
TxM=Vx®Hx,

with respect to gx , with the property that for each x E M ,

Vx = Ker(4,) = {u E TXM; ¢.(u) = 0},

and the restriction of ¢, to Hx, 4).H is an isometry of (Hx, gx) onto
s

(To(x)N, h#(x)) .
The subspaces V , Hx are called the vertical one, horizontal one, respec-

tively. For each x E M, ¢-1(0(x)) is called the fiber through x. By
definition, dim(M) > dim(N). See Figure 4.4.

(3.8) Let 0: (M, g) - (N, h) be a Riemannian submersion. Then, for
each y E N, 4-1 (y) is an (m - n)-dimensional closed submanifold of M.

PRooF. Let X E 4-1(y) . Take a coordinate neighborhood U. of x which
can be regarded as U. c R'. Since Ker(4),x) c TxM = TxR" S R'", we can
choose a linear mapping L : R"' -+ R'"-" , which is injective on Ker (4) x) ,

and define a C°O-mapping

0:

r X

.11

b'

4+s

FIGURE 4.4
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then the differentiation 4. of 0 satisfies

4b,I(v) = (4,(v), L(v)), V E TIM,

143

and 4>.x is a linear isomorphism by definition of L. Thus, by the inverse
function theorem (1.30) in Chapter 2, 4) is a diffeomorphism of some neigh-
borhood U of x in U. onto a neighborhood V of (y, L(x)) in N x R'"-" .

Then 4-1(y) n U corresponds to ({y) x R'"-") n V by 0, and then this gives
a coordinate neighborhood of 4-1(y) . o

A CO0-vector field X' on M is called a horizontal lift of a C°°-vector
field X on N if 4,X'I = Xo(I) and X'I E HI , x E M. By definition, for
X E 1(N) , there exists a unique horizontal lift X' of X.

LEMMA (3.9) (O'Neill's formula). Let X, Y E 1(N) . Then it holds that
(i) g(X'I, Y' I) = hd,X)(X4I), Yo(.)), X E M, where we denote by

g(X', Y') = h(X, Y) 0 0.
(ii) 4,,([X*, Y']) = [X, Y),
(iii) 0.(VX.Y') = NV%Y.

PROOF. (i), (ii) follow from the definition. For (iii), it suffices to show

Z) o 0 = 2h(NVXY, Z) o 0, Z E 1(N).

We use (3.6) in Chapter 2, (i) and (ii). In fact, the left-hand side of the above
coincides with

2h(4,VX.Y', 4.Z*) o 0= 2g(Vx.Y., Z.)
= X*g(Y*, Z')+ Y*g(Z*, X') - Z*g(X" Y*)

+g(Z', [X*, Y])+g(Y[Z', XO])
_g(X, [Y, Z']),

here we get

X'g(Y', Z*) = X'(h(Y, Z) o 0) = (X h(Y, Z)) o 45,
g(X', [Y', Z']) = h(X, [Y, Z]) o 0, etc.,

so the above coincides with 2h(NVXY , Z) 0 0. 0

PROPOSITION (3.10). A sufficient and necessary condition for a Rieman-
nan submersion ¢ : (M, g) -y (N, h) to be a harmonic mapping is that for
any x E M, the inclusion t : 0-1(¢(x)) c M is a minimal submanifold of
(M, g). Here the Riemannian metric on 4-1(4,(x)) is taken as r'g.

PROOF. Let m = dim(M) , n = dim(N) , and let {e, , ... , ee} be a
local orthonormal frame field defined on a neighborhood V in (N, h).
Let {e1, ... , e.) be the horizontal lift on ¢-1(V) of {e', ... , e') , and
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{e1, ... , en , en+l , ... , em) an orthonormal frame field defined on a neigh-
borhood U in 0-1(17). Then at each point x E U, {e,,+1, ... , em) gener-
ates the vertical subspace Vx of T,, M. Then we decompose the tension field
as

n m

r(4i) = E{V 4.ej - O.V, e1) ) + F, 1"),
i=1 j=n+1

where we get Velo.ei = NV,,e; = O.Veei, 1 < i < m by (iii) of Lemma
(3.9). And we get to O.ei = 0, n + 1 < i:5 m. Thus, we obtain

m m

t(0)_- E O.V,,e, = -0. ( F V,,ej)
i=n+l i=n+1

Thus, a necessary and sufficient condition for 4 : (M, g) (N, h) to be
harmonic is

m

V,,ei E VX , x E M.
i-n+l

On the other hand, the trace tr(A) of the second fundamental form A
of the inclusion I : (41'(4(x)), I'g) - (M, g), is the Hi-component of
Eimmn+l Ve ej. Thus, we obtain the desired result. O

COROLLARY (3.11). For a compact Riemannian manifold (M, g), both
(i) the identity mapping id: (M, g) -' (M, g), and
(ii) the Riemannian covering x : (M, g) - (M, g)
are harmonic mappings.

(3.12) Example 6 (Holomorphic mappings). An even dimensional (say
2m) C°°-manifold M is called to be an m-dimensional complex manifold if
at each point of M there exists a complex coordinate neighborhood (U., a)
such that for a homeomorphism a of U. onto a(UQ) c Cm , if U. n U, # 0,
then

p o a-I : Cm Da(UQnUp)-fl(UQnU,)cCm

is a holomorphic diffeomorphism. Taking a complex coordinate (z*,..., zm )
E Cm on a neighborhood UQ , put

z =xi xi, y ER, j= 1,...,m,
and then (x(,, y*,..., xm, , yam) gives a local coordinate as a 2m-dimensional
real manifold.

Complexify the tangent space TpM at each point p E M, 2
p

M =TpM
C, and put

TcM = U Tp M
PEM
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which is a complex vector bundle over M (cf. (3.4) of Chapter 5). At each
point p E M the 2m vector fields on U.,

fox" 04'", axm' aym
generate TM over R and TM over C.

A linear mapping J : TpM T,M over R and its complex extension
J : TpM - TpM over C are defined (by

I j=1,...,m,)=-W-)
which satisfy

JZ=J o J= -id,
where id is the identity mapping. J is called the almost complex structure
and is a (1,1) tensor field.

A C°O-mapping 0: M N between two complex manifolds M, N is
holomorphic if, denoting the almost complex structures by J , the differenti-
ation TpM - To(p) N, for P E M satisfies

Jo0. =4,. oJ.
Then if we take local coordinates (z1, ... , zm), (w1, ... , w,) of p E M,
4,(p) E N, and put

zj =xj wk=Uk+%/ TVk, 1<j<m, 1 <k<n,
then we have that

0 is holomorphic in a neighborhood of p.
a Each wk o 0 is a holomorphic function in (z 1 , ... , zm) ,

I<k<n.
r Each uk o 0 and vk o 0 satisfy the Cauchy-Riemann equations :

a(uk o a(vk ° 4) a(uk o a(vk 0 'V)
ax, - aye ' ay! - ax,

for I< j < m.
A Riemannian metric g on a complex manifold M is a Hermitian metric

if
g(JX, JY) = g(X, Y), X, Y E 1(M) ,

and if the 2-form co given by

w(X,Y):=g(X,JY), X, YEX(M)
is a closed form, i.e., dw = 0, g is called a Kihler metric and (M, g) is
called a Kihler manifold.

It is known (cf. [K.N]) that a sufficient and necessary condition for a
hermitian metric g on a complex manifold M to be a Kihler metric is that

V%(J Y) = J(VXY), X, Y E 1(M). (3.13)
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PROPOSITION (3.14). A holomorphic mapping M - N between two
Kahler manifolds (M, g). (N, h) is harmonic.

PROOF. We can take a local orthonormal frame {e1, ... , e,,,
in such a way that Jet = j , J j = -e; , 1 < i < m. Then we get

VO.f = V1Jq.e; (by holomorphicity of 0)

= JV f,0.e1 (since (N, h) Kahler)

= J(Ve 0, j + 0.[f , e1]) (by Lemma (1.16))

=-V,,O.e,+Jc.U,e,l,
since 0 is holomorphic and (N, h) is Kiihler. By the same way, we get

O.Vf f, = c.JV fe1 ((M, g) is Kahler)

= 0.J(Ve' j + [f,, e;]) (by Theorem (3.5) in Chapter 2)

= -).V,,e1 + Jo.[f, , e;],

since 0 is holomorphic and (M, g) is Kahler. Thus, we obtain
m m

E(o fO.f - O.V jj)

which yields that r(9S) = 0 everywhere on M. O

REMARK. See the next chapter for the stability of holomorphic mappings
and related topics.

Before ending Chapter 4, we show well-known examples of Kahler mani-
folds.

(3.15) Example 7 (The complex Euclidean space). Let (z1, ... , z,,) be
the standard coordinate of C" and put z j = xj + may, , 1 < j < n, and
define

go=Re1 tdzj®d-zj I =F(dx,®dx, +dy1®dy),
j-1 j-1

then (C", go) is a KAhler manifold. The corresponding almost complex
structure J is

J(axj) oyj' J(ayj) axj'

and the corresponding 2-form to is given by

w= 4 Fdzjndij=-2rdxjAdyj,
j-1 j=1

and satisfies dw = 0.
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(3.16) Example 8 (Complex torus). Take a basis {v,},"=1 of C" , and put

n

A:= >(m;+vr-- -1n!)v,;ml,niEZ,1<j<n .

J=1

Two elements z =s
1
a! v1, w =

1
bjvJ of C" with a1, b. E C

are equivalent if z - w E A, the set of all equivalence classes n(z), z E
C" is denoted by C" /A which becomes a compact n-dimensional complex
manifold. We can give a complex local coordinate of C"/A by C"/A 9
n(z) = n(Ej_1 av,) .- (a1, ... , an) . We can give a Riemannian metric gA
on C"/A by

gA = Ref (v,, v) dai ®da, I.
i.i=1

Here <z,w>=>. 1ziwi, z=(z1,...,z"), w=(w1,...,w")EC".
Then we get n*gA = go, where it : C" C"/A is the projection. The
resulting complex Hermitian manifold (C"/A, gA) is a Kahler manifold with
zero sectional curvature.

In general, if we take a basis of R2" , (TI , ... , r2n} , and put
2n

iri; miEZ ,

i=1

then C"/A also becomes a compact complex manifold and the Riemannian
metric gA induced from go is a Kahler metric whose sectional curvature is
zero. This is called a complex toms.

(3.17) Example 9 (Complex projective space). Let
Cn+1.={z=`(Z1,...,zn+1); ziEC, 1 <i<n+l},

where ` means the transpose. Two elements z = `(z1, ... , zn+1) , w =
'(w1, ... , wn+1) in C - (0) are equivalent if z = Aw , i.e., zi = Awi , 1 <
i < n + 1, for some A E C - (0). The totality of all equivalence classes
[z], z E Cn+1 - (0) is denoted by P"(C) which becomes an n-dimensional
complex manifold. For 1 < i < n + I,

Ui := {['(Z1 , ... , Zn+1)] E P"(C) , Zi # 01,
and define an into homeomorphism by

-- 1 L Zi-1 Zi+1 Zn+I nai: Ui-3 [(Z1,...,Zn+1)] Z ...., Z Z ,..., Z EC ,
r t t

then {(U,, a.); i = 1, ... , n + 1 } gives a complex coordinate system of
P"(C).

On the other hand. 'a compact Lie group G = SU(n + 1) acts transitively
on P"(C) by

SU(n + 1) x P"(C) 9 (x, [z]) 1-- x [z] := [x . Z] E P"(C).
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Here x z is the multiplication of a matrix x and a vector z. The isotropy
subgroup K of G at the origin o = ['(1, 0, ... , 0)] is

K = S(U(1) x U(n)) = { Ca r0) ; a E U(1), X E U(n), adet(x) = 1 ,
111

0 x
111111

where 0 in the right-hand side is '(0, ... , 0). Thus, it can be written as

P"(C) = SU(n+ 1)/S(U(l) x U(n)) = G/K,

and P" (C) is a compact homogeneous space. Let 9, t be the Lie algebras
of G, K, respectively, and define an inner product on g by

(X, Y) = -tr(XY), X, Y E g.

Then the orthogonal complement m oft in g with respect to this inner
product is

r 0 -r2 rm _={(z
O

); z= (zl,...,z,,), ziEC, 1<i<n}.

Let h be an tttG-invariant Riemannian metric on G/K = P"(C) correspond-
ing to the inner product

(X, Y)o = (X, Y), X, Y E M.

Then (P"(C), h) is a Kiihler manifold whose sectional curvature varies over
between 1 and 4.

On the other hand, let
Stn+1:={ZECn+1;

IIZII= 1},

on which SU(n + 1) acts transitively by

SU(n + 1) x S2"+1 a (X, z) .-+ x Z E S"+1.

The isotropy subgroup rH at the origin o = t (l, 0, ... , 0) is

H= f(1 );xEsun}sun.Stt `0 x

Thus, it can be written by

S"+1 = SU(n + 1)/SU(n) = G/H.

H is a closed Lie subgroup of K and the natural projection

n:

coincides with the mapping

1R: S"+1 9 z - [z] E Pn(C)
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which is called the Hopf mapping (fibration). Let n be the orthogonal com-
plement of the Lie algebra h of H in g with respect to the inner product
(, ). This n is given by

r

I
{(ino

-i91 9ER, z(zl,...,z"), ziEC Dm.

Here I is the unit matrix of degree n. Let g be an G-invariant Rie-
mannian metric on Srt+1 corresponding to the inner product (X, Y)0 =

(X, Y) , X , Y E n. Then g coincides with the Riemannian metric gam.,
with sectional curvature one and the Hopf mapping it :

(S2"+1, g) -+

(P"(C), h) is a Riemannian submersion, and moreover, a harmonic map-
ping (see also Exercise 4.5).

Exercises

4.1. Show that any isometry 0 : (M, g) - (N, h) is a harmonic mapping.
4.2. Let dim(M) = 2. For a C°°-mapping 0: (M, g) (N, h), its energy

E(O) does not change even when g is changed into 2 g, where A E
C°°(M) is a positive function.

4.3. Let dim(M) = 2. Let (x, y) be a local coordinate on a neighborhood
U in M such that

g=2(dx®dx+dy®dy),

where A E C°°(U) is a positive function. For a harmonic mapping
(M, g) (N, h), show that the function Vi on U defined by

I2-I
axIa00

y ex' ay

is holomorphic in z = x + vf--Iy on U. Here

aX
ay

I ayl2=h'ay' ey)'

(ax' ay) -h(ax' ay)'
4.4. (i) Let (M1 x M2, gI x g2) be the Riemannian product of two Riemannian

manifolds (M1, g1), i = 1, 2. Assume that a C°°-mapping

0: M1 xM23(x1,x2)t- O(x1 ,x2)EN

is harmonic in each variable, i.e., (M,, g,) 3 xj - 4'(xI , x2) E (N, h)
are harmonic, i = 1, 2. Show that 4' : (MI X M2, gI x g2) 4'(xI , x2) E
(N, h) is harmonic.
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(ii) Let G be a compact Lie group, and let g be a bi-invariant Rie-
mannian metric on G. Then, using (i), show that the multiplication
defined by

0: GxG-3
is harmonic.

(iii) Let F : R° x R° - R" be a bilinear mapping satisfying

IIF(x, y)il = llxll llyll, x E R°, y E R°.

Then show by (i) that the mapping F : S" x S°-1 - S"-1 naturally
induced from F is harmonic.

4.5. Let (, ) be the standard Hermitian inner product on C2 and Ixl =
(x , x)112, x E C2 . Two elements X, y E C2 - (0) are equivalent if
x = AY, A E C - (0). The set of all equivalence classes [x] is denoted
by P1(C) which is diffeomorphic to S2 . Let S3 := (x E C2 ; Ixl = 1).
The mapping

0: S39Xs-[X]ES2=P1(C)
is called the Hopf mapping. Show that the Hopf mapping ¢ : (S3, g S3) -,
(S2, gsa) is harmonic.

< Coffee Break * Soap films and minimal surfaces (Plateau's problem)
In 1760, J.L. Lagrange derived the famous equation of minimal surfaces

and published this in 1762 in Essay of a new method for determining the
maxima and minima of an indefinite integral formula.

111 years later, in 1873, J. Plateau, a physicist in Belgium, published Ex-
perimental and theoretic statics of liquid influenced only by molecular forces.
This reported his interesting experiments about soup films. By his experi-
ments, it was supported that "Any contour by a single closed wire, if it is not
so large, is covered with at least one soup film."

The corresponding mathematical problem is "For any Jordan curve, i.e.,
continuous closed curve without self intersection in the 3-dimensional space,
does there exists at least one minimal surface bounding this curve?" This
probelm has been known as Plateau's problem. B. Riemann, K. Weierstrass
and H.A. Schwarz gave special minimal surfaces for special type Jordan
curves, but did not give a general solution.

In 1930, 1931, J. Douglas and T. Rado solved independently Plateau's
problem. See J. Douglas, Solution of the problem of Plateau, Trans. Amer.
Math. Soc. 33 (1931), 263-321;

T. Rado, On Plateau's problem, Ann. of Math. 31 (1930), 457-469; and
T. Rado, The problem of least area and the problem of Plateau, Math. Zeit.

32 (1930), 763-796.
Here we explain the mathematical background briefly.
Let

B:={w= (u, v)ER2; Iui2+I.I2< 1),
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the unit disc, and let
r : a Jordan curve in R3 .

Then we write a C°°-mapping X : B - R3 by

B 3 w o-- X(w) = (X1(w), X2(w), X3(w)) E R3,

and

X,,:= X. (20
, X.

:= X (11 ),

then the area A(X) of a surface X is given by

A(X) = J
(X,,,

BB

where are the standard inner product, and the norm of R3 . See
Figure 4.5.

The condition for X to bound a Jordan curve r is that
(0) a continuous mapping X IOB : OB -' r gives a parameter of the

Jordan curve r.
Then Plateau's problem is to find X which minimizes the area A satis-

fying the condition (0).
To do this, it suffices to find X satisfying fI,_0A(X,) = 0 for any varia-

tion X, satisfying the condition (0), and the equation of the first variation,
which is called the Euler-Lagrange equation and says that the mean curvature
of X is zero. It is known that this is equivalent to

(i) AX = O, that is, AXX = O, i = 1, 2, 3, where 0 and

(ii) IXyj2 - IX0I2 = 0 and (X., XX,) = 0.
Weierstrass pointed out, using the condition (i) AX = 0, putting

(D(w):=IXw12-IXv12-2%f--l (X.,X,,),

FIGURE 4.5. The area of the parallelogram spanned by

Xw, X. is IX IIIXVIZ - (X., Xv)2
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4(w) is a holomorphic function in w = u + ./--I v (see also Exercise 4.3),
it has been a useful fact, but could not solve (0), (i), (ii).

The reason for this difficulty is that, for any diffeomorphism P
satisfying qp(8B) = 8B,

(iii) A(X o 9') = A(X).
So it implies that there are too many X which minimize A. Douglas and
Rado considered, instead of A, the energy (the Dirichlet integral)

E(X) = 1 f IdXI2 du dv = 1 j(XJ+ IX12) du dv.
B

This E has the following good properties:
(iv) A(X) < E(X) , and the equality holds if and only if IXu12 - IXv12 = 0

and (Xv, XX,) = 0.
(v) The only diffeomorphism qv : B B with ip(8B) = 8B which satisfies

E(X o g) = E(X)

is the one satisfies that

4.12_1
9 P ,

12=00 and (,u, cv) = 0 (on B).

(vi) If X minimizes E, then it satisfies (i), (ii) and is smooth on B .

It is not too hard to check (iv). In fact, it follows from

A(X)=f Fix-,Tis
`feIXIXIdudv

< f (IXu12 + IXvl2)dudv = E(X),
s

from which comes the equality case.
Thus, they suceeded in finding an X0 which minimizes E and simulta-

neously A for a given Jordan curve r.
For topics and results on Plateau's problem, see
S. Hildebrandt and A. Tromba, Mathematics and optimal forms, Scientific

American Books Inc., 1985.
M. Struwe, Plateau's Problem and the calculus of variations, Princeton

Univ. Press, Vol. 35, Princeton, NJ, 1988.
F. Morgan, Geometric measure theory, A beginner's guide, Academic Press,

San Diego, CA, 1988.



CHAPTER 5

The Second Variation Formula and Stability

In Chapter 5, we calculate the second variation formula of the energy (the
action integral), and discuss the stability or the unstability of a harmonic
mapping, and its rigidity.

The second variation formula was obtained independently by E. Mazet
and R.T. Smith, in 1973-1975. The stability of holomorphic mappings be-
tween Kiihler manifolds was obtained by A. Lichnerowicz in 1970. In this
chapter, we discuss its relation to the second variation formula, which is use-
ful to study the structure of the set of holomorphic mappings between Kiihler
manifolds.

In contrast to the above, there is an instability theorem which was found
by Y.L. Xin in 1980. Recently, it was generalized by Y. Ohnita and R.
Howard-S.W. Wei independently.

§1. The second variation formula

1.1. Calculation of the formula. In Chapter 4, we derived in two different
ways, the equation (the Euler-Lagrange equation) of critical points of the
energy (the action integral) E on C°°(M, N). In this section, we calculate
the second variation formula of E.

Let 0: (M, g) (N, h) be a harmonic mapping. Take a smooth varia-
tion 0,.,: M N with two parameters s, t, and with 00,0 = . That is,
the mapping F defined by

F: (-E, E)x(-E, E)xM3(S,t)" O51(x) EN

is a C°°-mapping and F(0, 0, x) = O(x), X E M. The corresponding
variation vector fields are denoted by V, W : For X E M, define

V(x) dtL-0 05,0(x) E To(x)N, W(x) := 7-1,_000,1(x) E T,(X)N.

We often extend vector fields on the interval (-c, e) or M to the ones
on the product manifold (-E, E) x (-e, e) x M, and we denote them also
by the same letter as X , for X E 1(M) . Then by definition, we get

V=F W=F (8' (8S (s.r)=(o.o) at )(s.r)=(o.o)

153
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Now we regard the energy E to be a function on a manifold
C°° (M , IV), the Hessian of E, H(E)m(V, W), at a critical point 4) , a
harmonic mapping, is defined as follows (cf. § 1 in Chapter 3):

Z

H(E)m(V, W) =
a

E(0,.1). (1.1)
asst I(sr=0,0)

In the following, we shall calculate (1.1). By definition,

1 f "`
E(O,,1) = 2

e t =1

`"
h(F.e; , F. e1) v..= 2

M
r-1

Repeating the calculation in § 1 of Chapter 4, we get the same equation as
(1.18) in Ch

49

apter 4,

r
g.h(F. (1.2)

By differentiating it in the variable s, we obtain

BsatE(0,.r) = - IM as ath
(F.

F, (V,,F.e` -
F'V`,e`)/ vs

i=1
m

_ - r e1- F.Ve,ei}) vs

at V`,F.e` - F.V`,e'} v g
IM

- h I F. 1: V#{
r=1

Here in the last equality, we used the compatibility condition of t anf h
(cf. (1.12) in Chapter 4).

The first term of the above vanishes at (s, t) = (0, 0). Because in the
integrand,

m

{0 F,et - F,Ve et} = T(4)) = 0,
=1

since 0 is harmonic. So we calculate the integrand of the second term of the
above, and it follows that

V f.V,F,ej = V <<V t F,ej + Vit a
+'R (F.... F,e1) F,e1 (1.3)

which follows from the definition of the curvature tensor NR R. Note that
the third term of (1.3) has meaning because NR is determined only by the
values at T,N at each point y E N by (3.17) in Chapter 2.
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Furthermore, apply Lemma(1.16) in Chapter 4 to Vf F.et . Then since

as , e.J = 0, (1.3) coincides with

Ve, as + F
La ' e.]) + elf .`,F.e, + NR \F. F.e'J F. e'

= VeVeFF+R(F.as, Fet)Fee;.

Making use of Lemma (1.16) in Chapter 4, we get

Vj,F.Vee; _ VV,aF.a-+F.{8s, Vee;J =B (1.4)
Finally, putting (s, t) = (0, 0), since F j = V, F J = W, and Fe; _

0,e; , we obtain the following theorem:

THEOREM (1.5) (the second variation formula). Let ¢: (M, g) -' (N, h)
be a harmonic mapping. Then the Hessian of the energy E at 46 is given by

H(E)m(V, W) = r h(JO(V), W) vs, V, WE F(. -'TN). (1.6)
,t,

Here J,0 is a second order selfadjoint elliptic differential operator acting on

the space of variation vector fields along 0, F(O-1 TN) of the form:
M m

J' 0(V):= -NR(V,,0.ej)4.e;, (1.7)

for V E r(o-'TN).

DEFINITION (1.8). The operator J. - ,1l'o is called the Jacobi opera-
tor. Here the operator TLm is defined by

m

,&,,v:= - Vo a )V, V E i'(4-' TN) (1.9)
i=1

called the rough Laplacian. A,, is a second-order elliptic differential operator
because of the form (1.9). Mo is given by

m

Rov := ENR(V, 0.e;)0.e;, V E
r(o-1TN). (1.10)

i=1

Since . (fV) = f.94(V), f E C°°(M), R. induces a bundle mapping
of E = 0-'TN defined by

m

,9po.x : TT(x)N 3 v -- ENR(v, 0.e1)0.e; E T,(x)N,
i=1

which satisfies (.9I V) (x) =.9Mo x(V(x)) for x E M. Moreover,

h(6''V,W)=h(V,,9I,,W), V, WEI'(o-'TN). (1.11)



156 5. THE SECOND VARIATION FORMULA AND STABILITY

PROPOSITION (1.12). The rough Laplacian Am satisfies

fM h(ZjV , W) vg = fm h(VV, VW) v8 =fm h(V, e.W) vg , (1.13)

for V, W E I-(o-' TN) . Here t V is a C°°-section of the vector bundle
TN ® T'M and is defined by

VV : X(M) 3 X - VxV E r(o-'TN),

and for W E FW ' TN),
m

h(VV,VW)=>h(VeV,VeW)EC°°(M).
;=1

PROOF. It is enough to show the first equation of (1.13). Since V and h
are compatible,

m

h(AOV, W) = - E{e1. h(Ve V, W) - h(Ve v, Ve W)}
;=1
M

+>h(Vo eV, W).
;=1

Here define X E X(M) by

g(X, Y) = h(V,,V, W), Y E 3:(M),

then we get
m m

div(X) = g(e1, VEX) _ {e; g(e,, X) - g(Veje, , X)}
i=I

M

= E{e; h(VIr V, W) -h(Vo<<"V, W)}.
;=1

By Green's formula fm div(X) vg = 0, and we obtain the desired equation.
0

1.2. The index, nullity, and weak stability. Due to Theorem (1.5) (the
second variation formula), we can define the notions of the index, nullity,
weak stability, and unstability for harmonic mappings in a similar way as for
the Morse theory in Chapter 3.

DEFINITION (1.14). The index of a harmonic mapping : (M, g) -
(N, h) is

sup{dim(F) ; F c I"w ' TN), a subspace
on which H(E),, is negative definite } ,

denoted by index (0). The nullity is

dim( V E no-1 TN) ; H(E)m(V, W) = 0, for all W E r(O-' TN)},
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denoted by nullity (0). A harmonic mapping 0 is said to be weakly stable if

index(S) = 0, i.e., H(E),(V, V) > 0, for all V E I'(.O-I TN),

and otherwise, is said to be unstable.
In the second variation formula, since J. is a selfadjoint ellptic differential

operator acting on the space of sections of the vector bundle ¢-1 TN over a
compact manifold M, due to Hodge-de Rham-Kodaira theory, the spectrum
of Jm , denoted by Spect (Ja) , consists only of a discrete set of an infinite
number of eigenvalues with finite multiplicities and without accumulation
points. So we count the eigenvalues with their multiplicities, denoted as

A1(0) <_ A2(0) <_ ... !5 AiM < ...100.

Here A is the eigenvalue of Jo if

V,(O) :_ { V E r(o-1 TN) ; J,V = AV I ;E (01,

which is called the eigenspace with the eigenvalue A, dim V,,(0) is called
the multiplicity of the eigenvalue A. As above, the index and nullity of a
harmonic mapping 0: (M, g) -. (N, h) are given by

index(O) _ dim V
x<o

nullity(4) = dim V0(0) = dim Ker(J4), (1.16)

and

0 is weakly stable e=*- Aj(i) > 0, for i = 1, 2, .... (1.17)

If (N, h) has the nonpositive sectional curvature, that is, for any linearly
independent tangent vectors u, v at any point y E N,

NK(u, v) < 0, i.e., h(NR(u, v)v, u) < 0,

then h(. V, V) < 0, for all V E T'w 1 TN). Also we get

IM
V)v>0, (1.13)h(AmV,V)vg=IM

due to (1.7), we obtain

IM
h(JJV, V) v8 > 0, for all V E f(0-' TN).

Thus, we obtain

PROPOSITION 1.18. If (N, h) has nonpositive sectional curvature, then any
harmonic mapping 0: (M, g) -, (N, h) is weakly stable.

REMARK (geometric meaning of the nullity). Let (M, g), (N, h) be ar-
bitrary compact Riemannian manifolds, and let the totality of all harmonic
mappings between them be denoted by

S ar(M, N):= {0: (M, g) -» (N, h), harmonic mappings}.
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Then it is, in general, not a "manifold", but let us consider its tangent space
at ¢ E flar(M, N),

TTS3ar(M, N) C TTCOO(M, N).

It is natural to say that a variation vector field V E T`C°°(M, N) _
r(I-1TN) belongs to TS3ar(M, N) if there exists a one parameter family
of harmonic mappings 0s E S3ar(M, N), -e < s < e with 0B = such that

0,(X), X E M.V(x) = d
IS--0ds

In this case, we obtain

TaS3ar(M, N) C Ker(J0),

in particular,

(1.18)

dimTmfjar(M, N) <nullity(o). (1.18")

PRooF. In fact, let 0s E fjar(M, N) be a one parameter family of har-
monic mappings with .0Q = .0, and let 0s t E C°O(M, N) be any variation
of 0s , -e <t < e , with 0s o = ¢s . Define

V (X)
:= ds l

S-00' ,0(x)' W(x)
:=

x E M.

Then since the 0s are harmonic for all s, we obtain

a
Ft t-E(c,.,) = 0.

Therefore, we obtain
x

J
h(Jm(V), k')u8= a I E(Os.t)=0.asa (s.t)=(a.a)

Since W E Tw 1 TN) is arbitrary, we get V E Ker(J.) , and we obtain
(1.18'). 0

In general, the equality TmS3ar(M, N) = Ker(J,,) is false. However, by the
quantity nullity (0) = dim Ker(Jm) , we know how a finite dimensional neigh-
borhood in S3ar(M, N) spreads in an infinite dimensional neighborhood in
C°°(M, N) for a harmonic mapping 0. It is very important to determine
the structure of a "finite dimensional submanifold" S3ar(M, N) of an infinite
dimensional manifold C(M, N).

1.3. Examples. We discuss the second variation formula for the simplest
cases.

(1.19) EXAMPLE 1 (constant mappings). For any compact Riemannian
manifolds, (M, g), (N, h), consider the second variation of a constant
mapping

0: M-. N, O(x)=q, forallxEM.
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By definition,

rw ITN)={V; V(x)ETQN, VxEM}.

Thus, letting ( v , ) '- , be a basis of TQN , we may define V E 1'(o-1 T N) , 1 <
i<n,by

Vi(x) := vj, X E M.

Since any element in TN can be expressed by a linear combination of
(V,1"1, we get

E 1 < i < n
i=1

Then we can give a variation 0, of a constant mapping 0 corresponding to
a variation vector field V = E"._ 1 f V, by

o f(x) Vi XEM.0,(x) -- expQ t F
=1

Let us calculate the Jacobi operator J. J.

(i) For V E T(o-1 TN), since O,ei = 0, 1 < i < n, we get
m

9irm(V) _ NR(V, c.ej)c.ej = 0.
j=1

(ii) On the other hand, for X E X (M) and V = F"1 f V E r(o-1 TN) ,
by (1.11) in Chapter 4 and the properties of the covariant differentiation,

n

+fvXV,}
j=1

i=1

since OX V = 0 by means of V (x) = vi , for all x E M .

Therefore, by (i), (ii), we obtain
n n

f,. Vi E r( I TN).J,V = r(Daf) J , V=F

Here Og is the Laplacian acting on C°°(M) (cf. (3.28) in Chapter 2) which
is of the form

A f=- {e,eai) - V,ei f f E C°°(M).
i=1

Thus, we obtain
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PROPOSITION (1.20). For a constant mapping ¢ : (M, g) -. (N, h), the
spectrum Spec (JO) of the Jacobi operator J. is the set of eigenvalues of the
Laplacian of (M, g) acting on C°°(M) counted (n = dim N)-times:

Spec(J4) = n x Spec(Ag), n = dim(N).

In particular, Spec (Jd) does not depend on q = O(M) E N.

REMARK. As above, the second variation is nontrivial even for a con-
stant mapping. By Proposition (1.20), the studies of the Jacobi operator Jm
are the natural extensions of the ones of the spectrum of the Laplacian Ag
of a Riemannian manifold (M, g) (cf. [Ur 10]).

We denote the spectrum Spec (Ag) of Ag by

SleC(Ag) = {A0(g) = 0 <)1(g) <- A2(g) <- ... <t oo}.

Here the eigenvalue slo(g) = 0 corresponds to the constant function on M.
By Proposition (1.20), the index and nullity of a constant mapping ¢ are

index(¢) = 0, nullity(q) = dim N.

(1.21) EXAMPLE 2 (the identity mapping). The identity mapping of a
compact Riemannian manifold (M, g),

4=id:
is a trivial example of a harmonic mapping. But in this case, the theory of
the second varition is much more complicated. Indeed, in this case,

m = N, I'(4 I TN) = 3:(M),
and the Jacobi operator Jid : X(M) -' X(M) is given by

Jid=A- P. (1.22)

Here the operators A and p are
_ n
A(X):=-E(Veve- Vva)X, (1.23)

i=1

P(X) :=
n

R(X, ei)ei, (1.24)
i=1

for X E 3:(M) .

The Jacobi operator Jid is related to the Laplacian AI acting on the space
AI (M) of 1-forms on M (cf. (3.36) in Chapter 2) as follows: 1-forms
w E AI (M) and vector fields X E X(M) on M correspond to each other
isomorphically in such a way that

w(Y) = g(X, Y), Y E X(M). (1.25)

Under this identification, we obtain the operator A. : X(M) X(M)
acting on vector fields corresponding to the Laplacian Al : A'(M) - A'(M)
acting on 1-forms. Then we obtain
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THE WEITZENBOCK FORMULA (1.26). Under the above situation,

AH=e+p.

PROOF. The proof will be given in the remark following (2.9) in a more
general setting. 0

By the formula in (1.26), we obtain

Jid=AH-2p. (1.27)

REMARK. Vector fields belonging to Ker (Jid) were studied initially by T.
Nagano and K. Yano in 1961, [N.Y I], [N.Y 2]. They called them geodesic
vector fields.

We write here without proof, the following theorem which is obtained
from (1.27). See Exercise 5.1.

THEOREM (1.28) (R.T. Smith [St 1]). Let (M, g) be a compact Rieman-
nian manifold which is Einstein, i.e., its Ricci tensor p (cf. (3.19) in Chapter
2) satisfies

p(X , Y) = c g(X, Y), X, Y E X(M).

Then:
(i) The identity mapping of M, id: (M, g) - (M, g) is weakly stable

if and only if the first eigenvalue of the Laplacian Ag acting on C°°(M),
A1(g) , satisfies

21(g)>>2c.

(ii) The nullity of the identity of (M, g) is given as

nullity(id) = dim Iso(M, g) + dim( f E .C°°(M) ; Ag f = 2cf } ,

where Iso (M, g) is the isometry group of (M, g), i.e.,

Iso(M, g) := {'P; 9'g = g}.

A simply connected Riemannian manifold (M, g) is called a Riemannian
symmetric space if its curvature tensor R satisfies VR = 0. Then we obtain:

COROLLARY (1.29)(cf. [Ur4], [Oh]). Let (M, g) be a compact simply
connected irreducible Riemannian symmetric space. Then an (M, g) for
which the identity mapping is unstable is one of the following:

(1) S" , n > 3, the unit sphere of dimension higher than or equal to 3,
(2) Gl q(H) = Sp(l)/Sp(t - q) x Sp(q), t - q > q > 1, the quaternionic

Grassmann manifold,
(3) P2(Cay) = F4/Spin(9), the Cayley projective plane,
(4) E6/F4 ,

(5) SU(2q)/Sp(q), q> 2,
(6) SU(t + 1), I> 1, a simple Lie group of type A,, and
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(7) Sp(1) , I > 2. a simple Lie group of type C, .

(1.30) EXAMPLE 3 (closed geodesics). For the case of M = SI and qS :
(M, g) (N, h) a closed geodesic in (N, h) of period one, i.e.,

0: [0, 1]-(N,h), cb(x+I)=O(x), -oo<x<oo,
then I-(O-LTN) becomes the space of all C°° vector fields V along
satsifying that V(x) E TT(X)N and V(x + 1) = V(x) for all x E R. Then
the Jacobi operator J. is

JmV = -NV ,NV"V - NR(V , 0)0'.
The vector fields satisfying J. = 0 are called the Jacobi fields and play
important rolls in the study of geodesics.

§2. Instability theorems

2.1. Main Theorems. In this section, we prove the following theorem

THEOREM (2.1) (instability theorem, Y. L. Xin, 1980). Let (S'° , gs..) be
the unit sphere with constant sectional curvature one, with m > 3. Let (N, h)
be any compact Riemannian manifold. Then any non-constant harmonic map-
ping 0: (S'", ga-) - (N, h) is always unstable, i.e., index (¢) > 0.

This theorem was extended independently by Y. Ohnita, Y. L. Xin, and
R. Howard-S.W. Wei into the following:

THEOREM (2.2). Let (M, g) be one of the Riemannian manifolds (1)-(7)
in the list of Corollary (1.29). and let (N, h), (M' , g') be arbitrary compact
Riemannian manifolds. Then both nonconstant harmonic mappings

¢: (M, g) - (N, h), Iv: (M', g') - (M, g)
are always unstable, i.e., index (0) > 0 and index (iv) > 0.

REMARK. B. White [Wh] showed (see also [Mn], [E.S, p. 130] ) the fol-
lowing theorem: Assume that a compact Riemannian manifold (M, g) sat-
isfies

nI (M) = n2 (M) = 0.

Then for any two compact Riemannian manifolds (M', g'), (N, h) and
any continuous mappings v : M' -+ M, 0: M - N,

inf{E(q); q E C°°(M', M), being homotopic to yr} = 0,

and

inf{E(q); q E C°°(M, N), being homotopic to 4'1 = 0.
The Riemannian manifolds listed in Corollary (1.29) and compact sim-

ply connected Lie groups have the property that both the first and second
homotopy groups vanish. So it seems to be natural to consider the problem
for compact Riemannian manifolds (M, g) with iI(M) = n2 (M) = 0, the
similar assertions as Theorem (2.2) hold.
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2.2. Vector bundle valued differential forms. Before going on to prove
Theorem (2.1 ), we prepare the fundamental materials on vector bundle val-
ued differential forms and the Weitzenbock formula for vector bundle valued
1-forms.

Let E be a vector bundle over an m-dimensional Riemannian manifold
(M, g) on which h is an inner product, t is a connection compatible with
h . Let A' T' M ® E be the tensor bundle of E and the A' T' M M. Let
A'(E) = r(A' T*M (9 E) be the space of all C°°-sections of it, the elements
of which are called E-valued r-forms on M because w(ul , ... , u,) E EX if
ul, ...,U,ETXM and wEA'(E).

In the same way as for A'(M) , we can give the following definitions:

Using V , define the exterior differentiation d° : A'(E) 3 w d°w E
Ar+1(E) by

vd w(X1 , ... , Xr+l )
r+1

_ E(-1);+I'X,(w(X1 , ... , I , . . . , X,+1))

+E(-l)i+j(0([Xi, X1], X1, ... , Xi, ... , Xj, ... , Xr+l)
1<)

(2.3)

for X,, ... , Xi+1 E X(M). Here X, means to delete XX in the equation. In

general, d°(d°w) does not vanish, different from the case A'(M) .
On the vector bundle A' T' M ® E , the inner product is induced from the

one h on E and the Riemannian metric g. We denote this inner product
on each fiber A' TX M 0 EX , x E M, by (, )x , x E M. And we give the
global inner product (, ) on A'(E) by

((0, ,l):= J(w.n)v8, W, nEAr(E).

Then the co-differentiation bAi+1 (E) -. A'(E) of d° is the operator
satisfying

w E A'(E), ly E Ar+l(E),

which is of the form
m

b°w(XI , ... , X,) :_ - E(te,w)(e; , XI , ... , X,) (2.4)
i=1

for w E Ai+1(E), X,, ..., X, E X(M). Here {e1}i"' 1 is a local orthonormal
frame field on (M, g). For X E X(M),

A'(E) 9 to - cXw E A'(E)
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is also called the covariant derviative defined by

(VXw)(X1, ... , X,) := VX(w(X1, . , X,)) (2.5)

w(XI, ... , VXXi, ... , X,).
i=1

Here the V in the first term in the above is the connection of E, and the
V in the second term is the Levi-Civita connection of (M, g). Then, for
w E A'(E), it follows that

r+1

(d°w)(X1, ... , X,+1) _
(-1)1+1(VX,w)(X1, ... , Xi, ... , X,+1). (2.6)

i=1

For r= 1 , we have

d°w(X , Y) = VX(w(Y)) - VY(w(X)) - w([X , Y])

= {VX(w(Y)) - w(V Y)} - {VY((d(X)) - w(VYX)}

= (' °)(Y) - (VYw)(X),

by means of the definition of d ° , the equation [X, Y] = V V. Y - V YX , and
the definition of Vw .

DEFINITION (2.7). The differential operator

A° d+Jvd° : A'(E) - A'(E)
is called the Laplacian of E-valued r-forms. By definition, we have

(A° co, 7) _ (co, A°i1), CO, 7 E A"(E).

The Laplacian A° is a second order elliptic differential operator. Let us
define the rough Laplacian of A'(E) by

ew := - J:(VeVe, - VW E A'(E). (2.8)

Then we obtain
i=1

PROPOSITION (2.9) (The Weitzenbock formula). Let r = I. Then

A°w = Aw - p(w), w E AI(E). (2.10)

Here the operator p : A1(E) B Co " p(w) E A' (E) is defined by
m m

p(w)(X) := r R° (X , ei)(w(ei)) - E w(R(X , ei)ei) (2.11)
i=1 i=1

M

_ rR°(X, ei)(w(ei))-w(p(X)), X E X(M).
i=1
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REMARK. For other r > 2, the Weitzenbock formula holds, but is rather
complicated so we omit it. In the case A' (M) , that is, for the trivial bundle
E = M x C, we have

P(w)(X) = -w(P(X)), X E X(M),

which yields (1.26), since the first term of (2.11) vanishes in this case because
w(ei) is a locally defined function.

PROOF. Both sides of (2.10) belong to A' (E) , so taking any point x0 E
M and an orthonormal frame {ei}'1 on its neighborhood satisfying

(VYek)(xo)=0, dYET;(M), 1<k<m, (2.12)

it suffices to show at xa that

w(ek) = Aw(ek) - P(w)(ek).

The existence of such a frame field {ei }"'
1

is shown as follows:
Take an orthonormal basis {u1}, of T; M and a small neighborhood

U of x0 in such a way that any point x in U can be connected by a
unique geodesic, emanating x0, denoted by yX. Then let P7 be the parallel
transport along y,, , and define ek by

ek(x) := Py;uk E TXM, X E U,

then {ek}k
1

is an orthonormal frame field on U, and moreover, letting
t r--. yY(t) be a unique geodesic satisfying yy(0) = x0, y'' (0) = Y for any
Y E Txo(M), by (3.10) in Chapter 2, we obtain

(VYek)(xO) = dt I 1_0 Pyrr-1 ek(YY(t)) = dt 1=0Uk
= 0.

Now for X = ek, it follows that, at x0 E M,
m

(d°b°w)(X) = oX(a°w) _ - 1x('eew(ei)), (2.13)
=1

and
in

(a°d°w)(X) _ -EDe (d°w)(ei, X)
1=1

m
_ -E{ve,(d°w(ei, X)) - d°w(oe,e;, X) - d°w(e1, V, X)}

i=1
m

_
-E0(d°w(ei,

X)) (2.14)
i=1

( the second, third terms vanish at x0 by (2.12))
M _ _ _

_
f=1
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by (2.6). Thus, we obtain at x0 ,

FOx(Ow(ei)) - o((ow)(X))
i=i i=t

On the other hand, at x0,

(RV (X , Y)w)(Z) = OX((DYw)(Z)) - (DYw)(VxZ)

- t 1OX(o)(Z)) + (Oxw)(VYZ)

- (t[X.Y]w)(Z)

Aw(X) _ (2.16)
i=1

since V ei = 0 at x0 , and also

(oe to w)(X) = e ((e w)(X) - (oe w)(Ve X) = v, ((o' w)(X ))

Moreover, at x0, we obtain

P((O)(X) _ E{ox((oe,w)(ei)) - 0e ((Ow)(ei))}. (2.17)
i=1

Because in general, for X, Y, Z E X(M), if we set

R°(X , Y)co :_ t x(t yw) - t y(VXW) - Vlx y)w, (2.18)

then we get

= R°(X, Y)((o(Z)) - w(R(X, Y)Z).

Thus, making use of (2.19), we obtain, at x0,

m

p(w)(X) = >(R'(X , ei)w)(ei)
i=t
M

(2.15)

(2.19)

_ {vx((vejw)(ei)) -
i=1

+ (OXw)(Oe,ei) - (t(ej
xlw)(ei)}

= the right hand side of (2.17),

since all terms except the first and third terms vanish.
Therefore together with (2.15), (2.16) and (2.17), we obtain the desired

equality. 13
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DEFINITION (2.20). For a C°°-mapping 0: (M, g) -{ (N, h), define the
induced vector bundle E = ¢-1 TN-valued 1-form co := do E A1(E) by

dc(X) := 0.(X) E 1"(¢-1 TN), X E X(M)

(cf. (1.14') (i) of Chapter 4).
Then we obtain

PROPOSITION (2.21). For a C°°-mapping 0: (M, g) - (N, h), a suf-
ficient and necessary condition to be harmonic is that co := do E Al (E) in
definition (2.20) is a harmonic form, i.e..

A°w = 0,

where A° is the Laplacian relative to the induced conection t on the induced
bundle E = ¢-1 TN.

PROOF. Note that A° = d °8° +3 °d ° and

(A°w, w) = (d°w, d°w) + (Jvw, b° co),
so we get

A°w=0e= dco=0 and 5 co=0.
The 1-form w = do always satisfies d °w = 0, because for X, Y E X(M),
we have

d°w(X, Y) = VX((0(Y)) - t1(w(X)) - w([X , Y])
= VX(i.Y) - V r(c.X) - 0.([X, Y]) = 0

by Lemma (1.16) in Chapter 4. On the other hand, we obtain

b°w = -t(o),
because

m M

8 = -F(' ,w)(ei) _ -
i=1 i=1

(2.22)

M

el
i=1

Therefore, we obtain Proposition (2.21). 0

COROLLARY (2.23). Let ' : (M, g) -. (N, h) be a harmonic mapping.
Then co = do satisfies

m

Aw(X) - NR(o.X, 0.ef)0.e1 +c.p(X) = 0, X E X(M).
i=I

PROOF. Noticing that R°(X , ei)O.ei = NR(¢.X , O.ei)O.ei, we see that
the above equation follows from Proposition (2.21) and the WeitzenbOck
formula (2.9). 0
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2.3. Proof of the instability theorem (2.1). Before going into the proof,
we prepare to show some facts about vector fields on the unit spher Sm .
Let (x1, ... , xm+1) be the standard coordinate of Rm+I , and (x, y)

a 1 x y, the standard inner product. Let Sm be the unit sphere

Sm := {x E Rm+I ; (x, x) = 1}.

For X E Sm , according to the orthogonal decomposition

TXRm+1 = TXSm ® TxSml ,

(0), E TXRm+1 asdecompose any vector V = E''a

V=VT+V1, V

Then we get
m+1 ( m+1 1

VT =E(a1-xj(a,x))` a ) . V=(a,x) x.( a) . (2.24)
t=1 \8X; X ,=1 8x; x

Thus, we obtain
m+ 1 axTxSm= F (a,-x;(a,x)) 8Xi( ; aE
!=I

For any a E Rm+1 , the vector field W = W. on Sm

satisfies

8=1

(2.25)

VXW=-<a,x> X, XETxSm, (2.26)

where V is the Levi-Civita connection of (Sm ,

PROOF. By Proposition (2.11) and (2.5) in Chapter 4

dW(X)=VXW+A(X, W)

for X = 1r (a )x E TXSm . But the left hand side of this coincides withi-1 ,

m+ 1

dW(X) _E tax(a; -x;(a, x))(811 x)
t

ri.i=1
m+1 8= E x) - x,a;}

l=1
8Xi xi .

m+l m+1 m+1 a

=-(a,x)E4t(-) - (Eat 1) Ex,(=I
ax,

x i=1
ax, x

where E7"' xx(/-)x E TXSml
. Therefore, we obtain (2.26). 13

m+I
W(x) E(a, -x, (a, x))(8x)

.
,
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Furthermore, let 0 be the rough Laplacian acting on AI (Sm) 2_-- X(Sm) of
the unit sphere (Sm, gsm) , and let W be as above. Then

AW=W. (2.27)

PROOF. Let {e,}'n, be a local orthonormal frame on (Sm, gsm) . Cal-
culate _

aW = - E(Ve Ve W - Vv a ").
i=I

Since Ve W = -(a, x)ei , putting f :_ (a, x) , we get

m m

AW = - E{ve (-fe,) - foe ei } = E(eif)e, = W.
I=[ i=1

The last equality of the above follows from
m

E(e,f)e, = gradsm f = (grad...I f)T ,

i=I

which is the TxSm-component of the gradient vector of f in Rm+1 . Then
m+1 T

(grad gm.'.f)
T

_ (a1_)
i=I

since (2.24) and the definition of W. 0
Now for the above W , note that 0. W E Tw 1 TN) . We shall prove that

m

AO. W = NR(q. W, c.e, )c.e, + (2 - m)0, W, (2.28)
i=1

where 0 is the rough Laplacian of T(0-ITN). Then by (2.28), we obtain

fM
.W)Vg = 0.e,)-0.ei, 0.W)vg

\

fu

i=1

=(2-m) f h(q,W,0.W)vg.
J

Thus, if we assume m > 3 and index (0) = 0, then the left-hand side of the
above should be nonnegative and, since 2 - m < 0, it must be that

fM h(o.W, 0.W)vg = 0.

Therefore 0. W = 0. By (2.25) and the fact that W corresponds to an
arbitrary a E R'+1 , we obtain . = 0; that is, 0 is a constant mapping
which is Theorem (2.1).

PROOF OF (2.28). Let x0 E Sm be an arbitrary point. We shall show
that (2.28) holds at x0. We take an orthonormal frame {e,}', on a neigh-
borhood of x0 in such a way that

(Vyei)(x0) = 0, VY E I(Sm),



170 S. THE SECOND VARIATION FORMULA AND STABILITY

as in the proof of Proposition (2.9). At x0, we get

m

Ao, W W

m

O.W.

Here ¢. W = d o(W) , and recall the definition of the covariant differentiation
of 0-'TN-valued 1-form, 'e d¢ . We obtain

Vel.0.W = (Vedq$)(W)+d4(VelW)

_ (VedO)(W) - dO(fe,)

by (2.26). Here 1(x) := (a, x), x E Sm. Repeat this argument again, and
then we get

Ve/De,o.W = Vee((Veed4)(W) - d,(fe1))

= (°e to dM)(W) + (Ve dcb)(Ve W) - to (dO(.fe1))-

Thus, we obtain at x0,

_ m _ m

Do.W = - E(Ceid4)('e,W) (2.29)

m

+oe,(d-O(fe,))-
;=1

(i) Here at x0, the third term of (3.29) = 46. W.
PROOF. Since dcb(fe1) = 0.(fe,) = fc.e,, the third term of (2.29)

coincides with
m m

E' et(f4.e1) = E{(e;f )b.e1 +.1t el(4.e1)}.

But at x0 ,
m

' r(4)(xo) = 0,

since 0 is harmonic. Moreover,

ei(f)e,e1(n4.e1,

by the second equation in the proof of (2.27). 0
(ii) The second term of (2.29) should vanish.
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PROOF. We calculate

- >(Veldc)(VelW) = E(oe,dm)(fe;) (by (2.26))
i=1 =1

M
_ {Vel(d4(fe;)) - c,(Ve (fe;))} (definition of ve dO)

= I
M

_ >{ve (f4. e,) - 0.((e;f)e;) - 0.(foe,e,)}
i=I
M _

_ {(e; fVe,cb.e, - (e;f)0,e; - ff.Ve,e;}
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i=I

=fr(o)(xo)=0.
(iii) The first term of (2.29) = E I NR(,, W, c.e;)c.e; - (m - 1)0. W .
PROOF. Since Ve e, = 0 at x0, the first term of (2.29) is equal to

m

(&I )(W) NR(js W, 4.e;)4.e; - O.p(W),
=1

by Corollary (2.23). Here by (2.17) in Chapter 4, we get

p(W)_ER(W,e1)ea=(m-1)W.
i=1

Thus, we obtain (iii).
Together with (i), (ii), and (iii), we obtain (2.28) and this completes the

proof of main theorem (2.1).

§3. Stability of holomorphic mappings

3.1. Main theorems. In this section, we shall show the weak stability of
holomorphic mappings between compact Kahler manifolds and give applica-
tions.

Here for a complex manifold M with a Riemannian metric g, (M, g)
is a Kahler manifold, or g is a KAhler metric with J the almost complex
structure and with V the Levi-Civita connection of g, we have that

g(JX, JY) = g(X, Y), VX(JY) = J(VXY), X, Y E X(M).

Lichenerowicz proved the following theorem ( see [E.L 2J) in 1970:

THEOREM (3.1). Let (M, g), (N, h) be two compact Kahler manifolds.
let 0: M --- N be a holomorphic mapping, i.e., 0. o J = J o 0.. Then

(i) (Energy minimizing) The holomorphic mapping 0 minimizes E in its
homotopy class. That is, if V E C°°(M, N) is homotopic to 0. i.e., there
exists a C 1-mapping F: [0, 1) x M N satisfying

F(0, x) = O(x), F(l, x) = W(x), X E M,
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then

E(O) < E(W).

(ii) (Rigidity) Moreover, if a variation of CI -mappings is given by harmonic
mappings, that is, 0, : M -- N with 0o = 0. -e < t < e is harmonic of
(M, g) into (N, h), for any t. Then 0, are all holomorphic mappings of
M into N.

In this section, we shall show the following theorem, which is regarded as
an infinitesimal version of the above theorem (3.1):

THEOREM (3.2). Let (M, g), (N, h) be two compact Kahler manifolds
and let 0: M N be a holomorphic mapping. Then the following equality
holds :

JMOV)Vg = 2 fMDV)v8 > 0, V E r(TN), (3.3)

where J. is the Jacobi operator of 0 regarded as a harmonic mapping of
(M, g) into (N, h). For each V E r(0-1TN), DV is an element of

r(o-'TN ® T* M) defined by

DV(X) := ViXV - JVXV , X E 3:(M).

Then, in particular,
(1) is weakly stable, that is, each eigenvalue of Jm is nonnegative.

(ii)Ker(J.)={VEr(,o-1TN); DV=0}.

REMARK. An equality similar to (3.3) was obtained on page 164, Lemma 4
in (Sul. See also [No] for recent topics about the moduli space of holomorphic
mappings.

3.2. Analytic vector fields along holomorphic mappings. We call V E
rw 1TN) satisfying DV = 0 in Theorem (3.2), analytic vector fields along
0 : M -. N, their totality is denoted by a(0-I TN). In this subsection, we
shall explain the meanings of the analytic vector fields as follows.

(3.4) Holomorphic vector bundle. A C°°-vector bundle E over a complex
manifold M is a complex vector bundle if E further satisfies that

(i) each fiber E. , p E M is a complex vector space of constant dimen-
sion, say r-dimension.

(ii) For each p0 E M, there exist a neighborhood U and a
C°°-diffeomorphism Vi of U x Cr onto yi-I (U) such that

n(W(P, v)) =P, P E U, V E Cr,

and the mapping Cr 9 v - yr(p, v) E EP is a complex linear isomorphism.
Furthermore, a complex vector bundle E is a holomorphic vector bundle

if E itself a complex manifold and a : E - M is holomorphic and the
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C°°-diffeomorphism in (ii), yr : U X Cr Ir-1(U) is a holomorphic diffeo-
morphism (i.e., w and W-1 are holomorphic).

A C°O-section s of a holomorphic vector bundle E is a holomorphic
section if s : M -. E is holomorphic. The totality of all holomorphic
sections of E is denoted by S2°(E) .

(3.5) Holomorphic tangent bundle. For each point p E M of a complex
manifold M, the complexification of the tangent space TPM is denoted
by TP cM = TPM ® C. Then the almost complex structure of M, J
TPM TPM, can be uniquely extended to a complex linear mapping of the

complexification, denoted by J : TP CM TP CM ,and the eigenvalue of J

is f since j2 = - id. Therefore, 7D M is decomposed into a direct
sum as

TPMCM = pM ® p'M,
where

pM:={vE7'-cM; Jv=VTv},
p'M := {v E 7p M; Jv = -Tv}.

Then it turns out that
7'M:= U pM

pEM

is a complex vector bundle, and moreover, a holomorphic vector bundle
which is called the holomorphic tangent bundle.

The tangent bundle is often identified with the holomorphic tangent bundle
T'M via a linear isomorphism

TPMaXF-+X:=2(X-TJX)E PM. (3.6)

The holomorphic sections of T'M are called the holomorphic vector fields
on M.

Taking a complex coordinate (z1, ... , Z,.), m = dime M, on a neigh-
borhood U in a complex manifold M, put

2(ax, -maazj y,

then at e

I ( 11 ) M

ach point p E U.

l
a z I

P, ...
_8L )

are bases of p M , 7 p'M, respectively.

a '1 a + a ,

8z1 = 2 (axe ay,

{ (aZ1 )P
' ... ,

( a2m)P1

For a vector field

m

Z=Efaz,

f EC°°(U), 15 j<m,
=1 J
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a sufficient and necessary condition to be holomorphic vector fields is that all
the fj are holomorphic functions of (z1, ... , Z.). The correspondence of
(3.6) is

a a a ~a

ax; ~ az, ay3 Oz;*

(3.6') The induced holomorphic tangent bundle. For a homorphic mapping
M -i N between two complex manifolds M, N, and a holomorphic

vector bundle E over N, then the induced bundle 0- 1 T' N of E by 0
becomes a holomorphic vector bundle over M. In particular, the inducd
bundle of the holomorphic tangent bundle T' N by 0 is a holomorphic vector
bundle over M, called the induced holomorphic tangent bundle. We denote
the totality of all holomorphic sections of 4-1 T'N by R°(,-IT'N) whose
elements are called the holomorphic vector fields along 0.

PROPOSITION (3.7). Let (M, g), (N, h) be two Kdhler manifolds, and let
M 1-4 N be a holomorphic mapping between them. There there exists the

following isomorphism:

a(q-I TN)
The correspondance is given by

V2(V-vr--lJV), (3.8)

where J is the almost complex structure of N and for V E f(&-1 TN) ,

JV E I'(¢-1 TN) is defined by

JV(p) := J(V(P)), P E M,
since J sends T,(P)N into itself.

Due to Theorem (3.2) and Proposition (3.7), we obtain

COROLLARY (3.9). Let (M, g), (N, h) be two compact Kdhler manifolds,
and let 0: M - N be a holomorphic mapping. Then we obtain

a(O-ITN)
~

d(O-1T'N),

and then the nullity of 0 is

nullity(4,) = dimR a(¢-I TN) = dims i2°(O-I(0-Y N).
COROLLARY (3.10). The identity mapping of a compact Kdhler manifold

(M, g), id : (M, g) -. (M, g) is always weakly stable and

Ker(J;d) a(M),
where a(M) is the space of all holomorphic vector fields on M.

(3.11) PROOF OF PROPOSITION (3.7). We first prove Proposition (3.7).
By (3.6), we get a real linear isomorphism

T )N 9 V(p)'-' V(p) = 2(V(P) - vf--1J(V(P))) E 7'#(P)N
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for all p E N. So by (3.8), we obtain an isomorphism

I'(0- I TM 9 V - V E I'(.O-' T N).

Thus, it suffices to show that

DV = 0 e--* V is a holomorphic section. (3.12)

Indeed, we see (3.12) as follows: We take the local complex coordinates
around p E M, O(p) E N as (z, , ... ) zm) , (w, , ... , w,,) with dimo M =
m and dime N = n, and let

zj =X +Vs -TYi, Wk=uk+ V-ivk,

for 1 < j < m , 1 < k < n , then each V E I'w 1 TN) can be written locally
as

V (x) = E 14W (auk mlx) + )7k(X) (avk
k-1

for each point x in a coordinate neighborhood U of p. Here 4 , qk
are C°°-functions on U. Then we shall show for V that a necessary and
sufficient condition to be in a(O-'TN) is that each k, qk satisfies the
Cauchy-Itiemann equations

a4k
= aqk aCk a 11k (3.13)ax; ay; ' ay; ax;

for all 1 < k < n, 1 < j!5 m. Then since for

Vr- gk)aw
k=1 k

(3.13) is equivalent to the condition that each tk + vr--l qk is a holomorphic
function of (z, , ... , Z.), we obtain (3.12).

LEMMA (3.14). Let (M, g), (N, h) be Kahler manifolds, and let :

(M, g) - (N, h) be a holomorphic mapping. We take the complex coordi-
nates in M, N, as (z1,...,zm), with zi=xj +vTyj,
Wk = Uk + V---1 vk , respectively. Then, for Y = - , or - , we have

uk vk

JV31-7 Y=VLY

for all l<j<m.
PROOF. For Y = 0 , we show

N a NV (3)
J Vm.aa;

auk 0.t' auk 0. .15
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A similar argument holds for 11 . Since
R-k

a ja(ut o a a(VI o aax, -
r=1

l ax; au + ax; avi J,

a f a(u, o a a(VI o a l
ay; =

t=1
l ay; auI + ay; a

the left hand side of (3.15) coincides with

_ L J a(ut ° m) Nv a + a(yt C m) Nv a

t_1 l ay; auk ay; auk

a(ut 0 ) N a

.
J v +

a(vt 0 m) JNv a
+1 ax; auk axe auk

Here note that JNVXY = N°X(JY) for X, Y E 1(N) since (N, h) is
Kahler. Thus, we get

JNV
a

= JNV? a = NV a
= NV

a
,

auk aut avt Iauk
N a N a N a N a

V auk J V-=- V* aut =- Vag.-, auk.

Substituting these into the above, we find that the above equation coincides
with

a(ut u cb) _ a(vt c -0) 1 N° aE It_1 ax; ay; J} auk

{0(vtoctJ)O(utobYlN a

t=1
ax; + ay; J ° auk

which vanishes since 0 is holomorphic (cf. (3.12) in Chapter 4). 0
(Proof of (3.12) continued.) Recall that

V E OW TN) DV = 0 a V JXV - JVXV = 0, X E 1(M).

We show this is equivalent to (3.13), if we denote locally

a a 1.
auk k

Since

VJYX) V = I°j1V ,

for all f E C°°(M) and X E 1(M), it suffices to show the above only for
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X = -! and ay- , 1 < j < m . We calculate for X = aX,ax,

6 v
v a J

ix X
k-1

aye auk k aL auk aye avk k a avk

-Ej{ask a +
a

+a '7k
a +q ' a l

k-I aXf atlk k auk aXf aVk k *.E- aVk 1

a kl a_ (aIk 61"kl a
M+axj/auk + aXiavk

a a a a l+ E {
k at[k

- jilt.
lk + Ik (Ogl- Jtt

L.

Here the second term of the last vanishes by Lemma (3.14). We get a similar
formula for X = - . Thus, we obtain the desired result.

(3.16) Geometric meaning of Corollary (3.9). In order to consider the
meaning of Corollary (3.9), given two compact Kahler manifolds (M, g),
(N, h), we put

fjar(M, N) := the totality of all harmonic mappings of (M, g)
into (N, h),

fjot(M, N) := the totality of all holomorphic mappings of M into N.

Recall by Example 6, (3.12) in Chapter 4, we get

fjot(M, N) c 55ar(M, N). (3.17)

If we regard fjo[(M, N) as a "(real) submanifold"of 5)ar(M, N), then the
"tangent space" T,,S)o[(M, N) of 15ol(M, N) at 0 E fjot(M, N) satisfies

T 1TN).S'ot(M, N) c a(0 (3.18)

PROOF. Take a variation 0, of 0 E 55ol(M, N) in Sjol(M, N), i.e., 45, E
f)o[(M, N), -e < t < c, with 460 = . Then we can show the variation
vector field

V(P) := d I t_o0'(P), P E M

belongs to a(4-'TN) . Indeed, take the local complex coordinates (z,,. .. ,
(w, , ... , w,r) around p , 4(p) , respectively, and put z, = xJ + Y,

wk = Uk + %f 'vk . Since 46t are holomorphic, Uk ° Ot and Vk o 4r satisfy
the Cauchy-Riemann equation:

49

8x (uk °
a49

ye ("k aye ("k axe (vk 0 od'

for I < j < m, 1 < k < n. Differentiating these in t at t = 0 and putting

4 dt I,_ouk 0 01, t1k := dt
Ir_oVk 0 0r,
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we get
=ON a k =_01k

8xi ay, ' 0yj 8xj
which implies, by the above argument, that

n (Ck a + ?1k 49 )
k=1

belongs to a(O-I TN). 0
Thus, for 0 E 9)o[(M, N) we obtain the following inclusion relations:

T,,Sar(M, N) C Ker(JJ)
U

T0SSo[(M, N) c a(0-1 TN)

Corollary (3.9) implies that Ker (J m) = a(/- I TN). So, roughly speaking,
we get

TTfjar(M, N) _ T S5o[(M, N).

This is the reason for calling that Theorem (3.2) and Corollary (3.9) are
the infinitesimal version of Theorem (3.1). To study the structures of their
tangent spaces are much easier than to study the ones of 9)o[(M, N) and
S)ar(M, N) themselves. In fact, it suffices to prove Ker (J.) = {0} to show
the rigidity of ¢, if (N, h) is negative curvature (see [Su]).

3.3. Proof of Main Theorem (3.2). As a proof of Proposition (3.14) in
Chapter 4, we take a local orthonormal frame (e,, ... , em, fi , , fm) such
that Je;=f,., Jj=-e;, I <i<m.

By (1.7), (1.13) in Chapter 5, for V E T(¢- I TN), we get

fM h(JV, V)vg

=J (3.19)
M i_1 ,

- h("R(V, O.e,)c.e,, V) - h("R(V, 0..1;)0.1;, V)} vg.

Here we show

LEMMA (3.20). We obtain the formula that

R(V , 0.e;)0.e, +" R(V ,
O.I )o.I = J"R(0.e, , c.fj)V.

PROOF. Since 0: M -' N is holomorphic and since (N, h) is Kahler,
the left-hand side of the above is equal to

-J "R(V,
c.e,)4.I + J "R(V, c.I,)c.e;

= "R(0.e;,

J "R(q.e,, 4.f,)V,



§3. STABEIrY OF HOLOMORPHIC MAPPINGS

where we used the formulas, for X, Y, Z E X(M),

NR(X, Y)+NR(Y, X) = 0,

NR(X , Y)Z + NR(Y, Z)X + NR(Z , X)Y = 0. 0

PROOF OF THEOREM (3.2) CONTINUED. We calculate that

h(DV, DV) _
E{h(DV(ei), DV(ei))+h(DV(j), DV(f))}

=F{h(tjev-JteV,t."V-J/,V)
i=1

+h(Vi fV - JV fV , VifV - JVIV)}.

Here using Jei = j , J j = -e,, and h(JX, J Y) = h(X, Y), we obtain
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h(DV, DV) = 2 E{h(Cee V , De, V) - 2h(Jte V , tfV) + h(o fV , 0 .V)}.
i=1

Thus the integrand of (3.19) minus -71 h(DV , DV) coincides with the fol-
lowing:

M

F {-h(NR(V, V) - h(NR(V, .0.j)-0.j, V) (3.21)
;=1

+2h(Jte V, V1V)}

_ {-h(JNR(r¢,ei, cb, j)V, V)+2h(JVelV, VAV)},
i=1

By Lemma (3.20). The resulting equation is a Coo-function on M. To
complete the proof, it only suffices to show the integral of this function over
M vanishes. To do this, we show

mM

1 - h(J NR(q5.ei , 0.j)V , V) v8
=1

(3.22)

=
vfJV)-h(VfV, DeJV)}v8.Jyi=1

Then the integral of (3.21) over M coincides with

JME{e1,(1,e,)(e, JV V, O V v,
r1

which vanishes because OXJV = JtXV since (N, h) is KAhler, and
h(JX, JY) = h(X, Y). Thus, we obtain the desired result.
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Equation (3.22) can be derived as follows: Since [e1, f,.] = Vex f,. - V fei ,

we obtain

-h(JNR(cb.ei, O.f)V, V)

= h(NR(i.e', 0.f,)V, JV)
=-h(VelVAV -

V AV e4 V - V[e,.I1 V, JV )

h(Vel V, VAJV) - h(Vv"f,V, JV) + h(VOf'ejV , JV),

where we used the compatibility of V and h. Therefore, we define a C°°-
function 9 on M by

M
rr

q, := lei h(Vf V, JV) - f h(Ve V, JV )

-h(Vo"1V, JV)+h(Vofe,V, JV)}.

Then we obtain (3.22) if we show fib rp V8 = 0.
For this, we define X E X(M) by

g(X, Y) = h(V,YV, JV) dY E 3:(M).

By Green's formula (cf. (iii) of Proposition (3.29) in Chapter 2), we only
have to prove div(X) = ip, which follows from the equation

div(X) = {g(et, VeiX) + g(f , VIX)}

M

X)-g(V,,e,,X)+f g(f ,X)-g(Vff,X)}
'=I

M
_ E{e; h(Oie,V , JV) - h(Vjo,,e,V , JV)

i=1

+ f h(V,IV, JV)-h(V,oA1V, JV)}

= 4+ .

Thus we have proved the main theorem (3.2). o

3.4. Applications. We prove the following theorem as an application of
Corollary (3.10).

THEOREM (3.23) (M. Obata, 1965). Let (M, g) be a compact Kahler man-
ifold on which the Ricci operator has the property that for all x E M,

g(p(u), u) > ag(u, u), VU E TxM,
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for a positive constant a. Then the first eigenvalue of the Laplacian Ag acting
on C°°(M) , 21(g) (cf. Remark below Proposition (1.20)), satisfies

21(g)->>2a.

If the equality holds, then M admits a nonzero holomorphic vector field

PROOF. In order to apply (1.27) Jid = AH - 2p, we prepare with the
following lemma.

LEMMA (3.24). Let (M, g) be a compact Riemannian manifold. Let
the smallest eigenvalue of the operator AH : X(M) -' X(M) be 2, (g). If the
identity mapping of (M, g) is weakly stable, then the following inequality
holds:

2infp<A:(g)5A.(g),
where

inf P:= inf{g(p(u), u); u E TM, g(u, u) = 1, z E M}.
PROOF. Since id: (M, g) -' (M, g) is weakly stable, and (1.27), we

get

0< fg(AyV,V)vg-2 fg(p(V). V)v,

< fg(AHV, V) -2(inf p)J g(V, V)vg,

whence we get 2 inf p < 2: (g)
For the second inequality, let f E C°° (M) be taken as Agf = A1(g) f and

let V := grad f ; 0. Then

ZAMg(AHV, V)Vg = fM((da+6d)df, df)vg

, df)vg= IM

A, (g) fJ(df,df)vg (sinceJdf=Agf)

=21(g) fm g(V' V)Vg

Thus, we get ,ij(g) <A1(g). o
PROOF OF THEOREM (3.23). Since (M, g) is a compact KAhler man-

ifold, id: (M, g) - (M, g) is weakly stable by Corollary (3.10), so by
Lemma (3.24), if inf p > a, then A1(g) > 2 a.

Conversely, assume that the equality holds. Then there exists f E C°°(M)
such that

Agf=2af
and V := grad f 3t 0. Then we obtain

AHV=2aV,
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since for the Laplacian acting 1-forms, we have

A,df = (d8 + 8d)df = dOdf = 2a df.

Thus, we obtain

2a fg(V, V)vg = j g(V, V)V9 (3.25)

= fMg(J;dV, V)vg+2 fg(p(V), V) vg.

Since the eigenvalues of JJd is nonnegative, we obtain

JM
g(JJdV , V) Vg > 0.

Moreover, by assumption

JMg(p(V), v)vg>a fJg(V ,
V)vg.

But together with (3.25), these two inequalities should be equalities; and
thus we obtain J;dV = 0. To see this, expand V into the infinite sum of the
eigen-vector fields as

00

V=>V, JidVi ='; V
i=1

Let a := dim Ker(JJd). Then
00

J;d V = 1; V;
i=o+l

But

f g(V, V)vg=0,
M

i,>0 `di2:a+1.

i5j.

0=f g(J;dV,V)vg= A; f g(V,V)vg
'u i=a+1 M

which yields that V = 0 Vi > a + I. Thus, we obtain V E Ker(J;d) . From
Corollary (3.10), we have that Ker (J;d) ag a(M) , so we obtain the desired
result. 0

Concerning estimates of the eigenvalue 21 (g) of the Laplacian Ag acting
on C0(M) , the following theorem is well known (see also exercise 5.3).

THEOREM (3.26) (Lichnerowicz-Obata). Let (M, g) bean m-dimensional
compact Riemannian manifold. If

infp>a=(m-1)8>0,
then

21(g)> mm l a=ma,
and equality holds if and only if (M, g) is isometric to the unit sphere

(SM, gs-).

REMARx. Note that 2 > m
l1

and 2 = 4=a m = 2. The estimateM-I
of Theorem (3.23) is sharper than the general one of Theorem (3.26) due to
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the assumption of the Kaler condition. If (M, g) is a compact irreducible
Hermitian symmetric space, it is Einstein, i.e., p = a g and it holds that
t1(g) = 2a (cf. [Ur4]).

Exercises

5.1. Show the following for a compact Riemannian manifold (M, g) :
(i) For all X E 3:(M) ,

I g(Jid(X) I
X)Vg = fm

{ILxgI2 - div(X)21 vg,

where Lx is a (0,2)-symmetric tensor field defined by
111

(Lxg)(Y, Z) := X g(Y, Z) - g([X, Y], Z) - g(Y, IX, Z]),
Y, Z E 3:(M) .

(ii) Using (i), show that if (M, g) is Einstein, i.e., p = c g, then a suf-
ficient and necessary condition for the identity mapping of (M, g)
to be weakly stable is 21(g) > 2C.

5.2. Assume that the Ricci operator p of a compact Riemannian manifold
(M, g) satisfies p < 0, i.e., g(p(X), X) < 0 dX E X(M). Then for
all X E X(M),

J1dX = 0 e--* VX = O, i.e., V yX = 0 V Y E X(M).

5.3. Assume that the Ricci operator of a compact Riemannian manifold
(M, g) satisfies

g(p(u),u)>ag(u,u), uET,,M, xEM,
for some positive constant a. Show that

21(g) >
M

m
-1 a,

where m = dim M.





CHAPTER 6

Existence, Construction, and Classification
of Harmonic Maps

Problems of the existence, the explicit construction of harmonic mappings,
and determining the set of all harmonic mappings between two given Rie-
mannian manifolds have been the most important problems of differential
geometry during the twenty five years since the notion of harmonic mappings
was defined.

We shall explain some results concerning the problems of existence, con-
struction and classification of harmonic mappings and show open questions
about harmonic mappings in this chapter.

§1. Existence, construction, and classification problems

One of the most fundamental problems of the theory of harmonic map-
pings is the following existence problem:

Let (M, g), (N, h) be compact Riemannian manifolds. Let C°(M, N)
be the set of all continuous mappings of M into N, and let

[M, N] := {[0]; 0 E C°(M, N)}

denote the free homotopy classes of C°(M, N) (cf. (4.45) in Chapter 2).
Then

(1.1) Existence problem. (i) For each element y in [M, N], can one
choose a harmonic mapping ¢ : (M, g) - (N, h) that represents 7? That
is, a given continuous mapping w : M - N, can one deform w continu-
ously to a harmonic mapping 0 : (M, g) - (N, h) ?

(ii) In other words, we say y E [M, N] is harmonic if one can choose a
representative 0 in y which is a harmonic mapping of (M, g) into (N, h) .
Then our question is to determine the subset of [M, N] defined by

(7 E [M, N]; y is harmonic}.

Let us recall Theorem (4.2) in Chapter 3, which shows that if M = S' ,
the circle, then for each Riemannian metric h on N, each element in

ni(N) = [S` , N]

185
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admits an energy minimizing periodic geodesic (i.e., a harmonic mapping)
0: SI (N, h). One can propose question (i) of (1.1) as a natural extension
of this theorem, and if the question (i) of (1.1) is not true, our next task is
(ii) of (1.1).

Eells-Wood (cf. [E.L 1]) showed if M = T2 a torus and N = S2 a sphere,
both of dimension two, then for any Riemannian metrics on M and N,
there are no harmonic representatives for homotopy classes of degrees ± 1 .

One of the best answers of this problem is the following theorem.

THEOREM (1.2) (Eells-Sampson[E.S], 1964). Let (M, g), (N, h) be
compact Riemannian manifolds, and let (N, h) have nonpositive curvature,
that is, the sectional curvature NK of (N, h) satisfies

NK(u,v)<0, du,VETTN,dyEN.

Then for any w E CO°(M, N), there exists a harmonic mapping (M, g)
(N, h) satisfying

(i) [4'] = [W]. i.e., 0 is homotopic to y/,
and

(ii) 0 is energy minimising in its homotopy class, i.e., for all v' E
C°(M, N) homotopic to 0,

E(4') < E(W)

REMARK. (i) Recently, this theorem has been extended to noncompact
complete Riemannian manifolds (M, g), (N, h) by Li-Tam [L.T].

(ii) Eells-Ferreira [E.F] showed that for compact Riemannian manifolds
(M, g), (N, h), and any element y E [M, N], there exists a Riemannian
metric j on M which is conformal to g, i.e., g = f g for some positive f E
C°°(M), there exists a harmonic mapping 0: (M, g) -' (N, h), provided
m = dim(M) > 3. (Notice that ¢ and j depend on y.)

(1.3) Method of Eels and Sampson [E.S]. The method of proof in their
paper in [E.S] is the so-called "(nonlinear) heat equation method ", which is
as follows:

To avoid the difficulty of the method of variation, they considered the
following nonlinear heat equation for a given mapping w E C°°(M, N),

` = T(ot),
(1.4)

0°=w,
for a oneparameter family of -0, E C°°(M, N) with 0° = V/. Here r(o,) is
the tension field of 0,. They showed if (N, h) has nonnegative curvature,
then

(i) there exists a unique solution 0, of (1.4) for all 0:5 t < oo, and
(ii) as t -i oo , the limit exists, limr_. 0, = 0. , and
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(iii) the limit mapping is the desired harmonic mapping of
(M, g) into (N, h).

The motivation for considering the equation (1.4) am. = r(O,) is the fol-
lowing: Recall the first variation formula of the energy (cf. (1.22) in Chap-
ter 4). For any variation w, of y t, by defining the variation vector field
V(x)_TI I,_owt(x)ETo(s) N, XE M, we get

d 11=0 E(w,) = JM'' =(m)) vg. (1.5)

Since the left-hand side of (1.5) coincides with d Ey, (V) , the differentiation
of the function E on C°°(M, N) at w with respect to the direction V,
(1.5) can be written as

dE,,(V) = Jh(V. -t(w))vg (1.5')

_ (V, -r(w))
Here we denote the global inner product (, ) of r(o- I TN) by

(V,W):=JM h(V,W)vg, V, WEI-(,O-ITN).

Comparing (1.5') to (3.25) in Chapter 2 or subsection 1.6 in Chapter 3, the
gradient vector field of the function E on C°°(M, N) at V, (VE)y,, is just
-T(V):

(VE),, = -z(v), dw E C°D(M, N). (1.6)

Now we should deform v in order to decrease the energy. For this, we
may take an integral curve on C°O(M, N) of minus the gradient vector field.
We denote this integral curve by ¢t E C°°(M, N), by (2.26) in Chapter 2,
the equation is

dtA = -(VE)#,, 0o = w. (1.7)

Together with (1.6), (1.7), we obtain: A deformation 0, of w decreasing the
energy E is equivalent to an integral curve 0, of -VE through V, which
in turn is the same as (1.4) am, = r(o,) with 0o = V t. See Figure 6.1, next
page.

So deforming v in this way, then at last if t -, oo , the limit mapping ¢.
would be energy minimizing. This procedure is a key idea of their proof.

REMARK 1. To show (i), (ii), and (iii), one needs an analytical frame work.
I recommend to read first [O.N], [J].

REMARK 2. The nonlinear equation (1.4) is called the Eells-Sampson equa-
tion. For general Riemannian manifolds (M, g), (N, h), the behavior of
its solution has been studied recently by [Na], [C.D].

(1.8) K. Uhlenbeck's method to prove Theorem (1.2). This method ap-
peared in [Uh I], [Uh 2]:
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E(¢_

- ,VE,:

FIGURE 6.1. Graph of the function E on C°° (M , N).

The function J on L1 o(M, N) in Chapter 3, satisfies the condition (C)
if 1 > o , m = dim M. But E does not do so. So K. Uhlenbeck considered
instead E, the function on L, .,(M, N) defined by

EE:=E+EJ, E>0.

Then EE has the condition (C), inherited the good property of J as far as
E > 0. Thus, there exists a critical point of E, , TE E LI o(M, N) (cf.
Theorem (2.17) in Chapter 3). So using the nonpositivity condition of the
curvature of (N, h), one can show that

(i) 0E E C°°(M, N).
(ii) As e 0, taking a subsequence 4 of the limit exists,

limE, _0 0E, = 0o .
(iii) The limit mapping 0o is the desired harmonic mapping.
This method also requires hard estimates analytically and hard arguments,

but is a strong method, which weakened the assumption of the nonpositivity
of the curvature of (N, h) in the case dim M = 2 as in Theorem (1.9). This
method has been applied to prove the regularity theorem and the compact-
ness theorem and has been applied the theory of Yang Mills connections (cf.
[Uh 3], [Uh 4]). In this book, we shall introduce a rather detailed outline of
the proof of the Eells-Sampson theorem (1.2) in §4.

THEOREM (1.9) (Sacks-Uhlenbeck [S.Uh], 1981). In the case dim M = 2.
the condition of the nonpositivity of the curvature of (N, h) in Theorem (1.2)
can be replaced by the condition n2(N) = (0).

REMARK.. If (N, h) has nonpositive curvature, then by Hadamard's the-
orem, the universal covering space N of N is the Euclidean space R,
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n = dim N, and n,(N) = {0}, i > 1.

§2. The can of the unit sphere

It seems that there is no general existence theory of mappings if the non-
positivity of the curvature of the target manifold (N, h) is not satisfied.

The simplest case is the unit sphere with sectional curvature one, i.e.,
(N, h) = (S", gs.). In this case, we introduce several results about construc-
tion and classification of harmonic mappings into (N, h) in the following
order.

2.1. A Theorem of T. Takahashi-A method to attack the problem.
2.2. The Carmo-Wallach Theorem-Classification of harmonic mappings

of any compact homogeneous Riemannian manifold with constant energy
density function into the sphere.

2.3. Calabi's Theorem-Classifiction theory of all harmonic mappings of
the two-dimensional sphere into the unit spheres.

2.4. Group equivariant harmonic mappings-Method of using ordinary
differential equations to construct harmonic mappings with nonconstant en-
ergy density function.

2.1. A theorem of T. Takahashi. The only theorem to carry out the clas-
sification of harmonic mappings into the unit sphere (S", gs.) seems to be
the following:

THEOREM (2.1) (T. Takahashi [T], 1966). Let (M , g) be a compact Rie-
mannian manifold, and let (N, h) = (S", gs.) be the unit sphere with the
curvature one. For a C°°-mapping 0: M S" , we put 4):= i o 0 and

cD(x) _ (q51(x), ... , -0"+e(x)), x E M,

where z : S" c R"+1 is the inclusion and -O1 E C°° (M) , 1 < i < n + 1. Then
the following hold:

(i) A necessary and sufficient condition for 0 : (m , g) -' (S" , gs.) to be
harmonic is that there exists an h E C°°(M) with

A901=hO1, 1<i<n+1.
Then this function h E C°°(M) is h = 2e(). Here A8 is the Laplacian of
(M, g) acting on Cm (M).

(ii) In particular, assume that 0 : (M' g) - (S" , gs.) is an isometric
immersion (cf. (3.5) in Chapter 4). Then a necessary and sufficient condition
for 0 to be a minimal isometric immersion is that

Ag0j=mcb;, 1 <i<n+l,
where m = dim M.

PROOF. If 0 : (M, g) - (S", gs.) is an isometric immersion, then the
energy density function e(O) = I, m = dim M since c*gs. = g. Therefore,
(ii) follows from (i). We already showed (i) in Corollary (2.24) in Chapter 4.
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Here we give an alternative proof of (i). For this, we prepare with the
following lemma:

LEMMA (2.2). For a C°°-mapping 4 : (M, g) - (S", gs.), we set 4)
I o 46 by the inclusion i : S" C R"+1 Then the tension fields of 0 and 4) are
related to each other by

z(4b)(x) = I.t(O)(x) - 2e(0)(x)4)(x), x E M,

where 4)(x) E S" C R"+' is regarded as 4)(x) E TQx)S" 1 C TO(x)R"+1

PROOF. Let V, NV , and V0 be the Levi-Civita connections of (M, g),
(N, h) = (S"' gs.), (R"+l, go), respectively. We denote by A the second
fundamental form of the inclusion I : S" C R"+l . Then by definition we get

m m

O.Ve,ei) =
i=1 i=1

m
r(te) 4D.ei - 0.Vc e;) = r(V,. 4D0ei - -0Ve ei)

where 0. = i. o .. By the definition of A we get

so we have
Vm.e 4).e; =

i.ei
+ A((6.ei , 0.e,) ,

m

I.0.Ve,e, + A(O.ei, 0.e,))
i=1

= I.TW +A(e.ei, O.ei).M
i= l

By (2.16) in Chapter 4,

A(O.ei, 0.ei) = -gg(o.ei,,.ei)4)(x),
so we obtain

m m

A(O.e,, O.e,) _ - g5.(O.ei , c.ei) 4)(x)

_ -2e(o) 4)(x)
which yields the desired equation. 0

PROOF OF THEOREM (2.1). For all a E Rn+1 , define fa E C°°(M) by
fa(x) := (0(x), a), where (, ) is the standard inner product in Rn+1. For
any Y E X(M), X E M, letting a(t) be a Cl-curve in M through a(0) _
x, a'(0) = Yx E TxM, we get

Yxf° _ d I (4)(a(t)), a)T 1=0

=(±I.4)(a(t)),a>=(4.Yx,a),dt r=0
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where we regard 4D, YX E TO(X)R"+1 - R"+I I. That is,01

Yfa=(4.Y,a).

191

(2.3)

Regarding 0. Y and a as elements in F((- I TR"+I), for X E X(M), we
have

X(Yfa) = X(1-Y, a) (2.4)

= (VX4). Y, a) (by compatibility of h and OXa = 0)

_ (VO.^ Y, a) = (O.VXY+B('.X, 0.Y), a),

where B is the second fundamental form of 1: (M, g) - (R"+I , go) which
is

B(-*.X, -0.Y) := Vm.x4). Y - O.VXY. (2.5)

Thus, we obtain
m

Agfa=-1:(el2 - Veel)fa
1=1

(2.6)

_ 4V.e1)-D.Ve,ei, a) (by (2.4), (2.5))
!=1
M

_ -E(B(tD.e1, O.e1), a)
i=I

_ -(r(O), a) by (2.5) and definition of T(4)))

= 2e(¢)('V(x), a) - (t.T(¢), a) by Lemma (2.2))

= 2e(O) fa - (I.T(O), a).

Taking a=e1=(0,... ,0, 1,0,...,0)ER"+I,

Ag¢1=h¢l, 1<i<n+le: Agfahfa (VaER"+I)

t.r(o) _ (2e(4) - h)O(x),
from (2.6) and the definition of fa. Note that

I.T (O) E To(.,)S" , 4D(x) E T#(X)S"'.

Together with these and the injectivity of i. , the above equation AgOj = h O,
holds if and only if

T(¢) = 0

which then implies h = 2e(O).
By a theorem of T. Takahashi (2.1), the study of harmonic mappings

0: (M, g) -. (S", gs.) is reduced to the following two cases:

°°
2

(i)

(ii)

(M) is constant, that is e(¢) =the case that e(¢) E C

all other cases.
2

,
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We treat with the case (i) in subsection 2.2. For the more difficult case
(ii) we have no complete answer but we treat this in subsections 2.3, 2.4.
In both cases, since e(o) = E j= (d¢j , dcj) , the problem is to solve the
differential system with the constraint condition in (n+1)-unknown functions
O,,...,0n+I EC-(M):

n+1

ABcb;=I 1: (dOj ,dOj)I-O;, 1<i<n+l,
I_1

n+1
2

i=1

(2.8) To focus attention on harmonic mappings, we explain the relation
between harmonic mappings and famous problems about minimal immer-
sions.

(i) (The Hsiang-Lawson problem.) Is the Clifford torus the only minimal
embedded torus in (S3 , gs') ?

Here an isometric embedding : (M, g) - (N, h) is one-to-one and an
isometric immersion (cf. (3.5) in Chapter 4). A minimal embedding : M
(N, h) is an embedding ' : M - N such that with respect to the induced
metric g = 4'h, ¢ : (M, g) --+ (N, h) is a minimal isometric immersion
(compare to (3.5) in Chapter 4). The Clifford torus is the minimal embedding
of the flat torus (R2/A9 , g,,,,) into (S3 , gs,) defined by

00 :R2/A09 xel+ye21-- 1 (sin x,cosx,siny,cosy)ES3,

where Ao = Z2 :_ {m e1 + n e2 ; m, n E Z} and e1 = (1, 0) , e2=(O, 1) is
the standard basis of R2 . The Hsiang-Lawson problem asks whether there
exist T E Iso(S3, gsi) and p E Iso(T2 , g) such that

=To00 o)7

for any minimal isometric embedding. There are a lot of minimal isometric
immersions of flat tori into the three-dimensional sphere except the Clifford
torus. One of the difficulties seems to be how to make use of the embedded
condition. The Hsiang-Lawson problem is reduced to:

Problem 1. Let (R2/A, gA) be an arbitrary flat torus. Then classify

{4i: (R2/A, gA) -' (S3, gsi), harmonic mappings }.

By the uniformization theorem, for any 2-dimensional torus (T2 , g),
there exist a diffeomorphism ,v : T2 -. R2/A for some A and a map f E
C°°(T2) with f > 0 such that g = f v gA. Thus, identifying (T2, W*gA)
and (R2/A , gA), we consider first only a Riemannian metric g = f g for a
positive smooth function f E C°°(R2/A) . So let : (R2/A, g) -. (Si, gs,)
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be a minimal isometric immersion, then by a theorem of T. Takahashi (2.1)
(i), we get

A90i=20i 1<i<4.
However, since g = f gA ,

Ag=f- 1

A9A,

so we obtain
Ag0i=2f 0j, 1<i<4.

Again by a theorem of T. Takahashi (2.1) (i), 0 is a harmonic mapping
0: (R2/A, gA) -. (S3, gs,).

(ii) The Hopf Problem. Classify all tori (R2/A, g) which admit iso-
metric immersions T: (R2/A, g) - (R3 , go) with constant mean curvature
H

Here we explain the mean curvature. Let us recall from subsection 2.1 in
Chapter 4. There we presented the second fundamental form of the closed
submanifold z : N c R3 . We can also define the second fundamental form
for an isometric immersion T: (N, h) (R3 , go) by considering 'P(N) C
R3

A,,: T,,NxT,,N- N,,l=`P.(Tj,N)1CR3

for Y E N. Since dim NY' = dim'P.(TN)1 = I , AY, can be regarded as a
symmetric quadratic form AY, : T,,N x T,,N -' R. The eigenvalues KI (y) ,

K2(y) of this form as a symmetric matrix are called the principal curvatures
of the isometric immersion T: (N, h) -. (R3 , go) at y E N, and

H(y) := KI (Y) + K2(Y)
2

is called the mean curvature.
REMARK. A long standing problem has been that there is no isometric

immersion T: (R2/A, g) (R3 , go) with constant mean curvature H. But
H. Wente [We] showed a counter example. See also Hsiang-Teng-Yu [H.T.Y
1], [H.T.Y 2], Kapouleas [Ka 1], [Ka 2], [Ka 3], Abresch [Ab], Pinkall-Sterling
[P.S] and Bobenko [Bo] etc.

By a theorem of Ruh-Vilms noted below ([R.V]), the Hopf problem is
reduced to the following

Problem 2. Classify the set of all harmonic mappings of : (R2/A)
(S2 , gs2) .

For an isometric immersion 'F : (N, h) -. (R3, go), the vector (y) at
y E N satisfying

(Y) E IVY' = `1'.(T,N)1 C R3,

IK(Y)II = I
is called the unit normal vector of 'P(N) at 'P(y). The unit vector parallel
to r;(y) of which the beginning point is the origin (0, 0, 0) E R3 is denoted
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FIGURE 6.2

by G(y) (see Figure 6.2). Using this unit vector, we can define a mapping,
called the Gauss mapping,

G: N9y'-+G(y)ES2CR3

for the immersion T: (N, h) -- (R3 , go) .

Then it is known that

THEOREM (Ruh-Vilms [R.V]). For an isometric immersion T. (N, h)
(R3 , go), the condition that the mean curvature is constant is equivalent to
the condition that the Gauss mapping G : (N, h) -+ (S2, is harmonic.

REMARK. This theorem holds for an arbitrary isometric immersion 'I' :

(N, h) -+ (R"+, , go) with dim N = n . For the case of nonconstant mean
curvature H, see [Kn].

Now consider (N, h) = (R2/A, g) with g = JgA. Then if we denote
G(y) = (GI(y), G2(y), G3(y)), Y E N, we have

G : (R2/A, JgA) -+ (S2, gS2) is harmonic t=* AgG, = h G,, 1 < i < 3,

AgG.=fhG;, i<i <3,

G: (R2/A, gA). (S2 gS2)
is harmonic,

thus the Hopf problem is reduced to Problem 2.

2.2. The do Carmo-Wallach theorem. In this subsection, we treat the
classification of harmonic mappings of (M, g) into (S", g3.) with constant
density function e(q) = X1/2 (constant). In this case, denoting 4V = i o 0 =

(01, ... , 0,,+,), where i : S" C R"+1 is the inclusion, by a theorem of T.
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Takahashi (2.1), each 0, , 1 < i < n + 1, satisfies

A90; = 24,.
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(2.9)

So we may determine (01, ... , 0n+1) of which 0j, 1 < i < n + I are
the eigenfunctions of the Laplacian Ag with eigenvalue 2 and satisfy the
constraint condition that

n+I

F, 4i(x)2 = 1, x E M. (2.10)
1=1

A mapping 0: (M, g) - (S", gam) satisfying (2.9) and (2.10) is called the
eigen mapping.

It is a dificult question to determine all the eigen mappings of a'general
compact Riemannian manifold (M, g). Here we assume that (M, g) is a
compact homogeneous Riemannian manifold.

Then we shall prove the do Carmo-Wallach theorem which classifies com-
pletely all eigen mappings of such a manifold (M, g). To state this theorem
we prepare with some notation.

Let (M, g) be a compact homogeneous Riemannian manifold (See sub-
section 4.2 in Chapter 2). Then we may assume without loss of generality
that

M = G/K,

where G is a compact Lie group, K is its closed Lie subgroup, G acts
effectively on G/K, and the Riemannian metric g is G-invariant (cf. (4.20)
in Chapter 2).

We denote by Speco(M, g), the set of all distinct eigenvalues of A, her-
after omitting the subscript g in Ag . For 2 E Speco(M, g) , we denote the
eigenspace V2 corresponding to the eigenvalue A by

V2 :_ (f E C°°(M); Af = 2f), n(A) + 1 := dim Vx.

Here let C°°(M) be the set of all real-valued C°°-functions on M. The Lie
group G acts on C°°(M) by

P(x)f(yK) := f o rX(YK) = f(x-'yK), x, Y E G, f E C°°(M)
(2.11)

which satisfies

P(x1x2)f = P(xl)(P(x2)f), P(x)(2f1 +Pf2) = 2P(x)f1 +PP(x)f2

for x1, x2, x E G, f, fl, f2 E C°°(M), and A, p R.
(2.12) This action preserves V invariantly, i.e., if x E G, f E V, then

P(x)f E VA .
PROOF. In fact, since i g= g, x E G,

(Af) o T,t-' = A(f o rx-'), f E C°°(M) (2.13)
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by definition of A. Thus, if Af = Af, then

A(P(x)f) = P(x)(Af) = AP(x)f

(2.14) We define the inner product (,) on V, by

(f,,I) Vol(M,g)JMf f2vg.

Then

(P(x)f, , P(x)f2) = (Al , f2)

for x E G, f, f2 E Vx .

PROOF. Note

fM(P(x)f,)(yK) (p(x)f2)(yK) vg(YK) = fm f,
(x-I yK) f2(x-IyK)

vg(vK)

=f
=ffM128

since rX"vg = Vg by means of rx*g = g .

Now we take an orthonormal basis f o r V Z with respect to the innner prod-

uct i = I,-, n(A) + 1 } . Define the COD-mapping 7,,: M =
G/K

Vz
Rn(x)+1 by

n(A)+1

o2(xK) : _ E fx (x K) fx

identifying Vz

i=1

='(, (xK), ... , f (x)+1(xK)),

and R"('I)+1 by means of

XEG,

(2.16)

n(1)+I

VA 3 1 J - ' ' ( ' 1 , . , n(A)+I) E
R"(2)+1

(2.17)
i=1

where ' means the transpose. Then we obtain

LEMMA (2.18). For any x E G. we obtain

n(A)+I

rQz(xK) E
Sn(d)+I n(d)+1

Er;i
2

i=1

DEFINITION (2.19). From Lemma (2.18), we obtain the mapping p,I
M Sn(x) given by

g12(xK) _ ?px(xK), x E G.

By its construction, it is an eigen mapping, called the standard eigen mapping.
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REMARK. It is not true in general that the standard eigen mapping cx :
(M, g) - (S"(z), gy..(,)) is an isometric immersion except for the case in
which (M, g) the isotropy representation of K on the tangent space T,,(G/K)
at the origin o = {K} E G/K is irreducible.

PROOF OF LEMMA (2.18). Step (i). For X E G, we show

n(A)+1 n(A)+1

(f (xK))2 = (P(x-'

)f (o))2 ,

J=1 i=1

does not depend on x. In fact, we can set
n(x)+1

o = {K} E G/K (2.20)

P(x-1)!+ = E a,,(x)fx ,
j=1

where A = (a,j(x)) E O(n(A) + 1) for all x E G. And then the right-hand
side of (2.20) coincides with

n(1)+1 n(d)+1 n(x)+1

( a,j(x)a;k(x))f,'(a)f(o) _ (f)(o))2
j.k=1 1=1 j=1

which is a constant, say C.
Step (ii). Integrate (2.20) in xK over M, and multiply by " M s) ,

then we get
n(A)+1

C(n(A)+1)_ E (J, f)=n(A)+1;
i=1

thus, we get C = 1. 0
Let o = `(1, 0, ... , 0) E S"(z) be the origin of the unit sphere, and choose

an orthogonal matrix A of degree n(A) + 1 in such a way that

AgA(eK)=o=`(1,0,...,0), (2.21)

using ip(eK) E r(l) and Example 3 (4.23) in Chapter 2. Define an alterna-
tive orthonormal basis for V, by

n(1)+1

_ A, j
fjx

,

j=1

and define the corresponding mapping

n(d)+1

q5z(xK) '(xK) f
i=1

=!(f1(xK), ... ,
f An(A)+1(xK))

which induces the eigen mapping qP of (M, g) into S"(l) . Then we obtain
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LEMMA (2.22). The eigen mapping ip' of (M, g) into (S"("), sat-
isfies

(i) x=Aogp,1,
(ii) coL(x-'K) = p(x) vo, x E G,
where (A o coA)(xK) := A 9A(xK), x E G, and vo := f' E

PROOF. For (i), we calculate

9.(xK) _'(f 1(xK), ... , f"('')+1(xK))

=A`(f (xK), ..., Jx(''>+1(xK)),

which denotes the multiplication of the matrix A = (A,,) and the nth column

vector, that is, ` _ A,1
fx . Thus, we get (i). For (ii),

q (x-' K) = p(x) P-J(eK) (2.23)
n(x)+1

= p(x) f,"(eK)
fill

i=1

n(A)+1

= p(x) F, A,1 fx (eK) f
i.J=1

Here note that equation (2.21) is equivalent to

A'(fi (eK), ... , f(A)+'(eK)) = `(1, 0,... , 0)

and to

F (i.l).
Thus, from (2.23), we get

9A(x-' K)=p(x)JA 1 = p(x) v0. 0

DEFINITION (2.24). (i) Two harmonic mappings 0, w : (M, g) - (S" , g5.)
are image equivalent if there exists an element s E SO(n + 1) such that

in which case we write - V/.
(ii) A harmonic mapping 0: (M, g) (S", g.') is said to be full if the

image O(M) is contained in no (n - 1)-dimensional hypersphere of S" .

THEOREM (2.25) (do Carmo-Wallach [D.W]). Let (M, g) be an arbitrary
compact homogeneous Riemannian manifold Then

(i) assume that ¢ : (M, g) - (S", g5) is a full eigen mapping with
e(o) _ 1. Then 2 E Speco(M, g) and n < n(A).

(ii) Let sl,(M) be the set of all equivalence classes [0] of f dl eigen map-
pings of (M, g) into (S", gs,). Then .VA(M) corresponds one-to-one onto a
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compact convex body Lx of some Euclidean space E,, and each interior point
of LA corresponds to a full eigen mapping of (M, g) onto (S"('1 , g,.(A)) , and
the boundary one of L., corresponds to a full eigen mapping of (M, g) into
(S" , gs.) for some n < n(2) .

(2.26) We explain the correspondance between Lz and the eigen map-
pings in Theorem (2.25) (ii) and EA :

(i) Let S2(V,) be the symmetric product of the vector space Vz . That
is,

S2(Vx) := {u v; u, v E Vz} C V2 ®V2,

where u v := j(u (&v + v ®u), u, V E V2 . Then G acts on S2(V2) by

p(x)(u v) := p(x)u p(x)v.

The inner product (,) on V is canonically extended to S2(V2) as follows.
Taking an orthonormal basis we give an inner product ){ ;=1 (, on
Vz ®Vz in such a way that {vi ®vj; I < i, j:5 n(2) + 1 } gives an orthonormal
basis of V.1 ® V, , and then we give the same inner product restricted to the
subspace S2(V,1) of V® ®V. , denoted by the same symbol (, ) . Then

(p(x)w, p(x)w')=(w,w'), w, w'ES2(V2), xEG.
(ii) Let L(VV2) be the set of all linear mappings of Vz into itself, and

put
.P:= {A E L(Vi, Vx); (Au, v) = (u, Av), u, v E Vi}.

We can identify 5 and S2(Vx) as

U, v, tEVi.

Under this identification, the inner product on Y, denoted by « , >> cor-
responding to the inner product (,) on S2( Vj) is

«A, B>>= tr(AB), A, B E.5°,
and the G-action on S(Vinduces the one on 5" by

p(x)A := p(x) o A o p(x)-1, x E G, A E Y.
PROOF. In fact, for the inner product, note that

{V'vi v,; 1 <i<j<n(A)+1, vi vi; 1 <i<n(A)+1}
is an orthonormal basis for (S2(VA), (, )) . Moreover, if we express each
element of S2(V,1) by a matrix using the basis {v1} "( +1 , the above identifi-
cation is given as

Vi' vi r-'

i
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Here each entry of the matrices is zero except 1. Under the identification
of this corespondance, we can show 4z A, B >= tr(AB).

Since

p(x)u p(x)v (t) = 2((p(x)u, t) p(x)v + (p(x)v, t) p(x)u)

= 2 ((u, p(x-' )t) p(x)v + (V, p(x-' )t) p(x)u)

= P(x) o (u v) o
P(x-I) (t)

we obtain
P(x)A = P(x) o A o

p(xA E SP. 0
Furthermore, we obtain:

(Au, u) =c A, u It >, u E V't, A E S°. (2.27)

PROOF. Since u u (t) = (u, t) u, we get
n(A)+I

(Au, u) = E (Au, v+) (u, v),
i=l

n(d)+1

A, u u = tr(A o (u u)) _ (A((u u)(v;)), v1)
i=1

n(A)+ I

(Au, v;)(u, v)
i I

which implies (2.27). 0
With this preparation, the E2 , L,, are given as follows: Let Wo be a

subspace of S2(V1) generated by elements p(x)(vo vo), x E G, and denote
by the same letter Wo the corresponding subspace in S° under the above
identification. Then we define

Ex := {A E S°; < A, B '= 0, VB E Wo}, (2.28)

L,I:=(CEE,I; C+I>0), (2.29)

where I is the identity mapping of VA and for B E Y, B > 0 means
semipositive definite, that is,

(Bu, u) 2: 0, VU E VA.

The identification in Theorem (2.25) is given by

091, (2.30)

(2.31) PROOF OF THEOREM (2.25). (i) Let 0 : (M, g) -. (S", gs.) be
a full eigen mapping with e(o) Then by a theorem of T. Takahashi
(2.21), denoting I o 0 = (0I , ... 1) , we get

0¢I=2oi, 1 <i<n+l.
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That is, 4,, E V,4, 1 < i < n + 1 . Since is full, {01, ... , On+1 } is linear
independent. Thus, we get

n + 1 < dim VA = n(A) + 1, i.e., n < n(A).

(ii) By (i), each 0, can be expressed by a linear combination of <
j < n(A) + 1 } . Therefore, adding (n (A) - n) zeros if necessary, we can choose
a matrix A of degree n(A) + I in such a way that

1(01,...1

Here we take the polar decomposition of A, i.e.,

A = TB,

where T is an orthogonal matrix, B is a semipositive definite symmetric
matrix. Then denoting the inclusion by j : S" C S"('1) , we get the following
image equivalence relation

J 4, AO' .j B4,.

Here we give the condition for the C°°-mapping BO', : M R"("+1 to
be a mapping into the sphere S"('i). Since

4x(x-1 K) = p(x)v0, x E G,

by Lemma (2.22), we get for all x E G,

I = (BO (xK), BO' (xK)) = (Bp(x) v0, Bp(x) v0) (2.32)

= (B2 p(x) v0 , p(x) vo) (B is symmetric )

B2, P(x) v0 P(x) vo » (by (2.27))

B2, P(x)(v0 vo) >> .

On the other hand, by (2.27) and the G-invariance of < , >, for all x E G,
we get

4z1, p(x)(vo , v0) 3_z 1, v0 v0 >>_ (v0 , v0) = 1. (2.33)

Thus, by (2.32) and (2.33), a necessary and sufficient condition for B4,',(M) C
S"(l) is

c B2 -1, p(x)(v0 v0) >= 0, Vx E G (2.34)

which is equivalent to
C:=B2-IEEA.

Conversely, C E Ex satisfies C + I > 0, then putting B := (C + 1)112,

we have that 0 := B o 4x : (M, g) (S", g.), n < n(A) is a full eigen
mapping with e(4,) = 1. We obtain Theorem (2.25). 0

REMARK 1. Consider

.q(M) :_ {[0); 0: (M, g) (S", gam), minimal isometric immersions}.
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Since e(46) = 1, m = dim M, we obtain

.T(M) = {[-0]; 0 E dn(M) and c*gs. = g} C .c (M).

Thus, we can, in priciple, determine R(M) by Theorem (2.25), but its cal-
culation is rather complicated (cf. [P.Ur], [Ur3j).

REMARK 2. From the definition of L,,, it follows that Lx is a compact
convex body in E,, i.e., if C1, C2 E L., then IC1 + (1 - t)C2 E Lz for all
0<t<<1.

To show that L,, is compact, it suffices to show that all the eigenvalues of
C E L. are bounded. To see this, note that

IMA

n(x) +I

rxK)v=
CJi l=1 M

VOl(M, g) n(x)+I
I JA41

n(A) + 1 r
i=I

since f)+I J'(xK) j' .

For C E L., putting C = B2 - 1, we obtain by (2.34),

<< C, rpA(xK) ryj(xK) >>= 0, Vx E G,

since p(x)(vo v0) = --J (xK) x(xK) (cf. Lemma (2.22) (ii)). Integrate
the above over M in x to obtain

1 J

tr(C) (Cf J =<C, 2 fi f'>>=0,
from (2.27). Thus, since C + I > 0, denoting the eigenvalues of C by
Alt ... f we obtain

Ai=0 and Ai+l>0, i=l,...,n(A)+1.
i=1

Therefore, we obtain

-I < At < n(A), 1 < i < n(A) + 1

which yields the compactness of L. L. 0
In particular, let (M, g) = (Rm/A, gA) be a flat torus. Then for the

Laplacian A,

the eigenvalues are 4n 2 InI2 , n E A ,

the eigenfunctions are R"'/A 3 n(x) -+ e2x,(..X)

where A' {n E Rm ; (n, x) E Z, `dx E A). Thus, the multiplicity of any
eigenvalue A is always even, say 2p, and then we may write

{nEA*; 4n2llnll2=A)={nl,...,np,_nit ...,-nP}.
Then by Theorem (2.25), we obtain

n(x)+I n(x)+I
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COROLLARY (2.35). Let (M, g) = (R n/A, gA) be a flat torus. Then
(i) dimsai',i(M) := dim E,( = 2p2+p-1-2N > p-1 I. where N is the number

of all distinct elements of (n,+ nk (1 < j < k < p) , nj- nk (1 < j < k <p) } .

(ii) S11(M) S1,I O(M), where sate o(M) is the set of all image equivalence
classes of full eigen mappings of the following:

I a(+ I e2r<r(sl.x) , ... , FP + I e21<r(e,.x)1R"r/A 3 1r(X) P

where the a,, ... , aP run overall real numbers satisfying

P

a.+l>0(1 <i<p) and >a,=0.
r=1

(iii) In particular, if dim M = dim Rm/A = m = 2, then .. (M) _
sVi.0(M) .

(iv) (Hsiang-Lawson, Sasaki [Ss]) The only minimal embedded flat torus is
the Clifford torus.

The proof of Corollary (2.35) is omitted. See [P.Ur].

2.3. Calabi's Theorem. E. Calabi showed that the set of all full harmonic
mappings of (S2 , gs2) into (S", gs,) corresponds to the set of all full holo-
morphic mappings of P' (C) into some compact Kahler manifold, which is a
usefull theorem because holomorphic mappings are much easier to study. In
this subsection, we introduce his theory. The following proposition is crucial.

PROPOSITION (2.36). Let (M, g), (N, h), (Y, g') be three compact Rie-
mannian manifolds. Let n : (Y, g') -+ (N, h) be the Riemannian submer-
sion (cf. (3.7) in Chapter 4). That is, n : Y -- N is an onto mapping, for each
y E Y, the differentiation n. : T,,Y TT(y)N is surjective, V, = Ker(n.),
and n, : (Hy, g') - (T,,(y)N, h.(y)) is isometric, where TY = Vj, ® Hy is
the orthogonal decomposition with respect to gy .

For Y/ E C°°(M, Y), put 4:= n o W E C°°(M, N). Assume that
(i) w : (M, g) -+ (Y, g') is a harmonic mapping,

and
(ii) V is horizontal, i.e.,

V, (TTM) C Hw(x), X E M.

Then 0 = n o w : (M, g) -. (N, h) is a harmonic mapping.

(Y, g')
/0 1"

(M, g) m. (N, h)

PROOF. Let V, NV' Y V be the Levi-Civita connections of (M, g),
(N, h), (Y, g'), respectively. Since 0 = it o y/, 0. = n, o yip . Taking an
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orthonormal local frame field {e1} sI on (M, g), is horizontal by the
assumption, due to O'Neill's formula (cf. (3.9) in Chapter 4), we get

NV .,,O ei
= Nvx.r.e,iwe = W.L'i.

Thus, we obtain
m

.00)
Y

i=1

0

To state Calabi's theorem, we prepare with the following:
Let (R2p+1, (, )) be the (2p+ 1)-dimensional Euclidean space. We extend

the inner product (, ) to a complex bilinear form (, )C on the complex
Euclidean space Cep+1 by

(x+V"---Iy, u+V---Iv)o:= (x, u) - (y, v)
+ r---'((y, u) + (x, v)),

for x, y, U, v E R2p+ 1 . A complex subspace V of C2°+ 1 is called isotropic
if it satisfies

(v, W)C = 0, dv, W E V,

and we denote by vJ, the set of all p-dimensional isotropic complex sub-
spaces in C2p+1

. Then

LEMMA (2.37). (i) The special orthogonal groups and the unitary group have
the following inclusion relations

U(p) C SO(2p) C SO(2p + 1),

where

U(p)9a+vTbI- ( b b)ESO(2P),

10
0) E SO(2p + 1).SO(2p) a x

(
(ii) SO(2p + 1) acts transitively on v , and we get

v = SO(2p + 1)/U(p).

(iii) The inclusion in (i) induces the canonical mapping

a : SO(2p + 1)/U(p) 9 xU(p) '- xSO(2p) E SO(2p + 1)/SO(2p)

and the Riemannian submersion a : (o , g') (S2" , gsz,) . Here the Rie-
mannian metric g' on v is the SO(2p + 1)-invariant one.



§2. THE UNIT SPHERE 205

(iv) p admits a canonical complex structure in such a way that each
translation r, , x E SO(2p + 1 ) is holomorphic, and ( P , g') is a Kdhler
manifold.

REMARK. If p = 2, . = SO(5)/U(2) = P3(C), and we get the Rieman-
nian submersion

n: (P3((C), gl)-s(S4, gg)
which is called the Calabi-Penrose twister fiber bundle (fibering).

PROOF OF LEMMA (2.37). (i) is clear. (ii) The standard Hermitian inner
product ( , ) on C2p+I is

(v, w)= (v,w)C, V, w E C2p+I

Here w is the complex conjugate of w E C2+I . We take any V E Jr. and
let {zI , ... , zP} be an orthonormal basis of V with respect to (,) . For
k=1,...,p,put

1 2P+ IZk = 7(Xk + v-I Yk), Xk, Yk E)It .

We get that {Xk , Yk ; I < k < p} is orthonormal with respect to
Because

6k,=(Zk,Zt)=(Zk'Z,)C=2(Xk+-1Yk, X,1 Y,)C

= 2{(Xk, X,)+(Yk, Y,)+T((Yk, X,) - (Xk, Y,))}.

Since V is isotropic, we get

0= (Zk, Z,)C = (Xk +V-1 Yk, X, + V-1 Y,)C

.= {(Xk, X,) - (Yk, Y,) +V((Yk, X,) + (Xk' Y,)))

Together with these equalities,

(Xk, X,) + (Yk, Yt) = 2ak, , (Yk , X,) - (Xk , Y,) = 0,

1 (Xk , X,) - (Yk , Y,) = 0, (Yk, X,) + (Xk, Y,) = 0,

which yields

(I ).

(Xk,X,)=(YkIY,)=&k,, (Xk,Y,)=0. (2.38)

Take an element Z E R2"+ I such that { X
I
, ... , X

P
, Y1 , ... , Yp , Z I is

an orthonormal basis for R2p+I with respect to (,) . Let (e,, ... , e2p+I }

be the standard basis for R2p+I , and set

P

VO Eak(ek+-Iep+k); akEC, I<k<p
k=1
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Then Vo E .f. Because zk = (ek + eP+k) satisfies (2.38), which
implies 0 = (zk , zt)c .

For the two orthonormal bases {X1, ... , XP, Y1, ... , YP, Z} and
{e1, ... , e2p+1 } , we can choose an orthogonal matrix T such that

{XI,...,XP,Y1,...,YP,Z}=T(e1,...,e2p+1}.

But we may assume T E SO(2p + 1) if we consider an alternative basis
{X1,..., XP, Y1, ..., Y,,, -Z} w h e n T=-1. T h e n 1,..., p,

zk=Xk+-'/ 1 Yk

= Tek + viTeP+k = T(ek + v-leP+k),

so that we obtain V = T Vo , T E SO(2p + 1). Thus SO(2p + 1) acts tran-
sitively on o . To see that the isotropy subgroup of SO(2p + 1) at Vo is
U(p), we note that for any T E SO(2p + 1),

P

T(ee +-.I --I eP+,) = F Ckt (ek +.'I-' eP+k) , Ck, E C,TVo=Vow k=1

Te2P+1 = e2P+1

Here ck, denotes akl + bkr with akc , bkr E R. Then we get

Te2P+1 = e2P+1 ,

P

k=I

TeP+e = E{bkr ek + akr eP+k }
k-1

a b 0
b T = -b a 0 with

(10 '0 1

Noticing that

(a b)
E SO(2p).

b a)

U(P)= = b b ) E SO(2p) }

we obtain (ii). We omit the proof of (iii), (iv). 0
REMARK. The projection 7r : JP1 -, S21 is also obtained as follows. For

V E F , we get the orthogonal decomposition with respect to (, ) ,

C2P+1 =V®Vecz,

where V:= {v; v E V} and for Z with (Z, Z) = 1 . Then n(V) = +Z E
S2" c R2P+,

Now Calabi's theorem says

P

Tel = E{ak[ ek - bkt eP+k} ,
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THEOREM (2.39) (Calabi [CI], [C2]). Let 0: (S2 , gs:) -. (S" , gs,) be a
full harmonic mapping. Then

(i) n = 2p (an even number),
and

(ii) there exists a holomorphic mapping w : P2(C) -+ v which is horizon-

tal with respect to the Riemannian submersion a : (, p , g') -. (S2p, gs,) ,

and satisfies 0 = a o V/.

REMARK. Due to Proposition (2.36), for any horizontal holomorphic map-
ping +v : P' (C) - . , ¢ = n o w : (S2, gs:) -. (S2p, gs:,) is always har-
monic. Theorem (2.39) claims that the converse holds. We recommend Law-
son's exposition [Lw]. See also Verdier [V], Loo [Loo], Kotani [Kt], Furuta-
Guest-Kotani-Ohnita [F.G.K.O] and Guest-Ohnita [G.O] about the structure
of the moduli of all harmonic mappings of (S2, gs2) into (S", gr).

2A. Group equivariant harmonic mappings. It is quite difficult to solve
(2.7) directly, so we consider reducing (2.7) to the ordinary differential equa-
tion under the group equivariance condition, and solve or show the existence
of a solution of this ODE. To do this, we consider the following situation:

(I) Let (M, g) be a compact Riemannian manifold on which a compact
Lie group K acts isometrically and with cohomogenelty one, i.e., denoting
the action of K on M by

KxM9(k, p)I-+Tkp:=k - pEM,
(1) rk*g=g, VkEK, and
(ii) there exists a geodesic c(t), 0:5t:51 such that

t = jt g((s), (s))'12ds, (2.40)

dim(Kc(t))=dimM- I for all 0<t <t, (2.41)

dim(K c(t)) < dim M - I for t = 0, 1,

M = U K c(t) , (2.42)
tE[o,t)

where K c(t) : {k c(t); k E K} is called the K -orbit. (See Figure 6.3, next
page.)

(II) Assume that the K-invariant Riemannian metric g can be expressed
as follows: Let Jt be the isotropy subgroup of K at c(t), which satisfies
the same group, denoted by J , for 0 < t < t . Let t, j be the Lie algebras
of K, J, respectively. Let

t=j®m,
be the orthogonal decomposition with respect to the Ad (K)-invariant fixed
inner product (, ) (cf. (4.17) in Chapter 2), and assume the Riemannian
metric g satisfies

gkc(t)(Tk.Xlc(t), Tk,Xic(t)) = f,0)2J , I < i, j < m - 1 (2.43)
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FIGURE 6.3

for k E K, 0 < t < I, and some orthonormal basis {X, , ... , Xm_ 1) of
m with respect to (, ) (see (4.20) in Chapter 2 for the meaning of the left
hand side). Here we assume the f,,.(t) are positive C°°-functions on the open
interval (0, t) .

Under the assumptions (1), (II) of (M, g), let us consider a C°°-mapping
(M, g) - (S, gs.) satisfying the following condition:

(III) Let A : K SO(n+l) be a homomorphism, and assume 0 satisfies

q5(k p) = A(k) 0(p), k E K , p E M. (2.44)

Such a 0 is called an A -equlvariant mapping.
Under the above setting, the Euler-Lagrange equation (2.7) can be reduced

to an ordinary differential equation.

PROPOSITION (2.45) (cf. [Ur 11]). Let (M, g) be a compact Riemannian
manifold satisfying (I). (II), and a C°°-mapping : (M, g) gs.)
satisfying (III). Assume, denoting 4 as

that 0(t) _ (t), ... , 4"+,(t)) _ 0(e(t)). 0 < t < 1, where i s" C Rn+I
denotes the inclusion. Then a necessary and sufficient condition for 0 to
satisfy the Euler-Lagrange equation r(o) = 0 on the open dense subset M'
{kc(t) ; k e K, 0 < t < l) is that 4b(t) satisfies the following equation:

e(t) - E f (t)-2dA(Xj)2I(t) (2.46)D(tj
m-I

J-I

m-I
= 14((012 + E f (t)-2I dA(X;)1(t)I2 mo(t), 0 < t < t ,

=I
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where D'(t) := 0' +1 D(t) := 11'n-I f,(t), and see (4.8) in
Chapter 2 for the definition of dA(X), X E m.

The calculation (2.46) follows from making use of the A-equivariance
condition (2.44), and both the t)8¢, and Ej= II (d4, , dot) of (2.7) are equal
to the left-hand side, the right-hand side of (2.46), respectively. We omit the
calculation.

Now for a solution 0 of (2.46), we put

4,(kc(t)) := A(k)O(t), k E K, 0 < t < t. (2.47)

Then this mapping 0 is a CO°-mapping on the open dense subset M' of M
into S", and if we may determine the boundary value 0(0) and D(t) for
0 to be a continuous mapping on the whole M into S" , then we obtain a
C°°-A-equivariant harmonic mapping 4, : (M, g) - (S", gr) due to the
following proposition.

PROPOSITION (2.48). Let (M, g), (N, h) be compact Riemannian mani-
folds, let ¢ E L1 2 (M, N) be a weak solution of the Euler-Lagrange equation,
i.e., a solution of (1.23) or (2.23) in Chapter 4 in the sense of distribution. As-
sume that 0 is a continuous, i.e., 0 E C°(M, N). Then 0 E C°°(M, N)
and 0: (M, g) -. (N, h) is a harmonic mapping.

For a proof, see Borchers-Garber [B.G] and Schoen [Sc].
Now we give examples making use of Proposition (2.45).
EXAMPLE 1. If (M' g) = (S"' gs.), let

K:=SO(n-1)xSO(2)=1(0 x 01 ; xESO(n-1), YESO(2)}y
cSO(n+1).

Via the inclusion K c SO(n + 1) and the action of SO(n + 1) on S" in
(4.23) Example 3 in Chapter 2, K acts on S" satisfying the conditions (I)
and (II): In fact, let {e1, ... , e"+i } be the standard basis of R"+1 and let

c(t):=coste,+sinte", 0<t<2n,
be a geodesic of (S", gs.). Then the isotropy subgroup of K at c(t) for
0<t< is given by

1 0 I 0
Jt

0 X' 1

0
:X'ESO(n-2)

0
0 1

denoted by J. The inner product

(X, Y) _ -2 tr(XY), X, Y E so(n+ 1)
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on t c so(n + 1) is the desired inner product due to (4.17) in Chapter 2,
and we can take as an orthonormal basis {X1, ... , X"-1 } of the orthogonal
complement m of j in t with respect to (, ) ,

0

X;:=i+1 1 0

0

0 01 0
0 I 0 -1

1 0

0 10)
Then we get

thus,

I(t)=...= f"-2(t)=cost, fn-1(t)= sin 1;

D(t) = (COS 1)n-2 sin t.

Then dimK/Jr=n-1, (0<t<),and t=x,and (M,g)=(Sn,gs,)
equiped with the action of K = SO(n - 1) x SO(2) satisfies conditions (I)
and (II).

Furthermore, let us consider as a homomorphism A of K into itself,

A=Aa:K=SO(n-1)xSO(2)a(0 )ESO(n+1).

for a E Z. As 0(t), we take

0(t)=cosr(t)el+sinr(t)e,, , 0<1<
where r(t) is a real-valued function on the open interval (0, ), and define
an Aa-equivariant mapping 0a by

\ /
oa((x

Y)c(t))=Aa(0 0)4)(t).

Since
dAa(Xj) = Xi (1 < i < n - 2), dAa(Xn_1) = aXn-1

(2.46) is reduced to the following ordinary differential equation:

r' + (cos t - (n - 2) tan t)r + (n 22 - a2) sin r cos r = 0. (2.49)
cost sin t I

Furthermore, if r = r(t) satisfies the following condition (2.50), then the
above 0a becomes a continuous mapping of S" into itself:

0 < r(t) <
2
n (o < t < 7) , r(0) = 0, r (2n) =2n'

(2.50)

Thus, it should be possible to show the existence of a solution r = r(t) of
(2.49) with (2.50). This was studied by W.Y. Ding [Dg], and his results are:
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(i) If 3 < n < 7, there exists a solution of (2.49) with (2.50) for all
aEZ.

(ii) If n > 8, there is no solution of (2.49) with (2.50) except in the case
a=0, ±1.

Thus, we obtain that if 3:5 n < 7, we obtain the existence of a harmonic
mapping ¢° : (S", gs.) - (S", gs.). Note that the mapping degree of 0°
satisfies deg (0°) = a.

Recall the definition of the mapping degree: In general, dim M = dim N
= n, the mapping degree deg offM 0 E COO (M, N) is by definition

deg(0) J:= jvg/Vol(N, h), (2.51)

for Riemannian metrics g, h on M, N, respectively. Here O*vh = j vg ,

f E C°°(M), and the mapping degree is independent on the choices of g,
h and takes an integer value assuming M and N are orientable, i.e., they
admit C°°-n-forms that are every where nonzero. Then it is known (see [MlJ,
[G.L.PJ) that

(i) if 01, 02 E C°°(M, N) are homotopic, then

deg(41) = deg(02)

(ii) (Hopf's Theorem) If N = Sn, then for O1, '02 E C°°(M, S"),

¢1 and 02 are homotopic r deg(O1) = deg(02).

(iii) If M = N = S", then [M, N] = n"(S") a5 Z and the correspon-
dance is given by

y = [0J - de8(O)

To show deg (0Q) = a, we have only to calculate (2.51) and then

x/2
Vol(S", gs.) = f cos t(sin t)"-2dt,

0

and also

fs.

x/2

¢°'vgs, = a f r cos r (sin r)rt-2 d t

r(x/2)
= af cos r (sin r)n-2 dr = a Vol(Sn, gs. )

0)
which yields deg (0°) = a.

If n = 2, the holomorphic mapping C 3 z z° E C induces a harmonic
mapping Oa : S2 - S2 with deg (0°) = a, regarding as S2 = C u {oo} .

If n = 1, the mapping S1 3 ere t-. e1ae E S1 is a harmonic mapping with
deg (0°) = a. Thus, we obtain
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THEOREM (2.52) (R. T. Smith [St 2], 1975). If 1 < n < 7, then each
element a'(S") = Z can be represented by a harmonic mapping of (S"' gr )
into itself

ExAMPL.E 2. In the case (M, g) = (R2/A, gA), where A = 2nZ x TZ, we
put

K=R/2nZ= Cos9
(sin 0 co s 0

0 R

of which action on R2/A is

K x R2/A 3 ([0'1, ,r(0, t)) -. ,r(9 + 0', 1) E R2/A.

The constant T will be fixed as follows. Given a geodesic of (R2/A, gA),
c(t) = x(0, t), 0 < t < T, the isotropy subgroup of K at c(t), JJ = {e),
consider the following two homomorphisms:

(i) For a E Z,

Aa : K E X = (os sin
0
) `~ (0 ) E SO(3).

(ii) For a, b E Z,
0 -s

Aa.b: Kax= (ssiin9 Cosm9) ~
(X0

a ) ESO(4).

For (i), let

4(t) := cos r(t) e1 + sin r(t) e2 E S2,

4,(t, 0) := cos r(t)e1 +sin r(t)(cos aO e2 +sin aO e3) E S2,
for (ii), let

(t) := cos r(t) e1 + sin r(t) e3 E S3,
¢(t, 9) := cos a9 e1 + sin aO e2

+ sin r(t)(cos b9 e3 + sin b9 e4) E S3.

Then the differential equation for these ¢ to be harmonic is

r"-a2 sinrCosr=0, (2.53)

rit
+ (a2 - b2) sin r cos r = 0, (2.54)

for (i) and (ii), respectively.
For the equivariant mapping to the solutions r = r(t) of (2.53), (2.54) to

be defined on all of R2/A, it suffices for (cos r(t), sin r(t)) to be periodic
in t :

(cos r(t + T), sin r(t + T)) = (cos, sin r(t)),
for all t. This period T > 0 should be the T used to define A. Moreover, if
we put ¢(t) := 2 r(t) , then both (2.53) and (2.54) become to be the equation
of the pendulum:

01I- k sin 0,
where k = a2 , k =-(a2 - b2) for (2.53), (2.54), respectively.
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sr v

(i) mlc" = -mg sin 46 (ii) mlc" = mg sin 0
FIGURE 6.4

(2.56) The pendulum. Here we consider the equation for the swing of a
pendulum of mass m and string length t. Denote by g the gravitational
constant.

(i) In the case (i) of Figure 6.4, the strength of force by the motion of angle
speed 0 is mto , and the force of gravitation is mg sin 0 in the oposite
direction, and then to balance them, the equation should be

M10" = -mg sin 0.

Thus, we obtain
0"+g sin 0=0.

(ii) The equation for case (ii) is

4"-1sin4)=0.
LEMMA (2.57). For a solution 0 of (2.55),

E:=24,2+kcos4)

is a constant independent in t.

PROOF. The proof is clear from

0'-0"-k4)' sin .0 _4)'(4)"-ksin 0)=0. 0

Lemma (2.57) has the following implication: The sum of the kinetic energy
and the potential energy coincides with

2

m(lo1)2 + mgt cos 0 =constant. (2.58)

That is, the total energy of the pendlum is constant.
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On the other hand, we want solutions such that (cos ¢(t) , sin 4(t)) is
periodic in t. However, note that the position of the pendulum is given by

(I cos 0, -t sin 0) or (-l cos ¢, t sin 0). (2.59)

Since the total energy of the pendulum is constant in time 1, there are many
solutions for which positions are periodic in t. Thus, we obtain

PROPosrTION (2.60) (cf. [St 2], [Ur l I]). A solution of the equation of the
pendulum gives a harmonic mapping of a 2-dimensionalfat torus (R2/A, gA)
into (S2, gs2) or (S3 , gs3).

§3. The case of symmetric spaces

3.1. Case of complex projective spaces. Let (P"(C), h) be the complex
projective space, and let h be an SU(n + 1)-invariant Kiihler metric on it (cf.
(3.17) in Example 9 in Chapter 4). Then any harmonic mapping of (S2 , gs2)
into (P" (C) , h) can be described by a holomorphic mapping as follows. Here
a harmonic or holomorphic mapping 0: (S2 , gs2) -+ (P" (C) , h) is said to
be fall if the image 4)(52) is contained in no (n - 1)-dimensional projective
subspace P"-I(C) of P"(C). Then

THEOREM (3.1) (A. M. Din-W. J. Zakrzewski [D.Z], V. Glaser-R. Stora
[G.S], J. Eells-J. C. Wood [E.W]). There is a one-to-one correspondance be-
tween the set of all full harmonic mappings 0: (S2, gsz) -, (P"(C) , h) and

{(f , r); f is full holomorphic of PI (C) into P" (C), r = 0, 1, ... , n).

The correspondance in Theorem (3.1) is given as follows.
Let R : C"+1 - (0) 9 z - [z] E P"(C) be the canonical projection, and

let w be a complex coordinate on an open subset in S2 = PI (C) . Now let
f : P1(C) = S2 -+ P"(C) be a full holomorphic mapping and let 0:5 r < n.
Then we may choose a holomorphic mapping

F: U-+C-(0) with f=xoF.
We denote F(w) = (F1(w), ... , F"+I(w)), W E U, and the ith differentia-
tion of F, 1:5 i!5 n, is written as

r +

8w2(w):=
(2,L(W)1.... 8 EC"+1, W E U.

For any t = 0, 1, ... , n, we denote by F, (w) the complex subspace of
Cn+1 generated by

r
F(w), ew(w), ...

8w (w)

Then since f is full, we get

dimcFi(w)=t+1, 1=0, 1,...,n.
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This F, gives a holomorphic mapping of U into the Grassmann manifold,

Ft: S2 D

Here Gr+1(Cn+1) is a compact complex manifold consisting of all (t + I)-
dimensional complex subspaces of Cn+1, called a Grassmannian manifold.

Again using the assumption of fullness of f , it turns out that F, can be
extended to a holomorphic mapping of the whole S2 into G,+I (C"+1)

For all 0:5 r < n, we define

;,:={(U, V)EG,(C"+I)xG,+,(Cn+1); UCV}.

.; is a compact complex manifold and can be expressed as a homogeneous
space

U(n + 1)/(U(l) x U(r) x U(n - r))

which admits a U(n + 1)-invariant Riemannian metric g' such that
(i) (Jr,, g') is a Kfihler manifold, and
(ii) the canonical projection x, coming from

P"(C) = SU(n + 1)/S(U(1) x U(n)) = U(n + 1)/(U(1) x U(n)),

gives a Riemannian submersion x, (.;, g') -. (P"(C), h) (cf. (3.7) in
Chapter 7).

Note that x, is given by

x,:F, 3(U,
V e U U is

the holomorphic mapping

-0, := (F,_1, F, ) : S2 = P1(C) a w i- ( F, _ F,(w)) E .;

which is harmonic due to (3.14) in Chapter 4. Moreover, it turns out that
0, is horizontal with respect to the Riemannian submersion x, g')
(P"(C), h) (cf. (ii) (2.36)). Thus, due to Proposition (2.36),

4),:= x,o0,

is a harmonic mapping of (S2, gs2) into (P"(C), h).
Theorem (3.1) asserts that the converse of the above is true, that is, them

exists an inverse correspondance of the above.

3.2. The unitary group dad chiral fields. Here we show there exists a one-
to-one correspondance between the set of all harmonic mappings of (S2 , gs2 )
into the unitary group U(n) and the set of Yang Mills connections (then flat
connections), called chiral fields with certain asymptotic conditions of the
trivial vector bundle over R2 with the structure group U(n) , E = R2 X C,.
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(3.2) The unitary group. Recall from subsection 4.2 in Chapter 4 that

U(n) {a E M(n, C); 'aa = a'a = I},
(the unitary group of degree n),

u(n) {X E M(n, C) ; 'X + X = 0), (the Lie algebra of U(n)).

Define the inner product (,) and the norm I I on u(n) by

(X, Y) :_ - tr (X Y), X, Y E u(n),

IX12 := (X, X),
and the biinvariant Riemannian metric h on U(n) by

ha(XQ,Y.)=(X,Y), X, YEu(n), aEU(n).

We denote the standard Riemannian metric on R2 by

go=dx®dx+dy®dy,

where (x, y) is the standard coordinate on R2 . Let Cl c R2 any domain in
R2 . For a C°°-mapping 0: Cl U(n), the energy E(o) is given by

2 f (_i2 + Io-18Y
(2) dx dy, (3.3)

Tx-n
as we show below. Here for 0 = (4,,) (a unitary matrix of degree n ), we
define the matrices of degree n

00 __ 00t,) 8
(ate)ax ' ax ' ay ` ay '

then

E u(n). (3.4)8x ,-' Y

The norm I
I

in the integrand of (3.3) is the norm of u(n). Then we obtain
(3.5) The energy density function e(4') of a C°° mapping (Cl, go)

(U(n), h) is given by
z z

100
100) 0- +

PROOF. In fact, for p E S2 ,

I z (p)
Iz

and the same is true for k . 0
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(3.6) A sufficient and necessary condition for q' : (Q, go) -, (U(n), h)
to be a harmonic mapping is

0 on 11.ax
(0-100)

T- + aY 5-Y

PRooF. Let 0, be a variation of 4' with 0o = 0, and set

A:= drl

then A : Q - u(n) . We can assume that

A=0 on 8Q.
Then we obtain

-00
dt

f.J\Wi It_00t
ax ' ax>

+(drlr-
m, 1 Yr' aY)Idxdy,

here we get

d -I , = d -1 -1 1 00,

dt
It_000ax T11=0{( Ox }

-AO 1 ax + ax +0-18xA.

Therefore, denoting B := 0-1 Sf , we get

\d I r=Oor aXr B _ (AB, B) + ax B + (BA, B)

= (ax , B).

Because

(*)

(AB, B) tr (ABB) tr (BAB) = (BA, B).

In the same way, we can calculate ( 1r=o¢r e ,-1) , and then we
obtain (*) as

d j{(,8A 00 OA -1 a0
Wt

ay dxdy

= !a CA' ax (0 1 ax / + aY ( 1 aY))
dx dy

which follows from Stokes' theorem (subsection 3.3 in Chapter 1). Here A
is arbitrary, we obtain the desired. 0

(3.7) The energy E(q) for a Riemannian metric g := A2 go, AE C°O(Q),
A > 0 on 11, of a mapping

0: (n, g) (U(n), h)
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coincides with (3.3) (cf. exercise 4.2), and it follows that

0: (0, g) -. (U(n)) is harmonic
a 0: (0, go) - (U(n), h) is harmonic
r-* the equation in (3.6) holds.

Now define

AX .-w 18x, AY ._w lay (3.8)

Then AX , Ay are u(n)-valued functions on i2, and the equation in (3.6) is
equivalent to

ax AX+B-Ay=0 on Q.

Next regard (3.8) as a system of differential equations with an unknown
function 0, then we get

ao
_ OAX, Lo _ 0Ay, (3.8')

TX_ ay

and the integrability condition of (3.8'),

8x Ay 8y
AX + [AX , Ay] = 0, (3.9)

where [ , ] means the commutator of matrices of degree n . Thus, we obtain

PROPOSITION (3.10). The problem of finding a harmonic mapping
4, : (0, g) - (U(n), h), is reduced to determining two u(n)-valued func-
tions AX , Ay on 12 satisfying

aAX+8Ay=0, (3.6)ax ay

BxAy-ay AX+(AX,A,]=0. (3.9)

Given such AX . A.. there exists a unique solution .0 of (3.8') on 12 with
¢(x0, yo) = 0o for every (x0, yo) E 12, ¢o E U(n) such that 0: (i2, g) -
(U(n), h) is harmonic. ((AX, Ay} is called a chiral field.)

(3.11) Consider the trivial bundle (the product bundle) with structure
group U(n) on i2,

E=QxC".
Then the space r(E) of all C°°-sections of E is the set of all C"-valued
C°°-functions on Q. Connections of E are given as follows: For a chiral
field (AX, Ay) on i2, define A := AXdx + Aydy. This is a u(n)-valued
1-form on Q, so we can define a connection AV on E by

AVxa := Xor + A(X)o = da(X) +A(X)Q, X E I(i2) (3.12)
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for a E r(E). Here (A(X)a)(p) := A(X)(a(p)), P E Cl the right-hand
side of which is the multiplication of a matrix and a vector since A(X) E
u(n), a(p) E C" . Equation (3.12) can be written as

. "°=d+A. (3.12')

For A = 0, we write '0:= d. Then we obtain

PROPOSITION 3.13. (i) It holds that

axAx+- Ay=Oa.VA=0.

(ii) Moreover, we get

R
A V

= 0, 3.9')

where 0A is the codifferential of a u(n)-valued 1 -form A with respect to V ,

and RA° is the curvature tensor of A° (cf subsection 2.2 of Chapter 5).

PROOF. Let V be the Levi-Civita connection of (Cl, g), and let {e!} 1

be an orthonormal frame field with respect to g = A2 go. Then we obtain
2

6 A = - E(7elA)(e;)
.=1

2

{b,,(A(e;)) - A(°ee1)}
i=1

2

{e,(A(e;)) - A(°e,e;)}.
1=1

Here since e1 e2 = ay ,

e1(A(el
)) .l

12
-ox (1AX), e2(A(e2)) = ay (Ay)'

On the other hand, since
,2

0)
(gj)=(A02

X02)

we calculate
a l a a 1 a2 a a2 a

° aX = r11 ax + r11 ay = (ax TX - ay ay
a l a a 1 OA a a2 a

°f, ay=r2249X +r2uay=-A (aXaX-ay ay
Hence, we get

l a 1 a 1 1 aA a OA a°ele1=1iix-A a +,2A ax ax - ayay
1 a l a I OA a CIA a

(aXaX-ayay
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Thus, we obtain

--I L
8y Ay}

which yields (i).
(ii) Since AV = t+ A ,

RSV = R' +d 'A + [A, A).

Here for X, YE3:(Q),

[A, A](X, Y) = [A(x), A(Y)].

For Q E r(E), we get

R10

o'= tX(Vya) -Vy(V1a) -V[X.Y]a
= X(Ya) - Y(Xa) - [X, Y]Q=0.

On the other hand,

/
(d V,A+[A,A])1 8x, 8y

{8x\A\8Y)) 8y(A(ax)) -A([8x 8Y])}
+ [A(l). A( ' )]ax ey

= 8xAy - ey AX + [AX , Ay]

which yields (ii) due to (3.9). O

Note that for any connection V on E, A := V - ' 7 is a u(n)-valued 1-
form on Q by the definition of connection. By Propositions (3.10), (3.13),
we obtain

THEOREM (3.14). There exists a one-to-one correspondanee between the set
of all harmonic mappings of (0, go) into (U(n), h) with

f r 2 z

E(O) = J e(0) dx d y =
JO {) ' ax l +

10-1

ey 1
} dx dy < oo

and the set of all Yang-Mills connections AV = 7 + A on the trivial bundle
E=CZxC" with 610 A=0 and

JAI2dxdy<oc.

If Q = R2, it is known that
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THEOREM (3.15) (Sacks-Uhlenbeck [S.Uh]). A necessary and sufficient con-
dition for any harmonic mapping 0 : (R2, go) (N, h) to be extended to a
unique harmonic one ¢ : (S2, g52) - (N, h) is

E(4') = fR 2

e(4) dxdy < oc.

Any harmonic mapping 4' : (S2, gs2) -- (N, h) can be obtained in this way.

Along with this theorem, we obtain

THEOREM (3.16). There exists a one-to-one correspondence between the set
of all harmonic mappings 0 : (S2 , g52) (U (n), h) and the set of all flat
connections (Yang-Mills ones, themselves) on the trivial bundle E = R2 X cm.

"V=''+A with 8°A =0 and
f2IAI2dxdy<oc.

REMARK. Two connections V, V' on E = R2 x C" are called gauge
equivalent, denoted V - V', if there exists a 0 E C"O(R2, U(n)) such that
V=V10 where

On the other hand, since AV =V + A and A = AXdx + Ayd y , we obtain

"V-b 4 A=4' 1d4, 4EC°(R2, U(n))

4--* AX = 0-1 -, Ay = 4-18y , 4' E C°°(R2, U(n)).

See [Uh 5] for more details about harmonic mappings of (S2 , g52) into
(U(n), h).

§4. Proof of the Eells-Sampson theorem via the variational method

In this section, we give an outline of the the proof due to Uhlenbeck of
Eells-Sampson Theorem (1.2) using the method of variations. Recall

THEOREM (1.2) (Eells-Sampson). Let (M, g), (N, h) be compact Rie-
mannian manifolds, and assume that the curvaure of (N, h) is nonpositive.
Then each homotopy class in CO°(M, N) can be represented by a harmonic
mapping which minimizes the energy in its homotopy class.

In the following, we assume h = t'go, where t : N C RK is the inclusion
as a closed submanifold of RK , go is the standard Riemannian metric on
RK, and we use the notation in (1.4) and §2 in Chapter 4. Then

THEOREM (4.1) (K.Uhlenbeck [Uh 1], [Uh2]). For 0 E Coo (M, N) and
E > 0. let us denote

E(4') : 'At Id412 v8 , J(4') = J
rM

I d oI'vs ,
E,(0) := E(4') + EJ(0).
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Then EE is defined on LI ZP (M, N), and we obtain
(i) i f I > , m = dim M. then EE i s a C2 -function on LI 2 (M, N)

and satisfies the Palais-Smale condition (C).
(ii) If I > 0 and (N, h) has nonpositive curvature, then any critical

point of EE on LI 2p(M, N) belongs to C°°(M, N).
(iii) Under the situation of (ii), let 0E , e > 0, be a critical point of EE .

Then the set (0E ; e > 0) has an accumulation point 00 which minimizes
the energy in its homotopy class.

(4.2) Uhlenbeck's idea of the proof We explain the idea of proof of The-
orem (4.1). See Figure 6.5. Regard LI 2P(M, N) as R+ := (0, oo), and E,
J, E, real-valued functions on it. Let E be a real-valued function on the
open interval (0, oo) defined by

E(x) := 1 - 1 , 0 < x < oo.
x

2
X

Then E satisfies
(i) the only critical point of E, i.e., E(x) = 0 is x = 2 which attains

the minimum -; .

(ii) But since limx_. IE'(x)I = 0, putting S := [3, oo),

I isf IE'(x)I = 0, sup I E(x)I < 4 , and
s

there is no point x such that E'(x) = 0 on 13, oo).

Therefore, E does not satisfy the condition (C).
(iii) However, consider

J(x) = x,

EE (x) := E(x) + E J(x) = 12 - x + ex, e > 0.
X

Then
G,'(x) cx3+3 -2

X

and l1ms-Ep EE (x) = e , EE satisfies the condition (C) and attains the mini-
mum at xE which satisfies ex3 +x - 2 = 0.

(iv) Thus, as c -. 0, xE converges to x = 2.
In this way, we can capture the minimizer x = 2 of E, even E does not

satisfy the condition (C). This method is not adequate to find the minimizes
of a function on a finite-dimensional space, but becomes a strong method to
search for a minimizer of a function on an infinite dimensional space.

Now let us begin a proof of Theorem (4.1).
(i) The proof of (1) in Theorem (4.1) may be carried out by the same

argument as in the proof of Theorem (3.3) in Chapter 3, so we omit it.
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FiouRE 6.5

(ii) To show "Any critical point of EE on L1 2P (M, N) is C°° " in (ii)
Theorem (4.1), we first find the Euler-Lagrange equation for EE by applying
the method in the proof of Theorem (2.22) in Chapter 4 to EE .

PROPOSITION (4.3). The Euler-Lagrange equation for EE = E+e! is given
by

6((1 + peldgl2"-2)dc)
(4.4)

+(I+ pE Id4$j'-2)

8x 8x
=0.

i.)=1

Here the first term on the left-hand side is the codifferentiation of a 1 form
which is given by

6((1 + peld0lty-2)dO)

Xi=(X1 ,...,Xiie)

XiAjg" (1+peldc6l2°-2)dc

(
), 1 <A SK.

i-1 8x

Equation (4.4) makes sense for 0 E LI 2p(M, N) as a distribution solu-
tion, called a weak solution. The assertion (ii) in Theorem (4.1) means that
we can choose a weak solution of (4.4) as a Coo solution. In the course of
the proof of (ii), the following lemma is essential. The proof can be carried
out by hard estimates and is omitted.

LEMMA (4.5). Let (N, h) be a compact Riemannian manifold whose
curvature is nonpositive. Assume that 1 > !v , where m = dim M. For any
fixed e > 0, let 0 E LI ,(M, N) be a weak solution of (4.4), i.e., a critical
point of EE on it. Then the supremum norm II II,,, of the energy density
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function e(¢) of the weak solution ¢ can be estimated as

5 CE(4),
where sup{Ie(0)I; x E M), and the constant C does not depend
on 0 but only on (M, g) and (N, h).

Now to prove (ii), applying Theorem 1.11.1 in Morrey [Mo] (cf. p. 36 in
[Mo]), e(O)"2 =(I /2)p/2 Idolp belongs to L1 2(M, R). By Lemma (4.5), it
turns out that if E(4)) is sufficiently small, then 0 E L2 2p(M, RK )

. Then
(4.4) can be regarded a second order elliptic linear operator in an unknown
do with Horder continuous coefficients and using Schauder's theory, one can
conclude 0 E C°° (M, N) , but the details will be omitted.

(iii) Proof of (iii) of Theorem (4.1). Using Lemma (4.5), we show the
following:

PROPOSITION (4.6). For any a > 0 and b > 0. set

S6{0EL1 2p(M,N); 0<E<6, q5isacriticalpointofEE,
and EE (0) < b}.

Then the set Sa has a compact closure in LI 2p(M, N).

PROOF. From Lemma (4.5), we have

Cb < oo (4.7)

for all 0ESa.
Now let {¢i } °° , be an arbitrary sequence such that ¢; is a critical point of

EE, satisfying 0 < Ei < 6 and EEf(0i) < b. Then we shall show {¢i}°°, has
a convergent subsequence in L1 2P (M, N) . Since Ei E [0, d], i = 1, 2, ... ,
it has a convergent sequence, so we may assume {Ei}°OI is convergent. The
following two cases occur:

(1) ei -' E > O as 1 - oo.
(ii) Ei-+O as i - oo.
Case (i). In this case, since d(EE,),, = d(E + EiJ)0' = 0, dEE' _

-EidJJI . Thus, we get

IId(E+EJ)m,II = II(E :5.1f -E;I IIdJJ,ll < C'IE -Eil, (4.8)

where C' is a positive constant independent on 4i .

Indeed, for ¢ E LI 2p(M, N) and W E LI 2p(M, RK),

IdJJ(w)I < 2pJ Idol
1-2I(dw,

do) I vs

< 2p f IdcI2P-i IdwI vg
M

< 2p(Cb)(2p-1)l2 J Idw I vg by (4.7)
M

< CIIIwIII,2p
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from Holder's inequality (cf. (3.6) in Chapter 3). Thus, we obtain IIdJJII <
C'.

Therefore, the right-hand side of (4.8) converges to zero as i - 0C. So we
have that

inf{d(EE )b ; i = 1, 2, ... } = 0.
Since EE satisfies the condition (C) in L1 2p (M, N), we can choose a con-
vergent subsequence, denoted by the same letter, of {0; }°. ° I , such that

O;- b as i -'oc,
in L1 2p(M, N) and 0 is a critical point of EE , which is the desired result.

Case (ii) : e -» 0 as i - oc . In this case, E, can be arbitrarily small as
i -» oo . So we fix a small c, and denote it by e . We can rewrite the Euler-
Lagrange equation (4.4) for EE = E+e J as follows. By (ii) in Theorem (4.1),
we may assume each 0:= 0; is smooth, and denoting AO = (A01 , ... , AOx)
for 0 _ (01 f ... , Ox) ,

Am +Pe 16(idol
lp-2

dO)

+IdOl2p-2
dO(ax;d-O(' ))gaxi

+ E A.X.) d.0ax!
a _))g'1

=o.

But this equation can be regarded as a form

A0=eT Vd4,+B, (4.9)

where T, B are tensors depending on (x, 4,(x) , d4,(x)) . We may assume
the sets IITII,,.. IIBII. are bounded where 4,; runs over Sa. Then for
4, it follows that

110112.2p :5 IIAO112P + IIe(4,)Ilp + II0II2p

< EIITIIjI0II2,2p + IIBII + Ile(4,)IIp + II0II2p,

by definition of 11 112.2. and (4.9). Since a can be taken as arbitrarily small
and 11 T11,, is bounded, we can take

eIlTll <- 2 ,

which yields

Here note that

(1-
2)110112,2. <- IIBIIc,. + IIe(o)IIp + II0II2p

Ile(O)IIp < C E(4,) Vol(M, g) < Cb Vol(M, g),

110112. 5 suAp 101 Vol(M, g).
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Moreover, since 0 E C°° (M , N) and M, N are compact, we have that
supM 101 < C' < oc, where C' does not depend on 0. Thus, IIe(O) I1p + 110112p

is uniformly bounded on Together with the above inequality, we can
estimate

110112.2p<-C<00.
That is, {0,}'I is a bounded set in L2 2p(M, N).

Due to Sobolev's Lemma (4.30) in Chapter 2, the inclusion

L2 2p(M, N) LI 2p(M, N)
is completely continuous, so {0l}'I has a convergent subsequence in
LI 2 p(M, N) , We denote a convergent subsequence by the same letter as its
limit ¢ in LI,2p(M, N).

In the equation
(dE + e1dJ)0, = 0,

since 0; as i - oc, we obtain

IIdE,0,-dE,011 <Ce"110;-0III,2p-'0,

and since ei -., 0, we can conclude dEm = 0.
Thus, in both cases, {0i}°°I has a convergent subsequence in LI 2p(M, N).

O

COROLLARY (4.10). Let (M, g), (N, h) be compact Riemannian man-
ifolds. Assume that the curvature of (N, h) is nonpositive and 1 >
m = dim M. Then E attains a minimum on each connected component
A of LI,2p(M, N).

PROOF. EE = E + eJ satisfies the condition (C) on LI 2p(M, N) for
all e > 0, so it attains a minimum on each connected component *T of
Li 2p(M, N) (cf. Theorem (2.17) in Chapter 3). So let 0E E A be a
minimizer of E. . Then for each 0 E X,

E(d) 5 E(O) + 6 J(OE )
< E(4) + eJ(0).

Let a - oo. By Proposition (4.6), if we denote the accumulation point of
{o,; e > 0) in Li 2p(M, N) by 00, then 00 E A, since A is a closed
subset of LI 2p(M, N). Moreover, by the above inequality,

E(00) = limE(OE) < lim(E(4) + e J(O)) = E(4) ,
f -0

so we can conclude that this 00 E A is a minimizer of E. 0
The 00 in Corollary (4.10), satisfies

00 E LI 2p(M, N) c C°(M, N)
since I > f , m = dim M, and it is a critical point of E. Thus, by
Proposition (2.48), 00 is C°° and a harmonic mapping which minimizes
the energy in its homotopy class, which implies (iii) of Theorem (4.1).



Solutions to Exercises

1.1. (i) u, = 0. (ii) d(uxp-1) = 0. (iii) U.'.' + epd(u°-1) = 0.
1.2. Putting g(x) = a f" f (s) ds, then y(x) = f x

g(s)
ds.

13. If u(t, x) = F(t) G(x), then

p u« + jtAu = 0 b p F"(t) G(x) + p F(t) AG(x) = 0

p F"+AF = 0 on Rb
ttAG-AG=0 on 12,

where A is a constant. G is a function on 5 vanishing on 8(. Then G is
expanded into

00

G(X) = Ea.G.(x),
i=1

where {G,}°°1 is a complete orthonormal basis of L2(i2) with respect to the
inner product (j , f2) = fa f1(x)(x)f2(x) dx satisfying

on11,
G. (x) = 0, X E Oil.

Note that A, > 0.
Now u(t, x) satisfies the boundary condition u(t, x) = 0, (1, x) E

R x 8(1, and it can be expanded into
00

u(t, x) = 1: bn(t)Gn(X).
n=1

Then we get
00 00

purr+pAu=0 pFbn(t)Gn(x)+pFbn(t)AGn(x)=0
n=1 n=1

00

b E(pbn (t) + A. bn(t)) GG(x) = 0
n=1

pb' '(1)+Anbn(t)=0,

227
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using (G., Gn) = d." . Since uo(x), ul (x) satisfy the boundary condition
uo = 0, u1 = 0 on 80, we can expand them into

00 00

uo(x) _ Ecn G"(x), ul(x) = >d" Gn(x).
n=1 n=1

The initial condition at t = to is
00 00

u(10, x) = u0(x) a bn(to) G. (x) _ cn G" (x)
n=1 n-1

. bn(t0)=cn, n=1,2,...,
and

u,(t0, x) = u1(x) e=* Ebn'(t0)Gn(x) = EdoGn(x)
M-1 n-1

s= bn'(to)=dn, n= 1,2,....
Thus, b(t), n = 1, 2, ... should satisfy

b,-( t) = -L" bn(t), bn(t0) = Cn, bn'(t0) = dn.

Such b" are given by

bn(t) _ FTP- do Stn " (t -10) + C" Cos (1 - to)

Substituting this into u(x, t) _ Ew
1

bn(t)Gn(x), we obtain the desired so-
lution.

2.1. Use Zorn's proposition (1.12) and the formulas in (1.21).
2.2. We show completeness of L(E, F) with respect to the norm II II

Let {T"}" 1 be a Cauchy sequence. Since for X E E,

II TT(x) - Tm(x)II 5 II T. - Tmll IIxII,

{ T"(x)} 1 is a Cauchy sequence in F and since F is complete, there exists
y E F to which Tn(y) converges. Defining T(x) = y, T is the desired limit.
The boundedness of T can be seen as follows: Since IIT" - Tm II 0 as
n, m - oo, {IIT" 111'*, is a bounded set, say 11 T. II < C, n = 1, 2, .... As
n - oc in the inequality

IIT"(x)II 5 11T"11 11X11 :5 CIIxII+

we get IIT(x)II 5 CIIxfl since I IITn(x)II - IIT(x)II 1:5 IIT"(x) - T(x)II 0.
To show II Tn - TII - 0 as n - oo , we take any e > 0. Then there exists

an no such that if n, m > no such that IIT" - Tm II < e. Then for x E E,

IITn(x) - Tm(x)II 5 E IIxII
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As m -oc,weget
II TT(x) - T(x)II < e Ilxli.

Thus, if n > no , we can conclude II Tn - TII <- e .

2.3. We first prepare with the following facts about the Lie derivaitve
LXS, X E X(M) of a (r, s)-tensor field S: Denoting by qr,(x) the maximal
integral curve of X E X(M) through x E M, q', induces an isomorphism
between TM and T,,,(X)M which induces also the one between TTM and
v,(x)M M. Then induces an isomorphism between the tensor spaces Tx'SM

and T;,(s)M, denoted by
T..SM - 7

(X
..')M.

For a C°°- (r, s)-tensor field S, define a new (r, s) tensor LXS E I"(T'' SM) ,

called the Lie derivative by

(LxS)x := d I
qi, ISr,cx) , x E M.dt r=o

Then
(i) LXf=Xf, fEC°°(M),
(ii) LXY = [X, Y1, Y E X(M),
(iii) LX (S ®T) = LXS ®T + S ®LXT , for C°° tensor fields S, Ton

M,
(iv) LX(O) A q) = Lxw A q + w A LXq for C°° forms w, q on M,
(v) For a C°°- (0, s)-tensor w and XI , ... , XS E X(M) ,

(LXw)(X1,... , XS)

=X(w(X1,...,XS))-Ew(XI,...,[X,X;I,...,X5).

Indeed, for (ii) take U, (x1, ... , xn) a coordinate neighborhood around
x E M. Denote an integral curve of X = E"

1
X, (x1, ... , xn) a0 by

q1(x)=(P 1(1 ,x),...,g (t,x)). It follows that
d
d Pr(t, X) = X1({1 (t, x), ... , {n(t, x)), q7,(0, x) = x,

for 1 < i < n. Ignoring the higher order terms in t, the solution {p, (t , x)
is of the form

4?1(t , x) = XJ + X.(X1, ... , xn)t + 0(12).

Since qP,(x)-1 = P_,(X),

qr,(-t, x)=x;-X1(x,,...,xn)t+O(t2).
Thus, for U,

n 8xE
l=1 1 I,(x)
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where

-E (8x) (x' o qP-')(8 /J F,(x) f x

- f (),ix{xa8- Xf(x1 , ... , x")t + O(12)1(8x )x
\ f

aV
8x. (X) , ... , X")t + O(t)

8X
8X`

2{\8 /
f=I j f x

and

" 8 Y.
Yj(9pr(X)) = Yj(x! , ... , x") + E 8x (xi , ... , x")Xk(x(, ... , x")t + O(t2).

k-I k

So we get

d
(LxY)x - dt

dt Yj(,r(X))gp_r. (8xj) xj-1 Irp,( )
= {8X' (x)Xj(x) - Yj(x) eX' (x) } (aX) = [X , Y]x

fI j-I I 1 J\ t x

which yields (ii). For (v), let w be a (0, s)-tensor field. Then

(Lxw)x(XI , ... , X,) = d Ir-o(Q1 w)x(X1 , ... , X3)

d w.,(x)(Q,.XI
l r-0

d
J,-060,'(x)(XI , ... , Xs)dt

+wx Xl, ...' d1l x, ... , Xs) ,f- r-0

the first term of which is equal to Xx(w(XI , ... , Xi)) , and for Y E X(M),

d
dtIr_O9r.Y = dt1r.Op-te Yv,(x) = (LxY)x = [X, Y]x

which yields (v).
Now on any neighborhood (U, (xl, ... , x")) in (M, g),

v = , I - g d x l A . . . A = w1 A . A

where (wj}j-I is a dual basis of a local orthonormal frame field (ef}ni-1 ,

i.e., w j (ef) = of j , defines a global n-form, called the volume form of (M 9 g).
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Then we get
n n

div(X)g(ei,Ve,X)=r g(ei,Vxei-[X,e,))
i=1 a=1
n

g(ei, [X, e.]) (since 0 = Xg(ei, e.) = 2g(V xei , e.))
i=1
n

wi([X , ei])
1=1

cm1(el) ... wl([X, ei]) ... w1(en)

231

(ith column cofactor exp.)
i=1 I(dn(e1) ... wn([X, ei]) ... wn(en)

n

E((O1
A

Acon)(e1,...,[X,ei],...,en)
i=1

= (Lxv)(e1, ... , en) (from X(v(el, ... , en)) = 0 and (v))

79
L v! 8 8)

Ix (v I nL9 '0 ))
n 8

[x,
8 e-E V(exl,...,

axii.1 I

_ xi=1 i

since 1x, eI _ _
8xi

j=1
8xi 8xj

_ 1 n 8
g

aXi

(vxi).
V6

2A. (i) Since X = grad f satisfies g(X, Y) = Y f, Y E X(M),
g(X, ei) =elf , 1 5 i < n. Thus, we get

n n

X = > g(X, ei)ei = E(ei f)ei.
i=I i=1

In the same way, since g (X , fr) _ , 1 < j < n ,
R

ij 8 8
n

ij 8f

X =Egg (x. 8x exi = E g 8xj 8x.'f.j=1 1 ,j=
(ii) Since df = Ej

1
ei(f )cvi, grad f, =

1
ei(fj)ei, j = 1, 2 and

g(wi , wj) = g(ei, e j) = 8 j , we get
n

g(df1, df2) = >ei(f1)ei(f2) = g(g fl , gradf2).
i=1
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2.5. By (3.24), (3.26), for X = grad f,

A f = - div grad f = - axi

can be written as

(ii:" 8x;

n ndivgrad

f = g(e;, VEX) _ 8(e;, Ve ((e f)e;))

_ 8(e;, (e;e,f)e,+(ej(ejf)Veej)
i.l=I

rt n

_ {e1f+>(e1)g(ei,Vee,)

Here since g(ei, V,'e,) _ -g(V, ei , e), we get
n n

,(e;f)8(e;, V,,e;) _ -F(ef)g(V,,ej, e) _ -Ve,eif
j=1 j-1

.which implies div grad f = En I {ei2 f - Ve ei f)
The equation

1 a = i,

(OXiaXj

a2f -l(vuigh1)
.;=I g k-I 'j axk J

can be obtained as follows. Since the left-hand side coincides with
n i; of + -l a

(
i;)of

g 8x 8x f 8xi ax I ,ij-I {
1 1

it suffices to show

n 1 a i; of n i;rkafj (v 'g )ax. = - , g if
axk.

i.J-t I i.J.k-I
To do this, it suffices to see

g

F1 a
(V

68,) gikr
k

i=1 v xi
for all I < k < n. Here due to the differentiation rule of a determinant, we
obtain

1 vrg- - 1 1 8 det(g,,) = 1 En kl agk[
8xi 2 det(gif) 8xi 2 k l l

g 8xi

Differentiate Ek= I gikgki = 5,, in x, then we get

agik k; a = 00 _ - rn hags, it
{ axi 9 +gik 8x, } 0, axt s.t=t g 0 x, $k-I
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Thus, we should show the left-hand side coincides with
ij n n1 8 f gij

+
8g I gi,gkt agkt - gugtj a8at

VY ax. ax. } = 2 ax. ax.
t i,k.t=1 i,a,t=1

which is equal to the right-hand side using (3.7) in a similar way to what we
have done previously.

2.6. For IEA'(M),
R n

-F(V 'Me;) E{e;(q(e;)) - q(V"ei))
i=1 1=1

n

F{ei g(X, e;) - g(X, V,,ei)}
i=1

g(Ve,X , ei) = -div(X)
i=1

from the definition of X. Thus, by (i) of Proposition (3.29), we get

ff(_thVflt1g = /Mg(g;radf, X)Vg = Jg(df, 71)vg,

since X = ',1 q(ei)ei by means of q(Y) = g(X, Y) for all Y E X(M), so
that

n

g(gmdf, X) _ ei(f)q(e;) = rdf(e;)q(ei) = g(df, q)
i=I i=1

The above equality implies that Jq = -div(X) by definition of tSq.
2.7. The right-hand side of the equation to be proved coincides with

r+1

E (-I)i+1Xi(W(XI
, ... , X1, Xr+1))

i=1
r+1 i-I _
F(_I)i+1(W(XI,...,VX.Yj,...,Xi,...,Xr+1)L

,
i=2 j=1
r r+1 _

E(-I)i+1 E (O(XI,...,Xi,...,VXXj,.. ,Xr+l).
i=1 j=i+I

In the third term, changing the signs (-1)'+' and Lj=i+1 , and the summa-
tions in i and j (cf. Figure I on next page), we get

r +1

L. l (-1)r+IW(XI , ... , Xi ' Vx Xj , Xr+l )
i-I j=i+l

r+I j-1
i+1

_
W(XI= EE(-I) , ... , Xi, ... , VxXj,... , Xr+,)

i=2 t=1

r+I i-I _
,...,V1Xi,...,Xr+,).

i=2 j=1
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1

I

0
FIGURE 1

Then making use of [XJ , Xi ] = VEX, - Vx,
Xj , the above is equal to

r+1

E(-1)i+IXi((v(X,, ... , Xi, ... , Xr+I))
i=1

r+I i-1 _

VX Xj , ... , Xi, ... , Xr+I )
t=2 j= I

r+I i-I

i=2 j=I
r+1- +IX1(W(X,

i=1

+ E(-
j<i

w([Xj' Xil' XI' ' Xj' ' Xi' Xr+I)

= dcv(X, , .. , Xr+1).

2.8. Compare two coordinates 'i 1 yi vi (y, , ... , yn) with respect to
a basis { vi } I , and xi ei ' -, (x, , ... , xn) with respect to the standard
basis {ei}"I of Rn. Writing vj=F,i Iaijeiweget

n nn``

gkf = (vk'v,) = (aket. Eaj,ej =
t=1 j=1 i=1

n rn nr n n

L yJ Vi = yj l(aijei) = E E(aji) ei.
j=1 J=1 i=1 i=1 j=1

Thus, x, = E;=, aij y j , and d xi = E;=, aij d yj . Hence,

n n n n

ng,,=go =>dxi®dxi=E Faikdyk ® aicdyc
i=1 i=1 k=1 [=1

n

= arkair dyk ® dyc.
k,[=1 i
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Using 7t(E" I v v1) -, (y. , ... , yn) , we get gA _ Ek.1=1 gkr dyk ®dy,
where gk, = (vk , V,).

2.9. (i) To show X is left invariant, i.e, La , Xx = Xa., a, x E GL(n, R) ,

one may check this directly. Here we give an alternate proof. For_ X E
gl(n, R), put Xe = E" J=I X1j(Y/ E TeGL(n, R) and C. := It

suffices to show that Xa is given by (4.12). To do this, we only have to see
Xaxv = I:k_I a,kXkj . Since (x,, o La)(b) = x,, (ab) = Ek1 xik(a)xk, (b) _

a b , we haveEk=1 ik kj
n n

Xaxij = La . Xexij = Xe (X,, o La) = L aik XstakSt J = E a,k Xk,.
s.r.k=l k=I

(ii) To show [X, Y]-, by definition (2.22), we only have to
show

d
[X-, Y]a = aik[X . Y]k 'dx,

for X = (Xij), Y = (Y j) , where [X, Y]k, is (k, j)-component of [X, Y] _
XY - YX.

(iii) A curve a(1) = exp(IX) in GL(n, R) is by definition a solution of

'(t) = a(0) = I d na txi1(a(t)) = E xik(a(t))Xkl, a(o) = 1.

k=1

Considering Y(t) = e`X (which is convergent), we have Y(1) = Y(t)X ,

Y(O) = 1. Therefore, by a uniqueness theorem for the initial value problem,
we get a(t) = Y(1).

2.10. GL(n, C) := {Z E M(n, C) ; det Z 96 0} is an open subset in
C"2 ^-' R2n2 and so becomes a Lie group of real dimension 2n2 , by check-
ing that the multiplication of matrices and the inverse operation are C--
mappings with respect to the differential structure induced from R2n .

A set of n column vectors of any element x = (x1) in 0(n) is a orthonor-
mal basis (R", (,)) , and then I x,,l < 1, 1 < i, j < n. Thus, both 0(n)

and SO(n) are bounded closed subsets in GL(n, R) C R" , i.e., compact. By
a similar argument, all z = (zij) E U(n) satisfy Iz,, I < 1 , I < i, j < n . So

both U(n) and SU(n) are compact subsets in GL(n) C C"= R2n . Since
any closed subgroup K of a Lie group G is also a Lie subgroup of G, we
get the desired result.

To find the corresponding Lie subalgebras, it suffices to show that the Lie
algebra of GL(n, C) is gl(nC) = M(!: , C) and one may make use of (4.7)
and exercise 2.9.

4.1. If 0 : (M, g) - (N, h) is an onto isometry, then T(q5) = 0 since
0 satisfies that NV,.XO,Y = O.VXY , X , Y E X(M) .
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4.2. If {e1, e2} is a local orthonormal frame field, {w1, w2} is its dual,
eg(0) is the energy density function of 0 with respect to g, and vg is the
volume element, then

2

eg(c)vg = EO'h(el, el)w, n w2.
i=I

On the other hand, since { -el Te2 } is a local orthonormal frame field

of (M, A g) and its dual is { f wl , vw2 } , we get

2

eag(0)v.gh( e,,

2 .

_ O'h(el , e2)wl A w2 = eg(g) vg

which implies the desired result.
4.3. Take q E C°°(M) with supp (q) c U. Define a C°° mapping

F,: by Ft(x,y):=(x+tq(x,y),y), (X, Y) E U, extend it to the
whole M by Ft(p) = p ¢ U, and define a variation 0, of 0 by O, := ¢ o F, .

Then changing the coordinate on U by (C, r\) = F,(x, y), we get

00ax,

oZ(F,(x, Y))1 +t
ax

I

ay` = , (F,(x, Y)) tay + a-(F,(x, y)).

By exercise 4.2, we get

fu { I a X 12 + I aeg(g) vg
The second term does not depend on 1, and the first term coincides withf{I

ac

,)2+I L46

8z

Therefore, we get

")L0
dd Or

OY17

)
+Oa19,0

c' +1a
L' L"

12)\ ax)}d{dtf
l( a )ay}dzdt

-fI(Iaxl2_I ayl2)ax+2\ax' av>ay}dxdY,

since (x,y)=(C,r) at t=0.

(1)
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By a similar argument, considering G,(x, y) = (x. y + ni(x, y)), defining
a variation 0, := 0 o G, of 0, and changing the coordinate as ({, r) _
G,(x, y), we get

001 = O(G (x, y)) + -(G (x, y)) t
d'

Ox a a=
ax.

01d = Y)'
so we get

2 2l

fu lI rl + YrI1 dxdy+ fM\tleg(0)vg,

where the first term coincides with

j z

fU OC OX Or + OT' +t Oy
2 d{dT

1+t 29 *

Thus, by an argument similar to (1), we get

o= d

d(Of)I

o f, l2(c' ar/a +2ay
I2)ay)drdT

_f
U

ay(I axI2-I avI Z) +2(ax'
ay)ax}dxdy.

Carrying out the partial integrals, since >) is arbitrary, we obtain

(2)

a' ay"
) / =0 (by (l)),ax(IaxI2-Ia;i2) +2Y\(x

aY0 (by (2)),

which imply that the real and imaginary parts of Vi satisfy Cauchy-Riemann
equations, and then yi is holomorphic in z = x + Vlr--Iy .

REMARK. yi d z ®d z gives a globally defined holomorphic quadratic form
on a Riemann surface M. If M = S2 , all holomorphic quadratic forms
vanish, so that yr = 0, and we obtain

2 012 = 0, 0.

4.4. (i) Let ti: M13x-(x,y)EMI xM2, 12: M23y"(x,y)E
MI xM2, 7[I: MI xM23(x,y)
Y E M2. Then we get

T(O) = 7c1.T(0 0 11) + n2,T(0 0 12)
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By assumption r(4 o II) = 0 and r(¢ o I2) = 0, and we obtain r(O) = 0.
(ii) ¢ is an isometry in each variable, so it is harmonic in each variable.

We may apply (i).
(iii) It suffices to show S°-I x F(x, y) E S"-I and SQ-I

y F(x, Y) E S"-I are both harmonic. The former is linear in x and
then each O'(x) is also linear in x, i.e., an eigenfunction of the Lapla-
cian on (9-1, gs,-,) with the eigenvalue p - l . We denote here I o ¢ =
(0I , ... , O"), where I : S"-I c R" is the inclusion. By a theorem of Taka-
hashi (2.4) in Chapter 4 or (1.9) in Chapter 6, it is harmonic. That the latter
is harmonic is shown in the same way.

4.5. Show that Hopf s mapping ¢ : (S3 , gs3) -. (S2 , gs2) is a Rieman-
nian submersion for which x E S2, 0-1 (x) is a geodesic, i.e., a minimal
submanifold of (S3 , gs2) . By Proposition (3.10), 0 is harmonic.

5.1. (i) Since A. = 0 + p , Jid = 4 - p = 2A - AH . Putting w(Y) _
g(X, Y), VY E X(M),

f(JIdX X)Vg = 2f g(&1, X)Vg _ fMg(A.,X,X)vg (1)

=2f IVXI2 Vg - fM div(X)2 vg - 'Al IdwI2 vg ,

and dw(Z, W) = (Vzco)(W) - (Vww)(Z). The Lie derivation of LXg
satisfies

(LXg)(Z, W) = x g(Z, W) - g([X, Z], W) - g(Z, Ix, B'])
=g(VXZ, W)+g(Z. VXW)-g(vXZ-VEX, W)

- g(Z, VXW - VwX)
=g(V X, W)+g(Z,VwX)

=Z.g(X,W)-g(X,VzW)+W g(Z,X)-g(V,Z,X)
= Z w(w) -w(VzW)+ W w(Z) -w(VwZ)
= (Vzw)(W) + (Vww)(Z).

So putting Vw(Z,W)(Vzw)(W),we get vw=1{dw+Lx g}. Then
IvwI2 =

2
IdwI2 + 4I LxgI2 (2)

since
m

IvwI2 = E (Velw)(e,)2,

1

m
Idwl2

= 1: dw(e;, ej )2

=
2

E dw(e;, e,)2,

i<j i.l=I

m

ILXgl2 = > LXg(ei, ej)2.
+.l=l
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On the other hand, we get
1Vw12

= IVX12 ,

from the calculation
m m

IVw12
= E (Ve

w)(ef)2
= {e,(w(e))) - w(Ve,e,)}2

M m

_ E{ei-g(X,e!)-g(X,Veej)}2= g(V X,
i.l=i +.1=
M

g(veX,VeX)=IVXI2
i=1

2

239

(3)

Therefore, substituting (2), (3) into (1), we obtain the desired equality.
(ii) Due to the Kodaira-de Rham-Hodge decomposition, we get the or-

thogonal direct decomposition

AI (M) = (C OE A'(M); 8w = 0} ®{df ; f E C°°(M)},
X(M) = {X E X(M); div X = O} (D {grad f ; f E Coo (M)).

If (M, g) is Einstein, i.e., p = c 1, then

Jid=AH-2c1,

which preserves the two subspaces of X(M), f X E X(M) ; divX = 0),
{grad f ; f E C°°(M)} invariantly. In fact, if div X = 0, div (AHX) =
0 since putting g(X, Y) = w(Y), VY E X(M), we get g(AHX, Y) =
(AIw)(Y), and div(AHX) = -BAIw = -OdOw = -A(Ow) = -A(divX) = 0.
Furthermore, AH grad f = grad(if) since g(AHgrad f , Y) = Al df (Y) _
dtdf(Y) = d(Af)(Y) = g(grad(Af), Y) for all Y E X(M) .

Case (i). For X E X(M) with div X = 0,

fJar
g(JidX , X) V9 = far

{ILxgI2 - (div X) 2 } vg = 2 f I LXgl2 vg > 0

which implies that the eigenvalues of Jid are nonnegative on the subspace
{XEX(M); divX=0}.

Case (ii). On the subspace {grad f ; f E C"° (M)} , we get

Ad grad f = (AH - 2c 1) grad f = grad(A f) - 2c grad f.

Here expanding f E C°°(M) into the eigenfunctions of A, we get
00

f =EfI, Afp=0, Af =Aif, i> 1.

By the above, we obtain

Ad grad fi = (Ai - 2c) grad f i > 1
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which yields that eigenvalues of Ad on the subspace {grad f ; f E X(M)}
are {A,-2c; i> 1 } .

Putting both cases together, we obtain that index(id) = 0 r AI (g) = AI
2c.

5.2. Since Ad = D - P, we get

X)Vg -
f 9(P(X)IX)vg

= JM
I VXI2

vg - fM g(P(X), X) vg.

By the assumption p < 0, we get 0 < fM I VXI2 vg = fM g(p(X), X) Vg < 0.
Thus, we obtain VX = 0.

5.3. For to E AI (M), define X E 1(M) by w(Y) = g(X, Y) for all
Y E X(M). We get A

,
Aw(Y) = g(AX, Y) for all

Y E 1(M) . Thus, for f E C°°(M) with Af = AI If ,

IiVdfll2 + (gradf, P(gradf)) = (df, A(df)) + (gradf, P(gradf))
= (df, Aldf) = (df, dAf) = (adf, Af)

=(Af,Af)=A, (f,Af)=A,IIdfII2.
By the assumption on p, we get

(gradf, P(gr'adf)) >_ a(grad f, grad f) = alldfll2.
Thus, we get

_ l0> (-.1+a )IIAfil2+Ilodfll2, (1)

since IiAf Ii =A, Ildf 112. On the other hand,

Ilodfll2 >

n

11,&f 112
(2)

since putting h := Vdf , for X, Y E 1(M) , we have

h(X, Y) = VX(df)(Y) = X(df(Y)) - df(VXY)
= X(Yf) - (VXY)f = Y(Xf) + V, Y}f - (VXY)f
= Y(Xf) - (V,,X)f = V,,(df)(X) = h(Y, X)

which implies that h is a symmetric (0,2) tensor field. Moreover, define
n n

trh := h(ei, ei) Ve,(dr)(ei) = {ei2 f -Ve,e, f} = -Af,
i=1 i=1 ,=1
n

Ihi2 := E h(ei, el)2.
i,J=l

By Schwarz' inequality, denoting hip := h (ei , e,),

( n
h`j2)n

= \ h''2) \ a`') > \ hijai')2 =
(h11)2.

,,l=l i.j=l i.J=l i,J=l i=I
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Thus, we obtain

IVdfI2 > n (tr Vdf)2 = n Ioll2.

Integrating this over M, we obtain (2).
From (1) and (2), we obtain

Qn0>-1+ )IIol1I2
\\ Al

which implies 0 > n - 1 + f- since IIofII > 0. We obtain the desired result.
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Riemann integral, 33
Riemann submersion, 142
Riemann sum, 88
Riemannian

covering, map, 64
distance, 51
manifold, 50
metric, 50
submersion, 203
symmetric space, 161

Right invariant, 64, 68
Right translation, 64
Rigidity, 172
Rough Laplacian, 155, 164

Scalar curvature, 57
Second derivative. 32
Second fundamental form, 134, 193
Second variation formula, 155
Section, 43
Sectional curvature, 57
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Smooth variation, 124
Sobolev's lemma, 72
Special orthogonal group, 67
Special unitary group, 67
Spectral radius, 89
Spectral resolution, 89
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Sphere, 63, 69
Stability, 157
Standard eigenmap, 196
Strong transversality theorem, 99
Submersion, 142
Support, 58

Takahashi's theorem, 140, 189
Tangent bundle, 43
Tangent space, 42
Tangent vector, 41
Tension field, 131
Tensor field, 45
Total curvature, 4
Transitive, 67
Translation, 66

Unit normal vector, 14, 193
Unit open ball, disc, 63
Unit sphere, 63
Unitary group, 67
Universal covering, space, 63

Variation vector field, 124
Vector bundle. 42

valued differential form, 163
Vector field, 39, 44
Vertical component, 142
Vertical direction, 142
Volume, 59

Wave equation, 12, 15
Weak solution, 223
Weakly stable, 87, 157
Weitzenbock formula. 161. 164

Yang-Mills connection, field, 215
Yang-Mills connections, 5

Zorn's lemma, 35
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